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Abstract

We propose a regression model for data spatially distributed over non-
planar two-dimensional Riemannian manifolds. The model is a general-
ized additive model with a roughness penalty term involving a suitable
differential operator computed over the non-planar domain. Thanks to a
semi-parametric framework, the model allows for inclusion of space-varying
covariate information. We show that the estimation problem can be solved
first by conformally mapping the non-planar domain to a planar domain
and then by applying existing models for penalized spatial regression over
planar domains, appropriately modified to account for the domain deforma-
tion. The flattening map and the estimation problem are both computed
by resorting to a finite element approach. The estimators are linear in the
observed data values and classical inferential tools are derived. The appli-
cation driving this research is the study of hemodynamic forces on the wall
of an internal carotid artery affected by an aneurysm.

∗This work has been funded by MIUR Ministero dell’Istruzione dell’Università e della
Ricerca, FIRB Futuro in Ricerca research project “Advanced statistical and numerical meth-
ods for the analysis of high dimensional functional data in life sciences and engineering” (see
http://mox.polimi.it/∼sangalli/firb.html), and by the program Dote Ricercatore Politecnico di
Milano - Regione Lombardia, research project “Functional data analysis for life sciences”.
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1 Introduction and motivation

In this work, we present a new and innovative approach for modeling data that
occur over non-planar two-dimensional domains. The applied problem driv-
ing this research is the study of hemodynamic forces, such as shear stress and
pressure, exerted by blood-flow on the wall of an internal carotid artery. The
data used in this study are part of the AneuRisk Project, a scientific endeavor
that aimed at investigating the role of vessel morphology, blood fluid dynam-
ics and biomechanical properties of the vascular wall, on the pathogenesis of
cerebral aneurysms. See, e.g., [17] and [24] for a detailed description of the
project. Cerebral aneurysms are deformations of cerebral vessels characterized
by a bulge of the vessel wall. Figure 1 shows an internal carotid artery affected
by an aneurysm. The shear stress exerted by the blood flow on the wall of the
artery, at the systolic peak, is represented by a colormap. Each value refers to
a point (x1, x2, x3) on the bi-dimensional and non-planar artery wall. In [4],
a first analysis of these data was performed, first by flattening the artery wall
via a (bijective) angular map and then by applying standard spatial methods
in the resulting planar domain. The angular map is equivalent to considering
a simplified three-dimensional artery geometry, where the radius is fixed to a
constant value and the curvature of the artery is not taken into account. This
simplification can be a limiting factor since both the radius and curvature are
geometrical quantities that greatly influence the hemodynamics in an artery as
well as statistically discriminate aneurysm presence and location (see [24]). This
suggests the need to develop an alternative approach that is able to take into
account the actual geometry of the domain. Moreover, to obtain a bijective
angular map, it is necessary to exclude the aneurysmal sac. This is a second
critical issue which cannot be ignored in view of developing of more realistic
studies.

Figure 1: Shear stress exerted by blood flow on the wall of a carotid artery
affected by aneurysms. The colormap shows the modulus of the wall shear
stress at the systolic peak. The colormap ranges from 0 (blue) to 200 (red).
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Figure 2: Reconstruction of the real internal carotid artery geometry in Figure
1 from a three-dimensional angiography via a VMTK reconstruction algorithm.
The wall of the artery is approximated via a triangular mesh.

Few methods are available in literature to deal with data on non-planar
domains. Non-planar domains can be approximated by three-dimensional trian-
gular meshes characterized by varying distances and angles between neighboring
vertices. Figure 2 displays an example of a triangular mesh that approximates
the artery wall in Figure 1. Iterative schemes for nearest neighbor averaging
have been developed to work on such surface meshes [11]. According to this ap-
proach, the value of the variable of interest at each vertex in the mesh is obtained
by suitably averaging the values at the neighboring vertices. This process is re-
peated several times to create a smoothing effect. A more sophisticated method,
heat kernel smoothing, is presented, e.g., in [6]. Heat kernel smoothing uses the
eigenfunctions of the Laplace-Beltrami operator defined on the non-planar do-
main to construct a heat kernel. For each iteration, the amount of smoothing
is determined by the bandwidth of the heat kernel. For large bandwidths, heat
kernel estimates are comparable to the simpler and less computationally de-
manding method of nearest neighbor averaging [11]. On the other hand, the
sophisticated structure of heat kernel smoothing has the advantage of providing
powerful tools for statistical analysis. Other models have been devised to han-
dle data over specific type of manifolds such as spheres. For instance, spherical
splines introduced by [3], and the model described by [14].

Here, we adopt a Functional Data Analysis approach (see, e.g., [21] and [9]),
and propose a regression method that efficiently handles data distributed over
Riemannian manifolds. In particular, we generalize the spatial regression mod-
els developed in [22] and [23] to the case of non-planar domains, by defining a
penalized spatial regression model where the roughness penalty term involves
a suitable differential operator computed over the non-planar domain. The key
idea consists of solving the estimation problem by conformally mapping the non-
planar domain to a planar domain and then by applying the spatial regression
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model over planar domains properly modified to account for the actual geome-
try. From a computational viewpoint, to calculate the flattening map and solve
the equivalent estimation problem on the planar domain, we use a basis for
continuous piecewise-polynomials provided by finite elements. The use of finite
elements also leads to high computational efficiency. The penalized regression
estimator is linear in the observed data values and the usual inferential tools are
thus derived. Another important feature of the proposed model is the possibility
to include space-varying covariate information in a straightforward way. A series
of simulation studies, on both test domains and domains from real-geometries,
show the good performance of the proposed methodology. These simulations
also highlight the advantages in terms of improved estimates where the geome-
try of the non-planar domain is taken into account. Given the complexity of the
objects considered (data and covariates spatially distributed over bi-dimensional
Riemannian manifolds), our work can also be seen as an Analysis of Object Data,
as defined in [26].

The paper is organized as follows. Section 2 introduces the model. Section 3
describes the flattening map and derives the equivalent estimation problem on
a planar domain. Section 4 shows how to compute the flattening map and the
estimator using finite elements. A covariate version of the model is developed in
Section 5. Section 6 is devoted to simulation studies and to the application to
the hemodynamic data. Section 7 states future research directions.

2 The model

Consider n fixed data locations {xi = (x1i, x2i, x3i) : i = 1, . . . , n} lying on a
non-planar domain Σ that is a uniformly regular surface embedded in R

3. For
each location xi, a real-valued random variable of interest, zi, is observed. We
assume the model

zi = f(xi) + ǫi, i = 1, . . . , n, (1)

where ǫi, i = 1, . . . , n, are independent observational errors with zero mean and
constant variance σ2, and f is a twice continuously differentiable real-valued
function defined on the surface domain Σ. Our goal is to estimate the function
f in (1). By analogy to the models in [22] and [23], referred to in the following
as spatial regression models over planar domains, we propose to estimate f by
minimizing the following penalized sum of squared error functional

JΣ,λ(f) =

n
∑

i=1

(zi − f(xi))
2 + λ

∫

Σ
(∆Σf(x))

2 dΣ, (2)

where ∆Σ is the Laplace-Beltrami operator for functions defined over the sur-
face Σ (see, e.g., [8]). The Laplace-Beltrami operator is a generalization of the
standard Laplacian (considered in the model over planar domains) to the case
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of functions defined on surfaces in Euclidean spaces and is related to the local
curvature of f on Σ. Hence in (2), via the penalty, we are controlling the rough-
ness of f. Moreover, the Laplace-Beltrami operator is invariant with respect to
Euclidean transformations of the domain ensuring that the smoothness of the
estimate does not depend on an arbitrary chosen coordinate system. We also
note that the Laplace-Beltrami operator is the same operator used by heat kernel
smoothing, although in a different framework.

