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Abstract

The accurate identification of anomalous curves in functional data analysis
(FDA) is of utmost importance to ensure reliable inference and unbiased
estimation of parameters. However, detecting outliers within the infinite-
dimensional space that encompasses such data can be challenging. In order
to address this issue, we present a novel approach that involves adjusting
the fence inflation factor in the functional boxplot, a widely utilized tool in
FDA, through simulation-based methods. Our proposed adjustment method
revolves around controlling the proportion of observations considered anoma-
lous within outlier-free replications of the original data. To accomplish this,
state-of-the-art robust estimators of location and scatter are employed. In
our study, we compare the performance of multivariate procedures, which
are suitable for addressing the challenges posed by the ”small N, large P”
problems, and functional operators for implementing the tuning process. A
simulation study and a real-data example showcase the validity of our pro-
posal.

Keywords: Functional Outlier Detection, Robust Covariation Estimators,
Adjusted functional boxplot

1. Introduction

In recent years, the field of functional data analysis (FDA) has gained
growing attention from statisticians due to its ability to effectively represent
data types that are being encountered more frequently, such as signals over
time, space, and other continuum measures. A functional datum can be
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regarded as a realization of a functional random variable, namely an element
defined over a probability space (Ω, F, P) with values in the Hilbert space
H. In the latter, points are functions defined over a closed interval. Hence,
they provide a convenient characterization for data presenting a dependence
over time or space, which nowadays finds applications in a variety of fields
thanks to the increased capabilities of data storage. The difference from
tabular data relies upon the continuity of these observations, which also
allows for the study of their differential properties. Suitable methods have
been developed to analyze this data (see, for example, Ramsay and Silverman
[28] and Ferraty and Vieu [8] for a detailed review) since classical multivariate
tools might not always be appropriate in infinite dimensional spaces. More
in detail, functional data analysis is a special case of Object Oriented Data
Analysis (OODA) where the complex objects are functions. Marron and
Alonso in [25] formalize the distinction between object space and feature
space. The former can be, for example, the set of continuous or differentiable
functions, where the data object comes from. Instead, the feature space is
used to simplify our understanding of the object by representing them as
digitized vectors. For our purposes, we consider each curve within the object
space as a point in the feature space, which is assumed to have a Euclidean
structure.

Within the framework of FDA, a problem that has recently drawn in-
creasing interest is functional outlier detection. Simply put, an outlier is “an
observation which deviates so much from other observations, to arouse suspi-
cion that it was generated by a different mechanism” [11]. Therefore, outlying
observations should be identified, inspected, and potentially removed before
any modeling is carried out. Nevertheless, not all outliers arise from errors or
noise. Caution is needed when discarding such samples from the analysis be-
cause, even if they deviate from the mechanism that generated the majority
of the data, they might carry important information about the phenomenon
under study. On top of that, spotting outliers in high dimensional data (large
P, small N problem) is a very challenging task, because even a small propor-
tion of contamination can easily corrupt the results. In the functional setting
many different outlying behaviors can be observed: for a complete review, the
interested reader is referred to Hubert, Rousseeuw, Segaert [13]. At the time
of writing, the main distinction currently accepted is between magnitude and
shape outliers [14]: the first refers to amplitude or vertical variability, while
the second to phase or horizontal variability. Once the latter has been taken
care of (e.g., through registration [28, 34]) only the dispersion in the vertical
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direction is left, and this will be the main focus of the present manuscript. A
powerful tool for visualization and identification of amplitude outliers, i.e.,
the direct generalization of the traditional ones, is the functional boxplot
introduced by Sun and Genton in [31]. It is inspired by the classical boxplot,
firstly proposed by Tukey [33], and extended to functional data using Band
Depths as a way of measuring the centrality of a signal (see [22], [23] for an
introduction to functional depth measures). This representation allows for a
straightforward understanding of the distribution of the set of curves. The
box contains the central region of the data, between the first quartile Q1 and
the third quartile Q3 of the empirical distribution. The fences are given by
[Q1 − F · IQR, Q3 + F · IQR] where IQR denotes the interquartile range.
Observations outside of the fences are flagged as outliers: given the inflation
factor F = 1.5, the probability of standing above the fences for a univariate
gaussian population can be computed as P(Z > Q3 + F · IQR) = 2Φ(4z0.25)
which equals to a probability of 0.7%. Thus, the choice of this value is justi-
fied by the normality assumption. With the idea that the functional boxplot
degenerates to a classical boxplot when each curve is a point, in the first ver-
sion of the functional boxplot the factor F was set to 1.5 [31]. However, the
authors soon realized the inherent limitations associated with this particular
selection. Indeed, in [32] a simulation-based method to adjust the fences of
functional boxplots based on a data-driven scheme was proposed. Particu-
larly, the authors herein stated that “a constant factor of 1.5 is too large
when spatial correlation exists because usually, spatially correlated curves are
more concentrated than independent ones”. This necessitates the adjustment
of the inflation factor within the functional framework. Motivated by this
issue, the main objective of this article is to understand how several robust
estimators perform in the adjustment of the fences for the generation of the
bands. In particular, we want to assess whether there is a gain in implement-
ing a procedure based on the functional form of the data and to provide a
taxonomy of the available options that the final user has when tuning the
inflation factor F .

The remainder of the manuscript is organized as follows: Section 2 ex-
plores more in detail the structure of the functional boxplot, the tuning pro-
cedure as introduced in [32] and the two kinds of robust covariance estimators
which will be considered. Section 3 presents the simulation study, emphasiz-
ing pros and cons of the robust operators reported in Section 2 in tuning the
inflation factor of the functional boxplot under diverse contamination pro-
cesses. An application to real data is carried out in Section 4 and conclusions
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are drawn in Section 5, highlighting possible directions for future research.
All the implementations devised for the manuscript have been made available
in a GitHub repository at the following link https://github.com/annachiara-
rossi/robust-adj-fbplot.

