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Abstract

In this paper, aleatory and epistemic uncertainties in energy genera-
tion systems are investigated. The former are described by probability
distributions, whereas the latter by possibility distributions. In particular,
time-varying probability distributions elicited by Functional Data Anal-
ysis are considered for the representation of the aleatory uncertainty that
evolves with time. Then, the joint propagation of both types of uncertainty
is performed by Monte Carlo simulation and Fuzzy Interval Analysis. The
method is applied to a model of an energy system made of a solar panel,
a storage energy system and the loads. As a quantitative indicator of the
analysis we evaluate the Expected Energy Not Supplied.

1 Introduction

Renewable energy is getting more and more important as a solution for the cli-
mate change concerns. However, it is affected by large uncertainties, due to
the intermittent nature of the energy source (actually, regardless of the type of
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renewable source, the amount of energy daily available can present high varia-
tions from one day to another, at the same site) Borges (2012). In addition, a
long-term prediction of the energy that is daily available is a difficult problem,
due to the complexity of the system at hand. These issues mine the reliability
of the renewable energy, making it difficult to completely rely on it.

In this respect, we propose a methodology that deals with uncertainties in re-
newable energy generation. In particular, we consider two types of uncertainty:
randomness due to inherent variability in the system behavior (aleatory uncer-
tainty) and imprecision due to lack of knowledge and information on the system
(epistemic uncertainty) as typically distinguished in system risk analysis Helton
and Oberkampf (2004). As illustrated in recent works of risk analysis Li and
Zio (2012), we address the co-existence of aleatory and epistemic uncertainties
in the reliability assessment of a distributed generation system by representing
the aleatory variables as probabilistic and the epistemic ones as possibilistic.

Traditionally, aleatory uncertainty of an energy distribution system is repre-
sented by a unique probability density function that is inferred from historical
data of one fixed period Li and Zio (2012); Baraldi and Zio (2008). Nevertheless,
the data distribution evolve through time in a continuous way. Here we propose
to consider that time variation within a Functional Data Analysis (FDA) frame-
work Ramsay and Silverman (2002, 2005); Ferraty and Vieu (2006), where data
are represented as functions of a continuous variable, which is time in our appli-
cation. By applying FDA methods, it is then possible to model the entire time
evolution of data. We propose to analyze this time evolution in order to ob-
tain more realistic results from the uncertainty analysis. If we neglect long-term
climatic changes, we may assume that this time evolution is one-year periodic.
Hence, in this work, we model climatic data as random samples from paramet-
ric distributions with one-year periodic parameters. Finally, we propagate the
aleatory and epistemic uncertainty by means of a hybrid approach that combines
Monte Carlo Simulation and Fuzzy Interval Analysis Li and Zio (2012); Baraldi
and Zio (2008).

To exemplify the methodology, we analyze the aleatory and epistemic uncer-
tainties of a model of a photovoltaic energy distribution system made of a solar
panel, a storage energy system (that stores the generated energy exceeding the
demand of the end-users) and loads (power demanded by the end-users). As
a quantitative indicator of the analysis we evaluate the Expected Energy Not
Supplied, a reliability index commonly used in this field Billinton et al. (1984).
The results of the uncertainty propagation in the case study are compared with:
i) the pure probabilistic uncertainty propagation approach based on the same
time-varying distributions Marseguerra and Zio (2002); and ii) the Monte Carlo
Simulation and Fuzzy Interval Analysis approach considering the random vari-
ables constant in time, i.e. described by a unique probability density function.

The reminder of the paper is organized as follows. In Section 2, the Func-
tional Data Analysis methods adopted for the modeling of time-varying data
and the Monte Carlo and Fuzzy Interval Analysis approach used for the joint
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uncertainty propagation are detailed. In Section 3 the case study that we will
analyze is presented. In Section 4, the results are reported and commented;
finally, in Section 4, conclusions are provided. Some details on the joint uncer-
tainty propagation, and on the time-varying estimate of the load are reported
in Appendices A and B, respectively.

2 Methodology

The methodology that we propose to evaluate uncertainties in renewable energy
generation is based on the joint modeling and propagation of all the uncertain-
ties of the model, that can be either aleatory or epistemic. The first step in
order to evaluate the uncertainties in renewable energy generation consists in
modeling the system of energy generation, listing all sources of uncertainty in
the model inputs (e.g., electricity demand) that propagate to the model output
(e.g. electricity supply). These sources of uncertainty can be distinguished into
two types: epistemic uncertainties (due to due to lack of knowledge, and for
which no historical data are available) and aleatory uncertainties (due to the in-
trinsic variability of the system, typically modeled by means of large amounts of
historical data). The former type of uncertainty is also referred to as “reducible”
uncertainty to highlight that a gain of information about the system can lead
to a reduction of epistemic uncertainty. In renewable energy applications, epis-
temic uncertainty typically characterizes the parameters of the devices due to i)
the lack of information provided by the manufacturers for commercial reasons
and ii) the limited quantity of data available for each house for private issues
Izquierdo et al. (2011).

