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Abstract

We consider a phase field model for Darcy flows with discontinuous data in porous media;
specifically, we adopt the Hele–Shaw–Cahn–Hillard equations of [Lee, Lowengrub, Goodman,
Physics of Fluids, 2002] to model flows in the Hele–Shaw cell through a phase field formula-
tion which incorporates discontinuities of physical data, namely density and viscosity, across
interfaces. For the spatial approximation of the problem, we use NURBS–based Isogeomet-
ric Analysis in the framework of the Galerkin method, a computational framework which is
particularly advantageous for the solution of high order Partial Differential Equations and
phase field problems which exhibit sharp but smooth interfaces. In this paper, we verify
through numerical tests the sharp interface limit of the phase field model which in fact leads
to an internal discontinuity interface problem; finally, we show the efficiency of Isogeometric
Analysis for the numerical approximation of the model by solving a benchmark problem, the
so–called “rising bubble” problem.
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Figure 1: Hele–Shaw vertical cell containing light and heavy fluids under the effect of gravity.

1 Introduction

The Hele–Shaw model (flow) [7] describes the laminar motion of a (Newtonian) viscous fluid
in an Hele–Shaw cell – also known as the Hele–Shaw analog or viscous flow analog – an
experimental device composed by two parallel plates of size L kept at the distance b from
each other, with b� L (see Fig. 1). The vertical, horizontal or angled Hele–Shaw cells can
be considered to possibly account for gravity effect. The device was firstly proposed and used
by Hele–Shaw [33] to experimentally investigate the viscous (potential) flows around bodies;
later, vertical Hele–Shaw cells have been extensively used to study groundwater flows, oil
production, drainage, etc. A wide literature is available on the topic, see e.g. [7, 43, 49, 56].
Indeed, the importance of the Hele–Shaw model lays in the fact that the potential flow
occurring in the Hele–Shaw cell corresponds to a Darcy flow in a porous media ([7]) with

permeability equivalent to
b2

12
[49]. We observe that, even if the Hele–Shaw flow occurs only

for two–dimensional laminar flows, it represents a valid simplified model with respect to the
full Navier–Stokes equations to study the effect of flows in porous media provided that the
three–dimensional effects are negligible; moreover, it provides a framework for experimental
comparisons: as reported in [7] and the references herein indicated, the Hele–Shaw cell is
suitable for flows with Reynolds numbers smaller than 500–1′000, these being defined by
means of the distance between the plates b.

The Cahn–Hilliard equation is a time dependent, mass conservative phase field model
which describes the segregation of the phases from a mixed configuration to a fully separated
one, with the pure phases separated by smooth, but sharp interfaces [12, 13, 25]. The Cahn–
Hilliard equation is a nonlinear, parabolic PDE with fourth–order spatial derivatives, which
during the phase transition exhibits a fast and intermittent dynamics. It has been originally
introduced by Cahn [12] to describe the separation of binary alloys systems in metallurgy
and it later extensively studied both from a theoretical and numerical point of view, see e.g.
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[5, 10, 20, 28, 29, 32, 45, 55].

The ideal combination of the Hele–Shaw model with the Cahn–Hilliard phase field model
yields the so–called Hele–Shaw–Cahn–Hilliard equations. These represent indeed a phase
field model for Hele–Shaw flows with physical data varying through the smooth but sharp
interfaces; the physical data depend of the phase field variable whose distribution in the
computational domain depend on the phase transition according to a generalized Cahn–
Hilliard equation. In the limit of interface thickness tending to zero [45], these physical
data are in fact discontinuous across the interface. The model has been developed in [39] as
a special case of the Navier–Stokes–Cahn–Hilliard model for immiscible fluids proposed in
[42] of which it represents a simplified version under the hypothesis of Hele–Shaw flow (the
inertial forces are negligible with respect to the viscous ones). In particular, the model is
only two–dimensional and valid for isothermal laminar flows among the plates of the Hele–
Shaw cell provided that there are no variation of the phase variable through the thickness
among the plates. Nevertheless, the phase field model (see also [16, 27, 37]) has the clear
advantage of embedding into the formulation modifications in the shape of the interface and
its evolution in time, as well as to naturally allow topological changes without resorting
to interface capturing or tracking methods like the volume of fluid or level set methods
[31, 34, 44, 50]. Moreover, the asymptotic, sharp interface limit of the phase field model [11]
yields the Darcy flow problem with internally discontinuous data across the interface [42].

The analysis of Hele–Shaw–Cahn–Hilliard equations and related models is particularly
challenging. For example, the well–posedness of Navier–Stokes–Cahn–Hilliard model has
been studied in [53] and its long time behavior described in [52]. The convergence of weak
solutions of the Cahn–Hilliard—Brinkman model to the Hele–Shaw–Cahn–Hilliard equations
has been proved in [9] and a non–local solution of the previous result determined in [47].
The global, sharp interface limit of these equations has been recently studied in [21]. More
recently, an alternative Hele–Shaw–Cahn–Hilliard model has been derived in [18] (starting
from [2]) and therein analyzed using a volume–averaged definition of the velocity field instead
of the mass–averaged one of [39]; see also [1] for the application of the model to tumor
modeling. In this paper, however we refer to the original formulation of the Hele–Shaw–
Cahn–Hilliard equations proposed in [39].

The phase field model based on the Hele–Shaw–Cahn–Hilliard equations inherits similar
mathematical features of the Cahn–Hilliard equations. It is a nonlinear system of Partial
Differential Equations (PDEs) in parabolic–elliptic formulation in the phase field and pres-
sure variables, respectively, which involves high order spatial derivatives (up to four) for
the phase field variable, whose solution may exhibit fast and intermittent dynamics. For
these reasons, the numerical approximation of this problem is particularly challenging as
an accurate and efficient numerical method should be able to cope with all these features.
Spatial approximations using the Finite Element method with the standard Lagrange poly-
nomial basis have been widely adopted for phase field models [22, 23, 24, 54] even if the
fourth order derivatives involved in the problem require to resort to mixed formulations. In
this paper, we propose instead NURBS–based Isogeometric Analysis in the framework of
the Galerkin method [15, 35] for spatially approximating such high order PDEs. Isogeomet-
ric Analysis is a discretization method based on the isogeometric paradigm, for which the



