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Abstract

Neural Ordinary Differential Equations (ODEs) represent a significant advancement at the intersec-
tion of machine learning and dynamical systems, offering a continuous-time analog to discrete neural
networks. Despite their promise, deploying neural ODEs in practical applications often encounters the
challenge of stiffness, a condition where rapid variations in some components of the solution demand
prohibitively small time steps for explicit solvers. This work addresses the stiffness issue when employ-
ing neural ODEs for model order reduction by introducing a suitable reparametrization in time. The
considered map is data-driven and it is induced by the adaptive time-stepping of an implicit solver on
a reference solution. We show the map produces a nonstiff system that can be cheaply solved with
an explicit time integration scheme. The original, stiff, time dynamic is recovered by means of a map
learnt by a neural network that connects the state space to the time reparametrization. We validate
our method through extensive experiments, demonstrating improvements in efficiency for the neural
ODE inference while maintaining robustness and accuracy. The neural network model also showcases
good generalization properties for times beyond the training data.

Key words: Ordinary differential equations, Stiff equation, Reduced order model, Neural networks, Runge-
Kutta.
AMS subject classification: 65L99, 68T07.

1 Introduction

In computational science and engineering, the complexity and scale of numerical simulations have grown
exponentially, driven by advances in hardware and algorithms. High-fidelity models can now capture intricate
details of physical phenomena across diverse domains such as fluid dynamics, structural analysis, climate
modeling, and materials science. However, the increasing complexity of these models often comes at a
significant computational cost, rendering them impractical for many applications that require repeated model
evaluations over a large number of parameter values. Indeed, the computational cost is driven up by the
curse of dimensionality [4].

Reduced Order Models (ROMs) have emerged as a powerful solution to this challenge, offering a balance
between accuracy and computational efficiency. By compressing the essential features of high-fidelity models
into a more manageable form, usually called latent space, ROMs enable the efficient simulation and analysis
of complex systems, especially those requiring real-time analysis [53], inverse problems [22, 25, 39, 45],
uncertainty quantification [12, 18, 62], shape optimization [46] or optimal control [7, 49, 57].

The field of ROMs has seen substantial growth, providing practitioners with a wide range of techniques
to choose from. Each method comes with its own set of advantages and drawbacks, and the optimal choice
of ROM often depends on the specific requirements of the application. One of the most well-established
paradigms for model order reduction is proper orthogonal decomposition (POD) [6, 33]. A linear projection
technique that provides a high compression rate and, for instance, achieves a particularly high level of
accuracy in the case of diffusion processes.

If the governing equations of the high-fidelity model are explicitly employed in the ROM, they are called
intrusive [2, 5, 11, 32, 56]. Usually, a greedy algorithm or POD is employed to project the high-fidelity model
onto a lower-dimensional space. However, for nonlinear models, additional techniques like the (discrete)
empirical interpolation method are required to handle the complexities, which can lead to an unfavorable
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trade-off between accuracy and computational efficiency [3, 15, 17]. Moreover, in [50] it has been shown that
for transport-dominated problems, a large latent dimension must be used to achieve reasonable accuracy
when using POD, thus limiting their practical use.

In recent years, data-driven methods based on machine learning and deep learning gained large traction
due to advances in GPU-based hardware and developments in algorithms and software supporting the artifi-
cial intelligence ecosystem. This paradigm is based on the availability of a large quantity of high-fidelity data
that can be used to train the model. The approach proves effective if the large amount of resources employed
in the offline phase (generation of the solutions and training of the model) is repaid by a large enough num-
ber of (cheap) evaluations of the trained model (online phase). These models are called non-intrusive since
only knowledge of the data is needed to build them [34, 66]. The field is ever-growing, with a large number
of techniques being developed and published. To the best of our knowledge, the most relevant examples
of data-driven approaches are the following. Closure models are a hybrid between POD and data-driven
approaches where a non-linear term (a neural network) is added to the linear ROM (usually POD-Galerkin)
to account for the effect of the unresolved dynamics [67]. In [9, 26, 47, 50, 65], densely connected or convolu-
tional autoencoders have been used to extract the full latent variables. Other techniques have been proposed
to enhance the accuracy. For instance, graph neural networks (GNNs) tackle the problem of complicated
geometries discretized with unstructured meshes, offering a more natural representation of variables using a
graph [52, 54]. Fourier neural operators are a very successful approach that instead exploits the frequency
space to enrich the layers of the model [40, 41, 70]. Depending on the considered model, time evolution may
be treated just as any parameter of the system or explicitly learned, examples are DeepONets [44, 50], dy-
namic mode decomposition [8, 60], sparse identification of reduced latent dynamics (SINDy) [10, 16], RNNs
[42], LSTMs [21, 65] or Gaussian processes [29].

Another time evolution approach of particular interest is neural ODEs [19, 55, 58, 59]. The core concept
of this method is straightforward: it involves learning the right-hand side of a dynamical system with a
dense neural network, which can be viewed as the continuous limit of a residual neural network. This
approach offers numerous advantages, including a more natural representation of continuous-time data and
enhanced parameter and memory efficiency. The primary challenge with neural ODEs is that they are in all
effects ODEs that must be solved. This often leads to issues with stiffness, complicating their solution and
potentially affecting their stability and accuracy. Stiffness is the condition where there are rapid changes in
some components of the solution while other components change slowly. This phenomenon creates numerical
challenges when solving the equations, as explicit numerical methods might become inefficient or unstable
[69]. Thus, the necessity of employing implicit solvers significantly drives up the cost.

In the present work, we tackle the problem of building a ROM of a stiff system. In this case, the main
bottleneck is not represented by the large number of variables of the system but by the stiffness of the
system. Indeed, stiffness is usually connected to features of the system, such as the presence of multiple
time scales, the spectrum of the Jacobian of the system, or numerical instability, that make building a ROM
a challenging task. In this case, employing fixed-time timesteppers is unfeasible since the rapidly varying
scales require unreasonably small steps. On the other hand, treating the time like an input of a dense neural
network also proves problematic since neural networks are known to perform badly on high frequency [68].
Still, in literature, there can be found several examples of stiff problems solved with machine learning. A
possible solution was first proposed in [37], where the authors employ quasi-steady-state assumption (QSSA)
to reduce the stiffness of the ODE systems and show that a physic-informed neural network (PINN) then
can be successfully applied to the converted non-/mild-stiff systems. This is particularly interesting since
the system can be solved with an explicit method. In [38] the authors show that computing a stabilized
gradient and suitable scaling of the network outputs enables learning stiff neural ODEs. In [23], PINNs
are with Extreme Learning Machine to solve stiff problems. In [1], stiff quantitative systems pharmacology
models are accelerated with echo state networks. In [72], an autoencoder is used to produce a reduced order
model of a chemical kinetic model for the simulation of a combustion system. Recently, in [28] DeepONets
are used to learn the discretized solution of challenging stiff chemical kinetics.