In this paper, we show that it is possible to solve the estimation problem (2)
by exploiting existing techniques over planar domains. The problem is equiva-
lently reformulated on a planar domain by considering an appropriate change of
variable from the surface domain Σ to a planar domain. To do this, the surface
Σ is flattened by means of a conformal map and the roughness penalty in (2)
is modified accordingly, to account for the domain deformation induced by the
flattening.

3 The flattening map and the equivalent estimation

problem on the planar domain

Consider a non-planar domain Σ that is a surface embedded in R
3 defined by a

uniformly regular and continuously differentiable map

X : Ω → Σ

u = (u, v) 7→ x = (x1, x2, x3),

where Ω is an open, convex and bounded set in R
2 and the boundary of Ω,

denoted ∂Ω, is piecewise C∞. A generic point in the planar domain Ω is denoted
by u = (u, v). Let Xu(u) and Xv(u) denote the column vectors in R

3 of the
first order partial derivatives of X with respect to u and v, respectively. For the
regularity and differentiability hypotheses on X, there exists a positive constant
η such that, for any point u ∈ Ω,

W(u) = |Xu(u) ∧Xv(u)| =
√

‖Xu(u)‖2‖Xv(u)‖2 − 〈Xv(u),Xu(u)〉2 ≥ η, (3)

where |Xu(u)∧Xv(u)| denotes the modulus of the cross product between Xu(u)
and Xv(u), 〈·, ·〉 is the Euclidean scalar product of two vectors and the corre-
sponding norm is represented by ‖ · ‖. Figure 3 sketches the set up for the map
X.

The Jacobian matrix of X is given by ∇X(u) = (Xu(u), Xv(u)) for any
u ∈ Ω and has maximal rank equal to two. Using the Jacobian, we define the
(space varying) metric tensor G(u) as the following symmetric positive definite
matrix

G(u) = ∇X(u)′∇X(u) =

(

‖Xu(u)‖
2 〈Xu(u),Xv(u)〉

〈Xu(u),Xv(u)〉 ‖Xv(u)‖
2

)

5



x2

x1

x3

v

u

x = (x1, x2, x3)

u = (u, v)

Σ

Ω

X

X−1 (Flattening map)

Figure 3: A sketch of the map X between Ω and Σ. The inverse X−1 of X,
represents the flattening map.

for any u ∈ Ω, where ′ denotes the transpose of a matrix. The inverse met-
ric tensor G−1(u), which is also a symmetric positive definite matrix, is easily
calculated as

G−1(u) =
1

[W(u)]2

(

‖Xv(u)‖
2 −〈Xu(u),Xv(u)〉

−〈Xu(u),Xv(u)〉 ‖Xu(u)‖
2

)

,

where W(u) is as in (3). Hence, W(u) has two meanings: W(u) =
√

det(G(u))
or W(u) coincides with as the modulus of cross product Xu ∧ Xv. With the
former interpretation, we obtain the area element involved in the change of
variable from Σ to Ω, i.e., dΣ = W(u)dΩ.

Let f◦X ∈ C2(Ω); then the Σ-gradient of f is∇Σf(x) = ∇X(u)G−1(u)∇f(X(u)) ∈
R
3 for any x ∈ Σ, where ∇f(X(u)) denotes the gradient of f on Ω and u =

X−1(x). For a tangential vector field Y, the Σ-divergence is given by

divΣY (x) =
1

W(u)

2
∑

j=1

∂jW(u)Y j(X(u)),

where Y j denotes the j-th direction of the tangential vector field, ∂1 = ∂
∂u

and

∂2 =
∂
∂v

(see, e.g., [8]). Then the Laplace-Beltrami operator can be expressed as

∆Σf(x) = divΣ(∇Σf(X(u)))

=
1

W(u)

2
∑

j,m=1

∂j(kjm(u)∂mf(X(u))) =
1

W(u)
div(K∇f(X(u))) ,(4)

where the operator div denotes the divergence for planar domains and kjm(u) are
the components of the matrix K(u) = {kjm(u)}j,m=1,2 = W(u)G−1(u). Note
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that K(u) is a symmetric positive definite matrix for any u ∈ Ω since W(u) is
positive and G−1(u) inherits positive definiteness from G(u).

Thus, by considering the mapX, the estimation problem over the manifold Σ,
associated with the minimization of the penalized sum of squared error functional
(2), can be reformulated as follows:

Equivalent estimation problem over the planar domain. Find the func-
tion f ◦X, defined on Ω, that minimizes

JΩ,λ(f ◦X) =

n
∑

i=1

(

zi − f(X(ui))
)2

+ λ

∫

Ω

1

W(u)

(

div(K∇f(X(u)))

)2

dΩ.

(5)

One special case of interest is obtained for conformal flattening maps. The
map X is said to be conformal if u and v are orthogonal and scale equally in each
direction; in particular, ‖Xu(u)‖

2 = ‖Xv(u)‖
2 and 〈Xu(u),Xv(u)〉 = 0, for any

u ∈ Ω. A conformal map thus preserves angles, which in turn preserves shapes
and important geometrical features of the domain. This special case reduces
(3) to W(u) = ‖Xu(u)‖

2 as well as G(u) = W(u)I2, G
−1(u) = [W(u)]−1I2

and K = I2, where Im is the identity matrix of order m. The Laplace-Beltrami
operator (4) also simplifies to ∆Σf(X(u)) = [W(u)]−1∆f(X(u)), where ∆ is
the standard Laplace operator associated with the two-dimensional domain Ω,
i.e., ∆h = ∂2h/∂u2 + ∂2h/∂v2 where h ∈ C2(Ω̄). Finally, for conformal coordi-
nates, the estimation problem (5) over the planar domain reduces to finding the
function f ◦X, defined on Ω, that minimizes

JΩ,λ(f ◦X) =

n
∑

i=1

(

zi − f(X(ui))
)2

+ λ

∫

Ω

(

1
√

W(u)
∆f(X(u))

)2

dΩ. (6)

It is evident that the estimation problem (6) is a generalization of the spatial
regression models over planar domains. In particular, the roughness penalty
term has been modified byW(u), to include the original geometry of Σ. Although
less evident, (5) can also be seen as an extension of the penalized sum of squared
error functional used in the planar version of the model.

