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Abstract

In this paper we address the numerical approximation of linear
fourth-order elliptic problems on polygonal meshes. In particular, we
present a novel nonconforming virtual element discretization of arbi-
trary order of accuracy for biharmonic problems. The approximation
space is made of possibly discontinuous functions, thus giving rise to
the fully nonconforming virtual element method. We derive optimal
error estimates in a suitable (broken) energy norm and present numer-
ical results to assess the validity of the theoretical estimates.
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1 Introduction

In recent years the study of numerical methods for the approximation of
partial differential equations on polygonal and polyhedral meshes has flour-
ished at exponential rate (see, e.g., the special issues of References [12, 16]
for a recent overview of the different methodologies). Among the different
proposed methodologies, the Virtual Element Method (VEM), due to its
flexibility in dealing with a wide variety of differential problems, has po-
larized an increasing research activity. VEM has been introduced in the
seminal paper [5] and can be seen as an evolution of the Mimetic Finite
Difference method, see, e.g., References [13, 33] for a detailed description.
Since then, the VEM has been proposed to address an increasing number
of different problems: general elliptic problems [9, 17], linear and nonlinear
elasticity [6, 14, 29], plate bending [23, 27], Cahn-Hilliard [3], Stokes [2, 15],
Helmholtz [36], parabolic [37], Steklov eigenvalue [34], elliptic eigenvalue [30]
and discrete fracture networks [18]. Moreover, several different variants
of the VEM have been developed and analysed: mixed [8, 21], discontinu-
ous [24], H(div) and H(curl)-conforming [7], hp [11], serendipity [10] and
nonconforming VEM. This latter formulation has been first analyzed for el-
liptic problems [4,26] and subsequently extended to the Stokes problem [25].
Also, very recently, an approximation method for plate bending problems
has been analyzed [38], which is based on a globally C0-nonconforming vir-
tual element space.

In this work we present the fully nonconforming virtual element method
for the approximation of biharmonic problems. Our method works on un-
structured polygonal meshes, provides arbitrary approximation order and
does not require any global C0 regularity for the numerical solution. The
numerical approximation of biharmonic problems with nonconforming finite
elements on triangular meshes has a very long tradition and it is beyond the
scope of this introduction to provide a detailed account of it (see, e.g., the
classical book [28] for a short overview). However, it is worth mentioning
that as a by product of the results of this paper we obtain, on triangular
meshes, a family of novel nonconforming finite elements of arbitrary order
that are not continuous. Indeed, for the lowest order our nonconforming
virtual element method on simplicial meshes reduces to the classical Mor-
ley element [35], while for higher-order polynomial approximation degrees it
gives rise to a new family of nonconforming finite elements.

The outline of the paper is as follows. In Section 2 we recall the con-
tinuous problem. In Section 3 we introduce our novel, arbitrary order, non-
conforming virtual element discretization for the biharmonic problem. In
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Section 4 we derive the optimal error estimate in a broken energy norm. In
Section 5 we numerically assess the validity of the theoretical estimate and,
finally, in Section 6 we draw the conclusions.

1.1 Notation

Throughout the paper we shall use the standard notation of the Sobolev
spaces Hm(D) for a nonnegative integer m and an open bounded domain
D. The m-th seminorm of the function v will be defined by

|v|m,D =
∑
|α|=m

∥∥∥∥ ∂|α|v

∂α1
x1 ∂

α2
x2

∥∥∥∥2

0,D
,

where ‖ · ‖20,D stands for the L2(D) norm and we set |α| = α1 + α2 for the
nonnegative multi-index α = (α1, α2). For any integer m ≥ 0, Pm(D) is the
classical space of polynomials of total degree up to m defined on D. More-
over, n = (n1, n2) is the outward unit normal vector to ∂D, the boundary of
D, and t = (t1, t2) the unit tangent vector in the counterclockwise orienta-
tion of the boundary. To ease the notation, we may use u,i to indicate the
first order derivative along the i-th direction, and, accordingly, u,n and u,t
for the normal and tangential derivatives. Whenever convenient, we shall
also use the notation ∂nu and ∂tu instead of u,n and u,t. Moreover, we
may denote high-order derivatives by repeating the index subscripts, e.g.,
u,ij = ∂2u/∂xi∂xj , and, likewise, u,nn, u,tt, u,nnt, etc, for multiple deriva-
tives in the normal and tangential directions. We also use the summation
convention of repeated indexes (Einstein’s convention), so that

u,ijv,ij =

2∑
ij=1

∂2u

∂xi∂xj

∂2v

∂xi∂xj
.

Finally, the notation A . B will signify that A ≤ cB for some positive
constant c independent of the discretization parameters.

