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Abstract

We propose a numerical method for the solution of electromagnetic problems on
axisymmetric domains, based on a combination of a spectral Fourier approximation
in the azimuthal direction with an IsoGeometric Analysis (IGA) approach in the
radial and axial directions. This combination allows to blend the flexibility and
accuracy of IGA approaches with the advantages of a Fourier representation on
axisymmetric domains. It also allows to reduce significantly the computational cost
by decoupling of the computations required for each Fourier mode. We prove that
the discrete approximation spaces employed functional space constitute a closed and
exact de Rham sequence. Numerical simulations of relevant benchmarks confirm
the high order convergence and other computational advantages of the proposed
method.
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1 Introduction

The solution of the Maxwell equations on axisymmetric domains, as the one de-
picted in Figure 1, plays an important role in many applications, such as, for exam-
ple, electrical machines, cables, the beam pipe of a particle accelerator magnet or
resonating cavities. Several tailored numerical techniques to solve electromagnetic

z
Γ0

Figure 1: Representation of a cross-section S lying on the {ρ = 0} axis
(right) and its associated axisymmetric domain Ω̆ (right). Γ0 represents
the portion of the boundary of S on the axis.

problems on such domains have been proposed in the literature, e.g., among many
others, [1, 2, 3, 4, 5, 6, 7, 8, 9]. In particular, when considering the computation
of multipole expansions in particle accelerator magnets, often one has to consider
boundary conditions that are accurately represented by a combination of a small
number of Fourier modes. Therefore, if a Fourier spectral approach is employed
in the azimuthal direction, the resulting computational cost can be significantly
reduced.

Concerning specifically particle accelerator simulation, it has been recently shown
in [10] that the accuracy of particle tracking methods employed to design new accel-
erator configurations is essentially limited by the accuracy of the field reconstruction.
In particular, numerical approximations of electric and magnetic fields that do not
respect the inherent mathematical structure of the Maxwell equations may disrupt
the effective accuracy of the simulation. This motivates the search for consistent
numerical methods that provide high order accuracy in the spatial approximation.

In this work, we propose a combination of a spectral Fourier approximation in
the azimuthal direction with an IsoGeometric Analysis (IGA) approach in the radial
and axial directions, extending the strategy presented in [9]. The combination of
the Fourier basis and IGA is in the spirit of the recent developments in [11] in com-
putational fluid dynamics. IGA has become popular in applied electromagnetism in
the last decade [12], [13]. One of its features is that it provides discrete approxima-
tions that, thanks to an appropriate choice of the finite-dimensional approximation
spaces, indeed satisfy discrete analogous of the continuous Maxwell equations. In
more technical terms, in the spirit of de Rham [14], sequences of functional spaces
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which are closed and exact can be approximated by closed and exact sequences at
a discrete level.

The combination of splines and Fourier bases in cylindrical coordinates effec-
tively mitigates two problems. On the one hand, electrotechnical devices, par-
ticularly those based on high-frequency electromagnetic fields, are very sensitive
to shape variations and are usually described by solutions of high regularity [15],
which favours splines-based field and geometry representations. On the other hand,
Computer Aided Design (CAD) tools rarely provide volumetric representations.
Therefore, considering the cylindrical coordinate system also helps in bridging the
gap between CAD and simulation. Furthermore, the orthogonality of the Fourier
representation allows to decouple the computation associated to different Fourier
modes. Notice that, recently, the scaled boundary approach was proposed and
demonstrated for Laplace-type problems in [16]. While not limited to axisymmetric
domains, this approach does not exploit the orthogonality of the Fourier basis and
does not display high convergence rates of the spectral method proposed here.

The paper is structured as follows. In Section 2, we briefly recall the Maxwell
equations and we introduce the notation for the treatment of problems in axisym-
metric domains. Section 3 is devoted to the presentation of the strategy used to
extend a general discretization in Cartesian coordinate to the cylindrical setting.
Moreover, appropriate error estimates are introduced. In Section 4, we briefly in-
troduce the discrete spaces used for IGA, together with error estimates, that will
be used to build the discretization presented in Section 3. In Section 5, we apply
the method presented in this work to relevant problems often arising in electro-
magnetism. Finally, in Section 6, we draw conclusions and discuss possible future
developments of the proposed approach.

2 Preliminaries

Consider the time-harmonic Maxwell equations [17, 14]

curlE = iωB ,

divD = % ,

curlH = j − iωD ,

divB = 0 ,

(1)

together with the magnetic vector potential A, for which

B = curlA

holds, and a set of linear constitutive relations that links the fluxes D and B to the
field strengths E and H:

D = εE , B = µH ,

4



where ε and µ are the permittivity and permeability, respectively. A first problem,
which often arises in electromagnetics and that we will consider in Sections 5.2
and 5.3, amounts to determining the eigenmodes of a resonant cavity solving the
following source problem:

curl
(
µ−1 curlE

)
= ω2εE , (2)

with suitable boundary conditions. The second type of problem we will consider
arises in the stationary limit ω → 0, and amounts to determine the magnetic vector
potential A regularized by the Coulomb gauge, solving the following equations:

curl
(
µ−1 curlA

)
= j ,

div (εA) = 0 ,
(3)

for a given source current density j and with suitable boundary conditions.
The problems above will be solved on axisymmetric bounded Lipschitz domains

Ω̆ ⊂ R3 represented in cylindrical coordinates. We will exploit the Fourier basis to
define different de Rham complexes for each mode m, which will then be analysed
and applied to some numerical examples in the following sections. In this work we
will restrict our attention to the case m 6= 0, which corresponds to functions that
are not axisymmetric. Let us introduce the cylindrical coordinates (ρ, z, θ), with
the z-axis being the symmetry axis of the domain. The uncommon choice of placing
the angular variable θ as the last one will considerably simplify the notation of the
following considerations. The Cartesian coordinates are related to the cylindrical
ones by 


x
y
z


 = g





ρ
z
θ




 =



ρ cos (θ)
ρ sin (θ)

z




and, conversely

ρ =
√
x2 + y2 and θ =




− arccos

(
x
ρ

)
, if y < 0 ,

arccos
(
x
ρ

)
, if y ≥ 0 .

We describe the domain Ω̆ using its cross-section with respect to the and ρz-plane
S ⊂ R+ × R. We assume that S ⊂ R2 is a bounded Lipschitz domain obtained
through a diffeomorphism F of the unit square and that ∂S ∩ {ρ = 0} is either
empty or coincides with F ({0}× [0, 1]). Let Γ0 = int (∂S ∩ {ρ = 0}) be the interior
of the intersection of the boundary of S with the z-axis and Γ = ∂S \ Γ0. The
volume Ω̆ is obtained by rotating the cross-section over the symmetry axis z and
adding Γ0:

Ω̆ =
{
x ∈ R3 : x = g

(
(ρ, z, θ)T

)
, (ρ, z)T ∈ S, θ ∈ [0, 2π)

}
∪ Γ0 .

We have that ∂Ω̆ = Γ× [0, 2π) (see Figure 1).
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The differential operators involved in the standard de Rham complex in Carte-
sian coordinates [18]

H1(Ω̆) H(curl; Ω̆) H(div; Ω̆) L2(Ω̆)R 0
grad curl div (4)

correspond to the following ones in cylindrical coordinates:

grad c u =




∂ρu

∂zu
1

ρ
∂θu



,

curl c u =




1

ρ
∂θuz − ∂zuθ

1

ρ
(∂ρ(ρ uθ)− ∂θuρ)

∂zuρ − ∂ρuz



,

div c u =
1

ρ
∂ρ(ρ uρ) +

1

ρ
∂θuθ + ∂zuz .

Since the domain is axisymmetric, we can exploit the Fourier orthogonal system in
the angular variable θ. Moreover, it is convenient to express each function on Ω̆
as the sum of a symmetric and an antisymmetric part with respect to the plane at
θ = 0, so that, for a scalar function, we have that u = us + ua, where

us = u(0) +
∞∑

m=1

u(m) cos (mθ) ,

ua =

∞∑

m=1

u(−m) sin (mθ) .