3.1 Flattening tubular domains

Since our driving application features tubular-like domains, we here review a
method for flattening tubular surfaces, developed in [12] to flatten a portion of
the colon. The tubular surface, Σ, must have the same topology as an open
ended cylinder and be embedded in R

3 with genus zero (i.e., there are no self
intersections or holes). The open ends of the cylinder, denoted by b0 and b1,
represent the boundary of Σ and are homeomorphic to a circle. With these
assumptions, Σ is conformally equivalent to a rectangle in R

2.
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Here, we briefly illustrate the construction of the conformal map X, provided
in [12]. The map X is constructed in two phases. The first phase maps the
surface Σ to an annulus that has b0 and b1 as its inner and outer boundaries,
respectively (Figure 4, left and right, illustrates this first step). During this
phase, the first conformal parameter, u, is characterized as the solution to a
Laplace-like problem with mixed boundary conditions, i.e.,











−∆Σu = 0 on Σ

u = 0 on b0

u = 1 on b1.

(7)

The second phase converts the annulus into a rectangle (Figure 5, left); in
particular, v is characterized as the harmonic conjugate of u. This is done by
cutting the surface Σ, or the corresponding annulus, along a curve C that runs
from b0 to b1 such that u is strictly increasing along C. We know there exists
such a cut by the maximum principle. The boundaries b0 and b1 together with
the cut C form an oriented boundary, denoted by B. The oriented boundary B
is created by circling around b0, then along C, around b1, and finally back down
C in the opposite direction. The boundary B is a closed curve whose direction
is determined by the orientation of the surface (see Figure 4, center). Hence, v
is characterized as the solution to

{

−∆Σv = 0 on Σ

v(ζ) =
∫ ζ

ζ0
∂u
∂ν

ds on B,
(8)

where ζ0 ∈ b0 is a designated starting point of the boundary B, ζ ∈ B, ∂u
∂ν

is the
normal derivative of u and ds denotes the arc-length element along B.

3.2 Characterization of the estimation problem on planar do-

main

To guarantee the existence and the uniqueness of a solution to the estimation
problem in (5), we have to introduce a suitable functional setting. In partic-
ular, we resort to a modification of the standard Sobolev space Hm(Ω), i.e.,
the space of functions defined on Ω which are in L2(Ω) together with all their
partial derivatives up to order m ([15]). The functional space we consider is
Hm

n0,K(Ω) = {h ∈ Hm(Ω) : K∇h · n = 0 on ∂Ω} ⊂ Hm(Ω), consisting of the
Hm(Ω)-functions with co-normal derivatives identically equal to zero on the
whole ∂Ω. The condition on the co-normal derivative on ∂Ω is equivalent to
the condition that the normal derivative on the boundary of Σ vanishes, i.e.,
∇Σh · n = 0 on ∂Σ.

Let z = (z1, . . . , zn)
′ be the vector collecting the observed values in (1) for

the quantity of interest. For any function h defined on Σ, such that h ◦ X is
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defined on Ω, we denote the column vector of evaluations of the function h at
the n data locations xi by

hn =

(

h(x1), . . . , h(xn)

)′

=

(

h(X(u1)), . . . , h(X(un))

)′

, (9)

with X(ui) = xi. To ease the notation, in the following we understand the
dependence on u.

Proposition 3.1 The estimator f̂ ◦X that minimizes (5) over H2
n0,K(Ω) satis-

fies the relation

µ′
nf̂n + λ

∫

Ω

1

W

(

div (K∇(µ ◦X))

)(

div
(

K∇(f̂ ◦X)
)

)

dΩ = µ′
nz (10)

for any µ defined on Σ such that µ ◦ X ∈ H2
n0,K(Ω) with µn and f̂n defined

according to (9). Moreover, the estimator f̂ ◦X is unique.

Proof. See Appendix A. �

4 Computation of the flattening map and estimator

The flattening map described by (7)-(8) as well as the estimation problem (10)
are infinite dimensional problems that cannot be solved analytically. Thus we
follow a typical approach in functional data analysis and use a suitable basis
expansion to reduce these infinite dimensional problems to finite dimensional
ones. In particular, since (7)-(8) and (10) involve partial differential operators,
we resort to a finite element basis. The finite element method is widely used
in engineering applications (for an introduction to the finite element framework
see, e.g., [7]). This approach is similar to that of univariate splines. The domain
of interest (either planar or non-planar) is subdivided into a mesh of disjoint
elements and the solution at hand is approximated via a globally continuous
function which coincides with a polynomial of a certain degree on each element
of the mesh, i.e., with a so-called piecewise polynomial. The discretized problem
becomes computationally tractable thanks to a suitable choice of basis functions
for the space of piecewise polynomials. Thanks to the intrinsic construction of
the finite element space, finding the flattening map and solving the estimation
problem (10) reduce to solving linear systems, and thus the penalized regression
estimator is linear in the observed data values.

4.1 Finite Elements

Convenient domain partitions, in both the planar and non-planar settings, are
provided by triangular meshes (see Figure 2 for an example of a non-planar
triangular mesh). In the triangulation, two adjacent triangles either share a
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vertex or a complete edge and the union of all the triangles approximates the
domain. The boundary of the domain and any interior holes are represented by
a polygon generated by the outer edges of the triangulation.

Starting from a triangulation T of the domain, a locally supported finite
element basis can be generated such that it spans the space of piecewise polyno-
mials over T . This finite element space denoted by H1

T
, discretizes the infinite

dimensional space H1. In this paper, we use linear finite elements where each
basis function ψj is associated with a triangle vertex (also referred to as a node)
ξj, j = 1, . . . , N. The basis function ψj coincides with a so-called hat function,
namely a piecewise linear polynomial which takes the value one at the vertex
ξj and the value zero on all the other vertices, i.e., ψj(ξl) = δjl where δjl is the
Kronecker delta symbol.

Let ψ = (ψ1, . . . , ψN )′ be the column vector of the N basis functions. Then,
for each function h ∈ H1

T
,

h(·) =

N
∑

j=1

h(ξj)ψj(·) = h′ψ(·), (11)

where
h = (h(ξ1), . . . , h(ξN ))′ (12)

is the column vector of evaluations of h at the N nodes of the mesh. Each
function in H1

T
is thus identified by its evaluations on the mesh nodes. This is

a well-known property characterizing a so-called Lagrangian basis. Notice that
the finite element space H1

T
is characterized by less regularity than the spaces

involved in (7)-(8) and (10), i.e., subsets of H2. This leads us to provide an
equivalent formulation for (7)-(8) and (10) in H1 (see Appendix E and (14),
respectively).