2 The continuous problem

Let Ω ⊂ R2 be a convex polygonal domain occupied by the plate with
boundary Γ and let f ∈ L2(Ω) be a transversal load acting on the plate.
According to the Kirchoff-Love model for thin plates [31] and assuming that
the plate is clamped all over the boundary, the transversal displacement u
is solution to the following problem

D∆2u = f in Ω (1a)

u = 0 on Γ (1b)

∂nu = 0 on Γ (1c)
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where D = Et3

12(1−ν2)
is the bending rigidity, t being the thickness, E the

Young modulus, and ν the Poisson’s ratio.
Consider the functional space V =

{
v ∈ H2(Ω) : v = ∂nv = 0 on Γ

}
and

denote by 〈·, ·〉 the duality pairing between V and its dual V ∗.
The variational formulation of (1) reads as: Find u ∈ V such that

a(u, v) = 〈f, v〉 ∀v ∈ V, (2)

where

a(u, v) = D

∫
Ω

(
ν∆u∆v + (1− ν)u,ijv,ij

)
dx and 〈f, v〉 =

∫
Ω
fvdx. (3)

Setting ‖ · ‖V = | · |2,Ω and employing the boundary conditions and
Poincaré inequality, we can prove that ‖ · ‖V is a norm on V . Moreover, it
holds that

a(v, v) & ‖v‖2V ∀v ∈ V (4a)

|a(u, v)| . ‖u‖V ‖v‖V ∀u, v ∈ V. (4b)

Hence, there exists a unique solution u ∈ V to (2) (see, e.g., [19]).

2.1 Preliminaries

In this section, we collect some useful definitions that will be employed in
the rest of the paper. Let σij(u) = λ(u,11 + u,22)δij + µu,ij with Lamé
parameters λ = Dν, µ = D(1− ν). We set

Mnn(u) = σij(u)ninj , Mnt(u) = σij(u)nitj , T (u) = σij,j(u)ni+Mnt,t(u),
(5)

(we recall the summation notation of repeated indexes) and observe that

Mnn(u) = ∆u− (1− ν)u,tt = ν∆u+ (1− ν)u,nn,

Mnt(u) = u,nt,

T (u) = ∂n(∆u) + (1− ν)u,ntt.

(6)

Moreover, let K ⊂ R2 be a polygonal domain and set

aK(u, v) = D

∫
K

(
ν∆u∆v + (1− ν)u,ijv,ij

)
dx.

Integrating by parts and employing (5) and (6) yield the following useful
identities
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aK(u, v) = D

{∫
K

∆2uvdx+

∫
∂K

(
∆u− (1− ν)u,tt

)
v,nds

−
∫
∂K

(
∂n(∆u)v − (1− ν)u,ntv,t

)
ds

}

= D

{∫
K

∆2uvdx+

∫
∂K

Mnn(u)∂nv ds

−
∫
∂K

T (u)vds−
∑
e∈∂K

(Mnt(u), vn∂e)∂e

}
(7)

where ∂e is the boundary of edge e ⊆ ∂K and n∂e is the outwards normal
“vector” to ∂e. For every edge e with end points v1 and v2 the boundary
∂e is the set {v1, v2}, and, depending on the chosen edge orientation, n∂e at
the end points is equal to +1 or −1.

3 Nonconforming virtual element discretization

The nonconforming virtual element approximation of the variational prob-
lem (1) reads as: Find uh ∈ Vh,` such that

ah(uh, vh) = 〈fh, vh〉 ∀vh ∈ Vh,`, (8)

where Vh,` is the nonconforming virtual element space of order ` that approx-
imates the functional space V , and ah(·, ·) and 〈fh, ·〉 are the nonconforming
virtual element bilinear form and load term that approximate a(·, ·) and 〈f, ·〉
in (2), respectively. The rest of this section is devoted to the construction
of these quantities.

3.1 Technicalities

Let {Th}h be a sequence of decompositions (meshes) of Ω into non-overlapping
polygons K. Each mesh Th is labeled by the mesh size parameter h, which
will be defined below, and satisfies a few regularity assumptions that are
necessary to prove the convergence of the method and derive an estimate of
the approximation error. These regularity assumptions are introduced and
discussed in Section 4. Let Eh be the set of edges in Th such that Eh = E ih∪EΓ

h ,
where E ih and EΓ

h are the set of interior and boundary edges, respectively.
Similarly, we denote by Vh = V ih∪VΓ

h the set of vertices in Th, where V ih and
VΓ
h are the sets of interior and boundary vertices, respectively. Accordingly,
VKh is the set of vertices of K. Moreover, |K| and |e| denotes the area of
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cell K and the length of edge e, ∂K is the boundary of K, hK is the diam-
eter of K and the mesh size parameter is defined as h = maxK∈Th hK . We
introduce the broken Sobolev space for any integer number s > 0

Hs(Th) = ΠK∈ThH
s(K) =

{
v ∈ L2(Ω) : v|K ∈ Hs(K) for any K ∈ Th

}
and endow it with the broken Hs-seminorm |v|2s,h =

∑
K∈Th |v|

2
s,K .