For a vector function we have instead that u = us + ua, where

us =



u

(0)
ρ

u
(0)
z

0


+

∞∑

m=1



u

(m)
ρ cos (mθ)

u
(m)
z cos (mθ)

u
(m)
θ sin (mθ)


 ,

ua =




0
0

u
(0)
θ


+

∞∑

m=1



u

(−m)
ρ sin (mθ)

u
(−m)
z sin (mθ)

u
(−m)
θ cos (mθ)


 .

The Fourier coefficients u(m), u(m) are defined on the cross-section S. With this
representation, the effect of the differential operators on each mode m can be con-
sidered independently, leading to the definition of the following operators acting on
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the Fourier coefficients:

grad m u(m) =




∂ρu
(m)

∂zu
(m)

−m
ρ
u(m)



, (5)

curl m u(m) =




−m
ρ
u

(m)
z − ∂zu(m)

θ

1

ρ

(
∂ρ

(
ρ u

(m)
θ

)
+mu

(m)
ρ

)

∂zu
(m)
ρ − ∂ρu(m)

z



, (6)

div m u(m) =
1

ρ
∂ρ

(
ρ u(m)

ρ

)
− m

ρ
u

(m)
θ + ∂zuz . (7)

In cylindrical coordinates, the integral of a function f over a volume has the form∫

Ω̆
f ρ dρdzdθ .

This leads naturally to the use of weighted Hilbert spaces, which are defined as
follows:

L2
ρ(S) =

{
u :

∫

S
u2 ρ dρdz <∞

}
,

L2
ρ(S; R3) =

{
u :

∫

S
‖u‖2e ρ dρdz <∞

}
,

where ‖u‖e =
√
u · u is the Euclidean norm and u is a vectorial function defined on

S which takes values in R3. The associated norms are the standard ones induced
by the inner products

(u, v)L2
ρ(S) =

∫

S
uv ρ dρdz , (u, v)L2

ρ(S;R3) =

∫

S
u · v ρ dρdz ,

and will be often simply denoted using the subscript ρ, i.e. ‖u‖ρ =
√

(u, u)ρ. We

also introduce the following spaces:

Zm, 0 = Hρ(grad m; S) =
{
u ∈ L2

ρ(S) : grad m u ∈ L2
ρ(S; R3)

}
,

Zm, 1 = Hρ(curl m; S) =
{
u ∈ L2

ρ(S; R3) : curl m u ∈ L2
ρ(S; R3)

}
,

Zm, 2 = Hρ(div m; S) =
{
u ∈ L2

ρ(S; R3) : div m u ∈ L2
ρ(S)

}
,

Zm, 3 = L2
ρ(S) ,

(8)

where the differential operators have to be interpreted in a weak sense and the
corresponding norms are

‖u‖2Hρ(gradm;S) = ‖u‖2ρ + ‖grad m u‖2ρ ,

‖u‖2Hρ(curlm;S) = ‖u‖2ρ + ‖curl m u‖2ρ ,

‖u‖2Hρ(div m;S) = ‖u‖2ρ + ‖div m u‖2ρ .
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The spaces (8) arise naturally in the resolution of electromagnetic problems in cylin-
drical coordinates by means of Galerkin formulations. For example, for m 6= 0, the
formulation associated to (2) with Perfect Electric Conductor (PEC) boundary con-
ditions reads

Problem 1. Find the eigenpair (ω2, E(m)) ∈ R+ × Zm, 10 , with E 6= 0 and where
the subscript 0 in the space denotes the vanishing tangential component on Γ, such
that

∫

S
(µ−1 curlmE(m)) · curlm v ρdρdz

= ω2

∫

S
εE(m) · v ρdρdz

, v ∈ Zm, 10 . (9)

The Maxwell equations (1), through the differential operators (5)–(7), relate
quantities belonging to different spaces. A representation of the resulting structure
is given by the sequence

Zm, 0 Zm, 1 Zm, 2 Zm, 30 0
gradm

curlm divm

In [9, Theorem 2.1], it has been proven that the sequence is exact for m 6= 0,
meaning that the range of each operator linking two spaces is equal to the kernel
of the subsequent one. The use of discretizations that respect the above structure
is necessary to yield stable numerical methods. The aim of the following sections
is to present a technique to build such discretizations, which are well-suited for the
resolution of problems in electromagnetism.

3 Discretization

To solve numerical problems in electromagnetism, we need to approximate the con-
tinuous spaces Zm, k, k = 0, . . . , 3 by means of finite-dimensional subspaces Zm, kh

which depend on a discretization parameter related to the characteristic element
size h. In the following, we will use the subscript h to refer to quantities related to
the finite-dimensional spaces and we will consider conforming discretizations, mean-
ing that Zm, kh ⊂ Zm, k for every value of h. In this section, we mimic the strategy
used in [9] to build an exact sequence of conforming discrete spaces and projectors
such that, for sufficiently regular functions, the following diagram commutes

Zm, 0 Zm, 1 Zm, 2 Zm, 3

Zm, 0
h Zm, 1

h Zm, 2
h Zm, 3

h

0 0

0 0

gradm
curlm divm

gradm
curlm divm

Π̆0 Π̆1 Π̆2 Π̆3 (10)

The discrete spaces in (10) are built using sequences of two-dimensional Cartesian
spaces defined on S. We therefore start introducing the standard two-dimensional
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Cartesian spaces with the corresponding discrete counterparts. We first introduce
the basic definitions and the necessary assumptions on the discrete spaces, postpon-
ing the explicit definition of these to the following section. Let the standard spaces
of square-integrable functions in Cartesian coordinates be defined as

L2(S) =

{
u :

∫

S
u2 dρdz <∞

}
,

L2(S; R2) =

{
u :

∫

S
‖u‖2e dρdz <∞

}
,

along with the associated Hilbert spaces Hs, which is the space of functions in L2

such that the weak derivatives up to order s belong to L2. We also define:

Y 0 = H1(S) =
{
u ∈ L2(S) : gradu ∈ L2(S)

}
,

Y 1 = H(curl; S) =
{
u ∈ L2(S; R2) : curlu ∈ L2(S)

}
,

Y 1∗ = H(div; S) =
{
u ∈ L2(S; R2) : divu ∈ L2(S)

}
,

Y 2 = L2(S) =

{
u :

∫

S
u2 <∞

}
.

(11)

Here, grad and div are the standard gradient and divergence in Cartesian coordi-
nates

gradu =

[
∂ρu
∂zu

]
, div

([
uρ
uz

])
= ∂ρuρ + ∂zuz

and the scalar curl is defined as

curl

([
uρ
uz

])
= ∂ρuz − ∂zuρ .

For functions in Y 0, also the following operator is well-defined:

rot(u) =

[
∂zu

−∂ρu

]
= P(grad(u)) ,

where

P =

[
0 1
−1 0

]
.

We will use the word rotor, or perpendicular gradient, to indicate rot and to avoid
the confusion with the three-dimensional curl. For error estimates we will also need
the the spaces Hs(curl; S), which is the space of functions in Hs(S; R3) such that
their curl belongs to Hs(S; R3) and Hs(div; S), which is the space of functions in
Hs(S; R3) such that their divergence belongs to Hs(S).