Our strategy is the following, we aim to employ a neural ODE to learn a time-reparametrizated stiff
system, where the time map is suitably built so to reduce the stiffness of the problem. The insight is to
exploit the advantages of the neural ODEs we previously described while keeping the (online) cost of solving
the ODE under control by using an explicit solver. Indeed, our main contribution is to employ the time
reparametrization induced by the time-stepping of an implicit solver as a way to reduce the stiffness of the
system. An advantage of this procedure is that it is purely data-driven, meaning that it is possible to avoid
manually deriving explicit algebraic expressions for the QSS species as it was done in [37]. Once the nonstiff
system is solved, the solution is mapped back to the stiff dynamics using a map learnt with a neural network.
Particular care is taken in the definition of the map so that it has no dependence on time. Hence, the model
maintains good generalization in time since there is only explicit dependence on the state space.

We demonstrate the accuracy and speed of the proposed ROM on a set of five test problems widely
used in literature to benchmark stiff ODE solvers [48]. The results are compared with a state-of-the-art
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Runge-Kutta implicit solver of the Radau II A kind of the fifth order [69].

The remainder of the paper is organized as follows. First, in Section 2 we introduce the mathematical
settings and notation for the problems of interest. In particular, in Section 2.4 and 2.5 we review neural
networks and the neural ODEs approach, which are the foundations of this work. In Section 3 we introduce
our methodology, discussing also the implementation details. In Section 4 we present a comprehensive set of
numerical results. Finally, in Section 5 we draw some conclusions, discussing the strengths and limitations
of the proposed approach.

2 Problem formulation

In this section, we first present the construction of ROMs in algebraic terms for approximating a parametric
dynamical system. Then, we provide a concise overview of fundamental deep learning concepts and formulate
the data-driven model order reduction problem within the framework of neural ODEs.

2.1 Parametric systems of ordinary differential equations

We consider the following parameterized, finite-dimensional dynamical system, described by a set of first-
order ODE: {

u̇(t) = f(t,u;µ), t ∈ (0, T )

u(0;µ) = u0(µ).
(1)

where µ ∈ Γ is a vector containing all the parameters belonging to a compact set Γ ⊂ RNµ , u : [0, T )×Γ →
RNu is the parameterized solution, f : [0, T ) × RNu → RNu is the right-hand side function (encoding the
dynamical system), t ∈ [0, T ) is the time variable, u0 : Γ → RNu is the initial condition, and u̇ is the total
derivative with respect to time t. Without loss of generality, we are considering that the initial time for the
system is zero; indeed there always exists a translation in time that brings us to this case.

This formulation encompasses not only ODEs but also problems stemming from the semi-discrete formu-
lation of systems of partial differential equations (PDEs) through suitable methods (e.g.: finite elements [73],
spectral elements [14], discontinuous Galerkin [20, 35], etc.). In these cases, one may observe an increase in
the computational cost of the simulation since the dimension of the state space Nu is usually large. Indeed,
these methods usually rely on a fine mesh to discretize the spatial derivatives.

The meaning of the parameter µ ∈ Γ is broad, indeed it may represent physical properties (e.g.: material
properties), initial conditions, or geometrical properties (e.g.: the shape of the domain). In this work, we
focus on cases where µ models physical properties.

2.2 Solving ordinary differential equations

There is a wide literature of methods to solve ODEs [69]. In this work, we concentrate on the well-known
Runge-Kutta methods. Namely, let bi, aij , (i, j = 1, ..., s) be real numbers and let ci be defined as

ci =

i−1∑
j=1

aij , ∀i = 1, ..., s.

Then, we call the s-stage Runge-Kutta method the following discretization of Eq. (1) at time t0 +∆t

ki = f

t0 + ci∆t,u0 +∆t

s∑
j=1

aijkj

 , i = 1, ..., s

u1 = u0 +∆t

s∑
i=1

biki,

(2)

where u1 = u(t0 +∆t) and t0 = 0. If aij = 0 for i ≤ j, each stage of Eq. (2) depends only on the previous
ones, thus the method is explicit. If aij = 0 for i < j and at least one aii = 0, the method is called diagonally
implicit. In all the other cases, it is called implicit.

Of particular interest are embedded Runge-Kutta methods, which automatically adjust the step size to
achieve a prescribed tolerance of the local error. The embedded method exploits a second set of scalars
b∗i , i = 1, ..., s to compute another approximation of the solution of lower order u∗. Namely, we want to
satisfy the component-wise inequality

|(u1)i − (u∗
1)i| ≤ δi, δi = atol+ rtolmax(|(u1)i|, |(u0)i|), i = 1, ..., Nu
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where atol and rtol are user-defined (positive) absolute and relative tolerances, respectively. Then, the
error is estimated as

ε =

√√√√ 1

Nu

Nu∑
i=1

(
(u1)i − (u∗

1)i
δi

)2

and it is compared to one to find the next step size, namely

∆tnew = ∆tmin(10,max(0.1, (1/ε)1/(q+1))),

where q is usually chosen to be the order of the method, and 10 and 0.1 are the maximum and minimum
change factors, respectively. The value of these factors can be tuned depending on the problem. If the
normalized error is larger than one, the timestep is rejected and is computed again with the updated ∆t.

Explicit Runge-Kutta methods are generally unsuitable for the solution of stiff equations because their
region of absolute stability is small [69]. Indeed, in the present work, we will employ three different Runge-
Kutta methods depending on the application. Namely, we use an implicit Runge-Kutta of the Radau II A
kind of the fifth order [30] for solving the stiff problems, and we use a Runge-Kutta of the fourth order (in
the adaptive and fixed step size variants) for nonstiff problems. Starting from the paper of Butcher [13], it
became customary to symbolize method (2) by the a tableau

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass
b1 b2 . . . bs
b∗1 b∗2 . . . b∗s

We have the following table for the Radau II A method

2
5 −

√
6

10
11
45 − 7

√
6

360
37
225 − 169

√
6

1800 − 2
225 +

√
6

75
2
5 +

√
6

10
37
225 + 169

√
6

1800
11
45 + 7

√
6

360 − 2
225 −

√
6

75

1 4
9 −

√
6

36
4
9 +

√
6

36
1
9

4
9 −

√
6

36
4
9 +

√
6

36
1
9

Due to the super-convergence of the Radau IIA method (classical order p = 2s− 1) it is not possible to have
an embedded method of order p− 1 without extra cost. By taking a linear combination of ∆tf(x0,u0) and
the internal stage values ki it is however possible to get an approximation of order s, we refer the interested
reader to [30] for details. The following tableau is used for explicit Runge-Kutta of the fourth-order

0
1/5 1/5
3/10 3/40 9/40
4/5 44/45 −56/15 32/9
8/9 19372/6561 −25360/2187 64448/6561 −212/729
1 9017/3168 −355/33 46732/5247 49/176 −5103/18656
1 35/384 0 500/1113 125/192 −2187/6784 11/84

35/384 0 500/1113 125/192 −2187/6784 11/84 0
5179/57600 0 7571/16695 393/640 −92097/339200 187/2100 1/40

2.3 Data-driven model order reduction

In this section, we discuss the concepts and notation that stand at the basis of data-driven model order
reduction. We introduce the manifold of solutions of equation (1)

M = {u(t;µ) | t ∈ [0, T ),µ ∈ Γ} ⊂ RNu , (3)

which is a collection of the solutions for each parameter µ ∈ Γ and time t ∈ [0, T ). We suppose that it
is possible to find a discretized approximation uh(t;µ) up to arbitrary accuracy by integrating (1) with a
suitable method. By solving the problem for Mµ different choices of µ we create a discretized manifold

Mh = {uh(t;µ) | t ∈ {0 ≤ t1 < ... < tMT
≤ T},µ ∈ Γh = {µ1 ∈ Γ, ...,µMµ

∈ Γ}} ⊂ RNu , (4)

which is a finite set of vectors uh ∈ RNu that approximate the solution at a certain discretized point in
time t and for a certain choice of parameter µ. This set can be reshaped into a so-called, snapshot matrix
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Figure 1: Example of discrete solution manifold Mh for the Van der Pol oscillator.