Aleatory uncertainties can instead be due to the variability of the energy
source (e.g., wind speed and direction, solar irradiation) and the loads (i.e.,
power demanded by the end-users). In the current risk assessment practice,
both types of uncertainties are represented by means of probability distribu-
tions with fixed parameters. However, potential limitations are associated to
a probabilistic representation of epistemic uncertainty under limited informa-
tion Helton and Oberkampf (2004) and a number of alternative representation
frameworks have been proposed, e.g., fuzzy set theory, evidence theory, possi-
bility theory and interval analysis Klir and Yuan (1995); Aven and Zio (2011).
Given the representation power of possibility theory and its relative mathemat-
ical simplicity, we adopt it to describe the epistemic uncertainty in renewable
energy applications. In addition, we represent the aleatory uncertainty by means
of time-varying probability distributions since the variables associated with re-
newable energy systems can vary with time (e.g., day and night, seasons, etc.).
For instance, the solar irradiation in summer is higher than in winter; as a con-
sequence, the mean of its probability distribution should change with seasons
(i.e., it should be higher in summer and lower in winter). The parameters of
these time-varying probability distributions have been evaluated from historical
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data by applying FDA techniques.
Finally, the aleatory and epistemic uncertainties are jointly propagated on

the renewable energy system by combining Monte Carlo simulation and Fuzzy
Interval Analysis. Actually, the possibilistic representation of uncertainty can
both be combined with and transformed into the traditional probabilistic repre-
sentation. In the following subsections we present the details of the methodology
adopted to model the time-varying data distribution, and propagate the aleatory
and epistemic uncertainties from the input variables of the system to the output
variable of interest.

2.1 Uncertainty modeling of time-varying data

Suppose to observe n realizations of the quantity of interest ξ (e.g., irradiation,
wind speed) for the chosen location through time, during the year: for each time
unit tq (i.e., a day), we observe n different samples of functional data ξi(tq),
where i = 1, .., n denotes the sample units, and q = 1, ..., Q denotes the different
time units. We suppose that, for a fixed time tq, the observed data ξi(tq) is a
random independent sample from a fixed parametric distribution Fη, described
by a set of unknown parameters η(tq) ∈ R

r:

ξi(tq) ∼ Fη, ∀i = 1, ..., n, q = 1, ..., Q. (1)

The distribution Fη can be chosen in different ways, according to the data
that we are modeling. For instance, a Beta distribution is typically used to model
solar irradiation, while a Weibull distribution is used to model wind speed Atwa
et al. (2010); Li and Zio (2012); Salameh et al. (1995).

We assume that observations on different time units are conditionally inde-
pendent, given the values of the parameters η. In particular, this implies that
the dependence structure of the solar irradiation on different days is entirely
expressed by means of the time-varying structure of its parameters, which we
suppose can be modeled as smooth and regular functions of time, due to the
intrinsic regularity of data.

To estimate the time-varying parameters we adopt, for each time unit tq, the
method of moments. So, to elicit a time-varying estimate for the distribution
of data, we only need to find time-varying estimates for the first r moments of
the distribution of data. Furthermore, we suppose that the moments of the
distribution are regular one year-periodic functions. Since the sample daily
moments are extremely non-regular functions, we consider a method to regularize
data, estimating a proper low dimensional functional space in which they are
defined, by exploiting the procedure proposed in Pini and Vantini (2013). In
the following, we describe the smoothing procedure applied to estimate the rth
moment of data distribution.
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2.1.1 Estimate of time-varying moments

Suppose that we want to estimate the moment of order r of the data distribution,
r ≥ 1. Let ϕi(t) = ξi(t)

r. We need to estimate the mean of functions ϕi(t). We
apply a Fourier-based Interval Testing Procedure (ITP) described in Pini and
Vantini (2013). The method consists in the following three steps:

1. Basis Expansion: functional data (in our case: time-varying irradiation
data) are represented through the coefficients of a truncated ordered basis
expansion;

2. Interval-Wise Testing: a suitable test is performed on each interval of
ordered basis coefficients;

3. Multiple Correction: for each component of the basis expansion, an
adjusted p-value is computed from the p-values of the tests performed in
the previous step.

The final result of the procedure is a family of adjusted p-values, one for each
basis function used in the expansion. This result can be used to select the basis
components that are statistically significant to describe the mean function of
data (for instance, selecting all the components with associated adjusted p-value
lower than the 5% level).

In our application, data are assumed to be one-year periodic functions.
Hence, a natural choice for the basis used to describe data is the one-year peri-
odic Fourier basis. In detail, we use an interpolating Fourier expansion:

ϕi(tq) =
a
(0)
i

2
+

(Q−1)/2
∑

h=1

a
(h)
i cos

(

2π

Q
htq

)

+ b
(h)
i sin

(

2π

Q
htq

)

, Q = 365. (2)

In the case of a Fourier basis expansion, intervals of basis components are
frequency bands. In detail, equation (2) associates at each data, and for each fre-

quency h > 0, a bivariate vector of coefficients (a
(h)
i , b

(h)
i ), and for the frequency

h = 0 a coefficient a
(h)
0 . Denote as

(

A(h), B(h)
)′

the bivariate distribution of

coefficients (a
(h)
i , b

(h)
i ) (and A(0) the distribution of the 0th frequency). For each

frequency h > 0, the ITP can be applied to associate an adjusted p-value to each
of the following bivariate tests:

H
(h)
0 : E

[

(

A(h), B(h)
)

′
]

= (0, 0)′ vs. H
(h)
1 : E

[

(

A(h), B(h)
)

′
]

6= (0, 0)′, (3)

while for the 0th frequency, an adjusted p-value to the univariate test:

H
(0)
0 : E

[

A(0)
]

= 0 vs. H
(h)
1 : E

[

A(0)
]

= 0, (4)

In particular, by means of tests (3)-(4), we aim at selecting the frequencies that
are significantly different from zero in the expansion of the mean signal. The
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final time-varying estimate of the mean function will then be evaluated as the
Fourier basis expansion on these frequencies.