4 L. Dedè and A. Quarteroni

same basis functions are used first for the representation of the domain and then for the
approximation of the solution of the PDEs. Besides of the geometric advantages related to
this choice, the employment of high order continuous NURBS or B–splines basis functions
to build the trial and test function subspaces allows solving the phase field model in the
framework of the standard Galerkin formulation [51]. In particular, globally C1–continuous
B–splines basis functions of degree p = 2 allow the construction of trial and test function sub-
spaces which are H2–conformal; moreover, these basis functions facilitate the introduction
of periodic boundary conditions. These features of B–splines and NURBS basis functions
have been extensively exploited for solving phase field model together with their accuracy
in representing sharp but smooth interfaces, see e.g. [6, 17, 28, 30, 41]. In this paper, we
use Isogeometric Analysis for solving the Hele–Shaw–Cahn–Hilliard equations for fluids in
porous media endowed with discontinuous data, in particular the density; in this respect, we
efficiently solve by means of our formulation the “rising bubble” benchmark problem [36]. In
addition, we use the proposed method to verify the sharp interface limit of the Hele–Shaw–
Cahn–Hilliard equations and we show that this phase field model can be efficiently used
to represent an interface discontinuity problem involving the Poisson equation [19] without
resorting to interface tracking or interface capturing techniques.

This paper is organized as follows. In Sec. 2 we recall the Hele–Shaw and Cahn–Hilliard
equations and then the phase field model described by the Hele–Shaw–Chan–Hilliard equa-
tions; we also discuss their sharp interface limit. In Sec. 3 we present the numerical dis-
cretization of the problem based on Isogeometric Analysis. In Sec. 4 we numerically verify
the sharp interface limit of the model and we solve the benchmark problem of the “rising
bubble”. Conclusions follow.

2 Phase Field Model

In this section, we recall the basic notions of the Hele–Shaw and Cahn–Hilliard models. We
provide the formulation of the Hele–Shaw–Cahn–Hilliard equations based on [39, 40], their
dimensionless form, the sharp interface limit, and the weak formulation of the problem.

2.1 The Hele–Shaw and Darcy flows

In this work, we are principally interested in flows under the effect of the gravity and there-
fore, we consider the vertical Hele–Shaw flow for the vertical analog [7]. Still referring to
Fig. 1, we assume that the Hele–Shaw cell lays in the plane x–y with center in z = 0 such that

z ∈
(
− b

2
,
b

2

)
; we introduce the velocity variable V := u x̂ + v ŷ +w ẑ, the pressure variable

P , the constant density ρ, the constant dynamic viscosity η and the gravity g = g ĝ, where
the unit vector ĝ := gx x̂ + gy ŷ indicates the direction of the gravity and g the modulus.
To derive the Hele–Shaw flow starting from the Navier–Stokes equations, we assume that
V = 0 at the walls of the plates, w = 0 and the velocity gradients in the x and y directions
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Figure 2: Computational domain Ω, boundaries Γin and Γout for the imposition of pairs of
periodic boundary conditions and unit vector n̂ normal to ∂Ω = Γin ∪ Γout.

are negligible with respect to those in the z direction. The Hele–Shaw flow velocity reads [7]:

V = − 1

2η

(
b2

4
− z2

)
∇ (P − ρ g ϕP ) , (2.1)

with the gravitational potential ϕp:

ϕp := ĝ · ((x− x0) x̂ + (y − y0) ŷ) , (2.2)

defined in terms of a reference coordinate x0 := (x0, y0) and
∂

∂z
(P − ρ g ϕP ) = 0; in this

manner, we have that V = V(x, y, z), while P = P (x, y). By introducing the specific
discharge Q in the interspace between the two plates, i.e. the averaged velocity through the

thickness Q :=
1

b

∫ b/2

−b/2
V dz, we have:

Q = − b2

12 η
∇ (P − ρ g ϕP ) , (2.3)

with Q = Q(x, y) as for the pressure P . It is straightforward to deduce the analogy of
the Hele–Shaw flow with the two–dimensional Darcy law, since mass conservation leads to

the requirement that ∇ · Q = 0 in the computational domain, with
b2

12
representing the

permeability of the porous medium.

2.2 The Cahn–Hilliard equation

In order to recall the isothermal Cahn–Hilliard equation for a binary fluid with constant
density ρ, let us denote with c the dimensionless concentration of one of the phase variables
defined in a computational domain Ω ⊂ R2 as the one represented in Fig. 2. We specifically
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consider for example the case of periodic boundary conditions (see e.g. [28, 41]), even if
other cases can be considered as well 1. Albeit flow problems in the Hele–Shaw vertical cell
– as that depicted in Fig. 1 – appear, at first glance, far from carrying periodic boundary
conditions, we will see later that these conditions can instead be conveniently applied under
certain circumstances. With this aim, let us introduce the notation Γin and Γout to indicate
the subsets of the boundary ∂Ω on which the pairs of periodic boundary conditions will be
imposed, where Γin ∪Γout = ∂Ω and Γin ∩Γout = ∅ a.e.; the vector n̂ represents the outward
directed unit vector normal to ∂Ω (Γin or Γout).

In addition, we introduce a total free energy, say ECH(c). For the problem under consid-
eration, in which c is the unique dependent variable and the density ρ constant, we assume:

ECH(c) :=

∫
Ω

ρ f(c) dΩ, (2.4)

where the total free energy function (Helmholtz potential) f(c) = f̂(c,∇c) is defined as:

f(c) := f̂(c,∇c) = σ f0(c) +
1

2
λ∇c · ∇c, (2.5)

with f0(c) the bulk energy density function, and σ and λ suitable positive, dimensional
parameters. We remark that the thickness of the interfaces among the pure phases is pro-

portional to

√
λ

σ
. Following [42], we define the chemical potential µCH(c) in the case of the

isothermal Cahn–Hilliard equation with constant density as:

µCH :=
∂f̂

∂c
(c)− 1

ρ
∇ ·
(
ρ
∂f̂

∂∇c(c)

)
, (2.6)

which assumes the explicit form µCH(c) = σ
df0

dc
(c)− λ∆c.

We remark that the choice of the bulk energy density function f0(c) determines the
separation of the phases typical in immiscible fluids, provided that it is in general non
convex and in the form of a double–well function in the variable c, with the pure phases in
c1 and c2; in particular, we choose the following quartic form for f0(c):

f0(c) := c2 (1− c)2 , (2.7)

which is polynomial, differentiable in c and with the pure phases in c1 = 1 and c2 = 0 2.

