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Abstract

In this work we address the study of transition to turbulence effects
in abdominal aortic aneurysms (AAA). The formation of transitional ef-
fects in such districts is caused by the heart pulsatility and the sudden
change of diameter, and has been recorded by means of clinical measures
and computational studies. Here we propose, for the first time, the use
of a large eddy simulation (LES) model to describe transition to turbu-
lence in realistic scenarios of AAA obtained from radiological images. To
this aim, we post-process the obtained numerical solutions to produce sig-
nificant quantities, such as the ensemble-averaged velocity and wall shear
stress, the standard deviation of the velocity field, the Q-criterion. The
results show the suitability of the considered LES model and the presence
of significant transitional effects during the mid-deceleration phase around
the impingement region.
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1 Introduction

Blood fluid-dynamics plays a major role in the development of abdominal aortic
aneurysms (AAA), i.e. the enlargement of the abdominal aorta whose rupture
could lead to fatal events [14]. In particular, specific wall shear stress (WSS)
conditions regulate the production of the nitric oxide [3], which is known to
determine the loss of elastin at the basis of the aneurysm formation and growth;
determine the activation of blood platelets [34], playing a central role in the
thrombus formation; and are responsible for anisotropic displacements of the
aneurysmatic sac [37].

In this context, the possibility for the flow regime to be transitional or tur-
bulent owing to the enlargement of the lumen and to pulsatility [5, 12] have a
strong impact on WSS and thus on the above-mentioned relationships. In par-
ticular, turbulence effects are responsible for an increased platelets activation
[10] and damage of the blood cell [49], and provide additional stresses that may
lead to further AAA dilatation [27]. Although not mainly determined by WSS,
also the rupture process may be influenced by turbulence in the aneurysm, since
the corresponding arterial wall vibration may damage the structural components
of the wall [2].

For these reasons, the inclusion of turbulence models (or the use of well-
resolved meshes) is mandatory for a computational study of blood dynamics
in AAA and for an accurate description of the anurysm evolution [2, 27, 30].
One major issue relies on the qualification and quantification of turbulence,
since its very definition is quite problematic in general and in particular in
hemodynamics. Indeed, in this context turbulence does not fully develop since
the acceleration at the beginning of a new heartbeat laminarizes the flow which
experiences only a transitional behavior [49]. This is a common fact in vascular
hemodynamics, see for example [44, 21, 29, 40] for the case of stenotic carotids.
Often, with turbulence some authors meant the presence of disturbed and/or
vorticous blood flows. Only few computational studies have introduced suitable
statistically-based quantities to assess turbulence effects in AAA [2, 30].

In this work, we consider large eddy simulations (LES) for the study of tran-
sition to turbulence effects in AAA. In particular, we apply the eddy-viscosity
σ−model [33] to three patient-specific geometries. To assess turbulence effects,
we study the standard deviation of the velocity field, the ratio between eddy
and molecular viscosities, and the fluctuations of the kinetic energy. Our re-
sults show the suitability of LES models in hemodynamics and the presence of a
significant amount of transitional effects localized close to the jet impingement
region during the deceleration phase.
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2 Materials and Methods

2.1 Geometric data

Three patients (P1, P2, and P3 in what follows) who underwent 4D-CT as preop-
erative evaluation of an AAA were selected and approved ethical review board
approval and informed consent. The radiological acquisitions were performed
with a Somatom Definition Dual Source CT (Siemens, Erlangen, Germany),
before and after contrast media administration with retrospectively electrocar-
diographic (ECG) gated spiral acquisition. Non-ionic contrast media (Iomeron,
Bracco, Milan, Italy) was used.

The 3D geometric reconstructions were performed by means of the Vascular
Modeling Toolkit, VMTK [1]. The 3D surface model of the lumen surface of the
abdominal aorta was reconstructed using a gradient-driven level set technique.
Then, the surface models of the three geometries were turned into volumetric
meshes of linear tetrahedra, with three thin layers close to the wall. In particular,
the meshes were formed by 275k and 110k tetrahedra for P1, 115k tetraedra for
P2, and 120k tetraedra for P3. These values correspond to a characteristic space
discretization parameter h = 0.08 cm and h = 0.11 cm for P1, and h = 0.13 cm
for P2 and P3.