4.2 Example of flattening

To obtain an equivalent formulation of problems (7)-(8), characterizing the con-
formal flattening map, suited for the employment of a finite element space, we
use the classical result that u in (7) is the minimizer of the energy functional

ED(u) =
1

2

∫

Σ
‖∇Σu‖

2dΣ (13)

and the same result applies for v in (8) (see [12] and [8] for more details).
Both the problems are discretized via a finite element space and the functions
u and v are approximated via finite element functions. In particular, we start
with a non-planar triangular mesh ΣT , that closely approximates the surface
domain Σ.Additionally, the flattening method maps ΣT to a planar triangulation
of Ω denoted by ΩT , without flipping or breaking any of the triangles. This
conveniently sets up the estimation problem in the planar domain to be solved
via finite elements.
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Figure 4: Left: three-dimensional triangular mesh approximating a non-planar
test domain. Center: the oriented boundary B. Right: the annulus generated in
the first phase of the flattening procedure.
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Figure 5: Left: the planar triangulated domain obtained by conformally flatten-
ing of the test domain in Figure 4. Right: the weights W(u) associated with the
flattening conformal map.
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The flattening procedure is detailed in Appendix E. Here, we only provide an
example of the method. Figure 4 (left) shows a three-dimensional tubular test
surface approximated by a triangular mesh. This test surface is generated with
gmsh (see [10]) via a 180◦ rotation of the space between two non-intersecting
circles. The boundary B, described in Section 3.1, is shown in red while its
orientation is shown in Figure 4 (center). The annulus generated by finding the
first conformal parameter u is shown in Figure 4 (right). This annulus has b0 as
its inner boundary (not clearly visible in the figure) and b1 as its outer boundary.
The rectangle generated by approximating the second conformal parameter v is
shown in Figure 5 (left). Notice that the conformal rectangular domain has
two artificial boundaries, generated by the cut C (the two vertical red sides).
To easily obtain the necessary periodicity of the estimate along this artificial
cut, the planar triangulation and the corresponding data values are repeated on
each side of C. Notice that, thanks to the locally supported nature of a finite
element basis, it is sufficient to repeat only a small portion of the triangulated
domain. Figure 5 (right) shows the weights W(u) associated with the conformal
flattening map.

4.3 Solution to the estimation problem

By introducing a proper auxiliary function γ, it is possible to obtain the following
reformulation of the estimation problem (10), suited to the finite element method
(see Appendix B): find (f̂ ◦X, γ ◦X) ∈ (H1

n0,K(Ω)∩C0(Ω̄))×H1(Ω) such that

µ′
nf̂n − λ

∫

Ω
K∇(µ ◦X) · ∇(γ ◦X)dΩ = µ′

nz

∫

Ω
(ξ ◦X)(γ ◦X)WdΩ +

∫

Ω
∇(ξ ◦X)K∇(f̂ ◦X)dΩ = 0

(14)

for any (µ ◦X, ξ ◦X) ∈ (H1
n0,K(Ω)∩C0(Ω̄))×H1(Ω). Thanks to the regularity

of the problem, f̂ ◦X still belongs to H2
n0,K(Ω).

Using the finite element space H1
T
(Ω), we consider the following discrete

counterpart of this new estimation problem: find (f̂ ◦X, γ◦X) ∈ H1
T
(Ω)×H1

T
(Ω)

that satisfies (14) for any (µ ◦X, ξ ◦X) ∈ H1
T
(Ω)×H1

T
(Ω), where the integrals

are now computed over the domain triangulation ΩT . Let us consider the mass
and stiffness finite element matrices defined by

R0 =

∫

ΩT

ψψ′ WdΩ and R1 =

∫

ΩT

∇ψ′K∇ψ dΩ,

respectively, with ψ defined as in (12). The integrals in (14) can be expressed
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as
∫

ΩT

K∇(µ ◦X) · ∇(γ ◦X)dΩ = γ ′R1µ = µ′R1γ,

∫

ΩT

(ξ ◦X)(γ ◦X)WdΩ = ξ′R0γ,

∫

ΩT

∇(ξ ◦X)K∇(f̂ ◦X)dΩ = ξ′R1f̂ ,

where ξ, γ, µ, f̂ ∈ R
N are defined as in (12). Furthermore, we define the

following block matrices:

L =

[

In On×(N−n)

O(N−n)×n O(N−n)×(N−n)

]

∈ R
N×N and D =

[

In
O(N−n)×n

]

∈ R
N×n,

where Om1×m2
∈ R

m1×m2 is the null matrix. These matrices allow us to ex-
press µ′

n f̂n = µ′Lf̂ and µ′
nz = µ′LDz. Hence, the discrete counterpart of

the estimation problem in (14) reduces to finding the pair of coefficient vectors
(f̂ ,γ) ∈ R

N ×R
N such that, for any (µ, ξ) ∈ R

N × R
N , we have

{

µ′Lf̂ − λµ′R1γ = µ′LDz

ξ′R0γ + ξ′R1f̂ = 0,
(15)

where 0 ∈ R
N denotes the null vector. This leads to the following proposition.

Proposition 4.1 The estimator f̂ ◦X ∈ H1
T
(Ω) that solves the discrete coun-

terpart of the estimation problem (14) is given by f̂ ◦ X = f̂ ′ψ, such that f̂

satisfies
[

−L λR1

λR1 λR0

] [

f̂

γ

]

=

[

−LDz

0

]

, (16)

where γ is the vector associated with the auxiliary function γ in (14). Moreover
f̂ ◦X is uniquely determined.

In Appendix C, the uniqueness of the finite element solution to the estima-
tion problem is proved by showing the invertibility of the matrices R0 and
(

L+ λR1R
−1
0 R1

)

. By exploiting this fact, from (16) it follows that

f̂ =
(

L+ λR1R
−1
0 R1

)−1
LDz.

Note that the estimator is linear in the observed data z and has the typ-
ical penalized regression form, with the roughness penalty matrix R1R

−1
0 R1

accounting for the domain deformation implied by the flattening map via the
matrices R0 and R1. Thanks to the linearity in the observed data values, clas-
sical inferential tools are available, such as approximate confidence bands for f
and approximate prediction intervals at new data locations. Moreover, a closed
form Generalized-Cross-Validation (GCV) criterion can be used to select the
smoothing parameter λ. See Appendix D.
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5 The covariate model

The inclusion of covariates in the proposed model can be obtained by extend-
ing the described framework to a semi-parametric model as in [23]. Let wi =
(wi1, . . . , wiq) be a q-vector of covariates associated with the variable of interest
zi observed at the location xi. We modify the model in (1) as

zi = w′
iβ + f(xi) + ǫi, i = 1, . . . , n, (17)

where β ∈ R
q is the vector of regression coefficients and the remaining terms are

defined as in (1). To estimate β and f in (17), we now minimize the following
penalized sum of squared error functional

JΣ,λ(β, f) =

n
∑

i=1

(

zi −w′
iβ − f(xi)

)2
+ λ

∫

Σ
(∆Σf(x))

2 dΣ.

Thus using the map X, we can consider the following equivalent estimation
problem over the planar domain Ω: find β ∈ R

q and f ◦ X ∈ H2
n0,K(Ω) that

minimize

JΩ,λ(β, f ◦X) =
n
∑

i=1

(

zi −w′
iβ− f(X(ui))

)2
+ λ

∫

Ω

1

W

(

div(K∇(f ◦X))

)2

dΩ.

(18)
Let W be the n × q matrix whose i-th row is the vector w′

i of covariates
associated with the i-th data location. We assume W has full rank. Define P =
W(W′W)−1W′ to be the matrix that orthogonally projects on the subspace
of Rn spanned by the columns of W. Let Q = (In − P). Then the following
corollary holds.

Corollary 1 The estimators β̂ and f̂ ◦ X that minimize (18) over R
q and

H2
n0,K(Ω), respectively are β̂ = (W′W)−1W′(z− f̂n) and f̂ that satisfies

µ′
nQf̂n + λ

∫

Ω

1

W

(

div(K∇(µ ◦X))

)(

div
(

K∇(f̂ ◦X)
)

)

dΩ = µ′
nQz (19)

for any µ defined on Σ such that µ ◦ X ∈ H2
n0,K(Ω), with µn and f̂n defined

according to (9). Moreover, the estimators β̂ and f̂ ◦X are uniquely determined.