1We remark that pairs of compatible boundary conditions need to be specified on each subset of the
boundary ∂Ω due to the fourth–order spatial operator characterizing the Cahn–Hilliard equation.

2A typical choice for f0(c) is represented by the logarithm function with singular values (see e.g. [13]);
for an alternative choice see e.g. [17].
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Finally, the isothermal Cahn–Hilliard equation with constant density and periodic bound-
ary conditions reads:

∂c

∂t
= ∇ · (D0∇µCH(c)) in Ω, ∀t ∈ (0, T ),

c|Γin
= c|Γout ∀t ∈ (0, T ),

(∇c · n̂) |Γin
= − (∇c · n̂) |Γout ∀t ∈ (0, T ),

c = c0 in Ω, t = 0.

(2.8)

where D0 > 0 is the mobility which we assume constant (with the dimension of a diffusivity);
c|Γin

= c|Γout and (∇c · n̂) |Γin
= − (∇c · n̂) |Γout are abridged notations to indicate periodic

boundary conditions. For example, if Ω = (0, L0)2 with Γin =
{

(x, y) ∈ R2 : x = 0, y ∈ (0, L0)
}

and Γout =
{

(x, y) ∈ R2 : x = L0, y ∈ (0, L0)
}

, these conditions are being understood as

c(0, y) = c(L0, y) and,
∂c

∂x
(0, y) =

∂c

∂x
(L0, y) for y ∈ (0, L0).

We observe that the total free energy ECH(c) associated to the Cahn–Hilliard equation

represents a Liapunov functional, i.e.
dECH
dt

(c) ≤ 0 for all t ∈ [0, T ), and the system is mass

conservative in the sense that
dM

dt
(c) = 0, with M(c) :=

∫
Ω

ρ c dΩ.

2.3 The Hele–Shaw–Cahn–Hilliard equations

In this section, we briefly recall the Hele–Shaw–Cahn–Hilliard equations in the pressure and
phase field variables and we highlight their properties. For their detailed derivation and
thermodynamical aspects we refer the interested reader to [39, 40] and also [42].

We start by assuming that the pure phases of the phase variable c are c1 = 1 and c2 = 0.
We define the phase dependent density ρ(c) for a mixture as:

ρ(c) :=
1

1

ρ1

c+
1

ρ2

(1− c)
, (2.9)

and the phase dependent dynamic viscosity η(c) as:

η(c) := η1 c+ η2 (1− c), (2.10)

for some constant densities ρi and dynamic viscosities ηi for i = 1, 2; we observe that when
c = ci, we have ρ = ρi and η = ηi for i = 1, 2. In addition, we introduce the following
coefficient α, which possesses the dimension of an inverse density, as:

α :=
1

ρ1

− 1

ρ2

= − 1

(ρ(c))2

dρ

dc
(c). (2.11)

Also, in place of the pressure variable P introduced in Sec. 2.1, we consider an averaged
pressure which filters the gravitational effect and it is particularly suitable for the imposition
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of periodic boundary conditions. Specifically, we define:

p := P − pavg, (2.12)

where from Eq. (2.2) the average pressure pavg = pavg(x) is:

pavg := ρavg g ϕp, (2.13)

with the average density:

ρavg :=
1

|Ω|

∫
Ω

ρ(c) dΩ. (2.14)

We introduce the surface tension vector s(c) which reads:

s(c) := λ∇ · (ρ(c)∇c⊗∇c) . (2.15)

In this manner, the specific discharge Q introduced in Sec. 2.1 for the Hele–Shaw flow is
modified in q = q(p, c) to take into account for the dependency of the viscosity and density
on c and the surface tension s(c):

q(p, c) := − b2

12 η(c)
(∇p+ s(c) + (ρavg − ρ(c)) g ĝ) ; (2.16)

q(p, c) is also referred to as mass–averaged velocity. Furthermore, for the sake of simplicity,
we define the flux θ(p, c, ċ), for which we highlight the explicit dependency on the time
derivative on the phase variable c, as:

θ

(
p, c,

∂c

∂t

)
:= ρ(c)

(
∂c

∂t
+ q(p, c) · ∇c

)
. (2.17)

We introduce the total free energy E(p, c) in a similar manner for the Cahn–Hilliard
equation of Sec. 2.2 to include the potential energy associated to the gravitational effect,
which reads:

E(p, c) := b

∫
Ω

ρ(c) (f(c)− g ϕP ) dΩ, (2.18)

with the free energy function f(c) given in Eq. (2.5) and the gravitational potential ϕP
in Eq. (2.2); we recall that Ω represents a two–dimensional computational domain and
b is the distance between the plates of the Hele–Shaw cell. The chemical potential, let
say µ(p, c), is defined in terms of the Gibbs energy g(p, c) for which we have the relation

g(p, c) = f(c) +
p+ pavg
ρ(c)

in the isothermal case [42]. Specifically, we have that:

µ(p, c) :=
∂f̂

∂c
(c)− 1

ρ(c)
∇ ·
(
ρ(c)

∂f̂

∂∇c(c)

)
− 1

(ρ(c))2

dρ

dc
(c) (p+ pavg) , (2.19)

with the explicit expression for the chemical potential µ(p, c) from Eqs. (2.5) and (2.11):

µ(p, c) = σ
df0

dc
(c)− λ 1

ρ(c)
∇ · (ρ(c)∇c) + α (p+ pavg) . (2.20)
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Finally, we provide the strong form of the Hele–Shaw–Cahn–Hilliard equations [39] en-
dowed with periodic boundary conditions:

∇ · q(p, c)− α∇ · (M0∇µ(p, c)) = 0 in Ω, ∀t ∈ (0, T ),

θ

(
p, c,

∂c

∂t

)
−∇ · (M0∇µ(p, c)) = 0 in Ω, ∀t ∈ (0, T ),∫

Ω

p dΩ = 0 ∀t ∈ (0, T ),

p|Γin
= p|Γout ∀t ∈ (0, T ),

c|Γin
= c|Γout ∀t ∈ (0, T ),

(∇c · n̂) |Γin
= − (∇c · n̂) |Γout ∀t ∈ (0, T ),

c = c0 in Ω, t = 0,

(2.21)

where the constant mobility M0 > 0 assumes a role similar to the diffusivity D0 introduced in
Eq. (2.8) 3. The first equation represents the modified Hele–Shaw equation, while the second
is the modified Cahn–Hilliard equation which accounts for the pressure p. The system of
PDEs (2.21) is parabolic with second–order spatial derivatives in the pressure variable p
and fourth–order derivatives in the phase variable c; the time derivative appears explicitly

only for the phase variable
∂c

∂t
, whereas the pressure variable p only depending implicitly

on t through the phase transition. The requirement that the average pressure p is zero
for all t ∈ (0, T ) is introduced to ensure that the pressure problem is well posed and it
is compatible with the change of variables in Eq. (2.12). The Hele–Shaw–Cahn–Hilliard
equation is referred as quasi–incompressible [2, 42] in the sense that, at the steady state, the
model is incompressible except at the interfaces between the pure phases, provided that a
full separation among them occurred; indeed, it is easy to see that in the pure phases, for
which ∇c = 0, we have ∇ · q(p, c) = 0 at the steady state; also, we observe that when the
density is constant, i.e. ρ(c) = ρ and α = 0, the model is fully incompressible a.e. for all
t ∈ (0, T ). Similarly to the Cahn–Hilliard equation, the total free energy E(c) (2.18) is a

Liapunov functional, i.e.
dE

dt
(p, c) ≤ 0 for all t ∈ (0, T ); and the system is mass conservative

since
dM

dt
(c) = 0 for all t ∈ (0, T ) for the periodic boundary conditions under consideration.

2.4 The dimensionless Hele–Shaw–Cahn–Hilliard equations

We rewrite the system of PDEs (2.21) in terms of dimensionless variables and parameters;
we will denote with the superscript ∗ the dimensionless quantities. We start by introducing

the scaling for the space and time variables x∗ :=
x

L0

and t∗ :=
t

T0

being L0 and T0 the

3The product

(
M0 σ

ρ0

)
dimensionally represents a diffusivity or kinematic viscosity (square length over

time).
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representative length and time scales, respectively. In addition we introduce the scalings p0,
ρ0, η0 and q0 for the pressure, density, dynamic viscosity and velocity (specific discharge),

respectively. In this manner, we set p∗ :=
p

p0

and c∗ := c since the phase variable is already

dimensionless; moreover, we define η∗(c∗) :=
η(c)

η0

, ρ∗(c∗) :=
ρ(c)

ρ0

, the parameter α∗ := ρ0 α

and q∗(p∗, c∗) :=
q(p, c)

q0

; we observe that η∗i :=
ηi
η0

and ρ∗i :=
ρi
ρ0

for i = 1, 2. In addition,

we have that ∇∗· = L0∇·,
∂·
∂t∗
· = T0

∂·
∂t

, f ∗0 (c∗) = f0(c), ρ∗avg =
ρavg
ρ0

, ĝ∗ = ĝ and ϕ∗p =
ϕp
L0

.

By assuming that the representative quantities L0, ρ0 and η0 are chosen a priori, we obtain

through dimensional analysis that the representative time, pressure and velocity are T0 =
L0

q0

,

p0 = ρ0 g L0 and q0 =
ρ0 g b

2

η0

, respectively.

The system (2.21) depends on the three following dimensionless parameters:

Ca :=
1

σ

λ

L2
0

Ma :=
g L0

σ
Pe :=

ρ0 q0 L0

M0 σ
= Ma

ρ2
0 b

2

M0 η0

, (2.22)

the first being the Cahn number, the second is an analogue of the Mach number and the
latter the Péclet number, with definitions similar to those for the Navier–Stokes–Cahn–
Hilliard equations in [42]. We remark that the Cahn number is related to the thickness of
the interfaces between the pure phases, while the Mach number is related to the ratio between
the pressure and chemical (surface tension) forces. We define the following dimensionless
quantities:

s∗(c∗) := ∇∗ · (ρ∗(c∗)∇∗c∗ ⊗∇∗c∗) , (2.23)

q∗(p∗, c∗) := − 1

12 η∗(c∗)

(
∇∗p∗ +

Ca
Ma

s∗(c∗) +
(
ρ∗avg − ρ∗(c∗)

)
ĝ

)
, (2.24)

θ∗
(
p∗, c∗,

∂c∗

∂t∗

)
:= ρ∗(c∗)

(
∂c∗

∂t∗
+ q∗(p∗, c∗) · ∇∗c∗

)
, (2.25)

µ∗(p∗, c∗) :=
df ∗0
dc

(c∗)− Ca
1

ρ∗(c∗)
∇∗ · (ρ∗(c∗)∇∗c∗) + α∗Ma

(
p∗ + p∗avg

)
, (2.26)

for which we have: s(c) =

(
ρ0 λ

L3
0

)
s∗(c∗), q(p, c) =

(
ρ0 g b

2

η0

)
q∗(, p∗, c∗), µ(p, c) = σ µ∗(p∗, c∗)

and θ

(
p, c,

∂c

∂t

)
=

(
ρ0 q0

L0

)
θ∗
(
p∗, c∗,

∂c∗

∂t∗

)
. In this manner, the first two dimensionless

equations in the system (2.21) read:

∇∗ · q∗(p∗, c∗)− α∗

Pe
∆∗µ∗(p∗, c∗) = 0 in Ω∗, ∀t∗ ∈ (0, T ∗),

θ∗
(
p∗, c∗,

∂c∗

∂t∗

)
− 1

Pe
∆∗µ∗(p∗, c∗) in Ω∗, ∀t∗ ∈ (0, T ∗),

(2.27)
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with a straightforward scaling for the boundary and initial conditions. By observing that
the dimensionless free energy function f ∗(c∗) is:

f ∗(c∗) = f ∗0 (c∗) +
1

2
Ca∇∗c∗ · ∇∗c∗, (2.28)

the dimensionless total free energy E∗ = E∗(p∗, c∗) associated to the system (2.21) reads:

E∗(p∗, c∗) :=
1

Ma

∫
Ω∗
ρ∗(c∗)

(
f ∗(c∗)−Maϕ∗p

)
dΩ, (2.29)

where E(p, c) =
(
ρ0 g b L

3
0

)
E∗(p∗, c∗).

For the sake of simplicity, in the rest of the paper, we will omit the superscript ∗ to indi-
cate dimensionless quantities and, otherwise else specified, we will refer only to dimensionless
variables and quantities.