2.2 Numerical methods

Blood is modelled as a constant density, Newtonian and homogeneous fluid, a
well accepted hypothesis for medium and large vessels [16].

LES models are based on the decomposition of the fluid unknowns in resolved
and unresolved quantities, [u, p] and [u′, p′], respectively, so that u = u+u′ and
p = p + p′ [41]. The resolved quantities are referred to as filtered. In order to
derive a set of equations for u and p, a formal filtering procedure is performed
over the Navier-Stokes equations. Defining τ = u ⊗ u−u⊗u the subgrid-scale
tensor, which models the effect of the unresolved scales on the resolved ones
[43, 38], we consider the following filtered Navier-Stokes problem (normalized
over the fluid density):
Find the velocity u(t, x) and the pressure p(t, x) such that

∂u

∂t
− ν∇ · S(u) + ∇ · (u ⊗ u) + ∇p + ∇ · τ d(u) = 0 t ∈ (0, MT ], x ∈ Ω,

(1a)

∇ · u = 0 t ∈ (0, MT ], x ∈ Ω,
(1b)

u = g t ∈ (0, MT ], x ∈ Γin,
(1c)

− pn + νS(u)n − τ d(u)n = 0 t ∈ (0, MT ], x ∈ Γout,
(1d)
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with zero initial boundary condition for the velocity, and where M is the number
of heartbeats, T the period of a heartbeat, (u ⊗ u)ij = uiuj , S(u) = ∇u +

(∇u)T , Γin is the inlet, Γout the two outlets given by the iliac segments, ν is the
kinematic viscosity, and g(t, x) is a given boundary data. In particular, at the
inlet Γin we impose a representative time variation of the flow rate Q(t) reported
in Figure 1. Here the flow rate is defined as

Q =

∫

Γin

u · n dσ. (2)

This is a defective boundary condition, since at each time step we are prescribing
only a scalar quantity over the whole Γin. In order to fill this gap, we make the
assumption of parabolic velocity profile along the normal direction, yielding the
Dirichlet condition (1c), g being the unique function with a parabolic profile
in the normal direction and vanishing in the tangential ones, with flow rate at
each time step equal to Q(t). No perturbation is prescribed, so that the flow
is assumed to be laminar at the inlet boundary. This will allow us to capture
transitional effects arising as a consequence of geometry and pulsatility solely.
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Figure 1: Flow waveform prescribed at the inlet.

The tensor τ d = τ − 1
3

∑

k τkkI in (1) is the deviatoric part of the subgrid-
scale tensor τ . The latter is suitably modeled as a function of the filtered quan-
tities u, hence equations (1) have only (u, p) as dependent variables. Usually,
the effect of the subgrid-scale on the resolved scales is modeled in analogy with
the kinetic theory of gases, by introducing a subgrid-scale viscosity νsgs and by
modeling the deviatoric part of the subgrid-scale tensor as follows

τ d(u) = −2νsgs(u)S(u).

The eddy viscosity model considered in this work is the σ−model, introduced in
[33]. This is based on the introduction of the singular values σ1(t, x) ≥ σ2(t, x) ≥
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σ3(t, x) ≥ 0 of ∇u, and on defining the subgrid-scale viscosity as follows:

νsgs = C∆
2 σ3(σ1 − σ2)(σ2 − σ3)

σ2
1

, (3)

where C is a suitable constant and ∆ the filter width. In our simulation we set
C = 1.5 [33, 28]. For the grid filter we considered an implicit procedure [11],
where the filter width ∆ represents the size of a mesh that is not able to capture
all the scales [38]. This empirical choice is the most widely used today.

As for the time discretization, we use a semi-implicit approach to linearize
the momentum equation (1a), used in combination with a BDF2 scheme [22].
In particular, the convective field and the subgrid-scale viscosity have been eval-
uated by means of a second order extrapolation [28]. This treatment yields a
CFL-like limitation on the time step ∆t (∆t . h, see [39]). For the space dis-
cretization we use Finite Elements with a SUPG stabilization term added to
control numerical instabilities due to the large convective term [46]. We used
P2 − P2 Finite Elements, that is piecewise quadratic polynomials for the ap-
proximation of the pressure and each velocity component. A Pressure Stabilized
Petrov-Galerkin (PSPG) formulation [46] was used to ensure the non-singularity
of the corresponding matrix. For the description of the complete discretized-in-
time problem, we refer the reader to [28].