The proof of this result follows by generalizing the proof of Proposition 3.1. In
particular, an extra differentiation of the functional JΩ,λ(β, f ◦X) with respect

to β has to be taken into account to obtain the minimizer β̂ = β̂(f). After
plugging β = β̂ into (18) the proof follows along the lines of Appendix A.

Following the same arguments invoked for the model in Section 2, an auxiliary
function γ is introduced to derive the weak formulation of (19), analogous to (14).
Hence the estimation problem is well suited for the discretization via a finite
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element space. By exploiting the matrices introduced in Section 4.3, except for
the matrix L which is now replaced by

L̃ =

[

Q On×(N−n)

O(N−n)×n O(N−n)×(N−n)

]

,

we obtain the following corollary.

Corollary 2 The estimators β̂ ∈ R
q and f̂ ◦ X ∈ H1

T
(Ω) that solve the dis-

crete counterpart of the estimation problem with covariates are given by β̂ =
(W′W)−1W′(z− f̂n) and f̂ ◦X = f̂ ′ψ, such that f̂ satisfies

[

−L̃ λR1

λR1 λR0

] [

f̂

γ

]

=

[

−L̃Dz

0

]

, (20)

where γ is the vector associated with the auxiliary function γ. Moreover β̂ and
f̂ ◦X are uniquely determined.

The estimators β̂ and f̂ are linear in the observed data values z. Some distribu-
tional properties are reported in Appendix D.

6 Simulations studies

In this section, we present the results of some simulations to illustrate the per-
formance of the proposed technique on a variety of non-planar domains. In
particular, we compare three methods: the proposed Spatial Regression models
over Non-Planar domains1 (SR-NP), the Spatial Regression models over Planar
domains (SR-P) introduced in [22] and [23], and Iterative Heat Kernel smooth-
ing (IHK) described in [6]. Since IHK is not currently designed for the inclusion
of covariates, the simulations provided here do not include covariates. The three
methods are compared on four different tubular domains: in particular, three
are test domains while the fourth one coincides with a real-geometry from the
AneuRisk dataset (see Figure 6). Notice that the selected AneuRisk geometry
does not present an aneurysm.

To implement the SR-P models, we first flatten the original non-planar do-
main via the angular flattening map used in [4] for the analysis of the AneuRisk
data. To obtain the angular map, we start by computing the centerline of the
tubular domain. Then, each point (x1, x2, x3) on the non-planar domain Σ is as-
sociated with the closest point on the centerline. Hence, it is possible to consider
the cylindrical parametrization defined by (s, r, θ), where s is the curvilinear ab-
scissa computed along the centerline, r is the artery radius (i.e., the distance
between (x1, x2, x3) and the associated centerline point), and θ is the angle in
radians identified by (x1, x2, x3) with respect to the curvilinear abscissa. The

1The proposed model has been implemented in R [20] and Matlab. Both versions will be
shortly released.
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angular map thus takes Σ to the rectangle (s, θr̄), where r̄ is the average radius.
Analogous to [4], the necessary (2πr̄)−periodicity of the estimate along the coor-
dinate θr̄, is obtained by augmenting the data with repeated data values, at the
same abscissas but with ordinates given by (θ+2π)r̄ and (θ−2π)r̄, respectively.
Recall that the angular map excludes the aneurysmal sac (otherwise multiple
points on the wall of the carotid artery may be mapped to the same point on
the plane). This remark justifies the choice made for the real-geometry in Fig-
ure 6. Moreover, being designed for planar domains, the SR-P model uses the
standard Laplacian of the function in the penalty term and thus the information
about the geometry of the original three-dimensional domain is lost. Finally, the
optimal value of the smoothing parameter λ for SR-P is selected at each simu-
lation replicate and each domain by GCV. The same criterion used to select λ
for the proposed SR-NP approach (see Appendix D for the details on GCV).

Iterative heat kernel smoothing has been developed for neuroimaging appli-
cations, to deal with very complex domain geometries such as the cortical surface
of the brain, which is usually approximated by three-dimensional meshes with
more than 106 nodes. The purpose of the iterative nature of the IHK algorithm
is to reduce the computational burden associated with such geometries. In par-
ticular, IHK works directly on the mesh without any flattening. To do this, the
Laplace-Beltrami eigenvalue problem is solved directly on the surface Σ, i.e., or-
dered eigenvalues 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · and the corresponding eigenfunctions
φ0, φ1, φ2, . . . are found by solving −∆Σφj = λφj on Σ. Thus the heat kernel with
bandwidth t is constructed from the eigenvalue-eigenfunction pairs {(λj , φj)} as
Kt(p, q) =

∑∞

j=0 e
−λjtφj(p)φj(q), where p and q are two generic points on Σ.

The heat kernel smoothing of zi is given by Kt ∗zi =
∑∞

j=0 e
−λjtβjφj(xi), where

βj(xi) = 〈zi, φj〉. In practice, only k eigenvalue-eigenfunction pairs are chosen via
an iterative residual fitting algorithm. For our simulations, we made a heuristic
choice by selecting the bandwidth with the best performance after some test
runs. In particular, we set t = 10−3. To determine the level of smoothing, the
optimal number of iterations is selected for each simulation replicate and each
domain via the F-test criterium outlined in [6].

We generate simulation data as follows. Over each non-planar test domain,
we consider fifty test functions, having the form

f(x1, x2, x3) = a1 sin(2πx1) + a2 sin(2πx2) + a3 sin(2πx3) + 1, (21)

with coefficients aj , for j = 1, 2, 3, randomly generated from independent normal
distributions with mean one and standard deviation one. For each geometry,
the data locations xi, for i = 1, . . . , n, coincide with the nodes of the three-
dimensional mesh used to approximate the domain (see, e.g., Figure 4 (left)
for the triangular mesh approximating Geometry 2). Noisy data values are
obtained, in accordance with the model (1), by adding independent normally
distributed errors with mean zero and a standard deviation 0.5 to each of the data
locations. Figure 6 illustrates, for each geometry considered, (top) an example
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MSE Geometry 1 Geometry 2 Geometry 3 Geometry 4

SR-NP 0.0188(0.0103) 0.077(0.0889) 0.0644(0.0512) 0.0145(0.0074)
SR-P 0.0252(0.0157) 0.140(0.1230) 0.0730(0.0572) 0.0187(0.0174)
IHK 0.0459(0.0128) 0.061(0.0774) 0.1350(0.1660) 0.0354(0.0431)

Table 1: Median (inter-quantile ranges) of MSEs for the estimators of f associ-
ated with the three approaches.

Wilcoxon tests Geometry 1 Geometry 2 Geometry 3 Geometry 4

SR-NP vs. SR-P 3.895 × 10−10 3.895 × 10−10 2.202 × 10−3 7.548 × 10−8

SR-NP vs. IHK 3.895 × 10−10 8.022 × 10−1 3.895 × 10−10 8.032 × 10−10

Table 2: P-values of the pairwise Wilcoxon tests verifying that the distribution
of MSEs of the estimators provided by SR-NP is stochastically lower than the
distribution of MSEs of the estimators provided by the other methods.

of a test function generated by (21), (middle) the corresponding level of noise
and (bottom) the associated SR-NP estimate. The color maps are obtained by
linear interpolation of the data at xi. In particular, we have employed Matlab
code made available by M. Chung et al. (see [6] for more details). The good
properties of the proposed estimator are evident from the results in the last
row, where the estimates for all the geometries are of good quality despite the
presence of noise.