We assume that Y 0
h , Y 1

h , Y 1∗
h and Y 2

h are conforming discretizations of (11)
and that, with a sequence of L2-stable projectors, make the following diagrams
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commutative:

Y 0 Y 1 Y 2

Y 0
h Y 1

h Y 2
h

R 0

R 0

grad curl

grad curl

Π0 Π1 Π2 (12)

Y 0 Y 1∗ Y 2

Y 0
h Y 1∗

h Y 2
h

R 0

R 0

rot div

rot div

Π0 Π1∗ Π2 (13)

Both the continuous and the discrete sequences in (12) and (13) are exact for simply
connected domains [18, 19]. Moreover we assume that the following estimates hold:

∥∥u−Π0u
∥∥
H1(S)

≤ Chs ‖u‖Hs+1(S) , u ∈ Hs+1(S) ,
∥∥u−Π1u

∥∥
H(curl;S)

≤ Chs ‖u‖Hs(curl;S) , u ∈ Hs(curl; S) ,
∥∥u−Π1∗u

∥∥
H(div;S)

≤ Chs ‖u‖Hs(div;S) , u ∈ Hs(div; S) ,
∥∥u−Π2u

∥∥
L2(S)

≤ Chs ‖u‖Hs(S) , u ∈ Hs(S).

(14)

In [9], the discrete Cartesian spaces were chosen as piecewise linear for Y 0
h , lowest

order Nedelec for Y 1
h , lowest order Raviart-Thomas for Y 1∗

h and piecewise constant
for Y 2

h . In this work, we will use IGA spaces that will be introduced in the next
section.

The strategy to define the discrete counterparts of (8) is based on the use of
operators that link the spaces in cylindrical coordinates to the standard spaces in
Cartesian coordinates. The definition of the discrete spaces and of the projectors,
together with error estimates, are then deduced from those defined for the spaces
in Cartesian coordinates. The diagram

Zm, 0 Zm, 1 Zm, 2 Zm, 3

Y 0 Y 1 × Y 0 Y 1∗ × Y 2 Y 2

Y 0
h Y 1

h × Y 0
h Y 1∗

h × Y 2
h Y 2

h

Zm, 0
h Zm, 1

h Zm, 2
h Zm, 3

h

gradm
curlm divm

G C D

G C D

gradm
curlm divm

ηm, 0 ηm, 1 ηm, 2 ηm, 3

Π0 Π1×Π0 Π1∗×Π2 Π2

η−1
m, 0 η−1

m, 1 η−1
m, 2 η−1

m, 3

(15)
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summarizes the general strategy for the discretization that will be explained in the
remaining section.

The first step is the definition of a set of operators ηm, k, k = 0, 1, 2, 3 that maps
functions from Zm, k onto the functional spaces defined in Cartesian coordinates

ηm, 0 : Zm, 0 → Y 0, u 7→ m

ρ
u,

ηm, 1 : Zm, 1 → Y 1 × Y 0, u 7→




1

ρ
(muρ + uθ)

m

ρ
uz

uθ


 ,

ηm, 2 : Zm, 2 → Y 1∗ × Y 2, u 7→




uρ
uz

1

ρ
(muθ − uρ)


 ,

ηm, 3 : Zm, 3 → Y 2, u 7→ u .

These operators are chosen such that G, C and D are both well-defined and make
the top part of the diagram (15) commutative. Note that, if Γ0 6= ∅, these operators
are well-defined only on regular subspaces Z̃m, k ⊂ Zm, k where

Z̃m, 0 =
{
u ∈ Zm, 0 : ηm, 0(u) ∈ Y 0

}
,

Z̃m, 1 =
{
u ∈ Zm, 1 : ηm, 1(u) ∈ Y 1 × Y 0

}
,

Z̃m, 2 =
{
u ∈ Zm, 2 : ηm, 2(u) ∈ Y 1∗ × Y 2

}
,

Z̃m, 3 =
{
u ∈ Zm, 3 : ηm, 3(u) ∈ Y 2

}
.

Then, since proper conforming discretizations are known for the spaces in Cartesian
coordinates (12)–(13), the discrete spaces Zm, kh are built from the Cartesian discrete
spaces using η−1

m, k, i.e.

Zm, 0h =
{
uh | uh = η−1

m, 0(ũh), ũh ∈ Y 0
h

}
,

Zm, 1h =
{
uh | uh = η−1

m, 1(ũh), ũh ∈ Y 1
h × Y 0

h

}
,

Zm, 2h =
{
uh | uh = η−1

m, 2(ũh), ũh ∈ Y 1∗
h × Y 2

h

}
,

Zm, 3h =
{
uh | uh = η−1

m, 3(ũh), ũh ∈ Y 2
h

}
.

(16)

Consistently with this definition, we denote functions defined on spaces in Cartesian
coordinates with a tilde. Moreover, since in the following discussion the ρ and z
components will be often treated differently from the θ component, we will denote
with the subscript ρz the meridian component of a function uρz = (uρ, uz)

T . In
order to apply the differential operators to the discrete functions, it is useful to
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define, by composition, the following operators that act directly on the continuous
spaces defined in Cartesian coordinates:

gradm? = η−1
m, 0 ◦ gradm : Y 0 → Zm, 1 ,

gradm? (ũ) =




1

m
(ũ+ ρ ∂ρũ)

ρ

m
∂zũ

−ũ



,

(17)

curlm? = η−1
m, 1 ◦ curlm : Y 1 × Y 0 → Zm, 2 ,

curlm? (ũ) =




−ũz − ∂zũθ
ũρ + ∂ρũθ

1

m
(∂z(ρ ũρ)− ∂ρ(ρ ũz)− ∂zũθ)



, (18)

divm? = η−1
m, 2 ◦ divm : Y 1∗ × Y 2 → Zm, 3 ,

divm? (ũ) = ∂ρũρ − ũθ + ∂zũz .
(19)

Note that, due to the choice of the spaces in Cartesian coordinates, all the differ-
ential operators (17)–(19) are well-defined. Moreover, since the discrete spaces in
Cartesian coordinates are conforming, we have the following result:

Lemma 1. The discrete spaces (16) are conforming in the spaces defined in (8).

Proof. We have to show that Zm, kh ⊂ Zm, k, k = 1, . . . , 3. Due to the boundness
of S, there exists R > 0 such that 0 < ρ < R, (ρ, z) ∈ S. Considering ũh ∈ Y 0

h ,
we have that ũh ∈ Y 0 because of the conforming discretization of the Cartesian
complexes (12)–(13). So uh ∈ Zm, 0, in fact

‖uh‖2ρ = ‖ρũh‖2ρ ≤ R3 ‖ũh‖2 <∞

and

‖gradm uh‖2ρ = ‖gradm? ũh‖2ρ ≤ R ‖gradm? ũh‖2

≤ 3R ‖ũh‖2 + 2R3 ‖grad ũh‖2 <∞

since ũh ∈ Y 0 . The proofs of the other cases are similar. For Zm, 1h ⊂ Zm, 1, given

uh ∈ Zm, 1h , we have that

‖uh‖2ρ =

∥∥∥∥
1

m
(ρ ũρ, h − ũθ, h)

∥∥∥∥
2

ρ

+
∥∥∥ ρ
m
ũz, h

∥∥∥
2

ρ
+ ‖ũθ, h‖2ρ

≤ 2R3 ‖ũρ, h‖2 +R3 ‖ũz, h‖2 + 3R ‖ũθ, h‖2 <∞
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and

‖curlm uh‖2ρ = ‖curlm? ũh‖2ρ
= ‖ũρz, h + grad ũθ, h‖2ρ

+

∥∥∥∥
1

m
(−ρ curl ũρz, h − ũz, h − ∂zũθ, h)

∥∥∥∥
2

ρ

≤ 6 ‖ũρz, h‖2ρ + 4 ‖ρ curl ũρz, h‖2ρ + 4 ‖grad ũθ, h‖2ρ
≤ 6R ‖ũρz, h‖2 + 4R3 ‖curl ũρz, h‖2 + 4R ‖grad ũθ, h‖2 <∞

since ũρz, h ∈ Y 1 and ũθ, h ∈ Y 0.

For Zm, 2h ⊂ Zm, 2, given uh ∈ Zm, 2h , we have that

‖uh‖2ρ = ‖ũρz, h‖2ρ +

∥∥∥∥
1

m
(ρ ũθ, h + ũρ, h)

∥∥∥∥
2

ρ

≤ 3R ‖ũρz, h‖2 + 2R3 ‖ũθ, h‖2 <∞
and

‖divm uh‖2ρ = ‖divm? ũh‖2ρ ≤ 2 ‖div ũρz, h‖2ρ + 2 ‖ũθ, h‖2ρ
≤ 2R ‖div ũρz, h‖2 + 2R ‖ũθ, h‖2 <∞

since ũρz, h ∈ Y 1∗ and ũθ, h ∈ Y 2.