We denote the traces of v on e ⊂ ∂K+∩∂K− from the interior of K± by
v±, respectively. Then, we define the jump of v on the interior edge e ∈ E ih
by [v] = v+ − v− and on the boundary edge e ∈ EΓ

h by [v] = v|e.
For future use, we also introduce the nonconforming space H2,nc(Th) ⊂

H2(Th) defined as follows

H2,nc(Th) =

{
v ∈ H2(Th) : v continuous at internal vertexes, vh(vi) = 0 ∀vi ∈ VΓ

h∫
e
[∂nv]ds = 0 ∀e ∈ Eh

}
.

We next prove the following result.

Lemma 3.1 | · |2,h is a norm on both V and H2,nc(Th).

Proof. Employing [20, Corollary 4.2] and [20, (5.2)] (with Φ(v) chosen as
in [20, Example 2.6]) we can prove that

|v|1,h . |v|2,h ∀v ∈ H2,nc(Th)

which implies that |v|2,h is a norm on H2,nc(Th). �

3.2 Local and global nonconforming virtual element space

In this section, we introduce the local and global nonconforming virtual el-
ement spaces.

For ` ≥ 2, the local virtual element space is defined as follows:

V K
h,` =

{
vh ∈ H2(K) : ∆2vh ∈ P`−4(K),Mnn(vh)|e ∈ P`−2(e),

T (vh) ∈ P`−3(e) ∀e ∈ ∂K
}

with the usual convention that P−1(K) = P−2(K) = {0}. The solution of
the biharmonic problem in the definition of V K

h,` is uniquely determined up
to a linear function that can be filtered out by fixing the value at three
non-aligned vertexes of K.

Remark 3.1 By construction, it holds that P`(K) ⊂ V K
h,`.

We choose the degrees of freedom of V K
h,` as follows:
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` = 2 ` = 3 ` = 4 ` = 5

Figure 1: Local degrees of freedom of V K
h,` for l = 2, 3, 4, 5: vertex values

uh(v) (dots); edge moments of ∂nuh (arrows); edge moments of uh (squares);
cell moments of uh (central dots).

(D1) for ` ≥ 2: vh(vi) for any vertex vi of K;

(D2) for ` ≥ 2:

∫
e
∂nvh p ds for any p ∈ P`−2(e) and any edge e of ∂K;

(D3) for ` ≥ 3:
1

|e|

∫
e
vhp ds for any p ∈ P`−3(e) and any edge e of ∂K;

(D4) for ` ≥ 4:
1

|K|

∫
K
vhp ds for any p ∈ P`−4(K).

These degrees of freedom are illustrated in Figure 1 for the virtual ele-
ment spaces with ` = 2, 3, 4, 5. We next show that these degrees of freedom
are unisolvent in V K

h,`.

Lemma 3.2 The degrees of freedom (D1)-(D4) are unisolvent for V K
h,`.

Proof. Employing (7), for any vh ∈ V Kh,` there holds

aK(vh, vh) = D

{∫
K

∆2vh vhdx+

∫
∂K

Mnn(vh)∂nvhds−
∫
∂K

T (vh)∂nvhds

−
∑
e∈∂K

(Mnt(vh), vhn∂e)∂e

}
. (9)

We first observe that ∆2vh is a polynomial of order `− 4 on K. Moreover, we note

that on each edge the functions Mnn(vh) and T (vh) are polynomial of degree up to

` − 2 and ` − 3, respectively. Hence, by setting to zero the degrees of freedom we

get aK(vh, vh) = 0. This latter implies |vh|H2(K) = 0 which gives vh = 0 in view

of the fact that setting to zero the nodal values of vh filters the linear polynomials

(i.e. the kernel of the seminorm | · |H2(K)). �
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Building upon the local spaces V K
h,`, the global nonconforming virtual

element space is then defined as follows

Vh,` =

{
vh : vh|K ∈ V K

h,`, vh continuous at internal vertexes, vh(vi) = 0 ∀vi ∈ VΓ
h∫

e
[∂nvh]pds = 0 ∀p ∈ P`−2(e),

∫
e
[vh]pds = 0 ∀p ∈ P`−3(e) ∀e ∈ Eh

}
.

(10)

We observe that by construction it holds Vh,` ⊂ H2,nc(Th) and Vh,` 6⊆ H2
0 (Ω).