We use the following data: physical viscosity ν = 0.033 cm2/s, ∆t = 0.001 s, M =
6, T = 0.7 s.

All numerical results have been obtained using the parallel Finite Element
library LIFEV (www.lfev.org).

2.3 Quantities of interest

To describe the blood dynamics and in particular transitional effect in the three
AAA geometries, we introduce the following post-processed quantities:

- Ensemble-average. Given a quantity S(x), we define its ensemble-average
the quantity

< S(t, x) >=
1

M

M
∑

j=1

S(t + (j − 1)T ), t ∈ (0, T ], x ∈ Ω.

This will allow us to eliminate from the field of interest the random fluc-
tuactions due to the transitional effects appearing at each heartbeat. In
this study, we consider the ensemble-average velocity magnitude < U >
and wall shear stress < WSS >, where

U(t, x) = ‖u(t, x)‖R3 WSS(t, x) = ν

√

√

√

√

2
∑

j=1

(

∇un) · τ (j)
)2

, t ∈ (0, MT ], x ∈ Ω,
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where the latter quantity is computed on the lateral surface, n is the
outward unit vector, and τ (j), j = 1, 2, the tangential unit vectors;

- Standard deviation of the velocity magnitude. At each point x, this is
defined as usual as

SD(t, x) =

√

√

√

√

1

M

M
∑

j=1

(U(t + (j − 1)T, x)− < U(t, x) >)2, t ∈ (0, T ], x ∈ Ω.

This will allow us to quantify and localize the velocity fluctuations among
the heartbeats;

- Q-criterion. It is defined as

Q(t, x) = −
1

2





∑

i,j

S2
ij(t, x) − Ω2

ij(t, x)



 , t ∈ (0, MT ], x ∈ Ω,

where Ω = ∇u − (∇u)T [9, 29]. Positive values of Q indicate locations
where rotations dominates strain and shear. This will allow us to identify
regions where vortical structures are present;

- Global Turbulent Kinetic Energy (TKE). It is defined as the space average
of the Turbulent Kinetic Energy [30]:

k(t) =
1

2

∫

Ω

1

M

M
∑

j=1

(

(ux(t + (j − 1)T, x)− < ux(t, x) >)2 +

(uy(t + (j − 1)T, x)− < uy(t, x) >)2 +

(uz(t + (j − 1)T, x)− < uz(t, x) >)2
)

dx, t ∈ (0, T ].

TKE is representative of the cycle-to-cycle variation of the velocity field
and its average-in-space values defined above will allow us to identify the
temporal instants within the heartbeat where fluctuations in the whole
AAA are more pronounced. Moreover, the average and maximum in time
kmean and kmax, respectively, of k(t) are proposed in this study as synthetic
indices to quantify the amount of variability of the velocity field in the
aneurysmatic sac and thus possible transitional effects.

3 Results

3.1 Assessment of the computational meshes

The goal of LES models consists in accurately describing turbulent flows on
a mesh that is coarser than the one needed to perform a Direct Numerical

6



Simulation (DNS). Thus, a suitable mesh to be used with a LES model should
be neither too fine, in order to be a valid alternative to DNS, nor too coarse,
such that the modelling assumptions remain valid. To this aim, in this first set
of simulations, we compare the results obtained for P1 with two meshes in order
to estimate the number of tetrahedra of a reasonable mesh.