Finally, Zm, 3h ⊂ Zm, 3, given uh ∈ Zm, 3h , we have that

‖uh‖2ρ = ‖ũh‖2ρ ≤ R ‖ũh‖2 <∞
since ũh ∈ Y 2.

The projectors Π̆m, k : Z̃m, k → Zm, kh are defined as in [9], exploiting those used
in Cartesian coordinates (12)–(13), that is

Π̆0u =
(
η−1
m, 0 ◦Π0 ◦ ηm, 0

)
(u) , u ∈ Z̃m, 0 ,

Π̆1u =
(
η−1
m, 1 ◦

(
Π1 ×Π0

)
◦ ηm, 1

)
(u) , u ∈ Z̃m, 1 ,

Π̆2u =
(
η−1
m, 2 ◦

(
Π1∗ ×Π2

)
◦ ηm, 2

)
(u) , u ∈ Z̃m, 2 ,

Π̆3u =
(
η−1
m, 3 ◦Π2 ◦ ηm, 3

)
(u) = Π2(u) , u ∈ Z̃m, 3 .

(20)

The following lemma shows that they are actually projectors.

Lemma 2. The interpolators (20) are projectors, that is

Π̆0uh = uh , uh ∈ Z0
h , (21)

Π̆1uh = uh , uh ∈ Z1
h , (22)

Π̆2uh = uh , uh ∈ Z2
h , (23)

Π̆3uh = uh , uh ∈ Z3
h . (24)
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Proof. For (24) the result is immediate since the projector coincides with the one
defined on the Cartesian space. Also for (21)–(23) the result is trivial and due to
the definition of the spaces and to the result in Cartesian coordinates. Taking, for
example (21), uh ∈ Z0

h, we have that

Π̆0uh = Π0(ηm, 0(uh)) = Π0(ũh) = ũh , ũh ∈ Y 0
h .

We show that the continuous and discrete spaces, together with the projectors,
form a commutative diagram. We start proving the commutativity of the top part
of the diagram (15).

Lemma 3. The following diagram commutes:

Z̃m, 0 Z̃m, 1 Z̃m, 2 Z̃m, 3

Y 0 Y 1 × Y 0 Y 1∗ × Y 2 Y 2

gradm
curlm divm

G C D

ηm, 0 ηm, 1 ηm, 2 ηm, 3

Proof. For the first part involving the gradient, we have that

(η1,m ◦ gradm)u = (G ◦ η0,m)u , u ∈ Z̃m, 0 .

In fact, in the left-hand side we have that

gradm u =

(
∂ρu, ∂zu,−

m

ρ
u

)T
,

η1,m ◦ gradm u =

(
1

ρ

(
m∂ρu−

m

ρ
u

)
,
m

ρ
∂zu, −

m

ρ
u

)

=

(
∂ρ

(
m

ρ
u

)
, ∂z

(
m

ρ
u

)
, −m

ρ
u

)
,

which is clearly equal to the right-hand side, since η0,mu = m
ρ u ∈ Y 0, and belongs

to Y 1 × Y 0 .
For the part involving the curl (η2,m ◦ curlm)u = (C ◦η1,m)u ,u ∈ Z̃m, 1. In fact,
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in the left-hand side we have that

curlm u =




−m
ρ
uz − ∂zuθ

1

ρ
(∂ρ(ρ uθ) +muρ)

∂zuρ − ∂ρuz


 ,

η2,m ◦ curlm u =




−m
ρ
uz − ∂zuθ

1

ρ
(uθ +muρ) + ∂ρuθ

1

ρ

(
m∂zuρ −m∂ρuz +

m

ρ
uz + ∂zuθ

)




=




−m
ρ
uz − ∂zuθ

1

ρ
(uθ +muρ) + ∂ρuθ

−∂ρ
(
m

ρ
uz

)
+ ∂z

(
1

ρ
(muρ + uθ)

)



,

which is equal to the right-hand side C ◦η1,mu which belongs to Y 1∗ × Y 2.
Finally, for the divergence part, we have that (η3,m ◦ divm)u = (D ◦η2,m)u ,u ∈
Z̃m, 2. In fact, in the left-hand side we have that

η3,m ◦ divm u = divm u = ∂ρuρ + ∂zuz −
1

ρ
(muθ − uρ)

which belongs to Y 2 and is clearly equal to the right-hand side, since

η2,mu =

(
uρ, uz,

1

ρ
(muθ − uρ)

)T
.

We have an analogous result for also for the bottom part of the diagram (15):

Lemma 4. The following diagram commutes:

Y 0
h Y 1

h × Y 0
h Y 1∗

h × Y 2
h Y 2

h

Zm, 0
h Zm, 1

h Zm, 2
h Zm, 3

h

G C D

gradm
curlm divm

η−1
m, 0 η−1

m, 1 η−1
m, 2 η−1

m, 3 (25)

Proof. The proof is analogous to the one of Lemma 3.

The next step is to prove that the middle part of the diagram (15), formed by
the spaces in Cartesian coordinates and the corresponding projectors, commutes.
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Lemma 5. The following diagram commutes:

Y 0 Y 1 × Y 0 Y 1∗ × Y 2 Y 2

Y 0
h Y 1

h × Y 0
h Y 1∗

h × Y 2
h Y 2

h

G C D

G C D

Π0 Π1×Π0 Π1∗×Π2 Π2

Proof. For the gradient and divergence part the result is an immediate consequence
of the commutativity of the standard two-dimensional diagrams in Cartesian coor-
dinates (12) and (13). For the curl part, we need to show that C ◦

(
Π1 ×Π0

)
=(

Π1∗ ×Π2
)
◦C. For the rotor and the curl the result is immediate:

rot
(
Π0ũθ

)
= Π1∗(rot ũθ) ,

curl
(
Π1ũρz

)
= Π2(curl ũρz) .

Concerning the other components we have that

PΠ1(ũρz) = Π1∗(Pũρz)

since Y 1∗ = PY 1 and Y 1∗
h = PY 1

h .

Finally, Lemmas 3–5 lead to the following result:

Lemma 6. The following diagram commutes:

Z̃m, 0 Z̃m, 1 Z̃m, 2 Z̃m, 3

Y 0 Y 1 × Y 0 Y 1∗ × Y 2 Y 2

Y 0
h Y 1

h × Y 0
h Y 1∗

h × Y 2
h Y 2

h

Zm, 0
h Zm, 1

h Zm, 2
h Zm, 3

h

gradm
curlm divm

G C D

G C D

gradm
curlm divm

ηm, 0 ηm, 1 ηm, 2 ηm, 3

Π0 Π1×Π0 Π1∗×Π2 Π2

η−1
m, 0 η−1

m, 1 η−1
m, 2 η−1

m, 3

Proof. The proof is a direct consequence of Lemmas 3–5. For example, we have
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that

Π̆2(curlm u) =
(
η−1

2,m ◦
(
Π1∗ ×Π2

)
◦η2,m ◦ curlm

)
u

=
(
η−1

2,m ◦
(
Π1∗ ×Π2

)
◦C ◦η1,m

)
u Lemma 3

=
(
η−1

2,m ◦C ◦
(
Π1 ×Π0

)
◦η1,m

)
u Lemma 5

=
(
curlm ◦η−1

1,m ◦
(
Π1 ×Π0

)
◦η1,m

)
u Lemma 4

= curlm
(
Π̆1u

)

Another important property that can be deduced from the spaces in Cartesian
coordinates is the exactness of the discrete sequence:

Theorem 1. The discrete sequence

Zm, 0
h Zm, 1

h Zm, 2
h Zm, 3

h0 0
gradm

curlm divm

is exact.