U ∈ RNu×M , where M = |Mh|, by stacking all the column vectors of the discrete manifold. Let us stress
that the time discretization {0 ≤ t1 < ... < tMT

≤ T} may change depending on the value of µ. Indeed,
it often happens that µ changes the dynamics of the system, and thus a different time discretization is
generated by the adaptive procedure. For the sake of simplicity, we omit the explicit dependence on µ of
the time discretization.

In practice, one might obtain data also from knowing the exact analytical solution of the problem for
some specific values of µ or from real-world measurements. However, it is of utmost importance that the
data gathered in the snapshot matrix U is reliable since it is interpreted as our “ground truth”.

Data-driven ROMs aim to leverage the information contained in the discretized solution manifold Mh

to obtain in a fast and reliable way the solution uh(t;µ) for µ /∈ Γh or t ≥ T . Figure 1 shows a graphical
representation of the solution manifold for the Van der Pol oscillator (cf. Section 4.1). The motivation
behind ROMs is that classical time integration methods may become prohibitively expensive either due to
the size of Nu or due to stiffness (cf. Section 3).

2.4 Neural networks

In this section, we review the basic concepts of deep learning that we will use to build our ROM. Let
NI , NO ∈ N be strictly positive. An artificial neural network is a function F : RNI → RNO that maps an
input vector x ∈ RNI to an output vector y ∈ RNO and depends on the set of parameters θ (we think of
all the parameters as reshaped into a one-dimensional vector). As architecture, we consider the dense fully
connected feedforward (FNN) neural network (also called multi-layer perceptron) which is defined as follows.
Fix two positive integers L and Z. Let y(0) = x and y(L) = ỹ. A FNN of depth L and width Z is the
composition of L functions called layers defined by

y(l) = σ(l)(W(l)y(l−1) + b(l)), l = 1, ..., L,

where W(l) ∈ RNl×Nl−1 are matrices of parameters called weights and b(l) ∈ RNl are vectors of parameters
called biases. Here, N0 = NI , NL = NO and Nl = Z for l = 1, ..., L− 1. Finally, at the end of each layer, a
scalar non-linear activation function σ(l) is applied component-wise. We employ the same activation function
(to be specified later, cf. Section 4) for all the layers apart from the last one where we use a linear activation
function.

Several learning strategies are available to determine the vector of parameters θ. Among these, one of
the most popular paradigms is supervised learning. This method focuses on defining and minimizing a non-
linear cost function, known as the loss function L. The loss function is typically formulated using a dataset
comprising input-target pairs (x,y)

Ntrain
i=1 , which the neural network aims to learn. A common expression

for the loss function is:

L(θ) = 1

Ntrain

Ntrain∑
i=1

∥y − ỹ(x;θ)∥p , (5)

where ∥·∥p denotes the discrete p-norm, typically with p = 1 or p = 2.
To minimize the loss function gradient-based optimization is commonly employed. The gradient ∇θL is

efficiently computed using automatic differentiation techniques [51]. An epoch, defined as one complete pass
through the dataset, consists of multiple gradient updates and is the unit often used to quantity the training
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û(T ) ODE Solver

∫
dt

µ

n
orm

alization

Figure 2: Architecture of the Neural ODE for model order reduction.

length. Properly optimized neural networks exhibit the ability to generalize, making accurate predictions
on unseen data. For further reading on neural networks, comprehensive resources include [27, 71].

2.5 Neural ODEs

The model that we choose to use to build the ROM is neural ODEs. Neural ODEs have emerged as powerful
tools to model continuous-time dynamics using a differential equation. This approach provides several key
benefits. Firstly, Neural ODEs offer superior flexibility in modeling time-series data, as they can naturally
handle irregularly sampled data and varying time steps. Secondly, they ensure smooth trajectories and
better integration with physical laws and other domains where the underlying processes are continuous in
nature. Furthermore, neural ODEs can lead to more efficient training and inference, as they require fewer
parameters and can leverage advanced numerical solvers for differential equations. Neural ODEs are also
more memory efficient compared to traditional recurrent neural networks, especially for long time-series
data, because they avoid the need to store intermediate states of the network during backpropagation.

More precisely, a neural ODE is a neural network NN that evolves the dynamics as

u̇(t) = NN (t,u(t);µ), (6)

that is the NN is employed to approximate the right-hand side of the dynamical system (1) by taking as
inputs the time t, the current state u, and the parameters µ. One of the main drawbacks of this approach
is that it is necessary to numerically integrate the system in the online phase. Given the recurrent nature of
the architecture, adjoint solvers have been developed to enhance the memory efficiency during the training
phase [19]; their cost however remains much larger when compared to FNN.

When used as an architecture for ROMs, the neural ODE is often paired with another neural network
to reduce the dimension of the system from Nu to a small latent state space. This is usually achieved by
means of autoencoders [9, 26, 47, 50, 65] or other reduction techniques [59]. However, if Nu is small the
advantages of using a small latent space representation may not be counterbalanced by the increased cost of
evaluating the neural network. In this work, we propose a solution to this latter problem by introducing an
appropriate change of variable that significantly reduces the stiffness of the problem. Indeed, we will show
that our method makes it possible to use explicit solvers to integrate neural ODEs representing stiff systems.

We report in Figure 2 a representation of the neural ODE. The hat symbol ·̂ represents a suitable
normalization of the data, see the next section for details. For the sake of simplicity, we will indicate in the
captions the reference solution (the one that is comprised in the dataset) with the subscript “ref”, and the
components of u as predicted by the neural ODE with simply ui.

2.5.1 Training a Neural ODE

There are two main approaches to training a neural ODE. The first one is the classic supervised approach.
Assuming that the value of f(t,uh(t);µ) is known for each sample in the discrete manifold uh ∈ Mh, then
it is possible to compute the loss (5) and minimize it through a gradient-based optimizer. However, this
kind of data is not always available. Instead, the second approach – the one originally proposed for the
training of neural ODEs – minimizes the error with respect to the timeseries data uh(t). Namely, by using
a differentiable ODE solver, we minimize the loss

L(θ) = 1

Ntrain

Ntrain∑
i=1

∥∥∥∥uh(t;µ)−
(
uh(0;µ) +

∫ t

0

NN (u(s;µ),µ)ds

)∥∥∥∥
p

, (7)
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Supervised training ODE solver training

Figure 3: Comparison of the supervised and ODE solver approaches for training the neural ODE from the same randomly
initialized model for the Van der Pol oscillator (cf. Section 4.1). In blue and orange the predictions of the model, and
in black the reference solution. The supervised training is globally less accurate and stable, but better captures sharp
gradients.