Referring to the results reported in Figure 2, we first observe that, as ex-
pected, blood flow is characterized by a jet that impinges on the distal part of the
aneurysmatic sac (see figures at the top, where the ensemble-averaged velocity
magnitude < U > has been plotted). Secondly, we observe an excellent quali-
tative agreement between < U > computed in the two meshes. This suggests
that the coarser mesh is suitable for our purposes. This is also confirmed by
the ratio between the subgrid-scale and molecular viscosities, reported in Figure
2, bottom. These figures clearly indicate the presence of transitional effects in
the aneurismatic sac, in particular at the mid-deceleration and early diastolic
phases. The subgrid-scale viscosity reaches values up to five times the molecular
one in the coarsest mesh and up to 3 times in the finest one. This means that
the contribution of the subgrid-scale modeling is, as expected, greater for the
coarsest mesh in order to account for the higher frequency cutoff introduced in
this case by the implicit filter. At the same time, the numerical errors introduced
by the coarsest mesh are still not relevant enough to compromise the accuracy,
since the results are in accordance with the finest mesh. For all these reasons,
in what follows for P2 and P3 we consider meshes of the same refinement degree
of the coarsest one used for P1.

3.2 Description of transitional effects

In Figure 3 we report for P2 and P3 the same quantities plotted in Figure 2
for P1, that is the ensemble-averaged velocity magnitude and the ratio between
the subgrid-scale and molecular viscosities. From these figures we observe again
the jet impingement in the distal region of the aneurysmatic sac of P2. Instead,
for P3 the non-axiality of the the tract of the aorta just above the sac forces
the jet to impinge on the proximal part of the sac. Moreover, we observe that,
as for P1, for both P2 and P3 the LES model is active, in particular during
the mid-deceleration and early diastolic phases, with the subgrid-scale viscosity
reaching values up to five times greater than those of the molecular viscosity.

In Figure 4, left, we report for all three cases the values of the standard
deviation of the velocity magnitude at the same three time instants of above.
These plots show high values of the standard deviation for all the three cases at
the early diastole and for P1 and P3 also at the mid-deceleration phase. These
values are of the same order of magnitude of the velocity itself (look at Figures
2 and 3). In the same figure, on the right, we plot vortical structures identified
by means of the Q-criterion, that highlights the formation of a vortex ring at
the systolic peak, which impinges the aneurysmatic sac at the mid-deceleration
phase and, after the breakage, partially exits through the iliac outlets.
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Figure 2: Top: Ensemble-averaged velocity magnitude; Bottom: Ratio between
the subgrid-scale and molecular viscosities. In each figure, we report on the left
the results obtained with the coarse mesh and on the right those obtained with
the fine mesh. Three time instants are reported: Systolic peak instant t = 0.15 s
(left); Mid-deceleration t = 0.25 s (middle); Early diastole t = 0.35 s (right).

In Figure 5 we report the time evolution of the global Kinetic Turbulent
Energy for the three patients. We observe that for all the cases, the peak value
is reached during the mid-deceleration phase (t ≃ 0.3 − 0.4 s). Moreover, we
observe significant lower values for P2 with respect to P1 and P3, confirmed also
by the mean and maximum in time values reported in Table 1, where we report
also the dimensions of the three AAA.

P1 P2 P3

CC length 4.9 4.9 6.9
AP diameter 4.5 4.1 3.9
LL diameter 4.5 3.9 4.8

kmean 19.0 13.2 21.0
kmax 46.8 32.1 47.2

Table 1: Values of the craniocaudal length (from the neck to the iliac outlets,
in cm), of the antero-posterior and latero-lateral diameters (in cm), and of the
mean and maximum in time of k(t) (in cm2/s2).
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Figure 3: Left: Ensemble-averaged velocity magnitude; Right: Ratio between
the subgrid-scale and molecular viscosities. Top: Results for P2; Bottom: Re-
sults for P3. Three time instants are reported: Systolic peak instant t = 0.15 s
(left); Mid-deceleration t = 0.25 s (middle); Early diastole t = 0.35 s (right).

The peak systolic Reynolds number for all the cases is computed as

Re =
VsistD

ν
=

4Qsist

πDν
≃ 2200,

where Vsist is the mean systolic velocity at the inlet, Qsist = 120 cm3/s the
systolic flow rate prescribed at the inlet (see Figure 1), and D ≃ 2 cm a repre-
sentative value, for all the patients, of the diameter at the inlet.