Proof. If uh ∈ Zm, 3h , then ũh ∈ Y 2
h . So the function

vh = η−1
m, 2

((
0T , −ũh

)T) ∈ Zm, 2h

is such that divm vh = uh. Similarly, if uh ∈ Zm, 2h is such that divm uh = 0, we
have that

0 = divm uh = divm? ũh = div ũh, ρz − ũh, θ ,
with ũh, θ ∈ Y 2

h . Choosing

vh = η−1
m, 1

([
Pũh, ρz

0

])
∈ Zm, 1h

we have that

curlm vh = η−1
m, 2(Cṽh) = η−1

m, 2

([
−PPũh, ρz
− curl (Pũh, ρz)

])

= η−1
m, 2

([
ũh, ρz

div ũh, ρz

])
= η−1

m, 2

([
ũh, ρz
ũh, θ

])
= uh .

If uh ∈ Zm, 1h is such that curlm uh = 0, it follows that curlm? ũh = 0 and so that
(see (18)) −Pũh, ρz = rot ũh, θ = P grad ũh, θ. These previous relations imply that
the third component is identically null. Moreover, we can also see that ũh, ρz =
−grad ũh, θ so, choosing vh = η−1

m, 0(−ũh, θ) we have that gradm vh = uh. Finally,
we see that the equation corresponding to the third component in gradm uh = 0
implies that uh ≡ 0.
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In order to prove error estimates, let us define the following spaces:

Hs
ρ(g̃rad

m
) =
{
u ∈ H(gradm) : ηm, 0(u) ∈ Hs

ρ , g̃rad
m
u ∈ Hs

ρ

}
,

Hs
ρ(c̃url

m
) =
{
u ∈ H(curlm) : ηm, 1(u) ∈ Hs

ρ , c̃url
m
u ∈ Hs

ρ

}
,

Hs
ρ(d̃iv

m
) =
{
u ∈ H(divm) : ηm, 2(u) ∈ Hs

ρ , d̃iv
m
u ∈ Hs

ρ

}
,

where
g̃rad

m
u = ηm, 1(gradm u) ,

c̃url
m
u = ηm, 2(curlm u) ,

d̃iv
m
u = ηm, 3(divm u).

The proof of the following estimates is analogous to the one in [9, Theorem 4.1].

Lemma 7. For s ≥ 0, we have the error estimates

∥∥∥u− Π̆0 u
∥∥∥
H(gradm)

≤ Chs
(
‖ηm, 0(u)‖H2+s

ρ
+ ‖ηm, 1(gradm u)‖H2+s

ρ

)
,

u ∈ Hs+2
ρ (g̃rad

m
),

(26)∥∥∥u− Π̆1 u
∥∥∥
H(curlm)

≤ Chs
(
‖ηm, 1(u)‖H2+s

ρ
+ ‖ηm, 2(curlm u)‖H2+s

ρ

)
,

u ∈ Hs+2
ρ (c̃url

m
),

(27)∥∥∥u− Π̆2 u
∥∥∥
H(divm)

≤ Chs
(
‖ηm, 2(u)‖H2+s

ρ
+ ‖ηm, 3(divm u)‖H2+s

ρ

)
,

u ∈ Hs+2
ρ (d̃iv

m
),

(28)∥∥∥u− Π̆3 u
∥∥∥
L2
ρ

≤ Chs ‖u‖H2+s
ρ

u ∈ Hs+2
ρ . (29)

Proof. Since the domain is bounded we have that 0 < ρ < R. Moreover, the
continuous embedding Hs+2

ρ ↪→ Hs holds [8] and so, for s ≥ 2 we have that

Hs
ρ(g̃rad

m
) ⊂ Z̃m, 0, Hs

ρ(c̃url
m

) ⊂ Z̃m, 1, Hs
ρ(d̃iv

m
) ⊂ Z̃m, 2 and Hs

ρ ⊂ Z̃m, 3.
The procedure to derive the estimates is analogous for all the cases and can be
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summarized as follows, for k = 1, 2, 3:

∥∥∥u− Π̆ku
∥∥∥
ρ

=
∥∥∥u−

(
η−1
m, k ◦Πk ◦ ηm, k

)
u
∥∥∥
ρ

=
∥∥∥
(
η−1
m, k ◦ ηm, k

)
u−

(
η−1
m, k ◦Πk ◦ ηm, k

)
u
∥∥∥
ρ

=
∥∥∥η−1

m, k

(
ηm, k(u)−Πk(ηm, k(u))

)∥∥∥
ρ

≤ C
∥∥∥η−1

m, k

(
ηm, k(u)−Πk(ηm, k(u))

)∥∥∥

≤ C
∥∥∥ηm, k(u)−Πk(ηm, k(u))

∥∥∥
≤ C hs ‖ηm, k(u)‖Hs

≤ C hs ‖ηm, k(u)‖Hs+2
ρ

,

where the constant C is different for each inequality, but is independent of u and
can depends on h only through the ratio between the biggest and the smallest
element hmax/hmin. The estimates for the terms involving the differential operators
are reduced to the previous ones exploiting the commutativity of the projectors.
Consider u ∈ Hs+2

ρ , we have that

∥∥∥u− Π̆3u
∥∥∥
ρ
≤
∥∥∥∥∥

√
R

ρ

(
u−Π2u

)
∥∥∥∥∥
ρ

=
√
R
∥∥u−Π2u

∥∥

≤
√
RC hs ‖u‖Hs ≤ C̃hs ‖u‖Hs+2

ρ
.

This proves (29).

Considering a function u ∈ Hs+2
ρ (g̃rad

m
), it follows

∥∥∥u− Π̆0u
∥∥∥
ρ

=

∥∥∥∥u−
ρ

m
Π0

(
m

ρ
u

)∥∥∥∥
ρ

=

∥∥∥∥
ρ

m

(
m

ρ
u

)
−Π0

(
m

ρ
u

)∥∥∥∥
ρ

≤ R
∥∥∥∥
m

ρ
u−Π0

(
m

ρ
u

)∥∥∥∥
ρ

≤ Chs
∥∥∥∥
m

ρ
u

∥∥∥∥
Hs+2
ρ

.

So, we have that

∥∥∥u− Π̆0u
∥∥∥
ρ
≤ Chs

∥∥∥∥
m

ρ
u

∥∥∥∥
Hs+2
ρ

= Chs ‖ηm, 0(u)‖Hs+2
ρ

. (30)

Consider now a function u ∈ Hs+2
ρ (d̃iv

m
), the estimate (28) involves the norm

‖u‖2Hρ(divm) = ‖u‖2L2
ρ

+ ‖divm u‖2L2
ρ
.
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For the first term we have that
∥∥∥u− Π̆2u

∥∥∥
2

ρ
=
∥∥uρz −Π1∗uρz

∥∥2

ρ

+

∥∥∥∥uθ −
ρ

m
Π2

(
muθ − uρ

ρ

)
− 1

m

[
Π1∗uρz

]
ρ

∥∥∥∥
2

ρ

adding and subtracting
uρ
m in the second term we obtain

≤
∥∥uρz −Π1∗uρz

∥∥2

ρ

+ 2

∥∥∥∥
ρ

m

(
muθ − uρ

ρ
−Π2

(
muθ − uρ

ρ

))∥∥∥∥
2

ρ

+ 2

∥∥∥∥
1

m

(
uρ −

[
Π1∗uρz

]
ρ

)∥∥∥∥
2

ρ

≤ 3
∥∥uρz −Π1∗uρz

∥∥2

ρ
+R2

∥∥(ũθ −Π2ũθ
)∥∥2

ρ

≤ Ch2s
(
‖u‖2

Hs+2
ρ

+ ‖ũ‖2
Hs+2
ρ

)
= Ch2s ‖ηm, 2(u)‖2

Hs+2
ρ

.