In order to apply the ITP, we then need to specify how to perform the
interval-wise tests of the second phase of the procedure, that is in our case, how
to perform a test on each frequency band. In detail, we need a test for each
frequency (single-frequency tests), and a test for each interval of frequencies
(multiple-frequency test). The approach that we use to perform such tests is a
non-parametric approach based on the suitable combination of joint permutation
tests on each frequency. We start by performing each single-frequency test, by
means of permutation tests Pesarin and Salmaso (2010). For each frequency h >
0 we perform a bivariate test to test the null hypothesis E[(A(h), B(h))] = (0, 0),

based on the joint changes of the signs of vectors (a
(h)
i , b

(h)
i ) and on the Hotelling

T 2 statistic T (a(h)
∗

,b(h)∗) = (ā(h)
∗

, b̄(h)
∗

)′S∗

h,h(ā
(h)∗ , b̄(h)

∗

), where (a(h)
∗

,b(h)∗)

denote the permuted data, and S∗

h,h ∈ R
(2×2) is the covariance matrix of per-

muted data at frequency h. For the 0th frequency, we perform a univariate
permutation test based on the squared of the univariate Student t statistic and

on the change of the signs of the coefficients a
(0)
i . It is important to note here that

the permutations used to build the single-frequency tests are the same across
frequency. This aspect will be key to build the multiple-frequency tests.

To perform multiple-frequency tests, we combine the results of the single-
frequency tests by means of the non-parametric combination (NPC) methodol-
ogy, based on the Fisher combining function Pesarin and Salmaso (2010). The
NPC is a method able to build multiple-feature permutation tests by means of
combining joint single-feature permutation tests.

According to the ITP, when the tests on each interval of basis components
(in this case: each frequency band) is performed, the adjusted p-value associated
to the tests (3) on frequency h is computed as the maximum among all p-values
of tests pertaining that frequency. Once the adjusted p-values are computed, we
can select as significant all the frequencies with an associated adjusted p-value
lower than 5%. This final selection is provided with an interval-wise control of
the family wise error rate. In detail, this control means that the probability of
wrongly rejecting any frequency band is lower than 5%.

Once selected the significant frequencies, the estimate of the functional mo-
ment will then be the one-year periodic function obtained by means of the Fourier
expansion of the sample mean coefficients of functions ϕi, restricted to the se-
lected frequencies. That is, if v = (vi, ..., v(Q−1)/2) is the index vector identifying
the final selection of significant frequencies, (vh = 0 if the result of the h-th test

is H
(h)
0 , vh = 1 if the result of the h-th test is H

(h)
1 ), the final estimate of the

functional moment is given by:

µ̂ϕ(tq) =
ā(0)

2
+

∑

h∈v

ā(h) cos

(

2π

Q
htq

)

+ b̄(h) sin

(

2π

Q
htq

)

, (5)

where ā(h) = 1/n
∑n

i=1 a
(h)
i , and b̄(h) = 1/n

∑n
i=1 b

(h)
i .
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2.2 Joint propagation of aleatory and epistemic uncertainties

When both the aleatory and epistemic uncertainties are described by probability
distributions, a pure probabilistic approach can be adopted for their propaga-
tion to the model output. This approach consists on the Monte Carlo sampling
of possible values of all the input variables from the corresponding probability
distributions and the subsequent computation of the model output in corre-
spondence of the input values sampled Marseguerra and Zio (2002)). Random
realizations of the model output can be obtained repeating a large number of
times this procedure considering each time new samples of the input variables.

Instead, when the epistemic uncertainty is represented in possibilistic terms,
the joint propagation of the aleatory and epistemic uncertainty can be performed
by combining the Monte Carlo technique and the extension principle of fuzzy
set theory by means of the following two main steps Baudrit et al. (2006): (i)
repeated Monte Carlo sampling of the random variables to process aleatory
uncertainty; and (ii) fuzzy interval analysis to process epistemic uncertainty.

In this work, the random variables are represented by time-varying probabil-
ity distributions; therefore these two steps have to be repeated for all the time
steps in the period of interest. Details of possibility theory are not reported
here for brevity sake, the interested reader is referred to Dubois (2006). The
operative steps of the procedure for the case study under analysis are illustrated
in Appendix A.

3 Case Study

The case study that we present here concerns the design of a solar panel that
provides electrical energy to a house located in the south of Spain. The size
and number of the panels is a trade-off between their performance to satisfy
the demand of energy and the high costs of construction and maintenance. To
perform this evaluation we consider the demand of power requested by the end-
users and the possibility of storing the generated exceedance power in a battery,
that is necessary when the power from the solar energy is not sufficient (e.g.
during cloudy days) or it is completely absent (e.g. during nights). This case
study deals with a big amount of uncertainty due to the stochasticity of the
behavior of the end-users, the variability of the solar irradiation, the lack of
knowledge about some operation parameters of the solar panels.