Remark 2.1. The specific discharge q of Eq. (2.24) stands for a mass–averaged velocity and
is not divergence–free as seen in Eq. (2.27); in addition, the chemical potential µ of Eq. (2.26)
directly depends on the pressure variable p. These make the analysis of such Hele–Shaw–
Chan–Hilliard formulation quite involved. Conversely, the phase field model of [18] yields a
straightforward analysis as it considers a volume–averaged velocity and a modified pressure
instead of the physical pressure p which, in our model, is unbounded with respect to the
interface thickness

√
Ca.

2.5 The sharp interface limit: Darcy flows with discontinuous
physical data

By recalling the results of [39, 40], we briefly discuss the sharp interface limit of the Hele–
Shaw–Cahn–Hilliard equations. In particular, we are interested in determining the so–called
sharp interface model (PDEs) which is obtained from the phase field model it the thickness
of the interfaces between the phases tends to zero. The procedure for the derivation of the
sharp interface limit is based on the approach of [45] for which asymptotic expansions of the
variables p and c in terms of the thickness of the interface are used both far away from the
interface (outer expansion) and within the interface (inner expansion); see also [2, 11, 27, 42].
De facto, the investigation of the sharp interface limit constitutes a validation of the phase
field model by means of consistency with the interface problem with discontinuous physical
data which the model aims at representing through smooth by sharp interfaces. Specifically,
the sharp interface model obtained as limit of the Hele–Shaw–Cahn–Hilliard equations is
represented by Darcy flows [7] with discontinuous data across an internal interface.

We recall the Darcy equations to model the motion of two immiscible fluids contained
in two separated regions (subdomains) Ω1 and Ω2 such that Ω1 ∪ Ω2 = Ω and Ω1 ∩ Ω2 = ∅
a.e. with an interface Γ := ∂Ω1 ∩ ∂Ω2 6= ∅; see Fig. 3. Let us observe that when a prescribed
phase field variable c is provided and the phases are fully decomposed, the variable c can be
used to track the subdomains Ωi, i = 1, 2, and the interface Γ by identifying the locations
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Figure 3: Examples for internal discontinuity interfaces problems: subdomains Ω1 and Ω2,
interface Γ and unit vector n̂Γ normal to Γ.

for which c = c1 or c = c2, respectively. For the specific choice of the bulk energy func-
tional (2.7) for which the pure phases corresponds to c1 = 1 and c2 = 0, we can define

Ω1 :=

{
x ∈ Ω : c(x) >

1

2

}
, Ω2 :=

{
x ∈ Ω : c(x) <

1

2

}
and Γ :=

{
x ∈ Ω : c(x) =

1

2

}
.

As consequence, for this choice, we have that where c = c1 = 1 we are referring to the sub-
domain Ω1 filled with a fluid with density ρ1 and viscosity η1; conversely, when c = c2 = 0,
we indicate the subdomain Ω2 with the physical properties ρ2 and η2. In each subdomain
Ωi, i = 1, 2, we define two variables pi for the pressure and the fluxes qi(pi) such that:

qi(pi) := − 1

12 ηi
(∇pi + (ρavg − ρi) ĝ) . (2.30)

Then, the Darcy model in each subdomain Ωi, i = 1, 2, reads:

∇ · qi(pi) = 0 in Ωi, (2.31)

with suitable boundary conditions (Dirichlet, Neumann or Robin) imposed on the the ex-
ternal boundary if ∂Ω ∩ ∂Ωi 6= ∅. If we denote with p the pressure variable in Ω, we have
that p|Ωi

= pi and similarly q(p)|Ωi
= qi(pi), for i = 1, 2. By denoting with [[·]]Γ the jump of

a generic variable across the interface Γ and with n̂Γ the unit vector normal to Γ which, by
convention, we assume as outward directed with respect to the subdomain Ω2 (see Fig. 3),
we define the following interface conditions for two immiscible fluids:

[[p]]Γ := p2|Γ − p1|Γ = τ κ,

[[q(p)]]Γ := (q2(p2) · n̂Γ) |Γ − (q1(p1) · n̂Γ) |Γ = 0,
(2.32)

where τ is a dimensionless surface tension coefficient and κ indicates the signed dimensionless
curvature of the interface. Due to the convention chosen for the normal n̂Γ to the interface
Γ, we have that κ := ∇ · n̂Γ.
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Figure 4: Normalized parameter Σref (2.33)

(
Σref√

2ρ1

)
vs.

ρ2

ρ1

for ρ1 = 1, c1 = 1, c2 = 0 and

the bulk energy function (2.7).

Remark 2.2. The interface conditions (2.32) corresponding to the Darcy equations (2.31)
represent a particular, but physically consistent case of an internal discontinuity interface
problem associated to the Laplace equations defined on the separated subdomains. The latter
problem is afforded for example in [19] where the jumps of the variable p and the flux q(p)
are set equal to some prescribed generic functions gp and gq defined on Γ, i.e. [[p]]Γ = gp and
[[q(p)]]Γ = gq; for the specific case of Darcy flows, we have gp = τ κ and gq = 0. For further
details on internal discontinuity interface problems and their numerical approximation we
refer the interested reader e.g. to [8, 19].

Let us indicate with ε the dimensionless characteristic size of the interfaces between the

pure phases; specifically we set ε =

√
λ

L2
0

. moreover, we introduce the parameter Σref defined

as 4:

Σref :=
√

2

∫ c1

c2

ρ(c)

√
f0(c)− f0(c1)− df0

dc
(c1)(c− c1) dc; (2.33)

an example of Σref is reported in Fig. 4. Following [39, 42] it is possible to show that

under the assumption that κ� 1

ε
and with the choice of the following scalings in ε for the

4As discussed in [42] the value of Σref obtained for the cylindrical coordinates tends in the limit to the
value obtained for the planar case; for this reason, we consider an unique value of Σref for both the cases.
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dimensionless parameters 5:

Ca = ε2, Ma =
Σref

τ
ε, and Pe =

1

ε
, (2.34)

the Hele–Shaw–Cahn–Hilliard equations (2.27) tend, in the sharp interface limit ε→ 0, to the
sharp interface model represented by the Darcy equations (2.31) defined in the subdomains
Ωi with the interface conditions (2.32) defined on Γ. In this manner, the Darcy flow problem
of two immiscible fluids with discontinuous physical properties can be obtained as the limit of
the Hele–Shaw phase field model for the thickness of the interfaces between the pure phases
tending to zero. As a consequence, the numerical approximation of the Hele–Shaw–Cahn–
Hilliard equations represents a viable, mathematically and thermodynamically consistent
approach for the solution of the Darcy flow problem (2.31) with the interface conditions (2.32)
without resorting to interface capturing or interface tracking methods, as e.g. the volume of
fluid or level set methods [34, 44, 50].