Supervised training ODE solver training

Figure 4: Example of the behavior of the loss, the validation loss, and the learning rate during the training of the ROM
with the two-step approach: first the supervised approach and then the ODE solver approach.

where the integral is usually computed with an explicit integration method like forward Euler or an explicit
Runge-Kutta method.

The advantage of the supervised approach is that it is less computationally demanding since it does
not need to compute the gradient through the ODE solver using automatic differentiation. On the other
hand, in the supervised framework, the loss is not always indicative of the accuracy of the predictions on
the timeseries data u(t). For this reason, we always employ as validation loss Eq. (7).

Implementation details for Eq. (7) are important when it is employed to train the neural network. We
resample the discrete timeseries uh(t;u) to match the output of the time integrator, namely a Runge-Kutta
method of the fourth order with a fixed timestep. To minimize the interpolation errors, we use a reference
solution with a very fine time discretization. A uniform resampling allows for an efficient usage of the partial
results of the ODE solver for all the times smaller than the final one. Moreover, the initial integration time
is not zero but is picked uniformly between [0, T ) so that each time integration in the dataset is done with
the same number of timesteps: this procedure enables vectorization of the computations, greatly reducing
the computational cost. This optimization was originally introduced in torchdiffeq [19]. The number of
timesteps used is called unroll length and is a hyperparameter that plays a key role in the optimization
procedure. Finally, as commonly done in supervised learning, the computations are split into mini-batches
to increase stochasticity. If not otherwise stated, when using Eq. (7) for validation or testing we employ as
a time integrator an embedded Runge-Kutta method of order four with adaptive time-stepping. However,
computations are significantly cheaper since we can turn off automatic differentiation.

In our experiments, we employ a two-phase training. First, a standard supervised approach is used to
“initialize” the neural network since it is cheap and enables a fast reduction of the loss. Then, we switch to
the differentiable ODE solver approach to fine-tune the ROM. Our experiments show that in this case, it
is beneficial to use an increasingly larger unroll length to ensure the robustness and accuracy of the model.
Further details will be given in Section 4 for each test case. Employing a two-phase training approach not
only reduces the computational cost but also increases the quality of the final model. Indeed, from our
experiments, we have observed that with the supervised learning approach the neural network is able to
learn sharper gradients that may lead to unstable states. On the other hand, learning through the ODE
solver produces stable results that might follow less precisely the reference solution. Figure 3 shows an
example for two (underfitting) models. In Figure 4 we show the training and validation loss for a model
trained in sequence with the supervised and ODE solver approaches.

Another important point of discussion is the explicit dependence on time t of the NN . In practice, we
do not use t as input of the neural network NN . However, this does not necessarily limit us to autonomous
systems of ODEs. Indeed, it is possible to use an input layer with memory, like an LSTM, to add temporal
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dependence. This approach is usually preferred to employing t as input of the neural network since it
improves generalization properties in time.

To accelerate the training suitable normalizations are applied to the input µ, the output f , and the
timeseries data u. The exact expressions for the normalizations depend on the test case considered and are
detailed in Section 4. The insight behind the choice of the normalization is that we aim to have data that has a
magnitude close to one, does not have outliers, and has either a uniform distribution or a normal distribution
with a standard deviation of magnitude close to one. In our experiments, strictly monotone normalizations
achieved better results. We designed the normalizations by manual inspection of the histograms of the data.

3 Addressing the stiffness issue

While many techniques have been developed to build reduced-order models of large systems stemming from
semi-discretized PDEs, not many solutions are available for stiff ODEs. Indeed, it is a challenge to learn their
complex dynamics, which often feature large gradients and widely different time scales. More rigorously, a
commonly used formula to define the stiffness index of a problem is

S =
Re(λmax )

Re(λmin )
T, (8)

where λi are the eigenvalues of the Jacobian of the system. However, it is known that this definition is not
always helpful. For instance, it does not apply to the classic Robertson chemical kinetics problem since it has
two zeros eigenvalues [61]. A more pragmatic definition is given by Harier: “Stiff equations are problems for
which explicit methods do not work” [69]. That is, explicit numerical time integrators such as the embedded
Runge-Kutta method of the fourth order require timesteps so small that implicit methods become cheaper.
Stiffness is a particularly important issue when working with neural ODEs. Indeed, it is a well-known fact
that neural ODE training may fail due to stiffness. For instance, [38] shows issues of this kind and proposes
techniques to improve the training. However, it is still necessary to use a costly implicit solver in the online
phase, since the learnt dynamic is stiff.

Hence, to use the neural ODE as a ROM, we aim to reduce the stiffness of the system, allowing for
the usage of (cheap) explicit methods. To this end, we propose to change the dynamics of the problem by
considering the change of variable in time induced by the adaptive time-stepping of the implicit solver used
to solve the full-order model. We define a data-driven reparametrization of the time t called ts = ts(t) such
that

ts(t
n) =

n

NT
.

That is, the ∆t chosen at the n-th step by the implicit time stepper is proportional to the derivative of the
function that we employ as a change of variable in time. We remark that ts = ts(t) is strictly increasing and
thus invertible. We guess this change of variables induces less stiff dynamics since the adaptive time-stepping
spreads the sharp peaks and quickly adapts to the large timescales. The system becomes{

u̇(ts) = fs(ts,u;µ), t ∈ (0, 1)

u(0;µ) = u0(µ).

To accommodate this change in the neural ODE framework, we need a way to compute t = t(ts;µ) in
the online phase, to map the solution back to the original dynamics. Our experiments show that learning
directly the map t = t(ts;µ) is a hard task for a neural network, probably due to the presence of abrupt
changes in the function. Instead, we found that learning ṫ(u(ts;µ)) is a stable approach that produces more
accurate results. We also prefer this approach to learning ṫ(ts;µ) to keep the system autonomous (that is,
never introduce explicit dependence on time) to improve the generalization properties. The evaluation of
the time dynamics is cheap since it can be done in one batch using vectorization. Indeed, in the first step,
we compute u(ts), then, we carry out the cumulative integration of ṫ(u(ts;µ)) with the Simpson’s rule. The
main advantage of this approach is that it is cheap compared to autoencoders, especially for small problems
since the only overhead is the computation of t = t(ts;µ). However, it is also possible to combine the
autoencoder with the described methodology: first, the autoencoder extracts a latent state representation,
then, we could apply the time reparametrization in the latent space, reducing the stiffness of the latent
dynamics.