2. The adjusted functional boxplot

As introduced in Section 1, the functional boxplot can be employed
both as a visualization tool to explore the distribution of the signals over
time/space and as an advanced outlier detection mechanism. To do so, and
likewise in the case of univariate data, an ordering is required to classify
curves. Depth measures come in handy in this situation, as they induce a
center-outward ranking; they describe how deep a data point is compared to
the data cloud. Functional depths lay the foundation for the construction of
the functional boxplot: in what follows, we will make use of the Band Depths
(BD) and their Modified version (MBD) proposed by López-Pintado-Romo
in [22]. Recalling the structure of the univariate scalar boxplot, the concept
of box is formalized as the region containing the deepest 50% of the samples.
In this context, the α100% central region is given by:

Cα =

{
(t, z(t)) : min

l=1,...,dαNe
X(l)(t) ≤ z(t) ≤ max

r=1,...,dαNe
X(r)(t)

}
, (1)

where Xi(t), i = 1, . . . , N is the sample of curves evaluated in t ∈ I with I a
compact interval, and X(i) denotes the curve associated with the i-th largest
depth value relative to the dataset, so X(1) = argmaxX∈{X1,...,XN}MBD(X)
represents the median (i.e., the deepest and most central curve). According
to Equation (1), C0.5 gives an idea of the behavior of the clean data, as
we expect at least 50% of the population to be free of outliers. The fences
are computed by inflating C0.5 by a factor F > 1: a curve lying outside of
the fences for some t ∈ I is considered to be an outlier. In this paper, we
discuss several strategies to perform a data-driven adjustment for the optimal
selection of the inflation factor F .

To grasp the compelling necessity for this adjustment, refer to Figure 1:
the black curves are realizations of a stochastic process, whereas we generated
the red curve using a different model. The functional boxplot built without
performing the data-driven adjustment in Figure 2 fails to identify such a
curve as an outlying signal, as it is contained in the fences. Instead, when
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tuning F through one of the estimators introduced in this article, it can be
seen in Figure 3 that it is actually captured as an atypical observation. This
was achieved employing a tuned F ∗ = 1.1, smaller than the default F = 1.5.

Figure 1: Simulated data with mean process µ = sin(4πt) and inflation of 1% of the curves
by u ∼ U(1, 3).

Figure 2: Functional boxplot without performing the data-driven adjustment.
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Figure 3: Functional boxplot using simulation-based adjustment employing MRCD (see
Section 2.2.2).

2.1. Adjustment of the inflation factor F

We will hereafter present the scheme designed by Sun and Genton in
[32] for the adjustment of the inflation factor F , to which our proposals are
based upon. The idea is to control the probability of detecting no outliers,
which depends on F , to be (1− 2Φ(4z0.25)) 100 = 99.3% when the population
is indeed outliers-free. The proposed solution is based on simulation. For
a certain number of iterations, we generate a Gaussian population having
the same mean and variance of the underlying process in our original, yet
contaminated, data. We thus need an estimate of location and dispersion
from the original data, which, however, must not be influenced by the extreme
observations we want to spot. This is achieved through robust estimators of
location and scatter. As we will explore in the following, we want the choice
of the estimator to be well suited for the population under study. Given µ
and Σ, representing respectively the mean vector and the scatter matrix, we
sample N independent observations from a Gaussian populationN (µ,Σ) and
compute: depths, C0.50 - the 50% deepest region defined in Equation (1) -
and the adjusted F for the current population i, referred to as Fi. We repeat
this procedure Ntrials times. Then, the optimal value F ∗ is identified as the
mean value over all the Ntrials iterations. Finally, the functional boxplot can
be built for the original data with F ∗ as the inflation factor. In detail, such
procedure can be summarized in the listing comprising Algorithm 1.
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Algorithm 1 Adjusted Functional Boxplot

1: Compute scatter estimate Σ̂
2: Define the cost function to be minimized: c(F,X) = P (X /∈ F · C50%)−

2Φ (4z0.25)
3: for i ∈ 1, ..., Ntrials do
4: Generate Gaussian population X̃i

5: Fi = argminF c(F, X̃i)
6: end for
7: F ∗ =

∑Ntrials

i=1
Fi

Ntrials

8: Build the functional boxplot on original data using F ∗

The internal procedure of Algorithm 1 will be different according to the
type of Covariance estimator that will be employed: in the following sections
we will provide a taxonomy of the state-of-the-art estimators available in the
literature to effectively accomplish the purpose.

2.2. Multivariate Robust Covariance estimators

Sun and Genton [32] used in their version of the functional boxplot a
component-wise estimator, firstly proposed by Maronna and Zamar [24]. It
is the Orthogonalized Gnanadesikan-Kettenring (OGK) estimator, widely
used in spatial statistics and time series analysis. In the following, we will
examine some novel estimators of the same nature as OGK coming from mul-
tivariate analysis, while the subsequent section will feature the introduction
of functional operators.

2.2.1. Ledoit-Wolf

As a non-robust benchmark, we use the classical well-conditioned disper-
sion estimator, first introduced by Ledoit and Wolf in [19]. The rationale
is to find a linear combination Σ∗ of the identity matrix I and the sample
covariance S that ensures invertibility and does not amplify estimation er-
rors when inverted. As such, we expect it to be significantly influenced by
outlying observations.

2.2.2. Minimum Regularized Covariance Determinant (MRCD)

The first considered robust estimator is the Minimum Regularized Co-
variance Determinant (MRCD) proposed by Boudt et al. [3]. This method
searches for a subset H of all the observations in X such that the h = #{H}
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- subset of samples has the covariance matrix with the lowest possible de-
terminant. The subset H is chosen in the space H being the collection of
all the possible subsets of {1, ..., N} such that Σ̂H is of maximal rank. This
estimate of the scatter matrix minimizes the generalized variance in the data
by identifying the “least contaminated” h samples. Similarly to the shrink-
age operator introduced in Section 2.2.1, the MRCD approach uses a convex
combination of the sample covariance matrix of the h-subset, Σ̂H , with a
well-conditioned, symmetric and positive definite target matrix T , see Equa-
tion (2). The constant ρ takes values in the interval (0, 1) and is derived in a
data-driven way such that the condition number k (ratio between the largest
and smallest eigenvalue) of the final estimate Σ̂MRCD is at most k = 50. The
regularized covariance matrix Σ̂H

reg is then employed for the minimization
problem defined in Equation (3).

Σ̂H
reg = ρT + (1− ρ)Σ̂H , (2)

Σ̂MRCD = argmin
H∈H

(
det
(

Σ̂H
reg

))
. (3)

The resulting estimate is well-conditioned and does not need any transfor-
mation since it is positive and semi-definite by construction. The dimension
of the data subset h should be set so that N −h observations can potentially
be outliers. As we are dealing with functional data we assume that the tar-
get matrix T in the regularization exhibits an equicorrelation structure, as
suggested in [3]:

Rc = cJP + (1− c)IP , (4)

where JP is a matrix of ones, IP is the identity matrix of dimension P ,
and c is an average of the robust pairwise correlations. During the initial
exploration of the behavior of this estimator, we noticed that using as a
target the identity matrix would lead to very low values of the inflation
factor F, causing a swamping problem.