Remark 2.3. Following the Remark 2.2 and the previous considerations on the sharp in-
terface limit, suitable phase field models coupled with the Cahn–Hilliard equations can be
eventually developed to represent generic internal discontinuity interface problems when the
interface thickness among the pure phases tends in the limit to zero; see [2, 42].

2.6 The weak formulation

By using a standard notation to denote the Sobolev spaces of functions with Lebesgue
measurable derivatives and norms [3], we define the function spaces:

V :=

{
φ ∈ H1(Ω) :

∫
Ω

φ dΩ = 0 and φ|Γin
= φ|Γout

}
,

H :=
{
ψ ∈ H2(Ω) : ψ|Γin

= ψ|Γout and (∇ψ · n̂) |Γin
= − (∇ψ · n̂) |Γout

}
,

(2.35)

with V and H accounting for the periodic boundary conditions.
We define, for all t ∈ (0, T ), the residuals Rp(p, c)(·) : H → R and Rc(p, c)(·) : H ∈ R

for given p ∈ V and c ∈ H:

Rp(p, c)(φ) := −
∫

Ω

∇φ · q(p, c) dΩ +
α

Pe
D(p, c)(φ), (2.36)

Rc(p, c)(ψ) :=

∫
Ω

ψ θ

(
p, c,

∂c

∂t

)
dΩ +

1

Pe
D(p, c)(ψ), (2.37)

where, by integration by parts and using Eq. (2.26), we have introduced the real–valued form
D(p, c)(ψ) for any ψ ∈ H:

D(p, c)(ψ) :=

∫
Ω

∇ψ · ∇
(
df0

dc
(c)

)
dΩ + αMa

∫
Ω

∇ψ · ∇ (p+ pavg) dΩ

+Ca
∫

Ω

∆ψ
1

ρ(c)
∇ · (ρ(c)∇c) dΩ.

(2.38)

5The Péclet number can be also set as independent of ε, specifically we can take Pe = 1 [39]. The scaling for

the parameter Ma corresponds to the choice of the dimensional surface tension coefficient σ = (g L0)
τ

Σref

1

ε
.
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Finally, the weak formulation of the Hele–Shaw–Cahn–Hilliard equations reads:

find, for almost all t ∈ (0, T ), p ∈ V and c ∈ H :

Rp(p, c)(φ) = 0 ∀φ ∈ H,
Rc(p, c)(ψ) = 0 ∀ψ ∈ H,
with c = c0 in Ω, t = 0.

(2.39)

We notice that the choice of the function space H for the weight function φ in Eq. (2.36) and
the first of the equations (2.39) is due to the second order derivatives in the form D(p, c)(φ)
of Eq. (2.38).

3 Numerical Approximation

We discuss the numerical solution of problem (2.39) both in terms of the spatial and time
approximations which are based on Isogeometric Analysis and the generalized–α method,
respectively. For alternative formulations, we refer the reader to [23, 24, 40, 54].

3.1 The spatial approximation: Isogeometric Analysis

For the spatial approximation of problem (2.39) we consider Isogeometric Analysis [15, 35].
Since the solution field c ∈ H ⊂ H2(Ω) for all t ∈ (0, T ), it is necessary to approximate it
with at least globally C1–continuous basis functions; see [51] and e.g. [6, 17, 28, 30, 41]. For
the sake of simplicity, despite the fact that only globally C0–continuous basis functions are
necessary for the approximation of the pressure field p ∈ V ⊂ H1(Ω), we use the same basis
functions for both the pressure and phase fields.

We introduce the multivariate B–splines (NURBS) basis N(x) := {NA(x)}nbf

A=1 which is
composed by nbf basis functions [46]. Then, we write the approximate pressure ph = ph(t,x)

and phase ch = ch(t,x) fields as ph(t,x) =

nbf∑
A=1

pA(t)NA(x) and ch(t,x) =

nbf∑
A=1

cA(t)NA(x),

respectively, with the coefficients {pA(t)}nbf

A=1 and {cA(t)}nbf

A=1 being time dependent; similarly,

for the test functions, we choose φh(x) =

nbf∑
A=1

φANA(x) and ψh(x) =

nbf∑
A=1

ψANA(x). More

specifically, we introduce the discrete function spaces Vh ⊂ V and Hh ⊂ H composed of
basis functions of local degree p = 2 and such that the periodic boundary conditions are
included 6; the reader interested to a discussion about the strong imposition of periodic
boundary conditions in the field of Isogeometric Analysis is referred to e.g. [6, 41]. We
indicate with nh,p the dimension of the space Vh and with nh,c the dimension of Hh; we

6The requirement of a zero mean value for the pressure field is replaced by setting equal to zero a control
variable of the approximate pressure field.
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observe that, due to the previous considerations and the definition of the space V , we have
that nh,p = nh,c − 1.

The semi–discrete version of the weak problem (2.39) reads:

find, for all t ∈ (0, T ), ph ∈ Vh and ch ∈ Hh :

Rp(ph, ch)(φh) = 0 ∀φh ∈ Hh,

Rc(ph, ch)(ψh) = 0 ∀ψ ∈ Hh,

with ch = c0,h in Ω, t = 0,

(3.1)

where c0,h is the L2 projection of the initial condition c0 onto the space Hh; the total number
of spatial degrees of freedom is nh := nh,p + nh,c (or equivalently nh = 2nh,c − 1).

In view of the time approximation it is convenient to express also the residuals in terms

of time derivative of the approximate phase field, say ċh :=
∂ch
∂t

for the sake of simplicity.

We define P(t) := {pA(t)}nbf

A=1, C(t) := {cA(t)}nbf

A=1, and Ċ(t) := {ċA(t)}nbf

A=1, and, from
Eqs. (2.36) and (2.37), the residuals:

Rp (P(t),C(t)) := {Rp (ph, ch) (NA)}nbf

A=1 ,

Rc

(
P(t),C(t), Ċ(t)

)
:= {Rc (ph, ch) (NA)}nbf

A=1 .
(3.2)

Since in this work we consider B–splines (NURBS) basis of degree p = 2 which are globally
C1–continuous, a 3× 3 Gauss–Legendre quadrature rule is used in each element.