3.1 Implementation details

Applying this methodology to the training with the differentiable ODE solver does not require any change.
Indeed, the values of the timeseries u(ts) (that is, the state space) do not change, they are only differently
spaced in time. The main difference concerns the supervised learning approach. As explained before, this step
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Stiff ODE

u̇ = f(t, u(t); µ)

Implicit solver

Discretized solution

State: u
(
t0
)
, ..., u (tn)

Time: t0, ..., tn

Induced change
of variable ts

ts
(
ti
)

=
i

n

Normalize
state û

Time reparametrization

New dynamics

Interpolate

Normalize and
learn ṫ(û)

ṫû

µ̂

Normalize and learn
fs(ts, u(ts); µ)

fs
û

µ̂

u̇(ts) = fs(ts, u(ts); µ)

t(ts) =

∫ u(ts)

u(t0s)

ṫ(u)du

Non-stiff surrogate

Estimated fs

Figure 5: Time reparametrization workflow. Starting from the stiff ODE system (in gray), we compute the discrete
solution and obtain the discrete manifold Mh using an implicit method. We normalize the solution, compute the time
reparametrization ts(t), and estimate fs (in blue). Finally, we are able to train a nonstiff model that can be solved
using an explicit method (in orange).

allows us to “initialize” the neural network in a cheap way and requires us to estimate both u̇(ts) = f(ts,u;µ)
and ṫ. The approximation of the derivative is done using a Savitzky-Golay filter with low order (two or three)
and small window size (< 10). Figure 5 shows a scheme of the workflow. To accelerate the training also
the values of the time derivative are normalized, namely, we have found a logarithmic normalization to work
particularly well.

The optimizer we employ is AdamW [43] with batch size 32 and a learning rate scheduler that geomet-
rically reduces errors on plateaus of a factor of one-half with patience twenty epochs. The training lasts for
a maximum of 400 epochs. The best model is chosen using early stopping based on the validation loss. The
activation functions, the depth and width of the neural network, the initial learning rate, and the seed are
hyperparameters that we optimize by means of random search on a problem-by-problem basis. In particular,
the activation function is chosen among GELU [31], SiLU [24], Hard Swish [36], Leaky ReLU and ReLU, the
depth between three and ten, the width between five and 100 and the initial learning rate between 2 · 10−3

and 10−4.
We employ a very similar approach to fine-tune the differentiable solver. The main difference is that the

maximum number of epochs considered is 2000. The unroll length and the timestep size are tuned for each
problem. As a rule of thumb we employ increasingly larger unroll lengths with smaller and smaller learning
rates. Namely, we start with covering about 5% of the time domain and it increases up to 50%.

The neural network NN t approximating ṫ(u(ts;µ)) is also trained in a two-step process. First, it is
trained in a supervised manner. Similarly to what we do in the other supervised step, we employ as
validation loss the accuracy of the predictions on the validation timeseries when employing the ODE solver
to integrate both ṫ(u(ts;µ)) and f(ts,u;µ). Then, it is fine-tuned using as a target the time t. This is
achieved by automatic differentiation through Simpson’s integration rule. Namely, the loss is

L(θ) = 1

Ntrain

Ntrain∑
i=1

∥∥∥∥∥t−
∫ u(t)

u(0)

NN t(u(ts);θ)dts

∥∥∥∥∥
p

,

where the integral is computed cumulatively on the discretization induced by the explicit Runge-Kutta
method applied to the trained NN . We tested p = 1, 2, 4, the best results were achieved with p = 1.

Finally, to achieve the best performances in the online phase (inference time), the model is optimized
using the features of modern deep learning libraries, such as oneDNN graph fusion [51].

4 Numerical results

Our methodology is tested in five numerical experiments featuring stiff problems widely used in the literature
to benchmark implicit ODE integrators [48, 69]. We do not consider dynamical systems derived from semi-
discrete PDEs since it would require the usage of autoencoders to extract the latent dynamics. Indeed,
we aim to assess the behavior of our method as a stand-alone improvement to neural ODEs. Introducing
other variables in the test cases, such as the error of the autoencoders may be detrimental to this task.
We are confident that given the wide range of test cases presented, our methodology could be extended to
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larger state spaces or semi-discrete PDEs without problems. Indeed, being able to outperform classical ODE
solvers on small problems without the need to use a simplified latent space representation is a more difficult
task.

Computations were carried out on the HPC cluster at MOX with processor Intel® Xeon® Gold 6238R
and on a laptop with an AMD® Ryzen® 7 PRO 7840U. The reported computational cost refers to the latter
CPU. For the sake of reproducibility, we rely on the standard (CPU) implementations found in SciPy [64]
of the Runge-Kutta methods. Moreover, to ensure a fair and rigorous comparison with the neural network,
we executed both methods on a CPU. While leveraging a GPU would likely enable the neural network to
significantly outperform the full-order method, our goal was to maintain a balanced evaluation framework.

Before proceeding with the presentation of the test cases, let us introduce some metrics of interest that
we will use to assess the performance of the ROMs.

• time: elapsed CPU time in seconds to solve the system up to the final time T .

• # fev: number of evaluations of the right-hand side (either f or NN ).

• # jev: number of evaluations of the Jacobian of f (used for the implicit solver).

• # lu: number of LU decompositions (used for the implicit solver)

• MSEts : mean squared error of NN in the ts reparametrization.

• MSE: mean squared error in the t parametrization.

• L2: relative integral error computed with Simpson’s rule.

• dpeak: average distance of the peaks (any sample whose two direct neighbors have a smaller amplitude)
between the reference solution and the low fidelity solution (used for periodic solutions).

4.1 Test case 1: Van der Pol oscillator

The van der Pol oscillator is a second-order differential equation that exhibits limit cycle behavior, which
makes it a valuable model for studying phenomena such as electrical circuits, cardiac rhythms, and neuronal
firing patterns. The problem is governed by a parameter µ > 0 and we consider its following formulation in
the time interval [0, 3.5µ] 

u̇1 = u2,

u̇2 = µ(1− u2
1)u2 − u1,

u(0) = (2, 0).

(9)

This test case aims to assess the capabilities of our method on an autonomous periodic system. Indeed,
the Van der Pol oscillator has two periodic solutions: a non-trivial periodic solution and an unstable zero
solution. The parameter µ > 0 determines the significance of the nonlinear component of the equation.
When µ is large the system becomes stiff. We set Γ = [102, 104] and consider training dataset composed by
a logarithmic discretization Γh of Γ with Nµ = 51 points. The validation dataset is the interval midpoints
of Γh. The reference solutions are computed using the Radau method, with absolute and relative tolerances
set to 10−12.

The data for the supervised training is smoothed with a Savitzky-Golay filter of window seven and order
two. Data, namely the columns of U , are randomly subsampled to have about one thousand points for each
period of the timeseries. Fine-tuning is done by increasing the size of the unroll length starting from 20 up
to 80 (exact values are a hyperparameter to be tuned) and time-stepping ∆t = 1/40. The starting learning
rate is reduced by a couple of orders of magnitude with respect to the supervised step.