2.2.3. Kernel MRCD

A kernel version of MRCD (kMRCD) has been proposed in [30]. The main
contribution relies on abandoning the hypothesis of elliptically distributed
observations by using the kernel trick [12]: the estimate of the scatter matrix
is computed implicitly in a kernel-induced feature space. As such, the time
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complexity of the algorithm is no longer dependent on the number of vari-
ables but only on the sample size. Indeed, the P × P covariance matrix is
replaced by the N × N Gram matrix. Unfortunately, the kMRCD method-
ology allows for the recovery of the covariance structure only when a linear
kernel is used. Since the estimate of the scatter matrix in the original space
is required in Algorithm 1, we make use of this estimator to compare its
computatioanl burden with that of MRCD, whose runtime in contrast highly
depends on the dimensionality of the problem as the covariance matrix inver-
sion costs O(P 3). This could be a significant improvement in computational
complexity when treating functional data. As a supplementary contribution
to the present work we translated in R the Matlab implementation originally
provided by the authors in [30]: the source code is freely available at the
github.com/annachiara-rossi/kMRCD GitHub repository.

2.2.4. Adjustment procedure for multivariate estimators

In this setting, to simulate a Gaussian population that emulates the be-
havior of the uncontaminated samples during the adjustment procedure for
the functional boxplot outlined in Section 2.1, we propose to employ a ro-
bust estimation of the dispersion matrix. One of the estimators discussed in
Sections 2.2.1, 2.2.2, 2.2.3 can be used for this task. To this aim, we need
an estimate of the median, provided by the curve of maximal depth, and
the resulting covariance structure. In detail, the model considered for the
generation of univariate functional data reads as follows:

X(t) = m(t) + ε(t), t ∈ I = [a, b],

Cov(ε(s), ε(t)) = C(s, t), ∀s, t ∈ I,
(5)

where m(t) it the centerline and ε(t) is a centered Gaussian process with
covariance function C. Algorithm 2 extends Algorithm 1 for this specific
type of estimators, minimizing the already defined cost function.
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Algorithm 2 Adjustment using multivariate estimators

1: Compute scatter estimate Σ̂ exploiting any of Ledoit-Wolf, OGK, MRCD,
or kMRCD estimators

2: Compute Cholesky factor chol(Σ̂)
3: Compute centerline as the curve of maximum depth
4: for i ∈ 1, ..., Ntrials do
5: X̃i = n realizations of the process as per Equation (5) with m(t) esti-

mated by centerline and C estimated by Σ̂
6: Fi = argminF c(F, X̃i)
7: end for
8: F ∗ =

∑Ntrials

i=1
Fi

Ntrials

9: Build the functional boxplot on original data using F ∗

2.3. Functional Robust Covariance estimators

As mentioned earlier, due to the infinite-dimensional nature of functional
data, it is necessary to extend the approach described in Section 2.2 to meth-
ods that directly leverage the mathematical structure of the curves. A fre-
quently employed tool to deal with this complication is functional principal
component analysis [10], which allows for the reduction of the dimensionality
while retaining the most significant features in the process. As a straight-
forward extension of the vectorial case, functional principal directions are
the eigenfunctions of the covariance operator. Recall from previous sections
that our objective is to simulate Gaussian data, given location and scatter
estimates, which imitates the behavior of a clean population generated from
the original one. In this context, given a stochastic process X, the Karhunen-
Loève decomposition [21] provides a mechanism of data generation starting
from a known process:

X = µ+
∑∞

i=1

√
λiζiφi ζi ∼ N (0, 1), (6)

where {λi, φi}i=1,...,∞ are the eigencouples of the Covariance function, and
{λi}i=1,...,∞ are the eigenvalues in decreasing order of magnitude. This ex-
pansion can be truncated at L components thanks to the results from Boente
et al. [2]. Indeed, for a random variable with elliptical distribution, the linear
space spanned by the first L eigenfunctions provides the best L-dimensional
approximation of the process in terms of residual squared norm. These are
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associated with the L largest eigenvalues, capturing most of the data vari-
ability, while the remaining are vanishing as we add more dimensions. In
the following, we will assume that the stochastic process under study X
admits an expansion with finitely many terms. Given this formulation, we
solely need to obtain a sound estimate of the eigenspace of the population
Covariance function. Hence, the goodness of the simulation-based adjust-
ment depends upon theoretical results on the equivalence of the underlying
Covariance spectrum with that of the employed Covariance Operator. The
property that interests us is that the eigenfunctions {φi}i=1,...,L of the esti-
mator coincide with those of the sample Covariance matrix. Usually, we do
not have any guarantee on the eigenvalues {λi}i=1,...,L. Nevertheless, they
can be easily estimated as the variance of the data X projected over the
eigenfunctions {φi}i=1,...,L (see Section 2.3.4 for details). Theorems proving
such a result are available for all three functional estimators that we will be
subsequently described in the following subsections.

2.3.1. Spherical Covariance Operator

The first functional estimator considered is the Spatial Sign Covariance
Operator [9], also called Spherical Covariance Operator. The estimator cor-
responds to the sample covariance operator of the centered curves, via a
location functional µ̃, projected onto the unit sphere:

CS = E
[

(X − µ̃)⊗ (X − µ̃)

‖X − µ̃‖2

]
, (7)

where ⊗ denotes the tensor product in the Hilbert space F . The centerline
µ̃ generally identifies the deepest point in the data cloud, employing an ap-
propriate depth notion. Alternatively, the functional geometric median or
the spatial median can be used. The latter is obtained as the solution to the
problem

µ̃ = arg min
z∈F

E[‖X − z‖ − ‖X‖], E
[
X − µ̃
‖X − µ̃‖

]
= 0, (8)

i.e., it is the curve such that the mean distance from it to all the points of
the distribution of X is minimum. By centering our data X with respect to
the spatial median µ̃ and normalizing it, we obtain X̃ = (X − µ̃)/‖X − µ̃‖.
Hence, the estimation can be drawn by computing the sample covariance
of this new object X̃. As per Equation (8), its expected value is null by
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definition. Thus, the computation of the Covariance reduces to the expected
value given in Equation (7). Boente et al. in [9] provide proof for the
equivalence of the eigenfunctions of CS with those of the sample covariance.
Also, the order in the eigenvalues is preserved. Consequently, we can make
use of the spectrum of the Spatial Sign Covariance CS to generate new samples
through Equation (6). Further details concerning the computation of CS are
reported in Appendix A.