The system consists of three different parts: the solar panel, the load and
the battery.The power generated by the solar panel, PS [kW], is a function of
the solar irradiation, S, the number of solar cells, N , and a vector of operation
parameters, θ = (IMPP , VMPP , VOC , ISC , Not, kc, Ta) Li and Zio (2012):

PS = N · FF · Vy · Iy, (6)

where Iy = S ·ISC +kc(Tc−25), Vy = VOC −kv ·Tc, Tc = Ta+S(Not−20)/(0.8),
FF = (VMPP · IMPP )/(VOC · ISC). IMPP [A] and VMPP [V] are the current
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and voltage at maximum power point, respectively, VOC [V] is the open circuit
voltage, ISC [A] is the short circuit current, Not[

◦C] is the nominal operating
temperature, kc[A/

◦C] is the current temperature coefficient, kv[V/
◦C] is the

voltage temperature coefficient, Ta[
◦C] is the ambient temperature, and the load,

PLD[kW], is the power demanded by the end-users.
The output model of the battery is the power, PB[kW], that can be stored

in the battery when the solar panel produces more power than the demand,
i.e. when PDiff = PS − PLD > 0, and can be given to the end-users when
the opposite occurs, i.e. when PDiff = PS − PLD < 0. In the present study
we have adopted a dynamic model Chen et al. (2011) to represent the level of
charge of the battery, calculating the difference between stored energies of two
consecutive steps. The following equations describe the model of the battery
when it is charging, i.e. ∆PB(t) = −PDiff < 0 (7)-(8), when it is discharging,
i.e. ∆PB(t) = −PDiff > 0 (9)-(10) and when it is idle, i.e. ∆PB(t) = PDiff = 0
(11).

−ηc∆PB(t)∆tmin ≤ KcQmax; (7)

Q(t+ 1) = Q(t)− ηc∆PB(t)∆tmin; (8)

∆PB(t)∆tmin/ηd ≤ KdQmax; (9)

Q(t+ 1) = Q(t)−∆PB(t)∆tmin/ηd; (10)

Q(t+ 1) = Q(t)−Whourly. (11)

In equations (7-11), Q(t)[kWh] is the capacity of the battery at hour t, ηc and
ηd are the charging and discharging efficiency, respectively, Kc and Kd are the
maximum portion of rated capacity that can be added to and withdraw from
storage in an hour, respectively, Qmax is the rated maximum stored energy,
Whourly[kWh] is the battery hourly discharged energy, ∆tmin is the scheduling
interval. The parameter values adopted in the model are: ηc = ηd = 0.85,
Kc = Kd = 0.3, Qmax = 40, Whourly = 0.5 kWh and ∆tmin = 1 h. In this work,
the initial level in the battery has been assumed to be equal to zero.

3.1 Uncertainty representation

In the model of the solar panel (6) the inputs can be classified in i) aleatory
variable, i.e. the solar irradiation and the load, ii) epistemic variables, i.e. the
operation parameters of the vector θ, and iii) constant, i.e. the number of solar
cells N that in the present simulation has been taken equal to 30.

3.1.1 Operation parameters

The operation parameters θ are classified into parameters provided by the man-
ufacturers, e.g. IMPP , VMPP , VOC , ICS , Not, kc, kv, and by the end-users, e.g.
Ta. Both are associated with epistemic uncertainty, and we represent them by
trapezoidal possibility distributions (πIMPP , πVMPP , πVOC , πICS , πNot , πkc , πkv)
as proposed in Li and Zio (2012).
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3.1.2 Solar irradiation

Solar irradiation S[kW/m2] depends on the variability of the weather. It is
typically described by a probabilistic distribution, e.g. a Beta distribution, whose
parameters, α and β, are inferred from sufficient historical data and are fixed
for a given period Li and Zio (2012). In the present paper, coherently with the
literature, we represent the solar irradiation with the Beta distribution. The
main novelty of our approach with respect to the literature is that we consider
the evolution of solar irradiation through time, estimating different values of the
parameters α and β for each day of the year, according the method explained in
Subsection 2.1.

The historical data used to elicit the parameters are daily irradiations in a
geographical close area near Seville, Spain, (the square with latitude in the in-
terval [37, 38] and longitude in [−6,−5]), registered from July 1983 to June 2005
and stored in the database NASA: Earth Surface Meteorology for Solar Energy
NASA (2008)1. By way of example, Figure 1 shows an histogram of the historical
data recorded and the correspondent Beta distribution of the solar irradiation
in four different days in July and August (1st and 21st July, 11th and 31st Au-
gust, respectively). The figure compares a Beta distribution characterized by
constant parameters (green line), and one characterized by time-varying param-
eters estimated with the methodology presented in Subsection 2.1 (red line). We
observe from the histograms that the distribution of solar irradiation is chang-
ing through time even in the relatively small period of two months. Hence, a
correct approach to model such irradiation data is to consider its time-varying
distribution, rather than a constant one.
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Figure 1: Histogram of the recorded data and the correspondent Beta distribution for the 1st

and 21st of July, 11th and 31st of August, and corresponding Beta distributions characterized
by: constant parameters (green line); time-varying parameters (red line).