Last, in Figure 6 we report the spatial distribution of the ensemble-averaged
WSS at the time instant where it reaches its maximum value (t = 0.3 s). From
this figure, we observe large values in correspondance of the impingement regions.

4 Discussion

4.1 The presence of turbulence in abdominal aortic aneurysms

and its clinical implications

The presence of turbulence in healthy vascular vessels seems to be confined to the
ascending and thoracic aorta. However, these effects are quite negligible since, in
physiological conditions, the helicity developed in such districts as a consequence
of the ventricular contraction reduces the turbulent kinetic energy [32]. A dif-
ferent situation occurs in pathological districts, where significant transition to
turbulence effects could develop, often as a consequence of a change of the geom-
etry. For example, this is the case of stenotic carotids [44, 4, 45, 21, 29, 13, 7, 40].

Turbulence effects in abdominal aortic aneurysms due to the sudden change
of geometric shape and to pulsatility have been observed in-vivo by means of

9



Figure 4: Left: Standard deviation of the velocity magnitude. Right: Q-criterion
(we report the regions with Q > 5000 painted by the velocity magnitude). Top:
Results for P1; Middle: Results for P2; Bottom: Results for P3. Three time
instants are reported for each case: Systolic peak instant t = 0.15 s; Mid-
deceleration t = 0.25 s; Early diastole t = 0.35 s.
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Figure 5: Global Turbulent Kinetic Energy k(t) for the three patients. Left: P1;
Middle: P2; Right: P3.

the Echo-Color Doppler (ECD) technique in [5]. Also in-vitro experiments in
idealized AAA have been set up to study the presence of turbulence. In partic-
ular, we mention [2, 35], where ECD has been used to highlight the presence of
turbulence in steady conditions when the Reynolds number (Re) is greater than
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Figure 6: Peak ensemble-averaged Wall Shear Stress (t = 0.3 s). Left: P1;
Middle: P2; Right: P3.

2250, [12] where a laser Doppler velocimeter (LDV) has revealed the presence of
turbulence under steady exercise conditions (Re ≃ 4000), and [19, 49, 36] where
similar experiments highlighted that under pulsatility conditions turbulence may
occur at lower Re values (peak value Re ≃ 2300).

The presence of turbulence effects in AAA has a great clinical impact. In the
initial phases of AAA’s development, turbulences interfere with endothelial cells
turnover, which is at the basis of atherosclerosis development, also at relative
low shear stresses [10]. This is probably due to high-frequency fluctuations and
rapidly changing direction of shear stress, and to the comparable dimensions of
the smallest turbulent eddies and endothelial cells. In the more advanced stages
of AAA development, turbulence produces increased wall shear stresses than
laminar flows, which may be responsible for further aneurysm dilatation, since
the abdominal aorta regulates its diameter to maintain the shear stress below
a physiological value [20]. Moreover, the increased shear stresses together with
aortic wall vibration due to the large fluctuations, could damage the vessel wall,
with possible implications on aneurysm growth and rupture [25, 2]. Finally,
turbulent flows probably damage blood platelets promoting the formation of
intraluminal thrombus (ILT) inside the aneurysmatic sac [34, 49].

4.2 Overview of computational studies

For all these reasons, some authors included the analysis of turbulence and/or
transitional effects in their studies of blood dynamics in AAA. Rigid ideal ge-
ometries under steady conditions have been considered e.g. in [6, 2], where the
increase of turbulent fluctuations in the distal part of the aneurysm has been
reported, whereas the analysis in [19, 27] for similiar geometries and under pul-
satile physiological condition revealed the formation of vortices detaching from
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the wall and travelling towards the distal neck. The inclusion of the aortic wall
deformation in ideal AAA geometries resulting in a fluid-structure interaction
analysis has been considered for the study of turbulence effects in [26]. Studies
of turbulence effects in realistic AAA geometries reconstructed by radiolgical
images have been carried out in [30], where the influence of exercise conditions
have been reported, and in [34], where the relationship of such effects with the
thrombus formation has been highlighted.

Regarding the turbulent models included in these studies, the k − ε and
k − ω models were considered in [27] and [26], respectively, whereas a Direct
Numerical Simulation was realized in [30]. A LES model implemented in a
commercial software was used in [24, 23]; however no information on the LES
model was provided and no analysis of turbulence was reported, the focus of these
papers being the influence of boundary conditions and the monocyte deposition,
respectively.