We are left with ∥∥∥u− Π̆2u
∥∥∥
L2
ρ

≤ Chs ‖ηm, 2(u)‖Hs+2
ρ

. (31)

The estimate for ‖divm u‖2ρ follows from the commutativity of the projectors and (29):

∥∥∥divm
(
u− Π̆2u

)∥∥∥
ρ

=
∥∥∥divm u− Π̆3(divm u)

∥∥∥
ρ
≤ Chs ‖divm u‖Hs+2

ρ
.

This concludes the proof of (28). The estimate (27) is proven analogously, consid-
ering the norm

‖u‖2Hρ(curlm) = ‖u‖2L2
ρ

+ ‖curlm u‖2L2
ρ
.

For the first term we have that
∥∥∥u− Π̆1u

∥∥∥
2

ρ
=
∥∥uθ −Π0uθ

∥∥2

ρ

+

∥∥∥∥uρz −
ρ

m
Π1(ũρz)−

1

m

[
Π0uθ

0

]∥∥∥∥
2

ρ

adding and subtracting
(
uθ
m , 0

)T
in the second term we obtain

≤
∥∥uθ −Π0uθ

∥∥2

ρ

+ 2
∥∥∥ ρ
m

(
ũρz −Π1(ũρz)

)∥∥∥
2

ρ
+ 2

∥∥uθ −Π0uθ
∥∥2

ρ

≤ Ch2s
(
‖uθ‖2Hs+2

ρ
+ ‖ũρz‖2Hs+2

ρ

)
= Ch2s ‖ηm, 1(u)‖2

Hs+2
ρ

.

20



So we have that ∥∥∥u− Π̆1u
∥∥∥
L2
ρ

≤ Chs ‖ηm, 1(u)‖Hs+2
ρ

.

The estimate for ‖curlm u‖2ρ follows from the commutativity of the projectors
and (31):

∥∥∥curlm
(
u− Π̆1u

)∥∥∥
ρ

=
∥∥∥curlm u− Π̆2(curlm u)

∥∥∥
ρ

≤ Chs ‖ηm, 2(curlm u)‖Hs+2
ρ

.

This conclude the proof of (27). Consider a function u ∈ Hs+2
ρ (g̃rad

m
), the norm

involved in (26) is

‖u‖2Hρ(gradm) = ‖u‖2L2
ρ

+ ‖gradm u‖2L2
ρ
.

For the first term, we already have the estimate given by (30). The estimate for the
second term follows from the commutativity property of the projectors and (31):

∥∥∥gradm
(
u− Π̆0u

)∥∥∥
ρ

=
∥∥∥gradm u− Π̆1(gradm u)

∥∥∥
ρ

≤ Chs ‖ηm, 1(gradm u)‖Hs+2
ρ

.

This concludes the proof of (26).

4 IsoGeometric Analysis

In this section we briefly introduce the basic concepts of IsoGeometric Analysis
following [20]. We will start with the definition of Basis splines (B-splines) on a
reference two-dimensional domain Ŝ in the univariate case and then we introduce
its extension, via tensor product, to the multivariate case.

Considering an exact de Rham complex of continuous spaces defined in the refer-
ence domain, we then define the corresponding conforming discrete B-spline spaces
and projectors and we show that they form a commuting diagram. We will con-
sider a regular parametrization of the two-dimensional physical domain, which will
be the cross-section of our axisymmetric domain S, described by a B-spline or by
a Non-Uniform Rational Basis Spline (NURBS) surface. All the results valid on
the parametric domain can be extended to the case of the physical one and error
estimates like (14) hold.

We start defining the so-called knot vector Ξ, which is a sequence of ordered
real numbers that we assume, without loss of generality, bounded by 0 and 1. In
this work we will consider only open knot vectors, which are characterized by the
fact that the first p+ 1 knots are equal to 0 and the last p+ 1 knots are equal to 1,
i.e.

Ξ = {ξ1 = . . . = ξp+1 < . . . < ξn+1 = . . . = ξn+p+1} ,
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where p is the degree and n is the number of the B-spline polynomials. B-spline
polynomials are the fundamental functions used to define our finite-dimensional
spaces and can be defined recursively using the well known Cox-DeBoor formula:
starting from piecewise constant polynomials (p = 0)

B̂0
i (ζ) =

{
1 ξi ≤ ζ < ξi+1

0 otherwise
,

the higher degree polynomials (p ≥ 1) are defined by

B̂p
i (ζ) =

ζ − ξi
ξi+p − ξi

B̂p−1
i (ζ) +

ξi+p+1 − ζ
ξi+p+1 − ξi+1

B̂p−1
i+1 (ζ) ,

with the convention that 0/0 is equal to 0. This formula generates a set of n
B-spline which has many favorable properties. In particular, these functions are
non-negative, form a partition of unity and have local support. Moreover, the
support the i-th B-spline is contained in the interval [ξi, ξi+p+1], so the size of the
support is reduced by knot repetitions (see Figure 2):

B̂p
i (ζ) = 0 , ζ /∈ [ξi, ξi+p+1] .

Conversely, in each interval [ξj , ξj+1] there are exactly p + 1 B-splines which are
different from 0:

B̂p
i (ζ) = 0 , ζ ∈ [ξj , ξj+1], i /∈ {j, j − 1, . . . , j − p} .

It is possible to describe the knot vector Ξ using other two vectors: a vector con-
taining the knots without repetition, that we indicate with ζ ∈ R`, and a vector
containing the number of times each knot is repeated 1 ≤ ri ≤ p, 2 ≤ i ≤ ` − 1,
with r1 = r` = p + 1. The number αi = p − ri denotes the regularity of the
B-spline function at the knot ζi. In analogy to the standard Finite Element Method
(FEM), we can use ζ to define elements of a mesh with the corresponding mesh size
hi = ζi+1− ζi, 1 ≤ i ≤ `− 1. We say that the partition defined by ζ is locally quasi
uniform if there exists a constant η ≥ 1 such that

η−1 ≤ hi
hi+1

≤ η, 1 ≤ i ≤ `− 2.

We can now define the spline spaces [18, 13] as

Spα(ζ) = span
{
B̂p
i , i = 1, . . . , n

}
.

Note that spline space can be completely characterized either by the knot vector Ξ or
by the degree p, the mesh ζ and the regularity α (or the knot repetitions). Figure 2
shows two sets of quadratic B-spline basis functions generated by two different knot
vectors with the same elements but different regularity. The multivariate spaces are
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Figure 2: Two set of quadratic B-spline basis functions generated by knot
vectors including the same points with different multiplicities. The dots
below the ζ-axis indicate the knot repetitions. Note that the support
of the less regular B-splines (right) is smaller that the ones with higher
regularity (left).

simply defined via tensor product. We will explicitly introduce the quantities in the
two-dimensional case, since it is the most relevant for this work. Let Ξ1 and Ξ2 be
two locally quasi uniform open knot vectors corresponding to parametric directions.
The associated shape-regular Bezier mesh on Ŝ = (0, 1)2 is given by

Q̂h = {Q = (ζi, ζi+1)× (ζj , ζj+1), 1 ≤ i ≤ `1, 1 ≤ j ≤ `2},

where h = max
{

diam(Q), Q ∈ Q̂h
}

is the global mesh size. We will denote the

coarsest mesh Q̂0 with the subscript 0. From the univariate B-spline basis functions
B̂i, d defined by Ξd, d = 1, 2, we define the tensor product basis functions on Ŝ:

B̂p1, p2
ij = B̂p1

i, 1 ⊗ B̂
p2
j, 2, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

and the spline space is analogously defined as:

Sp1, p2α1,α2

(
Q̂h
)

= span
{
B̂p1, p2
ij , 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

}
.

We also define a generalization of B-splines, called NURBS, which is particularly
useful to describe the geometry since it allows to exactly represent conic sections.
Given set of weights wij ≥ 0, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2 thaat sum to one, NURBS are
defined by

N̂p1, p2
ij =

wijB̂
p1, p2
ij∑

k,`wk`B̂
p1, p2
k`

.