We suppose that, for a fixed day tq, the observed data Si(tq) is a random

1These data were obtained from the NASA Langley Research Center Atmospheric Science
Data Center Surface meteorological and Solar Energy (SSE) web portal supported by the NASA
LaRC POWER Project. Data are freely available at: NASA Surface Meteorology and Solar
Energy, A Renewable Energy Resource web site (release 6.0): http://eosweb.larc.nasa.gov

9



independent sample from a beta distribution of parameters α(tq) and β(tq):

Si(tq) ∼ Beta(α(tq), β(tq)), ∀i = 1, ..., 22, q = 1, ..., 365. (12)

To estimate the time-varying parameters we adopt the methodology dis-
cussed in Subsection 2.1. Since we need to estimate, for each tq, the two param-
eters α(tq) and β(tq), we need to estimate the mean and variance of the data
distribution, for each time unit tq.

3.1.3 Load

The load, PLD, is affected by aleatory uncertainty since its value depends on
the behavior of the end-users. Typically it is modeled by a normal probabilistic
distribution Liu et al. (2011), with parameters inferred from the large amount of
historical data available. In this work, we use a normal distribution, estimating
two different time-varying mean values for days and nights, µday, and µnight, re-
spectively, following the procedure explained in Subsection 2.1, and maintaining
a same standard deviation σ.

As well as the solar irradiation, also the load PLD[kW] has a time varying
structure. In particular, we suppose that, for each day of the year tq, the load
has two normal distributions for days and nights, with the same constant stan-
dard deviation (σ = 0.25 kW) and two time-varying means (µPLD,day(tq) and
µPLD,night(tq), respectively). The model assumed for the daily and nightly load,
for each time tq is then the following:

PLD,day/night(tq) ∼ N(µPLD,day/night(tq), σ
2), q = 1, ..., Q. (13)

To estimate the daily and nightly mean functions, it is not possible to proceed
applying the ITP to the daily load data, as they are not directly available. The
daily mean electrical consumption of a house in the south of Spain is about 24.54
kWh Sech-Spahousec (2011) and in the night the demand of electricity is the
half than during the day Omie (2012). Thus, the estimated means of the hourly
load for days and nights are 1.363 kW and 0.682 kW, respectively. Since these
data are aggregated through the entire year, it is not possible to infer a time
varying distribution. Consequently, a different approach is here necessary.

Most of the usual household electrical devices (e.g. washing machine, refrig-
erator, TV) are approximately used in the same way in summer and winter, and,
thus, their electrical consumption can be assumed to follow a constant distribu-
tion throughout the year. The only devices that may have a time-varying load
are the air conditioning systems (whose load varies in the warm months depend-
ing on the external temperature) and the lighting (whose load changes through
the year depending on the variation of daylight time). Since for the former, the
load is higher than for the latter, we consider only the air conditioning systems
(AC) as a device with a time varying load. Since the AC load depends on the
external temperature, we first apply the ITP to minimum and maximum daily
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temperatures, to find a smooth time-varying estimate of their mean functions.
Then, we use this estimate to calculate the time-varying daily and nightly means
of the load due to the AC. The steps of the procedure applied to calculate the
load are detailed in Appendix B.

3.2 Uncertainty propagation

The joint propagation of aleatory and epistemic uncertainties represented by
probability and possibility distributions, respectively, is carried out by Monte
Carlo simulation and Fuzzy Interval Analysis. Since the analysis is time-varying,
the procedure is repeated for each time steps in the period of interest.

In the present case study, the aleatory variables are the solar irradiation and
the loads that vary during days and nights. As a consequence of their variation,
the level of energy in the storage system varies too. We assume that at the first
time step it is day (i.e., there is solar irradiation) and the level of energy in the
storage system is equal to zero.

When the power generated by the solar panel is higher than the demands of
the end-users, the level of energy in the storage system increases and the end-
users are satisfied (the energy not supplied (ENS) is equal to zero); instead when
the power generated is lower than the demands of the end-users two cases can
occur: 1) there is enough energy in the storage system to supply the end-users,
so the level in the storage decreases but the end-users are satisfied (the ENS is
equal to zero); 2) there is not enough energy in the storage system, so the level
in the storage decreases to zero (if it is not already zero) and the ENS to the
end-users is positive.

The following time steps have been considered in our case:

• ∆tmin = 1[h] is the smallest time step of the system model. The total
number of hours in the period of interest is defined by the variable Nsteps;

• ∆tmax = 12[h] is the time interval in which the power generated by the
solar panel, PS , and the one demanded by the end-users, PLD, can be
considered constant. This assumption has been introduced to reduce the
computational time of the simulation and to distinguish only between day
and night, and is coherent with the calculation of PLD proposed in Sub-
section 3.1.3. Therefore, the total number of different values considered
for those variables is Nsteps/∆tmax .