2.3.2. Median Covariation Operator

The next estimator considered for the robust estimation of the covari-
ance operator is the Median Covariation Estimator introduced by Kraus and
Panaretos [17]. It solves a more complex problem compared to the Spherical
Covariance to suggest a median-type estimator of scatter:

CρM = arg min
M∈HS

E [ρ (‖(X − µ)⊗ (X − µ)−M‖HS)− ρ (‖(X − µ)⊗ (X − µ)‖HS)] ,

(9)
where ρ is a convex function and HS refers to the space of Hilbert-Schmidt
operators over a space F , such as L2. Indeed, Equation (9) recalls the prob-
lem of the spatial median presented in Equation (8), with (X −µ)⊗ (X −µ)
in place of X. The idea relies on the fact that the sample covariance is a
location estimate for the quantity (X − µ)⊗ (X − µ), therefore we can gen-
eralize Equation (8) to get an estimate of the dispersion. See [17] for the
assumptions on the existence and uniqueness of the defined quantity. In the
following, we will employ ρ(u) = u and µ = µ̃ the spatial median as defined in
Equation (8). Since no closed-form solution is available for this formulation
of the problem, an iterative algorithm is employed: computational details
are deferred to Appendix A.

2.3.3. Kendall’s τ function

The last estimator taken into consideration is Kendall’s τ function in-
troduced by Zhong et al. in [36] for robust functional principal component
analysis of non-Gaussian longitudinal data. Their version of Kendall’s τ
comes from the intuition behind Kendall’s correlation coefficient [16] and the
spatial sign covariance function [1], [9] introduced in Section 2.3.1:

K(s, t) = E

[
{X(s)− X̃(s)}{X(t)− X̃(t)}

‖X − X̃‖2

]
, (10)
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where X̃ is an independent copy of X. We can notice that it has a math-
ematical formulation similar to that in Equation (7). The difference is in
the centering, which is not done by subtracting the spatial median µ̃ but
using a duplicate of the realization of the same process inspired by the idea
of correlation.

The equivalence of the eigenfunctions of Kendall’s τ function with those
of the sample covariance is proved in [36]. Even if we do not get an explicit
estimate of the covariance, with this method we can directly estimate the
eigenfunctions {φi}i=1,...,L from the implementation provided in [36].

2.3.4. Adjustment procedure for functional estimators

This framework is more complex compared to the one presented in Sec-
tion 2.2.1, as we aim at treating the functional dataset {X1, ..., XN} as a
collection of continuous functions and not as simple multivariate vectors.
That is, we aim at directly dealing with the object space without the need
to resort to the feature space. For this reason, we need to associate the dis-
crete observations with a geometry structure. This geometry defines a basis
{ϕi}i=1,...,∞, for example, Fourier or B-splines, over a functional space such
as L2, H1, etc. Hence, in case the user wants to build a functional boxplot
using a functional covariation operator as a robust scatter estimate for the
F adjustment procedure, the data needs to be at first projected over a lower
dimensional space, with fixed dimensionality L depending on the amount
of variability that we want to capture in the data. In our case, L = 10 is
deemed to be enough to retain a substantial proportion of variance. Data is
simulated using a truncated Karhunen-Loève generative model:

X = µ+
∑L

i=1

√
λiζiφi ζi ∼ N (0, 1), (11)

where {λi, φi}i=1,...,L are the first L eigencouples of the Covariance function.
New functional observations can be generated by sampling ζi ∼ N (0, 1). As
mentioned in Section 2.3, while the eigenfunctions coincide for all the estima-
tors defined in the previous sections, the eigenvalues must be approximated
as the dispersion of our data X projected over the space of the eigenfunctions
{φi}i=1,...,L. To do so, the robust estimator of scale Qn is used for its break-
down properties [29]. However, this requires the tuning of a distribution-
specific constant, which is not known since the original data does not satisfy
any particular assumption. Thanks to the property of location-scale invari-
ance of the Modified Band Depths [20], we can claim that translation and
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scale transformations of the quantities defined in Equation (11) do not in-
fluence the resulting depths. The α100% central region of X and its trans-
formed version X∗ =

√
λ1X + µ are related by Cα(X∗) =

√
λ1Cα (X) + µ,

hence PX∗ (X∗ ∈ FCα (X∗)) = PX (X ∈ FCα(X)). As a consequence, the
width of the fences is simply rescaled while the value of the inflation factor
F stays the same. It follows that we can rewrite Equation (11) subtracting
the mean process and dividing by the first eigenvalue as follows:

X∗ =
(X − µ)√

λ1

=
L∑
i=1

√
λi
λ1

ζiφi, ζi
i.i.d.∼ N (0, 1). (12)

Dividing by λ1 allows us to estimate the ratio λl/λ1 with Qn(φl)/Qn(φ1), thus
avoiding the tuning of the distribution-specific constant that theQn estimator
depends upon since it cancels out in the so-defined ratio. This is done at lines
6-12 of Algorithm 3, where the entire pipeline for the Adjustment procedure
for functional estimators is reported in pseudo-code.
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Algorithm 3 Adjustment using functional estimators

1: Set L
2: Define the geometry, given a basis {ϕj}j=1,...,L

3: Project multivariate data over the basis
4: Compute scatter estimate in the basis Σ̂ with Spherical, Median or

Kendall estimator
5: Estimate the eigenfunctions Φ̂ = [φ̂1, ..., φ̂L]
6: for l ∈ 1, ..., L do
7: for j ∈ 1, ..., N do
8: pl,j =

∏
φ̂l
Xj

9: end for
10: Compute robust estimate of variance of projected data: ql = Qn(pl)
11: ρl = ql/q1

12: end for
13: for i ∈ 1, ..., Ntrials do
14: for k ∈ 1, ..., n do
15: X̃i,k =

∑L
l=1 ρlτk,lφl with τk,l ∼ N (0, 1)

16: end for
17: Add geometry structure to the simulated data
18: Fi = argminF c(F, X̃i)
19: end for
20: F ∗ =

∑Ntrials

i=1
Fi

Ntrials

21: Build the functional boxplot on original data using F ∗

Given all the algorithms introduced above, we aim at validating their
performance in the tuning factor adjustment for the functional boxplot via
a simulation study to observe the behavior of the various estimators under
several contamination conditions.

