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Abstract

We numerically study the bias and the mean square error of the esti-
mator in Spatial Regression with Partial Differential Equation (SR-PDE)
regularization. SR-PDE is a novel smoothing technique for data distributed
over two-dimensional domains, which allows to incorporate prior informa-
tion formalized in term of a partial differential equation. This technique
also enables an accurate estimation when the shape of the domain is com-
plex and it strongly influences the phenomenon under study.

1 Introduction

Spatial functional statistic is a field of research of strong interest in recent years,
due to the fact that spatially dependent functional data are increasingly available
in many applied fields, such as biology, life science, environmental science and
engineering (see [7, 17] for a review on the recent proposed methods).

In this work, we numerically investigate the asymptotic properties of the es-
timator in Spatial Regression with Partial Differential Equation regularization
(SR-PDE) introduced in [18, 20, 3]. SR-PDE is a penalized regression method,
that includes the penalty term the misfit from a linear Partial Differential Equa-
tion (PDE). This allow a great flexibility of the method. In particular, the PDE
in the regularizing term enables the modelling of anisotropy and non-stationarity
of the phenomenon under study. Moreover, thanks to the use of the finite ele-
ment method, it allows to consider domain of complex shape, such as domains
with strong concavities, that affect the phenomenon under study, and to im-
pose boundary conditions. Smoothing is a fundamental step in most analyses
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involving functional data [19, 10, 14]. In this respect, the considered SR-PDE
method provides a versatile tool for the smoothing of functional data observed
over two-dimensional domains.

Other regularized least-square smoothers have been proposed that can deal
with complex domains, such as bivariate splines over triangulations [15, 11, 8, 16],
soap film smoothing [24], and low-rank thin-plate spline approximations [23, 21].
All these methods have isotropic regularizing terms. Among the methods men-
tioned above, the only one that can comply with boundary conditions is soap
film smoothing. The asymptotic properties of bivariate splines over triangula-
tions are investigated in [16]. To the best of our knowledge, no results on large
sample properties is available for any of the other methods.

The study of the asymptotic properties of classical penalized regression es-
timators is a well established literature that dates back to the 80s (see, e.g.,
[9] and references therein). The arguments used to prove the study the bias
and the MSE of thin-plate-splines and of smoothing splines [4, 5, 6, 12, 13],
however, exploit the existence of an explicit closed form of the Green functions
of the differential operator in the regularizing term. Due to the more complex
penalty considered by SR-PDE, and moreover, due to the presence of boundary
conditions which enable to deal with domains of complex shape, a closed form
for the Green functions of the differential operator in the regularizing term is
not available for SR-PDE. In addition, as already mentioned, the estimation
problem is solved by means of finite elements, with a mixed formulation. This
is very convenient from a computational point of view, but makes the analysis
of the asymptotic properties much more involved. In [2] a first attempt to study
the bias of the infinite dimensional estimator with respect to the smoothing pa-
rameter is presented, while the finite element estimator is studied letting the
discretization becomes more and more fine, but fixing the number of observa-
tions.

In this work, instead, we want to study the asymptotic behavior of the es-
timator when the number of observations increases to infinity. Next section
presents the estimator, while the last section reports some simulation studies
that investigate the rates for the bias and the mean square error of the estima-
tor.

2 Spatial Regression with PDE penalization

Let Ω ⊂ R2 a bounded domain, with boundary ∂Ω ∈ C2 or polygonal. Consider
n observations zi ∈ R, for i = 1, . . . , n, located at points pi = (xi, yi) ∈ Ω.
Assume that:

zi = f0(pi) + εi

where f0 : Ω→ R is the field we wish to estimate, and εi are independent errors
with zero mean and finite variance σ2.
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Denote by H2(Ω) the Sobolev space of functions in L2(Ω) with derivatives up
to the 2-th order in L2(Ω), and let Vα the space H2 with Dirichlet or Neumann
boundary conditions, that is

Vα = V dir
α = {f ∈ H2(Ω) : f = α on ∂Ω}

or

Vα = V neu
α = {f ∈ H2(Ω) :

∂f

∂ν
= α on ∂Ω}

where ν denotes the normal versor to the boundary ∂Ω, and α is the value
imposed on the boundary. SR-PDE solves the following estimation problem:

f̂ = argmin
f∈Vα

1

n

n∑
i=1

(f(pi)− zi)2 + λn

∫
Ω

(Lf − u)2 (1)

where
L(p)f = −div(K(p)∇f) + b(p) · ∇f + c(p)f

is a second order linear elliptic operator and the PDE Lf = u partially describes
the phenomenon under study. The smoothing parameter λn > 0 controls the
relative weight of the two terms in the functional in (1): a data fidelity term,
given by the sum of square errors, and a model fidelity term, the differential
regularization, defined as the L2(Ω)-norm of the misfit with respect to the PDE.
We explicitly highlight the dependence of the smoothing parameter with respect
to n, since as the number of data locations increases less regularization is needed.
We thus expect to let λn go to zero as n goes to infinity.