Data is normalized using the following functions: parameter normalization: µ̂ = log10 µ; state normaliza-

tion: û = (u1/2, u2/µ); dynamics normalization: f̂ = (f1/5, f2/10)/µ; time normalization: T̂ = T/µ. The
model is tested for N test

µ = 4 values of µ ∈ [102.01, 103.99] spaced logarithmically (these values are chosen
so that they are not present in the training nor the validation dataset). Moreover, we are also testing for
time beyond what is present in the training and validation datasets, namely, we are integrating until a final
time T̂ = 5. Figure 6 shows the results of applying the change of dynamics to this problem. On the left,
the plot of the problem with the new dynamics shows smaller gradients. On the right, after the change of
variable, we recover with good accuracy the original dynamics of the Van der Pol oscillator. In Table 1 we
show a comparison of the computational cost. The number of right-hand side evaluations is one order of
magnitude smaller for the explicit solver of the neural ODE w.r.t. the implicit solver of the FOM, this proves
that change of variable has significantly reduced the stiffness of the problem. Another interesting feature of
our approach is that the ROM error is almost independent from µ, on the other hand, the implicit solver
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Figure 6: Test case 1: Van der Pol oscillator. On the left, in colors, the neural ODE predictions in ts. On the right,
in colors, the prediction is mapped to the original time t. In black is the reference solution. The vertical line ( )
represents the final time in the training dataset.

exhibits a correlation among the two, suggesting that for larger values of µ computational gains may be
larger. In this case, the L2 error is computed only with respect to the first component of u. Indeed, since u2

features sharp peaks, small variations in their position make the integral error large and not representative
of the accuracy of the solution. For this reason, we have introduced the dpeak metric, which tries to measure
the accuracy of the ROM in this regard. We stress that for this test case, the ROM is performing well also
for unknown times, maintaining an accurate prediction of the period of the system. From the metrics in
Table 1 it is also possible to notice that the main bottleneck in terms of accuracy for the ROM is the time
mapping. Indeed, the model is very accurate in the ts parametrization.

In this case, we employ a fixed time-stepping in the online phase. This is a feasible approach only because
the dynamics in the ts parameterization exhibit similar behavior across all considered values of µ.

4.2 Test case 2: OREGO problem

The OREGO problem consists of the following stiff system of 3 non-linear ODEs defined in the time interval
t ∈ [0, 1000] 

u̇1 = µ1(u2 − u1u2 + u1 − µ3u
2
1),

u̇2 = 1
µ1
(−u2 − u1u2 + u3),

u̇3 = µ2(u1 − u3),

u(0) = (1, 2, 3).

(10)

Similarly to the previous test case, the problem is an autonomous system that features a periodic solution.
However, the problem originates from the description of a chemical reaction, thus it is key for the concentra-
tion u to stay positive. Moreover, the values of u span six orders of magnitude. The considered parameter
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µ solver toll time [s] # fev # jev # lu MSEts L2 dpeak

102.01
ROM 1/40 0.033 1000 0 0 4.13e-3 0.03520 0.662
Radau 10−2 0.046 2470 110 516 – 0.01447 0.811

102.67
ROM 1/40 0.033 1000 0 0 2.39e-3 0.02262 2.665
Radau 10−2 0.056 3316 133 688 – 0.00870 2.075

103.33
ROM 1/40 0.033 1000 0 0 5.94e-3 0.03098 19.27
Radau 10−2 0.072 3850 154 806 – 0.00742 8.083

103.99
ROM 1/40 0.033 1000 0 0 7.23e-3 0.04768 191.0
Radau 10−2 0.078 4418 156 938 – 0.04377 210.9

Table 1: Test case 1: Van der Pol. Comparison of computational cost and accuracy for the Radau solver and the neural
ODE based reduced order model (ROM) on the test dataset. Refer to Section 4 for the definition of the metrics.

Figure 7: Test case 2: OREGO. On the left, in colors, the neural ODE predictions in ts. On the right, in colors, the
prediction is mapped to the original time t. In black is the reference solution. The state scale is logarithmic.

space is Γ = [50, 100]× [0.002, 0.02]× [10−6, 10−4], which contains the value µ = (77.27, 0.161, 8.375 · 10−5)
usually employed in literature for this test case. The training dataset is built by subsampling a discretiza-
tion of Γ with a uniform grid of 6, 19, and 21 points in each direction, respectively. The validation dataset
is based on a discretization of Γ in the midpoints of the training discretization. Reference solutions are
computed with a tolerance of 10−10. We apply the following normalizations: parameter normalization:
µ̂ = (µ1/77.27, µ2/0.161, log10 µ3/5); state normalization û = log10 u; dynamics normalization: f̂ = f . We
test the performance of the ROM for eight parameters

µtest ∈ {52.5, 97.5} × {0.025, 0.175} × {10−5.975, 10−4.525}.

Figure 7 shows that the ROM is able to accurately follow the reference solution and track its period. A
quantitative comparison with the Radau solver is reported in Table 2. We remark that a tolerance of 10−2

for the Radau solver did not produce a positive solution for all the problems in the test dataset, thus the
comparison is made by employing a tolerance of 10−3. The number of right-hand side evaluations of the
explicit solver is less than half the one of the implicit one, showing that our method has made the system
nonstiff. Also, the computational cost is consistently smaller than the one needed by the Radau solver,
however, the latter has better accuracy. On the other hand, the distance of the peaks is comparable, proving
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µ solver toll time [s] # fev # jev # lu MSEts L2 dpeak

(52.5, 0.025, 10−5.975)
ROM 2 · 10−4 0.037 1130 0 0 1.20e-3 1.19e-2 1.668
Radau 10−3 0.065 3777 167 656 – 1.31e-5 3.032

(97.5, 0.025, 10−5.975)
ROM 2 · 10−4 0.034 1046 0 0 4.52e-3 7.75e-2 5.041
Radau 10−3 0.067 3445 159 600 – 2.12e-5 4.632

(52.5, 0.175, 10−5.975)
ROM 2 · 10−4 0.065 1970 0 0 2.64e-3 5.67e-2 1.810
Radau 10−3 0.111 6590 310 1100 – 8.47e-5 1.115

(97.5, 0.175, 10−5.975)
ROM 2 · 10−4 0.057 1694 0 0 1.41e-3 3.08e-2 1.134
Radau 10−3 0.074 4649 212 744 – 1.43e-5 0.467

(52.5, 0.025, 10−4.525)
ROM 2 · 10−4 0.048 1454 0 0 3.45e-3 5.14e-2 5.976
Radau 10−3 0.063 3895 183 666 – 3.73e-5 2.885

(97.5, 0.025, 10−4.525)
ROM 2 · 10−4 0.049 1466 0 0 1.85e-3 6.27e-2 2.355
Radau 10−3 0.062 3809 172 658 – 8.83e-5 7.598

(97.5, 0.175, 10−4.525)
ROM 2 · 10−4 0.088 2690 0 0 2.17e-3 1.17e-2 1.366
Radau 10−3 0.117 7148 319 1202 – 1.33e-5 1.100

(52.5, 0.175, 10−4.525)
ROM 2 · 10−4 0.059 1770 0 0 2.57e-3 2.28e-2 1.920
Radau 10−3 0.077 4781 217 814 – 2.35e-5 1.102

Table 2: Test case 2: OREGO. Comparison of computational cost and accuracy for the Radau solver and the neural
ODE based reduced order model (ROM) on the test dataset. Refer to Section 4 for the definition of the metrics.

Figure 8: Test case 3: ROBER. On the left, in colors, the neural ODE predictions in ts. On the right, in colors, the
prediction is mapped to the original time t. In black is the reference solution.

that the ROM accurately captures the period of the system.