3. Simulation study

This section is dedicated to the investigation of the empirical performance
of the estimators discussed in Section 2 for the tuning of F in the functional
boxplot. To understand how this can be affected by the presence of atypical
curves, we propose one driving simulation study on the most commonly ob-
served outlying behavior, that is amplitude outliers. All the simulations were
run in parallel on a computer cluster with 32 processors Intel Xeon E5-4610
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v2 @2.3GHz. This much computational power is needed specifically due to
Kendall’s τ function, whose implementation is particularly heavy in terms of
memory, as we will see when discussing the results of our study. For each
combination of the parameters below described B = 50 repetitions of the
simulated experiment have been considered: results are reported in the next
section.

3.1. Data generation and contamination

The experiment is carried out over samples in RN×P , where N is fixed
at 100 curves, while P assumes values in {200, 400}. This framework allows
us to infer conclusions in the small N, large P context, which is the stan-
dard in FDA. The data-generating process is based on the spectrum of the
Exponential Covariance matrix C(s, t) = αe−β|s−t|, with s, t ∈ I = [0, 1] and
α = 0.12, β = 0.4 leading to contained variability around the mean and high
autocorrelation (non-noisy data). The custom basis for the dimensionality
reduction to L < P is built upon its eigenfunctions, L is set to 10, and the
continuous space chosen is L2. The generating process is Gaussian, with the
covariance matrix having on its diagonal the eigenvalues and mean generating
process defined as µ = sin(4πt). The datasets are then contaminated by re-
placing a proportion of observations with outliers. The fraction of corrupted
data is selected to be 0% (clean population), 5%, 10%, 15%. We consider
data contamination of the type shown in Figure 4. Here, a proportion of
curves is inflated by multiplying the mean function coefficients by a random
number u ∼ U(2, 3). In detail, the data-generating mechanism for the clean
and outlying data are respectively defined as follows:

Xi(t) = sin(4πt) + εi(t), t ∈ [0, 1],

Xout
i (t) = sin(4πt)× u+ εi(t), u ∼ U(2, 3), t ∈ [0, 1].

(13)

with εi(t) denoting a centered Gaussian process with covariance function
C(s, t).
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Figure 4: Simulated data with mean process µ = sin(4πt) and inflation of 5% of the curves
by u ∼ U(2, 3)

3.2. Evaluation and discussion of results

In this subsection, we discuss the results obtained by running a simulation
study using the data-generating mechanism presented in Section 2.3.1. We
compute the False Positive Rate (FPR) and True Positive Rate (TPR, also
named Recall) as metrics for the evaluation of the methods performance. The
former is the fraction of cases that are wrongly flagged as outliers, among all
the genuine observations. The latter, instead, is the fraction of uncontami-
nated cases that are correctly identified as such, among those that actually
are. Ideally, we want to have TPR close to 1 and FPR close to 0. These
values are related to the tuned inflation factor F ∗: generally, the higher the
estimated F ∗, the higher the probability of missing an anomalous curve; the
smaller the F ∗, the higher the probability of observing a swamping effect.
As already been observed in the literature [32] and justified in Section 2, the
value F = 1.5 has been proved to be too large for functional data, which
present a high correlation over time and/or space. Therefore, we expect our
methods to end up with smaller values of the inflation factor, which will lead
to a higher probability of identifying atypical observations, paying a price in
terms of wrongly flagging some normal samples as to be outliers. Depending
on the requirements of the application at hand, one might prefer low Pre-
cision (if there are many false positives) to get a high Recall (if there are
very few false negatives), or vice versa. The first framework is very common
in healthcare applications, where medical doctors would prefer to run an
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additional health screening for some uncertain subjects, instead of wrongly
labeling a sick being as healthy.

For each combination of data dimensionality and outliers proportion, we
observe the results for the considered estimators. Notice that MRCD is in-
cluded in the cases α = 0.5 and α = 0.75 (see Section 2.2.2), to understand
how this hyper-parameter could influence the final tuning. Something similar
is done with OGK, for which we use both the Qn and the MAD scale esti-
mates. The situation in which the functional boxplot is built without making
use of any covariance estimator to tune the inflation factor F is referred in
the following as the “No adjustment” case. Also note that for the last robust
estimator introduced in Section 2.3, Kendall’s τ function, some bandwidth
hyperparameters are needed in the evaluation. The R package presented in
[36] selects them through generalized cross-validation (GCV). However, due
to running time issues, we set bwK = 0.045, bwmean = 0.03, which are the
optima found by GCV for a particular set of instances generated from the
process in Equation (13). We first look at the empirical distribution of F ∗

over the repeated trials. In Figure 5 we can notice that functional operators
behave similarly. Kendall’s τ function tends towards higher values of F for
higher outliers proportions, with respect to Median and Spherical. The cases
α = 0.5 and α = 0.75 does not seem to make a difference when employing
MRCD for the scatter estimate. Also, the different scale estimators in OGK,
Qn and MAD produce equivalent results. MRCD and kMRCD happen to
lead to F ∗ > 1.5 in the case of a clean population. Such behavior is un-
derstandable when no outliers are present, as the resulting fences will be as
wide as possible, leading to very few False Positives. kMRCD showcases the
same behavior also when the proportion of outlying curves in the popula-
tion increases, while MRCD tends to have smaller F ∗ values. Ledoit-Wolf
becomes more biased as the number of outliers grows since its estimate is
influenced by their presence. F ∗ values obtained by tuning the functional
boxplot via OGK and Ledoit-Wolf estimators are always below the default
value of 1.5. This behavior will lead to many False Positives, i.e., curves
wrongly flagged as outliers. Moreover, the OGK estimate becomes more un-
certain in the case of high dimensionality (P = 400) and high contamination
(outliers proportion: 0.15).
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Figure 5: Violin plots of the optimal F values tuned with the adjustment procedures in
Algorithms 2 and 3 using each one of the estimators investigated.

From these results, functional operators seem to have the most stable and
robust behavior when it comes to the identification of the optimal F ∗ value.

The True Positive rate, whose violin plots for varying proportions of out-
liers and data dimensionality are displayed in Figure 6, gives a satisfying
performance by the majority of the estimators. The same does not hold
true for kMRCD, whose distribution reveals some difficulty in flagging the
samples: many atypical observations are not identified as such. This is co-
herent with the high values of F ∗ showcased in Figure 5. Regarding the case
in which F ∗ is fixed to 1.5, we notice an increasing difficulty in correctly
identifying all outliers as their proportion increases, especially in the higher
dimensional case (lower panel), which justifies the need for an adjustment of
the inflation factor F adapted to the specific distribution of the data under
study.
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Figure 6: Violin plots of the TPR metric using each one of the estimators investigated.