The joint uncertainty propagation that consists in combining Monte Carlo
technique with the extension principle of fuzzy set theory is illustrated in details
in Appendix A with respect to the case study considered in this work. At the end
of the procedure an ensemble of m fuzzy random realizations (fuzzy intervals)
πk
EENS , k = 1, . . . ,m, of the Expected Energy Not Supplied (EENS) index is

obtained.
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On the basis of the rule of the possibility theory Baudrit et al. (2006), these
possibilistic distributions can be aggregated. As a result, two cumulative distri-
bution functions (cdfs), called belief and plausibility (i.e., the lower and upper
cdfs, respectively), of the Expected Energy Not Supplied are obtained. They
can be interpreted as bounding cumulative distribution functions Baudrit et al.
(2006) and they contain all the possible cumulative distribution functions that
can be generated by a pure probabilistic approach that considers all the inputs
variables as probabilistic. For the sake of comparison, we have embraced also
this method with m = 10000 samples of the probabilistic variables: in this case,
the possibilistic distributions of the input variables are transformed into proba-
bilistic distributions by the normalization method given in Flage et al. (2008).

3.3 Results

The adjusted p-values for the first and second moments are reported in the top
panels of Figure 2, where the 5% level is indicated as a horizontal red line.
For the first moment, the p-values associated to the first three frequencies are
lower than the chosen significance level (and are, furthermore, lower than every
typically-used significance level), whereas all other p-values are higher. Hence,
we have a rejection corresponding to the mean value (zero-frequency) and the
sine and cosine functions of period one year. For the second moment we have
instead a rejection on the first four frequencies, corresponding to the mean value
and the sine and cosine functions of period one year, six and three months.
The final estimates are periodic functions fully described by the sample means
coefficients on these frequencies.

To appreciate the result of the test, the lower panels of Figure 2 show, for the
first two moments, the two estimates of the mean: ITP estimate (red) and daily
estimate (black). Gray lines are the solar irradiation data in southern Spain for
the first moment (left), and squared solar irradiations for the second moment
(right). Comparing the ITP and daily estimates, it can be seen that the first
method gives smooth curves, which follow the yearly fluctuations of the quantity
of interest, whereas the second one gives extremely irregular functions.

The results of the analysis on the min-max temperature data, and the sub-
sequent results of the load parameters are presented in Figure 3. On the top,
the ITP-adjusted p-values for the minimum (left) and maximum (right) tempera-
tures are reported. In this case, the ITP selects as significant the mean value and
the first two frequencies, both for the min and the max temperatures. On the
middle, the daily minimum and maximum temperatures data in southern Spain
(light blue and red lines, respectively) are shown, together with the ITP esti-
mates of the two functional means, evaluated according to the ITP results. The
horizontal line indicates the threshold temperature at which the AC is turned on,
Tthres = 26◦C. On the bottom panel, the estimates of the time-varying means of
the load, for days and nights (yellow and black lines, respectively) are reported.
To appreciate how the modeling of the load data is related to the test results,
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Figure 2: Top: ITP-adjusted p-values for each frequency of the Fourier expansion for the first
(left) and second (right) moment. Bottom: ITP (red) and daily (black) estimates of the first
two moments. Gray lines: solar irradiation (left); and squared solar irradiation (right).
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Figure 3: Top: ITP-adjusted p-values for each frequency of the Fourier expansion for the min
(left) and max (right) temperatures. Middle: daily min (light blue) and max (light red) tem-
peratures data and ITP estimates for the means (bold blue and red lines). Bottom: estimates
of the time-varying means of the load for days (yellow) and nights (black), and densities of
simulated data in a summer and winter day.
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Figure 4: Left: comparison of the cumulative distribution functions of the EENS [kWh] ob-
tained by the pure probabilistic approach (solid line) with the belief (dotted line) and plausi-
bility (dashed line) functions obtained by the Monte Carlo and Fuzzy Interval Analysis. Right:
comparison of the lower and upper cumulative distribution functions of the EENS obtained by
the Monte Carlo and Fuzzy Interval Analysis approach considering constant (solid line) and
time-varying (dotted line) parameters of the probabilistic distribution.

the figure indicates the densities of the simulated day and night load PLD,day(tq)
and PLD,night(tq) for a summer and a winter day. Note that the variability of
the normal distribution remains constant, whereas its mean level changes from
days and nights, and from winter to summer.

Monte Carlo simulation and Fuzzy Interval Analysis approach (Subsection
3.2 and Appendix A) considering the time-varying parameters of the probabilis-
tic distribution of the solar irradiation and of the loads determined above. The
analysis has been carried out with respect to the month of July that is a critical
period for the high demand of power by the end-users. In fact, the hot temper-
ature reached in the south of Spain gives rise to a large use of air conditioners.
Figure 4 reports on the left panel a comparison of the cumulative distribution
functions of the EENS index obtained by the probabilistic uncertainty propaga-
tion approach (solid lines) with the belief (lower curves) and plausibility (upper
curves) functions (see Subsection 3.2).

The Monte Carlo and Fuzzy Interval Analysis method explicitly propagates
the aleatory and epistemic uncertainty: the separation between the belief and
plausibility functions reflects the imprecision in the knowledge of the possibilis-
tic variables and the slope pictures the variability of the probabilistic variables.
Instead, the uncertainty in the output distribution of the pure probabilistic ap-
proach is given only by the slope of the cumulative distribution. As expected, the
cumulative distribution of the EENS obtained by the pure probabilistic method
is within the belief and plausibility functions obtained by the Monte Carlo and
Fuzzy Interval Analysis approach.