One of the major difficulties in computational models relies on a proper def-
inition of suitable quantities capable to describe and quantify the turbulent and
transitional effects in AAA. Often, the presence of such effects has been simply
related to the formation of vortices and disturbed flow. However, some authors
provided more statistically-sound quantities to assess turbulence in AAA. In [2],
the standard deviation of the velocity field has been computed to assess and
localize the presence of velocity fluctuations, whereas in [26, 30] the Turbulent
Kinetic Energy has been reported as a similar quantification of turbulent insta-
bilities.

4.3 Discussion of the methods

In this study we considered a LES model implemented in the Finite Element
library LIFEV. In particular, we used the eddy viscosity σ−model. This vanishes
in the cases of pure rotation, pure shear, and when the resolved scales are in
axisymmetric or isotropic expansion. Moreover, the turbulent stresses decay as
the distance to the solid boundary to the third power [33]. These features make
the σ−model suitable to simulate fluids in enclosed domains and in presence of
shear layers as happens in our case. In principle, it is suited to describe cases
(like the present one) where both spatial and temporal instabilities are present.
For these reasons, it has been successfully applied to describe ventricular blood
fluid-dynamics [8]. Our implementation of the σ− model has been validated in
[28], where a comparison with a DNS solution highlighted the accuracy of this
LES model when used in coarse meshes of stenotic carotids.

The blood has been modeled as a constant density, Newtonian, and homo-
geneous fluid, a well-accepted hypothesis in the previous studies of turbulence
effects in AAA [26, 30, 34]. However, we observe that the Newtonian hypothesis
may be considered as a limitation of the present study, since the small eddies
arising as a consequence of turbulent or transitional effects may justify the use
of a non-Newtonian rheology as proposed in [27]. We also assumed rigid walls,
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another well accepted hypothesis in this context [27, 30, 34], which however
represents in fact a second limitation of the present work. Indeed, some dif-
ferences with respect to the complete fluid-structure interaction (FSI) model
have been highlighted in [27]. In particular, the rigid wall assumption seems to
slightly overestimate the turbulence kinetic energy. Regarding boundary con-
ditions, in absence of measures, we prescribed a representative flow rate at the
inlet, whereas zero stresses are set at the iliac outlets. The latter conditions
could be justified by noticing that the resistance downstream the two iliac tracts
should be equal in physiological conditions. However, the prescription of patient-
specific velocity data obtained e.g. by the phase-contrast-MRI technology could
provide more accurate results, as highlighted for AAA in [24]. Alternatively, at
the outlets boundary conditions based on 3-element windkessel models may be
considered, see [30] for AAA. We also observe that at the inlet we selected a
priori a parabolic velocity profile to prescribe the defective flow rate condition
(2). This could have an impact on the solution if the inlet region is not enough
extended to allow the profile to fully develop. To overcome this drawback, La-
grange multipliers [15, 47], optimal control [17], or Nitsche [50, 48] approaches
could be used to have a minor impact on the solution, see [18] for a review.

Dispite these drawbacks, in this first study on transitional effects in AAA, we
decided to assume a Newtonian rheology and rigid-walls, together with simplified
boundary conditions. Since the focus of the present study concerns the suitability
of LES models in AAA geometries, we believe that these sources of inaccuracy
should not influence the general trends and conclusions of the results we are going
to discuss in the next subsection. Of course, we are working to relax them, in
order to include FSI, non-Newtonian, and more-realistic boundary conditions in
our future studies.

4.4 Analysis of the results

Although many authors speak about turbulence in AAA, here we prefer to refer
to instability processes as transition to turbulence, since the pulsatility of the
blood flow, which on the one hand is responsible for the creation of the insta-
bilities at lower Reynolds number than in the steady case [2, 49], on the other
hand does not allow the complete turbulence development. This because of the
acceleration phase of a new heartbeat that laminarizes the flow [49].