In Figure 7, we display the False Positive rate. It ranges from 0 to a max-
imum of 0.3. It has an elongated distribution for the non-robust benchmark
Ledoit-Wolf estimator, as we would have expected considering the previous
plots. We can see that the currently employed estimator in the functional
boxplot, OGK, also presents a more dispersed distribution for any case with
respect to the newly presented ones, especially for P = 400. The kernel
version of MRCD (kMRCD) is the best-behaving one when monitoring the
FPR, but, as we have seen before, its performance is poor when it comes to
identifying the inflated samples.
As mentioned in Section 2.2.3, we are interested in assessing the perfor-
mance of the considered estimators in terms of computational efficiency and
scalability. This task is very hard to accomplish in an absolute sense, as
extensively discussed in [18], due to the inconsistencies encountered in dif-
ferent implementations of the same algorithm and/or the diverse levels of
optimization achieved for the methods. Consequently, we limit our attention
to the currently available versions of the algorithms in R for each of the esti-
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mators presented in Sections 2.2 and 2.3 and draw conclusions that are not
independent on the type of implementation and software used.

Figure 7: Violin plots of the FPR metric using each one of the estimators investigated.

Given the difference in scale in the empirical distribution of the compu-
tational time experienced in the simulations between Kendall’s τ function
and the remaining estimators, the computational time, graphically reported
in Figure 8, is in log-scale. It appears clear that the time required for the
adjustment of the inflation factor is comparable among all the estimators but
Kendall’s τ function. Indeed, to get the estimate of the eigenfunctions from
the latter, high computational power and resources are required, especially
when the dimension is high.

Some interesting differences can be highlighted. OGK is in any case the
slowest among all methods and is very influenced by the dimensionality of the
data. As we were expecting, kMRCD is faster than the non-kernelized version
since its computational complexity depends on N instead of P , despite the
additional computation due to the refinement step. This gap is more evident
in the high-dimensional case. Given that the target matrix employed in
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kMRCD does not take into account correlation over the horizontal axis, as
mentioned in Section 2.2.3, it is possible that extending the kernel version
to this framework could lead to improved results. Overall, the Spherical and
Median Covariation Operators are the most efficient, as they are the least
affected by the dimensionality of the data.

Figure 8: Boxplots of the Log-Computational time of all estimators to perform the ad-
justment in the different simulation settings.

To wrap up, in a scenario where the data is contaminated by amplitude
outliers functional operators seem to provide the right balance between iden-
tifying the true anomalous curves whilst not producing too many false posi-
tives. In particular, the Spherical and Median Covariation Estimators bring
similar performance in a satisfactory amount of time and resources, while
Kendall’s τ scalability seems to be heavily influenced by growth in dimen-
sionality. Other simulated scenarios that may be encountered in functional
outlier detection are reported in Appendix B.
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4. Application on real data

This section is devoted to the illustration of the methodologies introduced
in Section 2 on a real data example. The Electrocardiographic (ECG) data
set, available in the roahd CRAN package, was collected for the PROMETEO
(PROgetto sull’area Milanese Elettrocardiogrammi Teletrasferiti dall’Extra
Ospedaliero) project, aimed at spreading the intensive use of ECGs as a pre-
hospital diagnostic tool. The database comprehends eight leads I, II, V1, V2,
V3, V4, V5, and V6 for every statistical unit, each one describing the heart
dynamics of the patient. As our methods have been developed to handle
univariate data, the analysis will be led on one of them. A review of the
literature on the importance of the leads in ECG interpretation reveals no
clear predominance of one over the others (e.g., see [35]). We highlight that
the developed procedure is reproducible on any of the leads, and we report
the results employing the first one. The signals have been registered and
smoothed over an evenly spaced grid of 1024 time points at 1kHz. The reg-
istration landmark-based procedure, outlined in Ieva et al. [15], identifies as
landmarks those time points that can be associated with a specific biological
event.

Figure 9: ECG healthy data contamined with LBBB data

This allows us to separate amplitude variability from phase variability:
the duration of each ECG interval will not influence the final estimates. To
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mimic the outlier detection process, we randomly sampled N1 = 34 ECG
traces for healthy patients and N2 = 6 for subjects suffering from a cardiac
pathology called Left-Bundle-Branch-Block (LBBB), leading to a 15% con-
tamination in the resulting dataset. Thus, the total number of units N = 40
is far less than the dimension P = 1024. Figure 9 shows in black the physi-
ological signals and in red the curves for which Left-Bundle-Branch-Block is
diagnosed. Our objective is to detect pathological ECG traces. Within this
example, it is clearly of paramount importance to effectively identify patients
with the disease, thus accepting some False Positives. This means being able
to diagnose illness in more subjects, to further analyze the patient-specific
situation. To this aim, we applied each one of our proposals for tuning F
and obtained the results shown in table 1. Notice that the case in which no
adjustment is performed, displayed in Figure 10, is only able to capture 67%
of the actual outlying samples. The multivariate approaches presented in
Section 2.2 improve the TPR metric while suffering more on the FPR side.

No adjustment Ledoit-Wolf OGK Qn MRCD Spherical Median

TPR 0.67 0.833 0.833 0.833 1 1
FPR 0 0.147 0.147 0.205 0.235 0.294
Time [m] 0.005 0.605 4.163 1.986 12.900 12.750

Table 1: True Positive Rate, False Positive Rate and Computational time in minutes of
each estimator for the data at Figure 9.

The functional techniques seen in Section 2.3 lead to the complete recog-
nition of patients affected by LBBB. Figure 11 shows the functional boxplot
which results from our implementation employing the Spherical Covariance
Operator, which is the best performing to our aim, as it represents the best
trade-off between TPR and FPR. This procedure would allow for the quick
identification of the most concerning ECG leads and raise a warning for the
most alarming ones, thus allowing for more efficient diagnosis and treatment
of the condition. This means that, among the negative cases, 23% will un-
dergo a further health check even if they are not affected by the disease. At
any rate, atypical behavior in the ECG curve of healthy patients may be a
premonitory signal of an upcoming hearth-related pathology which is best to
submit to physicians and experts in the domain for further evaluation.
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Figure 10: Anomaly detection of ECG unhealthy signals without carrying out the adjust-
ment of the inflation factor F .