Figure 4 (on the right) compares the previous results, carried out with the
Monte Carlo and Fuzzy Interval Analysis approach, with those obtained by the
same method but by considering constant the parameters of the probabilistic
distributions of the solar irradiation S, and the loads PLD. A conservative
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measure of the EENS distribution to be used to evaluate the size of the panel
can be chosen as the 99th percentile of the distribution. The lower and upper
values of this measure, obtained with time-varying or constant parameters, are
reported in Table 1. The value obtained by considering time-varying parameters
(with a model that describes with a higher precision the real climatic conditions)
are lower than the ones obtained with constant parameters.

EENS
Lower value [kWh] Upper value [kWh]

Time-varying 0.22 0.70

Constant 0.45 0.78

Table 1: Lower and upper values of the 99th percentile of the EENS distribution, evaluated
with time-varying and constant parameters.

It can be seen that the lower and upper cumulative distributions functions
obtained by considering time-varying parameters are always lower than those
resulted by keeping constant those parameters. This means that in this case
study a time-varying analysis allows designing the solar panel with smaller di-
mension. Furthermore, the gap between the cumulative distributions functions
obtained by considering time-varying parameters is higher than that between
the curves obtained by keeping constant those parameters. In particular, by
considering time-varying parameters, we introduce a higher variability on the
EENS estimation, due to the fact that the distribution of data changes daily.
The higher variability allows considering within our model the situation in which
the solar panel fully support the load demand, including the zero value in the
EENS distribution.

4 Conclusions

We illustrated a methodology to represent and propagate the aleatory and epis-
temic uncertainties of renewable energy generation systems. We represented the
former ones by probability distributions and the second ones by possibility dis-
tributions. In particular, we focused on the aleatory variables that present a
time-varying behavior (e.g., solar irradiation and loads) and we elicited time-
varying probability distributions from historical climatic data.

Once all uncertainties have been represented, we proceeded to evaluate the
output of interest (e.g., the Expected Energy Not Supplied) by propagating the
uncertainties through the model of the energy distribution system. The results
that can be obtained from this analysis can provide a support in the decision
process for the dimensioning of the energy generation system.

In this work, we applied the methodology to a model of an energy system
made of a solar panel, a storage energy system and the loads. In particular, we
considered the variations in time of the solar irradiation and the loads, describing
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them by probabilistic distributions with time-varying parameters. We evaluated
the Expected Energy Not Supplied as a quantitative indicator of the analysis.

Two main results have to be highlighted. The first one concerts the un-
certainty propagation method that divides the contribution of the aleatory and
epistemic uncertainty, identifying upper and lower bounds of the EENS, i.e.,
an interval of values of the EENS for a given confidence level. This can be of
interest in the decision making process to identify the proper size of the solar
panel. The second results shows that accounting for time-varying parameters in
the distributions of the solar irradiation and of the loads leads to more realistic
results that, in this case, allows to reduce the dimension of the solar panel. Thus,
considering constant parameters an overestimation of the size of the solar panel
can be done.
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A Joint uncertainty propagation

The operative steps of the procedure for the joint uncertainty propagation by
Monte Carlo simulation and Fuzzy Interval Analysis are here detailed with re-
spect to the case study presented in Section 3. As a quantitative indicator of
the analysis, the Expected Energy Not Supplied index is computed.

1. Set k = 1 (outer loop processing aleatory uncertainty).

2. Sample the solar irradiations S̃k
l , l = 1, ..., Nsteps/∆tmax from Beta dis-

tribution (equation (1)) if l is an odd number (i.e. when it is day),
otherwise, set S̃k

l = 0 (i.e. when it is night). Then, sample the loads
P̃ k
LD,l, l = 1, ..., Nsteps/∆tmax from equation (13) taking into account

the different distributions associated with that variable during the days
and nights. The vectors [S̃k]l and [P̃k

LD]l, are transformed into [S̃k]j and
[P̃k

LD]j , j = 1, ..., Nsteps, respectively, repeating each value ∆tmax times, to
obtain values of solar irradiations and loads for each hour in all the period
of interest.

3. Set α = 0 (middle loop processing epistemic uncertainty).

4. Set j = 1 (inner loop processing the time variation).

5. Select the corresponding α-cuts of the possibility distributions (πIMPP ,
πVMPP , πVOC , πICS , πNot , πkc , πkv) as intervals of possible values of the
possibilistic variables IMPP , VMPP , VOC , ICS , Not, kc, kv.

6. Calculate the smallest and largest values of the solar power generated,

P k
S,j,α and P

k
S,j,α, respectively, by equation (6) considering the fixed values

Sk
j sampled for the random variables S and all values of the possibilis-

tic variables IMPP , VMPP , VOC , ICS , Not, kc, kv in the α-cuts of their
possibility distributions.