The SR-PDE estimator defined in (1) cannot be computed analytically, we
thus have to compute an approximated solution. Figure 1 shows the discretiza-
tion process. We first introduce a triangulation of the domain Ω and then we
define a finite element basis over the triangulation. Each finite element basis is a
piecewise linear function over the triangulation, which take value one at a node
of the triangulation and zero at all the other nodes. We approximate (1) in the
finite element space, and in particular we obtain an approximate solution of the
problem solving a linear system. For an accurate description of the discretization
see [3].

In this work we restrict our attention to the special case in which the finite
element basis is linear (i.e. each basis is a piecewise linear function) and the
triangulation is such that the vertices of the triangles are in correspondence of
the data locations pi. This is a standard setting in many applications.

3 Numerical study of asymptotic properties

As shown in [22], the best rate of convergence for general penalized regression
estimators over a 2-dimensional domain is

MSE ∼ n−
p
p+1
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Ω
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Figure 1: The discretization process. Starting from the original domain (top,
left), a polygonal approximation is given and a triangulation is defined (top,
right). The linear finite element basis (bottom, right) is introduced over the
triangulation and a piecewise linear approximation (bottom, left) of the function
of interest is computed.

and is achieved choosing

λn ∼ n−
p

2(p+1)

where p is the number of existing derivatives of the function f0 that we want
to estimate. Since the estimator of SR-PDE is searched in the space H2(Ω), in
our simulations we set p = 2 and let λn decrease as n−1/3. We thus expect to
observe a rate of convergence for the bias of the estimator of order n−1/3 and
for the MSE of order n−2/3.

We consider four different simulation settings that are characterized by dif-
ferent boundary conditions (b.c.): Dirichlet exact b.c., Dirichlet wrong b.c.,
Neumann exact b.c. and Neumann wrong b.c.. In this way, we can also explore
the effect of different boundary conditions on the rate of decay of the error. Ex-
act b.c. corresponds to a complete knowledge of α, that is of the phenomenon at
the boundary, while wrong b.c. corresponds to no-knowledge of the behavior at
the boundary. The error is computed in the discrete norm on the data locations.
We use the same spatial domain and the same test function considered in the
first chapter of [1], where the convergence is studied in the case of exact Dirichlet
boundary conditions.

Figures 2 and 3 show the bias of the SR-PDE estimator with respect to the
number of observations n in case of Dirichlet and Neumann boundary condi-
tions respectively. To compute the bias the method is applied to the exact data,
without adding any noise at the evaluations. We can observe that both in the
Dirichlet and Neumann case the expected rate of convergence is achieved in case
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Figure 2: Test functions without noise; exact and wrong Dirichlet boundary
conditions. Convergence rates of the bias of the finite element estimator with
respect to the number of observations n, with λn = n−2/3.

of exact boundary conditions. The rate on decay of the bias is strongly influ-
enced by wrong Dirichlet boundary conditions, as we can observe from Figure
2 the error is practically non decreasing for large values of n. Wrong Neumann
boundary conditions still affect the rate of decay of the bias, however, as we can
observe from Figure 3, the bias is still decreasing for large values of n.

Figures 4 and 5 show the MSE of the SR-PDE estimator with respect to the
number of observations n in case of Dirichlet and Neumann boundary conditions
respectively. To compute the MSE a gaussian uncorrelated noise is added to the
exact data. As for the bias, we observe that wrong Dirichlet boundary conditions
strongly affect the performance of the estimator. The expected rate is achieved
in the exact Dirichlet and in the wrong Neumann case. In the exact Neumann
case the rate of convergence seems to be faster than expected, this may be due
to the fact that, even if the estimator is searched in the space H2(Ω), the true
f0 has more than two derivatives.
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Figure 3: Test functions without noise; exact and wrong Neumann boundary
conditions. Convergence rates of the bias of the finite element estimator with
respect to the number of observations n, with λn = n−2/3.
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Figure 4: Data with noise; exact and wrong Dirichlet boundary conditions.
Convergence rates of the MSE of the finite element estimator with respect to
the number of observations n, with λn = n−2/3.
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Figure 5: Data with noise; exact and wrong Neumann boundary conditions.
Convergence rates of the MSE of the finite element estimator with respect to
the number of observations n, with λn = n−2/3.

4 Future directions

We have numerically investigated the rate of decay of the bias and the MSE
of the SR-PDE estimator, showing that the optimal rate of convergence can be
achieved when Dirichlet or Neumann exact boundary conditions are enforced.
We also have shown that wrong Neumann boundary conditions affect the rate
of decay of the error, that however continue to decay for large values of n.
The empirical results displayed in this work support the consistency of SR-PDE
estimator. We are currently working on proving the consistency theoretically.

We have here considered a standard choice of the discretization of the domain,
with a finite element basis for each data location. However, the SR-PDE does
not impose this restriction. An interesting future development is the study of
the rate of convergence when the finite element basis is not constrained to the
data locations, in order to have a finer or coarser triangulation of the domain,
that may not directly be linked to the number of observations.
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