From our results, we can state that transitional effects are significant in
AAA, as confirmed by the large values of the standard deviation of the velocity
magnitude (up to 40% of the velocity magnitude itself, see Figure 4, left). This
means that flow velocity present significant random fluctuations among different
heartbeats. By looking at Figures 2, 3, 4, and 5 we observe that all reported
quantities related to the formation of transitional effects (i.e. the ratio between
subgrid-scale and molecular viscosities, the standard deviation of the velocity
magnitude, the Q-criterion, and the global KTE) are higher during the mid-
deceleration phase. This confirms the previous observations reported in [49], that
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at similar Reynolds numbers the flow tends to be very unstable at the beginning
of the deceleration. In particular, we find that during the mid-deceleration phase,
the flow jet impinges on the aneurysmatic sac creating recirculation regions
around the impingement point that propagates proximally around the jet and
distally through the iliac outlets. These instabilities are well captured by the
distribution of the standard deviation of the velocity magnitude.

Referring to Figures 2, 3, 4, left, we observe that for all the three patients,
the regions with elevated values of the subgrid-scale viscosity are in fact those
of disturbed flow (high standard deviation of the velocity magnitude). This
confirms the suitability of the σ−LES model in this context, being able to turn on
only where and when needed, with values of the subgrid-scale viscosity reaching
up to five times the molecular one. On the other hand, the LES model switches
itself essentially off in the laminar regions.

As noticed by observing Figure 4, right, blood flow is characterized by a vor-
tex ring that originates at the neck of the aneurysm, where a sudden change of
diameter occurs. This ring propagates towards the inner region of the aneurys-
matic sac and breaks down after the impingement. This phenomenon, at the
best of our knowledge observed here for the first time in AAA, seems to be
very similar to that taking place in the left ventricle and due to the passage of
blood flow through the mitral valve [42, 31]. However, some differences are no-
table. First, the breakage of the vortex ring in AAA is due to the impingement,
whereas in the heart it occurs in the middle of the ventricle chamber. This is
probably due to the presence in AAA of outlets in the opposite direction of the
entrance region. This, unlike the left ventricle featuring no outlets during the
diastolic filling, helps the propagation of the ring towards the distal part of the
sac. Moreover, as highlighted by the figures on the right (t = 0.35 s), during
the diastolic phase the vortex ring transforms into a swirling structure after the
impingement. Again, this should be caused by the presence of the iliac outlets
that favour the exit of the flow structures.

Analyzing Figure 5, we observe that the global Turbulent Kinetic Energy is
clearly lower for P2 than for P1 and P3. This is also confirmed by the results
reported in Table 3.2, highlighting that both kmean and kmax decrease for P2 by
more than 30%. By considering these results together with the dimensions of
the aneurysms, we observe that P2 is characterized by smaller dimensions of the
sac. This supports the exptected thesis that transtional effects increase with the
aneurysm dimension. Thus, the synthetic indices kmean and kmax, introduced
here to quantify the transition to turbulence, could be strongly correlated with
the AAA dimension. If this will be confirmed, it would provide a simple and
powerful tool for clinicians to quantify transitional effects to turbulence. This
deserves a particular attention for future studies.

Finally, from Figure 6 we observe that the higher values of the peak ensemble-
averaged WSS are localized at the mid-deceleration phase and in the regions of
the impingement, that is where transitional effects occur. These elevated values
are due to the impingement itself, but probably, as observed e.g. in [20, 2, 27],
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they also assume increased value with respect to the laminar case for the presence
of transitional effects.

5 Conclusions

In this study we considered for the first time a large eddy simulation model
to study transitional to turbulence effects in abdominal aortic aneurysms. We
found that the considered LES model is able to turn itself on in regions where
the instabilities and fluctuations occur, i.e. around the impingement region at
the mid-deceleration phase. The transitional effects were studied by computing
the standard deviation of the velocity magnitude and the Q-criterion. The latter
quantity showed the formation of a vortex ring that starts from the neck of the
aneurysmatic sac and propagates within this. After its breakage due to the
impingement, this annular structure transforms into a swirling flow that exits
through the outlets. Our results also suggested a strong correlation between the
AAA dimensions and the intensity of the Turbulent Kinetic Energy.
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