3.2 The time approximation: generalized–α method

For the time approximation of the semi–discrete problem (3.1) we consider the generalized–α
method [14, 38]; we outline the numerical approach and, for a more detailed description, we
refer the reader to [17, 28].

We partition the whole time interval [0, T ] into nts time steps of size ∆tn := tn+1 − tn,
with {tn}nts

n=0 the discrete time vector, for which the discrete variables read Pn = P(tn),

Cn = C(tn) and Ċn = Ċ(tn). Given the variables Cn and Ċn at the time tn, the generalized–
α method consists in solving the following problem at the time step tn+1:

find Pn+1, Cn+1, Ċn+1, Cn+αf
, Ċn+αm :

Rp

(
Pn+1,Cn+αf

)
= 0,

Rc

(
Pn+1,Cn+αf

, Ċn+αm

)
= 0,

Cn+1 = Cn + ∆tnĊn + δ∆tn

(
Ċn+1 − Ċn

)
,

Cn+αf
= Cn + αf (Cn+1 −Cn) ,

Ċn+αm = Ċn + αm

(
Ċn+1 − Ċn

)
,

(3.3)
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with the residuals given in Eq. (3.2). For the parameters αm, αf and δ ∈ R we choose

αm =
1

2

(
3− ρ∞
1 + ρ∞

)
, αf =

1

1 + ρ∞
, and δ =

1

2
+αm−αf , with ρ∞ ∈ [0, 1] the spectral radius

of the amplification matrix at ∆tn → ∞ [38]; specifically, we choose ρ∞ = 0.5. We solve
the problem (3.3) for n = 0, . . . , nts − 1 with a predictor–multicorrector scheme, similarly
to [17, 41]. The associated linear system is solved by means of the GMRES method [48]
preconditioned by an Algebraic Multigrid algorithm with Smoothed Aggregation [26]; the
stopping criterion is based on the relative residual with the tolerance 10−6.

4 Numerical Results

We provide and discuss numerical results for the Hele–Shaw–Cahn–Hilliard equations. First,
we numerically analyze the sharp interface limit with discontinuous physical data of Sec. 2.5
in the one–dimension. Then, we provide an example of the numerical solution of the Hele–
Shaw–Cahn–Hilliard problem in the two–dimensional setting, specifically the so–called “ris-
ing bubble” problem driven by two phases with different densities.

4.1 The sharp interface limit under mesh refinement

We consider the numerical approximation of the steady pressure equation (2.39) in one–
dimension, both in Cartesian and radial coordinates, for a prescribed distribution of the
phase variable, say c, in Ω = (0, 1). Specifically, the problem reads:

find p ∈ V : Rp(p, c)(φ) = 0 ∀φ ∈ H, (4.1)

where V :=
{
φ ∈ H1(Ω) : φ(1) = 0

}
and H :=

{
ψ ∈ H2(Ω) : φ(1) = 0

}
and the spatial

differential operators are expressed in Cartesian or radial coordinates; consequently, the unit
vector ĝ is identified as x̂ or r̂. The prescribed phase variable assumes the form:

c(s) =
1

2

[
1 + tanh

(
s− s0√

2Ca

)]
, (4.2)

where the independent variable s represents the Cartesian (x) or radial (r) coordinate, s0 ∈ Ω
and Ca is the Cahn number introduced in Eq. (2.22) 7.

By noticing that Eq. (4.1) is linear in the pressure variable, we solve the steady problem
by using the Isogeometric spatial approximation outlined in Sec. 3.1. moreover, by following
the paradigm introduced in [28] and used in [30, 17, 41], we relate the interface thickness
ε to the dimensionless characteristic mesh size, say h, through a safety coefficient γs > 0;
specifically, we assume:

ε = γs h; (4.3)

a typical and effective choice of the safety parameter is γs = 2. This choice leads to interfaces
between the pure phases to become sharper and shaper as the mesh size reduces, thus allowing
to explore the sharp interface limit of the pressure equation.

7The prescribed phase distribution c of Eq. (4.2) solves the steady Cahn–Hilliard equation with suitable
boundary conditions; its expression is compatible with the bulk energy function f0(c) given in Eq. (2.7).
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Figure 5: One–dimensional case. Phase variable c (a) and pressure distributions ph (b,c,d)
for different values of τ , ρ2 and ρ1 in Cartesian x (a,b) and radial coordinates r (a,c,d); zoom

around interfaces for ε =

√
2

27
(blue),

√
2

29
(red) and

√
2

211
(black).

In Fig. 5(a) we report the prescribed phase variable c both in Cartesian and radial

coordinates for uniform meshes of size h =
1

27
,

1

29
, and

1

211
with the interface Γ located

in s0 = 0.5 (Γ = {s0}. In Figs. 5(b,c,d) we highlight the pressure variable ph around the
interfaces for different data. In Fig. 5(a) we consider the Cartesian coordinate with τ = 0.5,
ρ1 = 1 and ρ2 = 0.1; as expected the jump of the pressure across the interface tends for
ε −→ 0 to [[p]]Γ = 0, being the curvature κ = 0, while the jump of the derivative of the

pressure

[[
dp

dx

]]
Γ

= ρ2 − ρ1 = −0.9. In Fig. 5(c) we report the result for the same data, but

in radial coordinates; in this case, being the curvature of the interface κ =
1

s0

= 2.0, the
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Figure 6: One–dimensional case. Errors ep and edp vs. ε for τ = 0.5, ρ1 = 1.0 and ρ2 = 0.1
in Cartesian coordinate (left) and for τ = 1.0, ρ1 = 1.0 and ρ2 = 0.05 in radial coordi-
nate (right).

jump of the pressure tends in the limit to [[p]]Γ = 1.0, while

[[
dp

dr

]]
Γ

= ρ2 − ρ1 = −0.9.