4.3 Test case 3: ROBER problem

The ROBER problem is a stiff system of 3 non-linear ODEs defined as follows:
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µ solver rtoll (atoll) time [s] # fev # jev # lu MSEts MSE

(0.006, 103.025, 3 · 107) ROM 2 · 10−4 0.008 230 0 0 1.21e-5 2.40e-4
Radau 10−4(10−7) 0.019 927 44 210 – 6.72e-6

(0.006, 104.975, 3 · 107) ROM 2 · 10−4 0.009 272 0 0 1.19e-3 1.11e-3
Radau 10−4(10−7) 0.021 1100 52 240 – 5.74e-6

(0.049, 103.025, 3 · 107) ROM 2 · 10−4 0.007 206 0 0 4.34e-4 4.97e-5
Radau 10−4(10−7) 0.021 1081 46 256 – 4.49e-6

(0.049, 104.975, 3 · 107) ROM 2 · 10−4 0.009 260 0 0 4.46e-4 9.80e-4
Radau 10−4(10−7) 0.024 1121 55 248 – 3.35e-6

Table 3: Test case 3: ROBER. Comparison of computational cost and accuracy for the Radau solver and the neural
ODE based reduced order model (ROM) on the test dataset. Refer to Section 4 for the definition of the metrics.


u̇1 = −µ1u1 + µ2u2u3,

u̇2 = µ1u1 − µ2u2u3 − µ3u
2
2,

u̇3 = µ3u
2
2,

u(0) = (1, 0, 0).

(11)

The system describes the kinetics of an autocatalytic chemical reaction and is considered one of the most
popular benchmarks for stiff solvers. When used in this context, the time integration window used is usually
large, namely t ∈ [0, 1011) and the parameters are µ = [0.04, 104, 3 · 107]. Indeed, codes might fail if u2

accidentally becomes negative, since it then tends to −∞, causing overflow. This feature makes the ROBER
problem ideal for testing the ability of our ROM to be accurate across different time scales.

We set Γ = [0.005, 0.05]× [103, 105]× {3 · 107} and consider training dataset composed by a logarithmic
discretization Γh of Γ with 16 uniform points and 31 logarithmically spaced points in the first two directions,
respectively. The validation dataset is the interval midpoints of Γh. The reference solutions are computed
using the Radau method, with absolute and relative tolerances set to rtol= 10−10, atol= 10−14.

Data is normalized using the following functions: µ̂ = (− log10 µ1, log10 µ2/4, log10 µ3/7); state normal-

ization û = (u1, u2/10
(µ̂1−µ̂3)/2, u3); dynamics normalization: f̂ = f . The model is tested for four values of

the parameters
µtest ∈ {0.006, 0.49} × {103.025, 104.975}.

Figure 8 shows that the ROM is able to accurately follow the reference solution across the different time
scales. A quantitative comparison with the Radau solver is reported in Table 3. We remark that a tolerance
of rtol= 10−4, atol= 10−7 for the Radau solver is among the smallest pair of tolerances that produce a
positive solution for all the problems in the test dataset. The number of right-hand side evaluations of the
explicit solver is almost one order of magnitude smaller than the implicit one, showing that our method has
made the system nonstiff. Moreover, the computational cost is consistently smaller than the one needed by
the Radau solver. However, the latter achieves a far smaller error. We highlight that the ROM sometimes
fails to reach the correct final time, namely, the map to t sometimes stops at a time much smaller than
1011. Nevertheless, the ROM still captures the interesting part of the reaction, having issues only when the
solution reaches a plateau.

4.4 Test case 4: E5 problem

The E5 problem consists of the following stiff system of 4 non-linear ordinary differential equations:

u̇1 = −µ1u1 + µ2u1u3,

u̇2 = µ1u1 − µ3µ4u2u3,

u̇3 = µ1u1 − µ2u1u3 − µ3µ4u2u3 + µ3u4,

u̇4 = µ2u1u3 − µ3u4,

u(0) = (1.76 · 10−3, 0, 0, 0).

(12)

The problem describes a chemical pyrolysis where u represents the concentration of the reactants. The
largely different rates of reaction that occur in the same system are the cause of stiffness. As a test problem,
it is usually integrated in a large time window, namely, we choose the interval t ∈ [0, 1011). This means the
problem features widely different scales in time and space. The problem is particularly challenging. Indeed,
the formulation (12) is affected by the cancellation of digits and it is recommended to use the relation
u̇3 = u̇2 − u̇4 to compute f(t,u). Moreover, it has been shown that a very small tolerance on the absolute
scalar error must be used to obtain a reliable reference solution. Indeed, they are computed using the Radau
method, with absolute and relative tolerances set to atol= 10−24, rtol= 10−10.
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Figure 9: Test case 4: E5. On the left, in colors, the neural ODE predictions in ts. On the right, in colors, the prediction
is mapped to the original time t. In black is the reference solution. The state scale is logarithmic.

We set Γ = [5 · 10−10, 5 · 10−9] × [107, 108] × {1.13 · 103} × {106} which contains the parameter µ =
(7.89·10−10, 1.1·107, 1.13·103, 106), which is the usual choice for the benchmark. The training dataset is built
by a discretization Γh of Γ with 11 logarithmically spaced points in the first two directions. The validation
dataset is the interval midpoints of Γh. Data is normalized using the following functions: µ̂ = log10 µ; state
normalization û = log10 u/10; dynamics normalization:

f̂ =

{
fi if |fi| < 2,

sgn(fi)(log(|fi| − 1) + 2) otherwise.

The insight behind this normalization is simple: the data features very long tails due to the presence of large
gradients. Thus, we apply a logarithmic transformation to these large values. Suitable constants are added
to connect with continuity with the linear part of the transformation.

The model is tested for four values of the parameters

µtest ∈ {5 · 10−9.975, 5 · 10−9.025} × {107.025, 107.975} × {1.13 · 103} × {106}.

Figure 9 shows that the ROM is able to accurately follow the reference solution across the different time
and space scales. A quantitative comparison with the Radau solver is reported in Table 4. We remark that
a tolerance of rtol= 10−6, atol= 10−20 for the Radau solver is among the smallest pair of tolerances that
produce a positive and stable solution for all the problems in the test dataset. The number of right-hand side
evaluations of the explicit solver is more than one order of magnitude smaller than the implicit one, showing
that our method has indeed made the system nonstiff. The work precision tradeoff is particularly favorable
for our ROM. Indeed, it has comparable accuracy at a much lower computational cost. The main limitation
of our model is that it sometimes fails to reach the correct final time, namely, the map to t sometimes stops
at a time much smaller than 1011. However, the ROM still captures the interesting part of the reaction,
having issues only when the concentration plummets to values close to zero (< 10−20).
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µ solver rtoll (atoll) time [s] # fev # jev # lu MSEts MSE

(5 · 10−9.975, 107.025, 1.13 · 103, 106) ROM 2 · 10−4 0.013 308 0 0 4.12e-2 5.06e-3
Radau 10−6(10−20) 0.064 4119 93 416 – 8.36e-4

(5 · 10−9.025, 107.025, 1.13 · 103, 106) ROM 2 · 10−4 0.015 344 0 0 4.97e-2 4.00e-3
Radau 10−6(10−20) 0.065 4156 102 426 – 1.84e-2

(5 · 10−9.975, 107.975, 1.13 · 103, 106) ROM 2 · 10−4 0.013 302 0 0 1.56e-2 4.80e-3
Radau 10−6(10−20) 0.063 4003 103 430 – 9.87e-4

(5 · 10−9.025, 107.975, 1.13 · 103, 106) ROM 2 · 10−4 0.011 260 0 0 6.48e-2 5.53e-3
Radau 10−6(10−20) 0.068 4055 112 438 – 1.88e-2

Table 4: Test case 4: E5. Comparison of computational cost and accuracy for the Radau solver and the neural ODE
based reduced order model (ROM) on the test dataset. Refer to Section 4 for the definition of the metrics.