7. Compute the value P k
Diff,j,α = P k

S,j,α − PL
j,k: if P k

Diff,j,α > 0, go to step

7.a.; if P k
Diff,j,α < 0 go to step 7.b., else go to step 7.c.:
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a. set to zero the Energy Not Supplied index, ENS
k
j,α = 0, and in-

crease the level of energy in the battery by equation (8), Qk
j+1,α

=

f(Qk
j,α, P

k
B,j,α, ηc), where P k

B,j,α = −P k
Diff,j,α if the constraint de-

fined in equation (7) is verified, otherwise it is computed by equation
(7). If the level of energy in the battery at the step j+1 is higher than
its maximum capacity, i.e. Qk

j+1,α
> Qmax, then, set Q

k
j+1,α

= Qmax;

b. decrease the level of energy in the battery by equation (10), Qk
j+1,α

=

f(Qk
j,α, P

k
B,j,α, ηd); if the constraint defined in equation (9) is verified

P k
B,j,α = −P k

Diff,j,α (case i.), otherwise P k
B,j,α is computed by equa-

tion (9) (case ii.). If the level of energy in the battery at the step
j+1 is higher than zero, the Energy Not Supplied index is computed

as ENS
k
j,α = 0 for the case i., and ENS

k
j,α = −P k

Diff,j,α −P k
B,j,α for

the case ii.; otherwise, set, Qk
j+1,α

= 0 and ENS
k
j,α = −P k

Diff,j,α;

c. set ENS
k
j,α = 0, and decrease the level of the battery by equation

(11), Qk
j+1,α

= f(Qk
j,α,Whourly). If the level of energy in the battery

at the step j + 1 is lower than zero, then set Qk
j+1,α

= 0.

8. Repeat step 7. for the evaluation of the lower bounds of ENSk
j,α, comput-

ing the upper values of P
k
Diff,j,α, P

k
B,j,α and Q

k
j,α.

9. If j ≤ Nsteps, then set j = j+1 and return to step 5.; otherwise go to step
10.

10. Compute the total lower and upper bounds of the ENS index in the period

under analysis as ENSk
α =

∑Nsteps

j=1 ENSk
j,α, ENS

k
α =

∑Nsteps

j=1 ENS
k
j,α;

the lower and upper bounds of EENS, EENSk
α and EENS

k
α, are obtained

by performing the means of ENSk
α and ENS

k
α, respectively.

11. Take the extreme values, EENSk
α and EENS

k
α, found in 10. as the lower

and upper limit of the α-cut of the Expected Energy Not Supplied.

12. If α 6= 1, then set α = α+∆α and return to step 4. to compute the EENS
for another α-cut; otherwise a fuzzy random realization, πk

EENS , of the
EENS has been identified. If k 6= m, where m is the number of simulations,
then set k = k + 1 and return to step 2.; else stop the algorithm.

At the end of the procedure the fuzzy random realizations (fuzzy intervals)
πk
EENS , k = 1, ...,m of the Expected Energy Not Supplied index is constructed

as the collection of the values EENSk
α and EENS

k
α, found at step 10. (in other

words, πk
EENS is defined by all its α-cut intervals (EENSk

α, EENS
k
α).
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B Time-varying estimate of the load

The operative steps of the procedure applied to find time-varying estimates
of the load is briefly described here. Starting from the daily minimum and
maximum temperatures in the Seville area, stored in the NASA data base NASA
(2008), we calculate the time-varying mean of the load of an AC with some fixed
characteristics. We consider a class “A” device, with an Energy Efficiency Ratio
(EER) equal to 3.5. The number of AC installed in the house is set equal to the
mean number of conditioners in Spanish homes in Andalusia, which is 1.623 INE
(2008). The nominal power of the AC is calculated as PAC

N = Surf ·Ceiling ·25
ENEA (2006), where Surf = 20m2 is the surface of the room and Ceiling =
2.7m is the height of the ceiling. All data are chosen to indicate a representative
Spanish house. Finally, since the proportion of Spanish that leave the AC turned
on at night is equal to 7.6% INE (2008), we multiply the AC load at nights by
this proportion.

In order to calculate the mean load of such AC system, first of all, we find
functional estimates for the mean tendency of the daily minimum and maxi-mum
temperature for the given location (Tmin(tq) and Tmax(tq) [

◦C], respectively), by
means of the ITP on min and max temperatures, with the methodology presented
in Subsection 2.1. Then, for each day tq, we perform the following calculation:

• We fix a threshold temperature Tthres = 26◦C, and suppose that the AC
is turned on when the external temperatures exceed the threshold, as in
Izquierdo et al. (2011).

• We estimate the daily lapse of time in which the AC is turned on hon(tq)[h],
supposing for each day a linear temperature profile between Tmin(tq) and
Tmax(tq):

hon(tq) = 24

(

Tmax(tq)− Tthres

Tmax(tq)− Tmin(tq)

)

. (14)

This approximation is justified by the comparison of our results with a
daily temperature profile estimated from hourly data FreeMeteo (2012).

• The quantity hon(tq) is then divided into daily (10.00 a.m. - 10.00 p.m.)

and nightly (10.00 p.m. - 10.00 a.m.) hours of switching on (hdayon (tq) and

hnighton (tq), respectively), assuming that Tmax(tq) is attained at 4.00 p.m.
and Tmin(tq) at 6.00 a.m. FreeMeteo (2012).

• The mean power load on days of the AC is then calculated as:

µPLD,day(tq) = PAC
N nroomhdayon (tq)/(12EER) (15)

The mean load on nights, is:

µPLD,night(tq) = PAC
N nroomhnighton · 0.076(tq)/(12EER) (16)
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Note that both quantities are divided by 12[h] in order to found an estimate
of the hourly power.

• The quantities µPLD,day and µPLD,night are finally added to the day and
night fixed averages (mean load without AC), calculated in order to main-
tain the values of 1.363 kW and 0.682 kW as yearly means.
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