Figure 11: Anomaly detection of ECG unhealthy signals employing the Spherical Covari-
ance Operator for the simulation-based tuning of the inflation factor F .

The functional boxplots resulting from the usage of the other estimators
on the ECG data are reported in Appendix C.
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5. Conclusions and future developments

This paper has focused on the crucial challenge of detecting outliers
in functional data. Building upon the well-established functional boxplot
methodology, we have extended the simulation-based adjustment technique
initially proposed in [32] to enhance the capability of outlier detection. Par-
ticularly, we have concentrated on motivating the significance of performing
a distribution-free adjustment of the inflation factor F by repeatedly simu-
lating some datasets of Gaussian functional observations with the same mean
and covariance as the original dataset, but not influenced by the anomalous
observations that we want to spot. Making use of several robust estima-
tors of location and scatter we compared the performance of multivariate
procedures and functional operators for implementing the tuning process.
Through a comprehensive simulation study, we demonstrated the superior-
ity of our method over the original proposal. Lastly, a favorable application
in the healthcare field has cast light on the promising usefulness of such an
approach in the nonparametric inference for vital signs.

As possible direction for future research one can consider the exploration
of a variety of depth measures to set up a flexible procedure that behaves
differently depending on the type of outliers that need to be identified. An-
other possible development is the generalization of the proposed procedure to
the multivariate functional case. While functional boxplots for multivariate
curves have been recently introduced in the literature [7], [27], the gener-
alization of the tuning procedure to this framework remains an open issue.
Some proposals are currently being explored and they will be the object of
future studies.

Appendix A. Computational details for Spherical Covariance and
Median Covariation operators

Spherical Covariance Operator

The Spherical Covariance Operator can be implemented following the
approach in Algorithm 4. The function takes in input the functional data
already projected over L < P basis elements. The basis can be chosen by
the user over a space F defining the geometry of the data object. The Mass
Matrix or Gram Matrix M ∈ RL×L represents the projection matrix over the
space F , by means of the basis functions {ϕj}j=1,...,L. The element k, j of M
is the scalar product in the space F of the corresponding basis functions.
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Algorithm 4 Spherical Covariance

1: Input: Functional data {X1, ..., XN} represented in the basis with L com-
ponents

2: Compute median µ̃ ∈ RL

3: for i ∈ 1, ..., N do
4: Standardize wrt median according to the geometry [M ]k,j = 〈ϕk, ϕj〉F

X̃i = (Xi − µ̃)/
√

(Xi − µ̃)TM(Xi − µ̃)
5: end for
6: Compute Sample Covariance CS = Cov(X̃)

Median Covariation Operator
The Median Covariation Operator can be implemented by means of the Av-
eraged Stochastic Gradient (ASG) optimization procedure [4]. It requires a
sequence of learning weights γn = c/(max{n − 1, 1})α, decreasing with the
number of iterations n, to allow faster convergence to the optimum. The
first equation in (A.1) defines the stochastic gradient step since the direction
on the right-hand side is an approximation of the gradient of the functional
to be minimized in Equation (9), with respect to M. We will call Mn the
value of M at iteration n. At each iteration, we average the newly updated
value Mn+1 with the previous mean M̄n. This is an efficient modification
that removes the need to store the value Mn+1 at each step.

Mn+1 = Mn + γn
(Xn+1 − µ̃) (Xn+1 − µ̃)T −Mn∥∥∥(Xn+1 − µ̃) (Xn+1 − µ̃)T −Mn

∥∥∥
F

,

M̄n+1 = M̄n −
1

n+ 1

(
M̄n −Mn+1

) (A.1)

The pseudo-code to compute CM following this reasoning can be found in
Algorithm 5. Differently from the initially developed algorithm described in
[17], our proposal makes use of a non-negative modification for the update
step at line 7 in Algorithm 5, as suggested by Cardot et al. in [5]. As
explained in the latter, Mn+1 could not be positive semi-definite when the

ratio γn/
∥∥∥(Xn+1 − µ̃) (Xn+1 − µ̃)T −Mn

∥∥∥
F
≤ 1. To adjust for this case,

we simply truncate the learning rate at 1 when the ratio would actually be
smaller.

Some trials have been conducted on a set of functional data with known
covariance structure, to highlight the contrast between these two approaches.
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Figure A.12 proves that the non-negative modification brings a consistent
improvement in the approximation.

(a) Sample Covariance. (b) Median Covariation. (c) Median Covariation with
non-negative modification.

Figure A.12: Differences of estimation of the Covariance matrix with and without non-
negative adjustment.

As before, the function takes in input the data already in the reduced
dimensionality L. Some default values for the hyperparameters are suggested
in [17]. Notice that in this case, the norm is in the Frobenius sense: this is
different from a row-wise norm as it is computed as the sum of the norms
over rows. Also for this estimator, proof of the correspondence with the
eigenfunctions of the underlying covariance structure is given in [5].

Algorithm 5 Median Covariance

1: Set α ∈ (0.5, 1) and c > 0, default α = 3/4, c = 2
2: Compute median µ̃ ∈ RL

3: Initialize M = 0,M = 0 ∈ RL×L

4: for i ∈ 1, ..., N do
5: Compute γi = c/(max{i− 1, 1})α
6: Compute T = (Xi − µ̃)T (Xi − µ̃)
7: Average Stochastic Gradient step:

M = M + (T −M) min(1, γi
‖T−M‖F

)

8: M̄ = M̄ − (M̄ −M)/i
9: end for

10: CM = M̄

Appendix B. Further simulation settings

In this appendix, we account for more contamination setups to better
explore the capabilities of the proposed methods and understand their limi-
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tations. In the taxonomy study by Hubert at el. [13], anomalous functional
observations are categorized into isolated, amplitude, shift and shape out-
liers. Isolated outliers contain a spike or peak in a limited interval over the
domain. The remaining ones are designated as persistent outliers since the
atypical behavior is all over the domain. Shift outliers are generated from
the same process assumed for the genuine curves, but are moved away from
the bulk of the data. They are of no interest in our application since they
can be easily treated by means of registration. Shape outliers, generally
speaking, are curves presenting a different structure from the majority of the
samples. Lastly, amplitude outliers, have already been in-depth discussed
in Section 3.1 as they are the main focus of the present article. Hereafter
we will briefly comment on the impact that shape outliers (Figure B.13),
amplitude outliers of various intensities (Figure B.14), and isolated outliers
(Figure B.16) produce on the devised procedure.