Gathering the weights in a vector W we define the associated NURBS space:

Np1, p2
α1,α2

(
Q̂h,W

)
= span

{
N̂p1, p2
ij , 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

}
.
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It is now possible to introduce the following B-spline vector spaces defined on the
reference domain Ŝ:

Ŷ 0
h = Sp1, p2α1,α2

(
Q̂h
)
,

Ŷ 1
h = Sp1−1, p2

α1−1,α2

(
Q̂h
)
× Sp1, p2−1

α1,α2−1

(
Q̂h
)
,

Ŷ 1∗
h = Sp1, p2−1

α1,α2−1

(
Q̂h
)
× Sp1−1, p2

α1−1,α2

(
Q̂h
)
,

Ŷ 2
h = Sp1−1, p2−1

α1−1,α2−1

(
Q̂h
)
.

(32)

These are the discrete conforming counterparts of the spaces

Ŷ 0 = H(ĝrad; Ŝ) =
{
u ∈ L2(Ŝ) : ĝradu ∈ L2(Ŝ; R2)

}
,

Ŷ 1 = H(ĉurl; Ŝ) =
{
u ∈ L2(Ŝ; R2) : ĉurlu ∈ L2(Ŝ)

}
,

Ŷ 1∗ = H(d̂iv; Ŝ) =
{
u ∈ L2(Ŝ; R2) : d̂ivu ∈ L2(Ŝ)

}
,

Ŷ 2 = L2(Ŝ).

Following [19], it is then possible to define a set of projectors Π̂k, k = 0, 1, 1∗, 2 such
that the following diagrams are commutative

Ŷ 0 Ŷ 1 Ŷ 2

Ŷ 0
h Ŷ 1

h Ŷ 2
h

R 0

R 0

ĝrad ĉurl

ĝrad ĉurl

Π̂0 Π̂1 Π̂2

Ŷ 0 Ŷ 1∗ Ŷ 2

Ŷ 0
h Ŷ 1∗

h Ŷ 2
h

R 0

R 0

r̂ot d̂iv

r̂ot d̂iv

Π̂0 Π̂1∗ Π̂2

Once that the spaces are defined on the parametric domain, we turn our attention to
the physical domain S, which we assume to be represented as S = F (Ŝ), where the
parametrization F is a NURBS surface generated by a given set of control points,
which are the coefficients multiplying the basis functions, see Figure 3. Given a mesh
Q̂h on the reference domain, the parametrization induces a mesh in the physical one:

Qh =
{
K ⊂ S : K = F (Q), Q ∈ Q̂h

}
.

We assume that the parametrization F is regular in the sense of [20, Assumption
3.1], that is, we assume that it is a bi-Lipschitz homeomorphism between Ŝ and
S, F |Q ∈ C∞(Q), Q ∈ Q̂0 and F−1

∣∣
K
∈ C∞(K), K ∈ Q0. With the introduced
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SŜ

F

Figure 3: Geometry mapping from reference domain.

parametrization, the following pullbacks that relate spaces on the physical domain
to the corresponding ones in the parametric domain are well-defined:

ι0 : Y 0 → Ŷ 0, v 7→ v ◦F ,

ι1 : Y 1 → Ŷ 1, v 7→ JF
T (v ◦F ) ,

ι1∗ : Y 1∗ → Ŷ 1∗, v 7→ det (JF )JF
−1(v ◦F ) ,

ι2 : Y 2 → Ŷ 2, v 7→ det (JF )(v ◦F ) .

(33)

The discrete spaces on the physical domain are defined by push-forward, i.e. ap-
plying the inverse of (33) to the discrete spaces on the reference domain (32):

Y 0
h =

{
vh : ι0(vh) ∈ Ŷ 0

h

}
,

Y 1
h =

{
vh : ι1(vh) ∈ Ŷ 1

h

}
,

Y 1∗
h =

{
vh : ι1∗(vh) ∈ Ŷ 1∗

h

}
,

Y 2
h =

{
vh : ι2(vh) ∈ Ŷ 2

h

}
.

Moreover, we assume that the regularity of the parametrization F is higher or equal
to the one of the discrete spaces (32) [18]. Between the continuous and the discrete
spaces it is possible to define stable projectors such that the diagrams (12) and (13)
are commuting. Finally, the following estimates hold (2D analogous of [20, Corollary
5.12]): ∥∥u−Π0u

∥∥
H1(S)

≤ Chs ‖u‖Hs+1(S) , u ∈ Hs+1(S),
∥∥u−Π1u

∥∥
H(curl;S)

≤ Chs ‖u‖Hs(curl;S) , u ∈ Hs(curl; S),
∥∥u−Π1∗u

∥∥
H(div;S)

≤ Chs ‖u‖Hs(div;S) , u ∈ Hs(div; S),
∥∥u−Π2u

∥∥
L2(S)

≤ Chs ‖u‖Hs(S) , u ∈ Hs(S).

5 Numerical experiments

We present the results of several numerical experiments carried out with the dis-
cretization described in the previous sections.
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5.1 Source problem

In this test case we consider the problem of reconstructing the magnetic flux B
in a stationary case on an axisymmetric domain whose cross-section is depicted in
Figure 4 (left). To do so, we employ the so-called A-formulation, already intro-

S

ΓD

ΓN

Figure 4: Section of the computational domain with the boundaries as-
sociated to ΣN (ΓN) and ΣD (ΓD) (left) and magnitude of the magnetic
flux density B on the domain (right).

duced in (3), which amounts to compute the vector potential A which can be then
related to the flux by curlA = B. Notice that the accurate computation of the
vector potential is essential in modelling particle tracking in accelerator magnets,
as discussed in [10]. Using a Coulomb gauge and imposing homogeneous Dirichlet
boundary conditions on ΣD regularized by the same Coulomb gauge and Neumann
boundary conditions on ΣN , we have that

curl
(
µ−1 curlA

)
= j , in Ω̆ ,

div (εA) = 0 , in Ω̆ ,
(
µ−1 curlA

)
× ν = jΣ , on ΣN ,

A× ν = 0 , on ΣD ,

(εA) · ν = 0 , on ΣN ,

div (εA) = 0 , on ΣD ,

where j and jΣ are given source and surface current densities, respectively, while ε
and µ are scalar constants, given by the corresponding values of these quantities in
vacuum:

ε ≈ 8.8542× 10−12 F m−1 , µ = 4π × 10−7 H m−1 . (34)

Note that, due to the fact that the permeability is constant, the magnetic flux
density and the magnetic field strength are related by the simple relation B = µH.
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The method is tested using a manufactured solution which depends on a parameter
γ and satisfies the homogeneous Dirichlet conditions on ΣD:

Aex =




cos (3θ) (5− z)3 ργ+1 e−ρ

ρ2 (sin (θ)− 2sin (θ)3) (5− z)γ
sin (2θ) (1− cos(5− z)) ργ+1


 .