For each simulation replicate and test domain, we compute the Mean Square
Error (MSE) of the estimator associated with each of the three different methods.
Figure 7 shows the box plots of the MSEs and Table 1 reports the corresponding
medians and inter-quantile ranges over the fifty simulation replicates. The box
plots show that, in most cases, the SR-NP model yields better estimates with a
smaller variance. This notion is explored quantitatively in Table 2 which reports
the results of pairwise Wilcoxon tests verifying that the distribution of MSEs for
the SR-NP estimators are stochastically lower than the corresponding distribu-
tion for the SR-P and IHK estimators. The p-values of these tests show that the
MSEs of SR-NP is significantly lower than the ones of SR-P, uniformly over the
four test domains. These results highlight the advantages of the proposed spa-
tial regression model over non-planar domains with respect to the corresponding
methodology applied over planar domains; i.e., accounting for the geometry of
the non-planar domain leads to significantly improved estimates. The values in
Tables 1 and 2 also show that the proposed SR-NP model yields significantly
better estimates than IHK for three of the geometries considered. For Geome-
try 2, in fact, IHK has a lower median MSE than SR-NP. However, when the
converse Wilcoxon test is applied, i.e., with the alternative that the distribution
of the MSEs for IHK is stochastically lower than the corresponding distribution
of the MSEs for SR-NP, we attain a p-value of 0.2005. Hence for Geometry 2,
these two methods are in fact competitive. Notice that we are applying IHK to
simpler geometries than the ones for which it has been designed and optimized.
Hence the simulations show that within the scope of the geometries characteriz-

17



Geometry 1 Geometry 2 Geometry 3 Geometry 4

Figure 6: Top: an example of a test function generated by (21) on four tubular
domains; the fourth is a real geometry of an internal carotid artery from the
AneuRisk dataset. Middle: Data with noise. Bottom: estimates proved by
SR-NP.
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Figure 7: Box plots of the MSEs for the three estimators over the fifty simula-
tions.

ing our application, the proposed SR-NP method has a competitive advantage.
In future work, we will test our method on more complex geometries, such as
the ones characterizing the cortical surface of the brain.

6.1 Hemodynamic data

In this section, we present the application to the AneuRisk data. The AneuRisk
project2 gathered researchers of different scientific fields, ranging from neuro-
surgery and neuroradiology to statistics, numerical analysis and bio-engineering,
with the aim of studying the pathogenesis of cerebral aneurysms. Aneurysms
are deformations of the vessel wall. Their formation is usually ascribed to the
complex interplay between the biomechanical properties of artery walls and the
effects of hemodynamic forces exerted on the vessel walls, such as wall shear
stress and pressure. The hemodynamic forces in turn depend on the vessel mor-
phology itself. While the first studies on the aneurysmal pathology restricted
their attention to the aneurysmal sac, the AneuRisk project also investigated
the morphological and hemodynamic features of the parent vasculature, i.e., of
the vessel hosting the aneurysm and the upstream vasculature, with the goal of
highlighting possible causes of aneurysm onset, development and rupture (see
[17], [24] and the references therein).

Here, we analyze hemodynamic data on a real internal carotid artery. In
particular, the hemodynamic quantities of interest such as wall shear stress and
pressure, are computed via computational fluid dynamics simulations over the
real anatomy (see [16]). The inner carotid artery geometry is generated via
the reconstruction algorithm coded in the Vascular Modeling ToolKit (VMTK)
from three-dimensional angiographic images, belonging to the AneuRisk data
warehouse (see, e.g., [18]). Figure 1 shows the modulus of the simulated wall

2The project involved MOX Laboratory for Modeling and Scientific Computing (Dip.
di Matematica, Politecnico di Milano), Laboratory of Biological Structure Mechanics (Dip.
di Ingegneria Strutturale, Politecnico di Milano), Istituto Mario Negri (Ranica), Os-
pedale Niguarda Ca’ Granda (Milano) and Ospedale Maggiore Policlinico (Milano), and
has been supported by Fondazione Politecnico di Milano and Siemens Medical Solutions
Italia. More information about the project can be found at the AneuRisk webpage
http://mox.polimi.it/it/progetti/aneurisk/.

19



shear stress at the systolic peak on a three-dimensional geometry.
According to the approach in this paper, the three-dimensional triangular

mesh in Figure 2 approximating the artery is flattened via the conformal map
described in Section 4.2 to create the planar triangulation in Figure 8. The
sides of the planar triangulation are labeled in correspondence with Figure 2.
In particular, the sides of the planar triangulation labeled with “inflow” and
“outflow” correspond to the open ends of the carotid artery. The sides indicated
by “cut” correspond to a longitudinal cut along the artery wall, connecting the
open boundaries of the artery. The aneurysm and major curves of the artery are
also recognizable in the flattened domain. The area of the mesh which is very
fine and close to the “outflow” side corresponds to the aneurysmal sac.

in
fl
ow

ou
tfl
ow

cut

cut

Figure 8: Planar triangulation generated by the conformal flattening of the mesh
in Figure 2 approximating the internal carotid artery in Figure 1.

Figure 9 (left) shows the smoothed values for the modulus of the wall shear
stress obtained via the SR-NP approach with smoothing parameter λ = 101.5.
In the bottom part of the picture, the estimated wall shear stress is plotted over
the equivalent planar domain, a byproduct of the proposed method. This planar
view of the data is very practical since it allows us to see the entire geometry
without rotating the figure, thus making areas of interest easier to highlight.
We recognize large areas of high wall shear stress, in correspondence with the
neck of the aneurysm and along the first major bend of the carotid syphon.
This highlights the sensitivity of the wall shear stress on the complexity of the
geometry of the artery.

Figure 9 (right) displays some preliminary results where we explore the re-
lationship between the wall shear stress and some geometrical features of the
artery. In particular, we consider local curvature of the vessel wall, the curvature
of the artery centerline and local radius of the vessel. The local curvature of the
vessel wall is calculated from the three-dimensional mesh as in [13] and varies
between −20.63 cm−1 and 36.46 cm−1. The curvature of the vessel centerline
identifies the curvature of the whole vascular geometry. The artery centerline
and its curvature are computed as described in [25]. In particular, to measure
the centerline curvature at each point on the vessel wall we refer to the cur-
vature at an associated centerline point. The centerline curvature varies from
0.05 cm−1 and 4.64 cm−1. Finally, the local radius of the vessel is measured as
the distance from the artery wall to the associated centerline point and ranges
from 0.14 cm to 0.43 cm. All three covariates are significant for the model
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No covariates Covariates

Figure 9: Estimates of the wall shear stress modulus obtained with the SR-
NP approach without including any covariates (left) and by including covariates
(right). The colormap on both plots ranges from 0 (blue) to 200 (red).

at hand, with estimated parameters β̂ = (−0.9874, 0.3545, −78.3395)′ , with
smoothing parameter λ = 100.5. Hence, local wall curvature and local radius
are negatively associated with the wall shear stress, while the artery centerline
curvature is positively associated. The most influential contributor to the wall
shear stress appears to be the local radius, as expected. These preliminary stud-
ies will be further investigated in a future work, with statistical analysis across
patients. Using the SR-NP method, patient-specific estimates can all be mapped
into a common planar domain where, after suitable registration among patients,
comparisons across patients can be made. These analyses aim at highlighting re-
current hemodynamic patterns and relate them to the presence and the location
of aneurysms.