Shape outliers can be constructed by defining a new mean trend, e.g.,
µ̃ = cos(4πt), for the outlying curves:

Xi(t) = sin(4πt) + εi(t), t ∈ [0, 1],

Xout
i (t) = cos(4πt) + εi(t), t ∈ [0, 1].

(B.1)

Figure B.13 displays the resulting behavior. This case study led to very
similar outcomes to those discussed in Section 3.2 for amplitude outliers.

Figure B.13: Simulated data with mean process µ = sin(4πt) and outlying observations
coming from µ̃ = cos(4πt). The covariance structure is the same for both genuine and
anomalous curves.

For defining the remaining two contamination settings, we will make use
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of the library fdaoutlier introduced by Ojo et al. in [26] where several
techniques for detecting functional outliers are presented. The authors pro-
vide the implementation of some convenience functions for the generation of
contaminated datasets of functional data, which have been useful for testing
the performance of our methods under diverse scenarios. Figure B.14 shows
the case in which our data is contaminated by amplitude outliers of different
intensities.

Figure B.14: Sample of Amplitude outliers of different intensities from fdaoutlier R
package.

In details, the data generating mechanism is given as follows:

Xi(t) = a1i sin π + a2i cos π + ei(t),

Xout
i (t) = (b1i sin π + b2i cos π) (1− ui) + (c1i sin π + c2i cos π)ui + ei(t),

(B.2)
with t ∈ [0, 1], a1i, a2i following a Uniform distribution over an inter-

val [a1, a2], b1i, b2i following a Uniform distribution over an interval [b1, b2],
and c1i, c2i following a Uniform distribution over an interval [c1, c2]. In the
considered case, [a1, a2] = (3, 8), [b1, b2] = (1.5, 2.5), and [c1, c2] = (9, 10.5).
Instead, ui follows the Bernoulli distribution with p = 0.5. The covariance
structure of ei(t) is of the same type as previously defined in Section 3.1, with
α = 1, β = 1. The outcome of this analysis is summarized in Figure B.15.
We can observe the trade-off between TPR and FPR for each estimator,
represented in different colors. The size of the dots is proportional to the
uncertainty on the FPR metric. Focusing on the panels where there is a
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non-zero percentage of contamination in the data, it is clear that not per-
forming an adjustment will never lead to the identification of the atypical
observations (notice the very small and bright yellow dot on the bottom-left
of each plot). The non-robust Ledoit-Wolf estimator has the same tendency
as in the other scenarios, considering many samples as outlying thus having
both high TPR and FPR. MRCD seems to be the best compromise between
identifying outliers whilst not overestimating their presence in the dataset.
Indeed, all the other estimators struggle in identifying anomalous curves, as
they lead to higher values of the inflation factor F .

Figure B.15: Representation of True Positive Rate VS False Positive Rate average results
for simulations run from Equation (B.2).

The last analysis is carried out employing magnitude-isolated outliers.
The contamination process reads as follows

Xi(t) = µt+ ei(t),

Xout
i (t) = µt+ qkiITi≤t≤Ti+l + ei(t),

(B.3)

with t ∈ [0, 1], ki ∈ {−1, 1} and P (ki = −1) = P (ki = 1) = 0.5, while
q = 8 defines the height of the peak. The constant l is set to 0.05 and
defines the proportion of the interval over which the observation deviates
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from the majority of observations in the sample. The covariance structure
of ei(t) is still the same as formerly described. An example of the so-devised
data-generating process is graphically displayed in Figure B.16.

Figure B.16: Sample of magnitude isolated outliers from fdaoutlier R package.

This study led to unexpected results. Since these samples have a no-
ticeable anomalous behavior, we were expecting even the simplest of the
proposed methods to effectively identify the majority of them. Surprisingly,
no matter the adjustment procedure implemented, we were not able to flag
all outlying observations as such, and also many false positives arose. Due to
this unforeseen outcome, we carried out a deeper examination of the depths
used in the functional boxplot, which turned out to be the cause of the some-
what unexpected issue. In detail, this result is coherent with the definition
of Modified Band Depth and their interpretation: the normality of a sample
is judged based on the amount of time spent inside the band defined by all
combinations of other two curves. It is thus expected that curves showcasing
an outlying behavior only for a limited proportion of the time domain are not
effectively identified as such. A more appropriate definition of depth could
be employed, as the Modal Depth introduced by Cuevas et al. in [6]. The
idea is that the depth of a curve is computed as a function of the number
of curves in its neighborhood. Figure B.17 shows one realization of the con-
tamination process outlined above, with a grayscale palette going from very
light (curves of low depth) to very dark (curves of high depth).
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(a) MBD grayscale plot. (b) Modal Depth grayscale plot.

Figure B.17: Comparison of depths measured by MBD (a) and Modal Depth (b).

It is clear from Figure B.17(b) that the Modal depth can recognize all
isolated outliers as those which deviate significantly from the general trend,
even if they spend most of their time inside the boundaries of the mass of
functions, while MBD struggles in this task. Indeed, some of the spikes in
Figure B.17(a) are marked in darker colors.

(a) Functional boxplot using Modified Band Depth. (b) Functional boxplot using Modal Depth.

Figure B.18: Non-adjusted functional boxplot comparison by using: MBD (a) and Modal
Depth (b).

The functional boxplot implementation allows for the employment of user-
defined Depth functions. Two functional boxplots which employ respectively
MBD and Mode depths are showcased in Figure B.18 to support our argu-
ment. This analysis is out of the scope of the present article but classifies as
a possible further development of the adjusted functional boxplot.
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Appendix C. Additional figures

Figure C.19: Anomaly detection of ECG unhealthy signals employing the Ledoit-Wolf
estimator for the simulation-based tuning of the inflation factor F .

Figure C.20: Anomaly detection of ECG unhealthy signals employing the OGK Covariance
estimator for the simulation-based tuning of the inflation factor F .
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Figure C.21: Anomaly detection of ECG unhealthy signals employing the MRCD Covari-
ance estimator for the simulation-based tuning of the inflation factor F .

Figure C.22: Anomaly detection of ECG unhealthy signals employing the Median Covari-
ation Operator for the simulation-based tuning of the inflation factor F .
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[21] Loève, M., 1978. Probability theory. 2. Number 46 in Graduate texts in
mathematics. 4th ed ed., Springer, New York, NY Heidelberg.
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