The vector potential Aex is not Coulomb gauged, i.e. div(εAex) 6= 0 and will be
different from the solution of (5.1), but the magnetic induction B = curlA, which
is represented in Figure 4 (right), is gauge independent and is used to compute
the error. A mixed formulation has been used to impose the Coulomb gauge and
solve (5.1). Using the method proposed in this work allows to solve a sequence of
decoupled two-dimensional problems (one for each Fourier mode m) instead of a full
three-dimensional one, with a significant advantage in terms of computational cost.
In particular, consider the two finite-dimensional spaces, characterized by their basis
functions,

span
(
{bi}N0

i=1

)
= Zm, 0h,ΓD

⊂ Zm, 0ΓD
= Hρ(gradm) ,

span
(
{ci}N1

i=1

)
= Zm, 1h,ΓD

⊂ Zm, 1ΓD
= Hρ(curlm) ,

where N0 and N1 indicate the dimensions of the corresponding finite-dimensional
spaces and the subscript ΓD denote the boundary on which essential boundary
conditions are imposed. Notice that, even if it is not explicit in the notation, the
basis functions are different for each value of m. The discrete mixed formulation
for problem (5.1) amounts to solving for each value of m 6= 0 the following linear
system: [

Am Bm

BT
m 0

] [
um
pm

]
=

[
fm
0

]
(35)

where um and pm are the Degrees of Freedom (DoFs) associated to the discrete
solution,

[Am]i, j =

∫
(curlm cj) · (curlm ci) ρdρdz ,

[Bm]i, j =

∫
(gradm bj) · ci ρdρdz

and fm is the term associated to the current density and the boundary term. If
all the DoFs corresponding to each mode are collected in a single vector x, we
end up with a linear system of the form shown in Figure 5, where each matrix
Cm corresponds to that in (35) and g is obtained by the concatenation of all the
right-hand side terms in (35). For this testcase we choose the modes

m = ±1, ±2, ±3 ,
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C1

C2

CM

x = g

Figure 5: Block diagonal structure of the linear system.

so that M = 6. Note that the block diagonal structure in Figure 5 is obtained
thanks to the Fourier basis and would not be obtained for a general choice of the
basis in the angular direction.

In the left plot of Figure 6, we report the error trend with respect to the number
of subdivisions (h-refinement) for a smooth solution (γ = 2). In this case the
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Figure 6: Error on the magnetic field with respect to the number of
subdivisions for a regular solution (left, γ = 2) and for a non-smooth
solution (right, γ = 0.5) which limits the convergence rate.

convergence rate is equal to the polynomial degree p of the basis functions. In the
case of a less regular solution with γ = 0.5, we can see instead in Figure 6 (right)
that the low regularity of the solution limits the convergence rate as expected.
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5.2 Pillbox cavity

In this section, we apply the method presented in this work to the computation
of the eigenvalues for a cylindrical cavity, known in the literature as pillbox cavity
[17, §8.7], see Figure 7. Given a pillbox cavity of radius R = 35 mm and length
L = 100 mm, we want to compute the eigenvalues and eigenfunctions for the electric
field strength E, satisfying the equations

curl
(
µ−1 curl (E)

)
= ω2εE , in Ω̆ ,

div (εE) = 0 , in Ω̆ ,

E × ν = 0 , in ∂Ω̆ ,

(36)

where ω2 is the eigenvalue associated to the eigenfunction E that we will consider
different from 0, ν indicates the outer unit normal, ε and µ are two scalar constants
representing, respectively, the permittivity and the permeability in vacuum already
defined in (34). Since we consider ω2 6= 0, the divergence constraint in (36) is
satisfied and can be neglected [21]. The solutions of (36) associated to eigenvalues
different from zero can be divided in two classes: one, TM (Transverse Magnetic),
is associated to fields where Bz = 0 everywhere and Ez = 0 on the lateral surface
of the cylinder (see Figure 7, left). The second one, TE (Transverse Electric), is
associated to fields where Ez = 0 everywhere and ∂νBz = 0 on the lateral surface
of the cylinder see Figure 7, right) [17, Chapter 8]. The corresponding eigenvalues

Figure 7: Representation of a pillbox cavity of radius R = 35 mm and
length L = 100 mm with the electric field E associated to the eigenfunc-
tion TM423 (left) and TE212 (right).

are given by

ωTMmnq =
1√
εµ

√
χ2
mn

R2
+
q2π2

L2
, ωTEmnq =

1√
εµ

√
χ′2mn
R2

+
q2π2

L2
,

where χmn and χ′mn are the n-th root of the Bessel function of the first kind of
order m and of its derivative, respectively. The value m is the Fourier mode of the
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corresponding eigenfunction. As a consequence, for each m we can compute the
eigenvalues varying the values of q and n. In the following we consider the case
ω 6= 0.

Using cylindrical coordinates and applying the method presented in this work,
we end up with a set of independent two-dimensional problems for each mode m 6= 0
whose weak formulation is given by (9). After the discretization step we have to
find the eigenpairs (λ2

i,m, vi,m) of linear system

Amvi,m = λ2
i,mMmvi,m ,

where A is associated to the discretization on the curl-curl operator, M is the mass
matrix and λi,m is an approximation of ωmnq for a specific value of nq.

In Figure 8, the exact value of the first 10 angular frequencies for m = 26
are represented by horizontal blue lines. In the same figure, the approximated
angular frequencies are shown for different values of subdivisions of the parametric
section (h-refinement) and using a uniform discretization and a maximum degree
p = 3. It can be seen that no spurious modes appear and that the computed

1 2 4 8 16 32
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2.7

2.8

·1011

Subdivisions

ω
T
M

/
T
E

2
6
n
p

(H
z)

Exact value

Figure 8: Approximations of the first 10 angular frequencies (m = 26)
for different number of subdivision of the parametric section. The exact
values are represented by horizontal blue lines.

eigenvalues converge to the exact ones. To test the approximation properties of our
discretization, a specific eigenvalue ωTE134 has been chosen and the error for different
subdivisions and degrees p has been computed. In Figure 9, the error trends with
respect to the to h-refinement (left) and to the number of DoFs (right) are shown.
It can be seen that the approximate eigenvalues converges with a rate equal to the
double of the polynomial degree p employed in the discretization, which corresponds
to the behaviour predicted by the theory [22].
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Figure 9: Relative error with respect to the number of subdivision of the
parametric cross-section Ŝ (left) and with respect to the number of DoFs
(right) for the angular frequency ωTE134 .

5.3 TESLA cavity

In this section, we solve again the eigenvalue problem (36), but on a domain which
has a higher practical relevance and whose geometry is defined using a NURBS
surface. The specific design used in this test is the one-cell midcup TESLA cavity
whose precise definition can be found in [23, Table III]. We consider the problem
of approximating the lowest resonant angular frequency for the modes m = 1 and
m = 2 which are, respectively,

ω1 ≈ 11 468.32 MHz and ω2 = 14 582.56 MHz .

In Figure 10, the eigenfunctions associated to the considered eigenvalues are de-
picted. In Figure 11, the trend of the relative errors, estimated as the relative
difference between two subsequent refinement levels, are shown. Also in this case,
it can be seen that the approximate eigenvalues converge with a rate close to twice
the polynomial degree p employed in the discretization.

6 Conclusions and future perspectives

In the context of electromagnetic problems on axisymmetric domains, we have
presented and analysed a combination of a spectral Fourier approximation in the
azimuthal direction with an IsoGeometric Analysis (IGA) approach in the radial
and axial directions. The resulting method provides discrete approximations that,
thanks to an appropriate choice of the finite-dimensional approximation spaces,
preserves, at the discrete level, the structure of the continuous Maxwell equations.
Rigorous error estimates have been obtained for the proposed method, along with
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Figure 10: TESLA cavity. Eigenfunctions associated to the lowest eigen-
values for the modes m = 1 (left) and m = 2 (right).

1 2 4 8 16 32
10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

2

4

6

Subdivisions

R
el

at
iv

e
d

iff
er

en
ce

p = 1
p = 2
p = 3

1 2 4 8 16 32
10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

2

4

6

Subdivisions

R
el

at
iv

e
d

iff
er

en
ce

p = 1
p = 2
p = 3

Figure 11: TESLA cavity. Error on the lowest eigenvalues m = 1 (left)
and m = 2 (right) with respect to the number of subdivisions for different
degrees p of the basis functions.

the proof that the associated discrete functional spaces form a de Rham complex
that is closed and exact. A number of numerical benchmarks have been considered,
yielding also empirical evidence that the resulting method combines the capability
of the IGA approach to represent very accurately complex geometries, achieves high
convergence rates and allows to decouple the computation associated to different
Fourier modes.

In future developments, it is planned to apply the proposed approach to the
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reconstruction of magnetic fields to be used for the simulation of particle acceler-
ators, in order to complement the results obtained in [10] with high order particle
tracking methods with an equally accurate and physically sound representation of
the magnetostatic fields involved in these simulations.
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