7 Future developments

Among our future goals, we are going to extend the proposed model to include
a time dimension. For instance, it could be of great interest to repeat the anal-
ysis in Section 6.1 performed as the systolic peak to the whole cardiac cycle to
investigate the oscillations of the wall shear stress. We are interested in two
different approaches to tackle this problem. We can consider these data as sur-
faces evolving in time, and hence generalize the proposed method by considering
time-dependent differential operators. Or, alternatively, we can represent these
data as space-dependent curves, where at each data location we consider the
temporal profile of the variable of interest. This would lead us to extend the
proposed model to the case of functional responses.

Other possible generalizations, that broaden the application potential of the
proposed method, include the case of general link functions such as the logit,
and loss-functions other than the classical sum of squared errors. Moreover,
the model could be extended to a full functional regression setting where the
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covariates are modeled as surfaces. By considering different flattening methods,
the model could be extended to applications involving other types of Riemannian
manifolds.

Another promising line of research consists in the generalization of the SR-
NP approach to other differential operators, still defined on non-planar domains.
The objective in this extension is twofold. First, following the rationale in [1], we
might modify the penalty term with a differential operator that includes a priori
knowledge on the phenomenon at hand. Secondly, the penalty term might be
used to target some specific quantities of interest in accordance with a so-called
goal-orientated approach [2].

On the computational side, there is a possibility to solve the estimation prob-
lem in (2) directly on the non-planar domain, without resorting to a flattening
map. This would probably lead to a computational saving, although mapping
the estimates to a reference domain may still be of interest, allowing for more
direct comparisons across different geometries.
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A Proof of Proposition 3.1

For the proof, we need the following characterization theorem from Chapter 2 of [5].

Lemma A.1 Let A be a symmetric coercive bilinear form on a vector space V and B a linear

form on V. Then there exists in V a minimizer ξ of the form A(y, y)− 2B(y), for y ∈ V, if and
only if A(ξ, y) = B(y), for any y ∈ V. Moreover, the minimizer ξ is unique.

Now, we write the functional in (5) as

JΩ,λ(f ◦X) = z
′
z− 2f ′nz+ f

′
nfn + λ

∫

Ω

1

W

(
div(K∇(f ◦X))

)2

dΩ.

Since we are solving the optimization problem with respect to f ◦X, we can ignore the terms
that are constant with respect to f ◦X and look for a solution f ◦X ∈ H2

n0,K(Ω) that minimizes

J̃Ω,λ(f ◦X) =

[
f
′
nfn + λ

∫

Ω

1

W

(
div(K∇(f ◦X))

)2

dΩ

]
− 2f ′nz.

To minimize J̃Ω,λ(f ◦X), we apply Lemma A.1 with V = H2
n0,K(Ω), B(y) = y′

nz, and

A(f ◦X, y ◦X) = y′
nfn + λ

∫

Ω

1

W

(
div(K∇(f ◦X))

)(
div(K∇(y ◦X))

)
dΩ.

To show that the above bilinear form is coercive, we suppose that A(f ◦X, f ◦X) = 0 for some
f ◦X ∈ H2

n0,K(Ω). Then, we have f ′nfn = 0 and
∫

Ω

1

W

(
div(K∇(f ◦X))

)2

dΩ = 0,

where W is positive and the matrix K is positive definite. The boundary conditions imposed
on the co-normal derivatives in H2

n0,K(Ω) force f ◦ X to be a constant on Ω. Moreover, the
condition f ′nfn = 0 implies that f ◦X is the constant null function on Ω. Thus A is coercive on
H2

n0,K(Ω) and via Lemma A.1, the function f̂ ◦X is the unique minimizer of (5) in H2
n0,K(Ω)

if and only if f̂ ◦X satisfies (10).
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B Weak formulation of the estimation problem

To obtain an equivalent formulation for (10) suited for a finite element approximation, we
introduce an auxiliary function γ defined on Σ. Then, the problem of finding f̂ defined on Σ such
that f̂ ◦X ∈ H2

n0,K(Ω) satisfies (10) for any µ on Σ where µ◦X ∈ H2
n0,K(Ω), can be rewritten as

the problem of finding a pair of functions f̂ and γ such that (f̂ ◦X, γ ◦X) ∈ H2
n0,K(Ω)×L2(Ω)

and satisfies

µ
′
n f̂n + λ

∫

Ω

(γ ◦X) div(K∇(µ ◦X)) dΩ = µ′
nz

∫

Ω

(γ ◦X)(ξ ◦X)WdΩ−
∫

Ω

div
(
K∇(f̂ ◦X)

)
(ξ ◦X)dΩ = 0

(22)

for any (µ◦X, ξ◦X) ∈ H2
n0,K(Ω)×L2(Ω). If the pair (f̂ ◦X, γ ◦X) ∈ H2

n0,K(Ω)×L2(Ω) satisfies

(22) for any (µ◦X, ξ ◦X) ∈ H2
n0,K(Ω)×L2(Ω), then f̂ ◦X also satisfies (10). Of course, if f̂ ◦X

satisfies (10) then the pair (f̂ ◦ X , div(K∇(f ◦X))) satisfies (22). Now, we ask for higher
regularity of the auxiliary function γ and the test function ξ, i.e., γ ◦X, ξ ◦X ∈ H1(Ω). With
the added regularity and by exploiting Green’s Theorem, problem (22) can be reformulated
as finding (f̂ ◦ X, γ ◦ X) ∈ (H1

n0,K(Ω) ∩ C0(Ω̄)) × H1(Ω) such that (14) is verified for any
(µ◦X, ξ ◦X) ∈ (H1

n0,K(Ω)∩C0(Ω̄))×H1(Ω). Moreover, the elliptic regularity property ensures

that f̂ ◦X still belongs to H2
n0(Ω) [see, e.g., 15, Chapter 8].

C Uniqueness of the finite element solution to the

estimation problem

To show that the matrix
(
L+ λR1R

−1
0 R1

)
is invertible, we show that it is symmetric positive

definite. First note, R0 is symmetric positive definite since it coincides with a mass matrix
weighted by a strictly positive quantity W. The matrix R−1

0 is also symmetric positive definite.
A similar argument holds for the symmetric positive definiteness of R1. By definition L is
symmetric positive-semidefinite. Hence we know that

(
L+ λR1R

−1
0 R1

)
is at least positive

semi-definite. Suppose that c′
(
L+ λR1R

−1
0 R1

)
c = 0 for some c ∈ R

N . Then

0 = c
′
(
L + λR1R

−1
0 R1

)
c = c

′
Lc+ λc′R1R

−1
0 R1c

where both terms in the sum are non-negative. So it follows that c′Lc = 0 and c′R1R
−1
0 R1c =

0. The positive definiteness of R−1
0 implies that R1c = 0 or, specifically, that

0 = c
′
R1c =

∫

ΩT

c
′

(
∇ψ′

K∇ψ
)
c dΩ =

∫

ΩT

(∇ψc)′K∇ψc dΩ = ‖∇ψc‖2K

where ‖y‖K =
√
y′Ky is the K-norm for a generic vector y ∈ R

N . Now, the finite element
expansion (11) yields

∇ψc =
N∑

j=1

cj∇ψj(x) = ∇
N∑

j=1

cjψj(x) = ∇(c′ψ),

where cj ’s are the nodal values of the finite element function c′ψ. Since ‖∇ψc‖2K = 0, we
have that c′ψ is a constant function. Since c′Lc = 0, we have that c = 0. Thus proving(
L+ λR1R

−1
0 R1

)
is positive definite.