Test case 5.1, µ = µ1
test

Test case 5.2, µ = µ2
test

Figure 10: Test case 5: POLLU. On the left, the neural ODE predictions in ts. On the right, the prediction is mapped
to the original time t. In blue ( ) the neural ODE prediction of û, in black ( ) the reference solution.

4.5 Test case 5: POLLU problem

To show the effectiveness of the proposed method on large state spaces, we test our methodology on the
POLLU problem: as a stiff system of 20 non-linear ODEs. The system is the chemical reaction part of the air
pollution model developed at the Dutch National Institute of Public Health and Environmental Protection.
The problem features 25 reactions (µ ∈ R25) and 20 reacting compounds (u ∈ R20). Namely, we have that
the system is defined by

16



Reaction r µ0 Reaction r µ0 Reaction r µ0

1 µ1u1 0.350e0 10 µ10u11u1 0.900e4 19 µ19u16 0.444e12
2 µ2u2u4 0.266e2 11 µ11u13 0.220e-1 20 µ20u17u6 0.124e4
3 µ3u5u2 0.120e5 12 µ12u10u2 0.120e5 21 µ21u19 0.210e1
4 µ4u7 0.860e-3 13 µ13u14 0.188e1 22 µ22u19 0.578e1
5 µ5u7 0.820e-3 14 µ14u1u6 0.163e5 23 µ23u1u4 0.474e-1
6 µ6u7u6 0.150e5 15 µ15u3 0.480e7 24 µ24u19u1 0.178e4
7 µ7u9 0.130e-3 16 µ16u4 0.350e-3 25 µ25u20 0.312e1
8 µ8u9u6 0.240e5 17 µ17u4 0.175e-1
9 µ9u11u2 0.165e5 18 µ18u16 0.100e9

Table 5: Reference reaction rates for the POLLU model that define µ0.

f(u;µ) =



−r1 − r10 − r14 − r23 − r24 + r2 + r3 + r9 + r11 + r12 + r22 + r25
−r2 − r3 − r9 − r12 + r1 + r21
−r15 + r1 + r17 + r19 + r22
−r2 − r16 − r17 − r23 + r15

−r3 + 2r4 + r6 + r7 + r13 + r20
−r6 − r8 − r14 − r20 + r3 + 2r18

−r4 − r5 − r6 + r13
r4 + r5 + r6 + r7

−r7 − r8
−r12 + r7 + r9

−r9 − r10 + r8 + r11
r9

−r11 + r10
−r13 + r12

r14
−r18 − r19 + r16

−r20
r20

−r21 − r22 − r24 + r23 + r25
−r25 + r24



,

where the reactions r are connected to u and µ0 by rates reported in Table 5. The initial condition is

u0 = (0, 0.2, 0, 0.04, 0, 0, 0.1, 0.3, 0.01, 0, 0, 0, 0, 0, 0, 0, 0.007, 0, 0, 0).

It is usually considered that the time interval t ∈ [0, 60) is representative of the behavior of the reactants
sufficiently. The reference solution is obtained by using a tolerance of 10−10. Full details about the model
can be found in [63]. The parameter space Γ is built by changing the three components of µ that most
impact the system. Namely, a preliminary sensibility analysis has shown that the components 4, 6, and 14
of µ are the most relevant, that is they produced the largest variation in the solution u when perturbed.
Hence, we define the parameter space as

Γ =
∏

i/∈{4,6,14}

{µ0
i } ×

∏
i∈{4,6,14}

[
1

2
µ0
i , 2µ

0
i

]
,

where µ0 is the reference parameter value used for the system, reported in Table 5. The intervals are
discretized with 16 uniform points in each coordinate direction. The validation dataset is made by the
midpoints of the training datasets.

The model is tested for two parameters µ1
test,µ

2
test which are equal to µ0 apart from the three most

relevant components, namely µ1
test,i = 0.525µ0

i , µ
2
test,i = 1.975µ0

i , i = 4, 6, 14. Results are shown in Figure 10.
The ROM is able to follow the reference solution across all the reactions. A quantitative comparison with
the Radau solver is reported in Table 6. The number of right-hand side evaluations of the explicit solver is
similar to the implicit one. On the other hand, each evaluation of the right-hand side, each evaluation of
the Jacobian, and each LU decomposition is more costly than in the previous test cases since Nu is larger.
However, the cost of evaluating the neural network is similar to the previous test cases since the dimensions
of the networks are comparable. Indeed, the cost of the ROM is still smaller than the cost of the Radau
solver while keeping comparable accuracy. These results are of particular significance because they prove
that as the state space gets larger our methodology becomes more cost effective.
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µ solver toll time [s] # fev # jev # lu MSEts L2

µi = 0.525µ0
i , i = 4, 6, 14

ROM 10−4 0.006 194 0 0 6.89e-4 9.80e-4
Radau 10−3 0.011 182 10 50 – 3.81e-3

µi = 1.975µ0
i , i = 4, 6, 14

ROM 10−4 0.007 212 0 0 1.16e-3 1.69e-3
Radau 10−3 0.017 268 14 70 – 9.03e-4

Table 6: Test case 5: POLLU. Comparison of computational cost and accuracy for the Radau solver and the neural
ODE based reduced order model (ROM) on the test dataset. Refer to Section 4 for the definition of the metrics.

5 Conclusions

In this work, we have developed a novel methodology to tackle the stiffness in neural ODEs. The approach
hinges on a suitable time reparametrization of the system that significantly reduces the stiffness, making it
possible to efficiently apply explicit solvers to the neural ODEs. The construction of the time reparametriza-
tion is general and completely data-driven, making it ideal for an application to ROMs.

By leveraging the intrinsic capabilities of neural ODEs to handle continuous-time data, we capture the
dynamics of stiff systems effectively. The accuracy, robustness, and efficiency of the methodology were tested
in five famous benchmark test cases from the literature. Namely, when applied to periodic systems, the model
generalizes to data well beyond the time training interval. We attribute this characteristic primarily to the
autonomous nature of the neural ODE and the time reparametrization model. When applied to chemical
equations, our model always maintained the positivity of the concentration, even when applied to problems
suffering from numerical instability. Moreover, the work/precision tradeoff of our models always proved
comparable or favorable when confronted with a state-of-the-art Runge-Kutta implicit solver of the Radau
II A kind.

In conclusion, our work highlights the promising potential of neural ODEs in creating efficient and
accurate reduced-order models for stiff ODEs. Future research is directed towards improving the accuracy
of the time mapping that, as of right now, stands as the major accuracy bottleneck of the ROM. We also
aim to test this framework to handle the semi-discrete formulation of partial differential equations and
other higher-dimensional systems. Moreover, techniques like model distillation, network pruning, and better
hyperparameter tuning could further reduce the computational cost of our approach.
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