In order to evaluate the convergence orders of the pressure and pressure gradients jumps
across the interfaces, we introduce the following notions of jumps, dependent on ε:

[[ph]]ε := ph(s
ε
2)− ph(sε1) and

[[
dph
ds

]]
ε

:=
dph
ds

(sε2)− dph
ds

(sε1), (4.4)

where sε1 := argsup
s∈Ω
{c(s) : c(s) ≤ c1 − tol} and sε2 := arginf

s∈Ω
{c(s) : c(s) ≥ c2 + tol}, for

c2 < c1 and some tolerance tolε > 0; specifically, for the one–dimensional case, we set c1 = 1,

c2 = 0, and tol = 10−10. We compute the errors associated to the jumps [[ph]]ε and

[[
dph
ds

]]
ε

of Eq. (4.4), say ep and edp, as:

ep := | [[ph]]ε − [[p]]Γ | and edp :=

∣∣∣∣ [[dphds
]]
ε

−
[[
dp

ds

]]
Γ

∣∣∣∣ , (4.5)

respectively.
In Fig. 6, we report the errors ep and edp on the pressure and pressure gradient jumps

across the interface vs. the parameter ε for two test problems; in the first case, the Cartesian

coordinate is used with τ = 0.5, ρ1 = 1.0, and ρ2 = 0.1, for which [[p]]Γ = 0 and

[[
dp

dx

]]
Γ

=

−0.9, while in the second case, which is in radial coordinate, τ = 1.0, ρ1 = 1.0, and ρ2 = 0.05,

yielding [[p]]Γ = 1.0 and

[[
dp

dr

]]
Γ

= −0.95. We remark that the error ep on the pressure jump

converges to zero with order 1 in ε, while the error edp on the jump of the pressure gradient
converges to zero with order 2 for both the test problems.; the same convergence orders are
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obtained for spatial discretizations with B–splines basis functions of degree r > 2, which are
at least globally C1–continuous. Indeed, such results correspond to an intrinsic property of
the sharp interface limit (Sec. 2.5) obtained for the specific Hele–Shaw–Cahn–Hilliard model
at hand ([39]); for more details, we refer the reader to [18] and the analysis therein, which
exploits the sharp asymptotic limit for high order terms in ε. From this result, extendable to
the two– and three–dimensional cases, we deduce that the pressure equation (4.1), endowed
with a prescribed phase field variable c, solves a Poisson problem in p with conditions on the
jumps of the pressure and gradient of the pressure across an internal interface Γ in Ω.

4.2 Discontinuous density: the “rising bubble” problem

We consider the case of a “rising bubble”, i.e. a phase comprised of a “light” fluid (phase 1)
embedded in an heavier one (phase 2), which rises in presence of the gravitational force
[36]; as computational domain, we choose Ω = (0, 1)2. We select the following parameters
introduced in Sec. 2: ρ1 = 5.8507, ρ2 = 14.8507, η1 = η2 = 0.5, σ = 73.186, τ = 0.235702,
g = 9.81, and ε = 1/64; we deduce that Σref = 2.0213 from Eq. (2.33), Ca = 0.000244141,
Ma = 0.133994, and Pe = 320 from Eq. (2.34). The initial condition for the phase field

is c0(x, y) =
1

4
ζ+(x, y) ζ−(x, y), where ζ±(x, y) = 1 + tanh

(
y − y±(x)√

2Ca

)
, being y±(x) =

1

2
± 5 + cos(2πx)

20 π
; this choice determines the distribution of the “light” and “heavy” fluids

shown in Fig. 7(top–left) which are depicted in red and blue, respectively. We remark that
periodic type boundary conditions are used.

We solve the problem by means of IGA with B–splines basis functions of degree 2 and
globally C1–continuous in Ω; specifically, we select a uniform mesh of size h = 1/128 yielding
a number of basis functions nbf = 16′384. For the time discretization, we use the generalized–
α method as described in Sec. 3.2 with ∆t = 5.0 · 10−4.

We report in Figs. 7–9 the phase field variable c at different times and, correspondingly
in Figs. 10–12, the pressure field p. We highlight that the “light” fluid raises in the heavier
one and the initial condition c0 determines the pinch–off of the stratified fluid distribution
up to the generation of a bubble; the solution exhibits a topological change that is taken
into account from the phase field model in a straightforward fashion. Similarly, the pressure
p highlights the mechanism driving this topological change and the consequent rise of the
“light” bubble into the “heavy” fluid.
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t = 0 t = 0.150 t = 0.300

t = 0.400 t = 0.500 t = 0.550

t = 0.575 t = 0.650 t = 0.625

Figure 7: “Rising bubble”: phase variable c at different time instances.



22 L. Dedè and A. Quarteroni

t = 0.650 t = 0.675 t = 0.700

t = 0.725 t = 0.750 t = 0.760

t = 0.775 t = 0.785 t = 0.800

Figure 8: “Rising bubble”: phase variable c at different time instances.
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t = 0.825 t = 0.850 t = 0.875

t = 0.900 t = 0.925 t = 0.950

t = 1.00 t = 1.05 t = 1.10

Figure 9: “Rising bubble”: phase variable c at different time instances.



24 L. Dedè and A. Quarteroni

t = 0 t = 0.150 t = 0.300

t = 0.400 t = 0.500 t = 0.550

t = 0.575 t = 0.650 t = 0.625

Figure 10: “Rising bubble”: pressure p at different time instances.
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t = 0.650 t = 0.675 t = 0.700

t = 0.725 t = 0.750 t = 0.760

t = 0.775 t = 0.785 t = 0.800

Figure 11: “Rising bubble”: pressure p at different time instances.
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t = 0.825 t = 0.850 t = 0.875

t = 0.900 t = 0.925 t = 0.950

t = 1.00 t = 1.05 t = 1.10

Figure 12: “Rising bubble”: pressure p at different time instances.
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5 Conclusions

In this paper, we considered Isogeometric Analysis for the spatial approximation of the
Hele–Shaw–Cahn–Hilliard equations, a phase field model particularly useful to represent
Darcy flows in a two–dimensional cell in presence of discontinuous data through interfaces.
We showed that our numerical formulation is suitable and efficient for approximating this
model by solving the benchmark “rising bubble” problem of fluids with different densities in
presence of the gravitational force. In addition, we numerically verified the sharp interface
limit of the Hele–Shaw–Cahn–Hilliard equations which is represented by Poisson problems
in the pressure variable across interfaces and endowed with interface conditions to match
discontinuities in the data. Specifically, these interface conditions are jump conditions on
the pressure and its gradient and are proportional to the surface tension and the density gap
across the interface, respectively. Our numerical tests showed that the pressure equation
of the Hele–Shaw–Cahn–Hilliard equations can also be used to model internal discontinuity
interface Poisson problems by prescribing a suitable phase field variable in the computational
domain to represent interfaces.
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