D Properties of the estimators

In this section, we provide some properties of the proposed estimators. We start with the model
without covariates. Let B denote the matrix on the lefthand side of (16) and set A = −B−1.
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We denote by An the submatrix given by the first n rows and n columns of A and by ANn the
submatrix constituted by the first N rows and n columns of A. In matrix form, the estimators
are expressed as f̂n = Anz and f̂ = ANnz = ANnA

−1
n f̂n. Note that the finite element solution

f̂ is identified by f̂n, i.e., by the solution at the n data locations xi. Furthermore, we have

E[f̂n] = Anfn and V ar(f̂n) = σ2
AnAn. (23)

The vector of fitted values at the n data locations is given by ẑ = f̂n = Anz, yielding S = An as
the smoothing matrix. To measure the equivalent degrees of freedom for a linear estimator, we
use the trace of the smoothing matrix. Hence we can estimate σ2 by σ̂2 = (z− ẑ)′(z− ẑ)/(n−
tr(S)) where tr(S) denotes the trace of the matrix S. This estimate of σ, in combination
with the variance expression in (23), can be used to derive approximate confidence bands
for f. Moreover, the smoothing parameter λ is selected by Genearlized-Cross-Validation, i.e.,
GCV (λ) = (z − ẑ)′(z − ẑ)/(n(1 − tr(S)/n)2). The predicted value of a new observation at
xn+1 is given by evaluating the finite element solution at the data new data location, i.e.,
ẑn+1 = f̂ ′ψ(un+1), where X(un+1) = xn+1. The mean and variance of ẑn+1 can be obtained
from (23) and approximate prediction intervals may be derived.

For the model with covariates, let B̃ denote the matrix on the lefthand side of (20) and

likewise set Ã = −B̃−1, Ãn and ÃNn according to the definitions above. Then, f̂n = ÃnQz,
f̂ = ÃNnQz = ÃNnÃ

−1
n f̂n, and β̂ = (W′W)−1W′(I − ÃnQ)z. Thus, with some algebra, we

derive

E[f̂n] = ÃnQfn, E[β̂] = β + (W′
W)−1

W
′(I− ÃnQ)fn,

V ar(f̂n) = σ2
ÃnQÃn, V ar(β̂) = σ2(W′

W)−1 + σ2(W′
W)−1

W
′(ÃnQÃn)W(W′

W)−1.

The vector of fitted values at the n data locations is given by ẑ = Wβ̂+f̂n = (P+QÃnQ)z = S̃z

where the smoothing matrix is S̃ = P+QÃnQ. The equivalent degrees of freedom of this model
are thus given by tr(S̃) = q + tr(ÃnQ), i.e., by the sum of the q degrees of freedom from the
parametric part of the problem (the number of covariates) and the equivalent degrees of freedom

from the non-parametric part of the model, tr(ÃnQ). This can be used in the estimation of
σ and for GCV, as highlighted above. Finally, the predicted value of a new observation at
xn+1 with covariates wn+1 is given by ẑn+1 = w′

n+1β̂ + f̂(un+1) = w′
n+1β̂ + f̂ ′ψ(un+1). The

mean and variance of the new observation can be obtained from the equations above and an
approximate prediction intervals may be derived, likewise.

E Computational algorithm for constructing the flat-

tening map

We approximate the conformal parameters in (7)-(8) in the space H1
T (Σ). The harmonic func-

tions u and v are approximated with functions that are globally continuous and linear over each
triangle of ΣT . Below, we outline the finite element procedure for the flattening map. Note that
one has to be careful in choosing the three-dimensional mesh ΣT , because degenerate triangles
can be generated by flattening a triangle with all the vertices on the boundary.

1. An approximation of u is found by minimizing ED(u) in (13) over H1
T (Σ). The energy

functional is invariant with respect to conformal changes of the domain metric [19]. This
fact yields a convenient cotangent formula for the stiffness matrix D. The entries of D
are created by gathering terms that share an edge. That is, if xj and xl are connected
by an edge of the triangular mesh ΣT , then Djl = − 1

2
(cotαj + cot βj) where αj and βj

are the angles opposite the edge formed by xl and xj . If xj and xl are not connected
by an edge, then Djl = 0. The diagonal entries of D are Djj = −∑

l 6=j
Djl. For the

boundary conditions stated in (7), each interior vertex xj ∈ ΣT must satisfy
∑

xl∈ΣT

Djlul = −
∑

xl∈b1

Djl. (24)
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Solving the system above approximates the conformal parameter u. This linear map
conformally maps ΣT to an annulus where b0 and b1 are the inner and outer boundaries,
respectively. See Figure 4 (right).

2. Cut ΣT along the gradient of u. The maximum principle implies that there always exists
a vertex adjacent to the current vertex with a larger value. We use this fact to find the
cut C on the surface. Start by picking a vertex on b0 to be the starting point, call it ζ0.
Search the adjacent vertices and move to the vertex with a larger value of u. Continue
to search the vertices adjacent to current vertex; always moving to the vertex with a
larger value of u. Once you reach a vertex in b1 then you have completed the cut.

3. Create the oriented boundary B. Let B start on the vertex ζ0 from the previous step.
Let B run from ζ0 around b0 back to ζ0. Then up the cut C and around b1 and back
down C in the opposite direction back to ζ0 creating a closed curve. Keep in mind that
B must run around b0 and b1 in a way that keeps the orientation of the surface. See
Figure 4 (center). A programming note: the vertices along C will need to be repeated
twice since they will end up on opposite sides of the rectangle.

4. Generate the boundary values for v. Recall, the boundary values for v are found by
integrating along B v(ζ) =

∫ ζ

ζ0

∂u
∂ν
ds where ds is the arc-length element along B. Since

u is harmonic, the divergence theorem yields
∮
B

∂u
∂ν
ds = 0, where

∮
B

is the line intergral
over the closed boundary B. The cut C is constructed along the gradient of u thus
∂u
∂ν

= 0 along C. Hence v is constant along C. Note that the height of the cylinder must
be scaled properly. The height of the cylinder becomes the width of the rectangle which
is forced to have length equal to one. Hence the height of the rectangle will be the
circumference of the cylinder divided by the height of the cylinder. If the proportions of
the rectangle are not scaled properly, then the coordinates (u, v) will not be conformal.

5. Set up and solve the system for v as in Step 1., adjusting the righthand side of (24) to
take into account the boundary values for v in (8).
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