Moreover, it is important to remark that our nonconforming virtual element
space does not require that its functions are globally continuous over Ω, thus
admitting piecewise discontinuous functions on each partition Th (see also
Remark 3.2 below).

Remark 3.2 (Lowest order case) Let us briefly comment on the lowest-
order VE space, for ` = 2. In this case the local space is given by

V K
h,2 =

{
vh ∈ H2(K) : ∆2vh = 0,Mnn(vh)|e ∈ P0(e), T (vh)|e = 0 ∀e ∈ ∂K

}
,

and the local degrees of freedom are:

(d1) vh(vi) for any vertex vi of K;

(d2)

∫
e
∂nvhds for any edge e of ∂K.

On triangular meshes the degrees of freedom (d1)-(d2) of V K
h are the same

of the Morley’s nonconforming finite element space [35] and the unisolvence
property from Lemma 3.2 implies that these two local spaces coincide. Fi-
nally, the global lowest-order nonconforming virtual element space is given
by

Vh,2 =

{
vh : vh|K ∈ V K

h , vh continuous at internal vertexes, vh(vi) = 0 ∀vi ∈ VΓ
h ,

and

∫
e
[∂nvh]ds = 0 ∀e ∈ Eh

}
and clearly contains functions that are piecewise discontinuous on Th.

3.3 Construction of the bilinear form

Starting from the local bilinear forms aKh (·, ·) : V K
h,` × V K

h,` → R the global
bilinear form ah(·, ·) is assembled in the usual way:

ah(uh, vh) =
∑
K∈Th

aKh (uh, vh).
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Each local bilinear form is given by

aKh (uh, vh) = aK
(

Π∆,K
` uh,Π

∆,K
` vh

)
+ SK

((
I −Π∆,K

`

)
uh,
(
I −Π∆,K

`

)
vh

)
,

(11)
where Π∆,K

` is the elliptic projection operator discussed below and SK(uh, vh)
is a symmetric and positive definite bilinear form such that

aK(vh, vh) . SK(vh, vh) . aK(vh, vh)

for all vh ∈ V K
h,` such that Π∆,K

` vh = 0. A practical and very simple choice for

SK(·, ·) is the Euclidean scalar product associated to the degrees of freedom
scaled by factor h−2

k .

The operator Π∆,K
` : V K

h,` → P`(K) is the solution of the elliptic projec-
tion problem:

aK(Π∆,K
` vh, p) = aK(vh, p) ∀p ∈ P`(K), (12)

((Π∆,K
` vh, p))K = ((vh, p))K ∀p ∈ P1(K), (13)

where
((vh, wh))K=

∑
v∈VK

h

vh(v) wh(v).

It is immediate to verify that Π∆,K
` is a projector onto the space of polyno-

mials P`(K). Indeed, for any q ∈ P`(K) equation (12) with p = Π∆,K
` q − q

yields (Π∆,K
` q),ij = q,ij for i, j = 1, 2. This latter relation combined with

(13) proves the assertion. Furthermore, as stated by the following lemma,
the polynomial projection Π∆,K

` vh is computable from the degrees of free-
dom of vh.

Lemma 3.3 The projector Π∆,K
` : V K

h,` → P`(K) can be computed using only
the degrees of freedom (D1)-(D4).

Proof. In view of (12) and assuming, as usual, the computability of aK(p, q) for
polynomial functions p, q, it is sufficient to prove the computability of aK(p, vh) for
any p ∈ P`(K) and vh ∈ V Kh,`. Employing (7) we have

aK(p, vh) = D

{∫
K

∆2pvhdx+

∫
∂K

Mnn(p)∂nvhds−
∫
∂K

T (p)vhds

−
∑
e∈∂K

(
Mnt(p), vhn∂e

)
∂e

}
.

Each term of the right-hand side can be computed using only the degrees of freedom

(D1)-(D4). Indeed, for the first term we note that ∆2p is a polynomial of order

` − 4; for the second term we note that Mnn(p) is a polynomial of order ` − 2 on
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each edge; for the third term we note that T (p) is a polynomial of degree ` − 3;

finally, we note that the last term depends on the value of vh at the vertexes of K.

�
The local bilinear form aKh has the two crucial properties of polynomial

consistency and stability that we state in the following lemma.

Lemma 3.4

• `-consistency: For any p ∈ P`(K) and any vh ∈ V K
h,` it holds that:

aKh (p, vh) = aK(p, vh). (14)

• stability: For any vh ∈ V K
h,` it holds that:

aK(vh, vh) . aKh (vh, vh) . aK(vh, vh), (15)

where the hidden constants are independent of h and K (but may de-
pend on `).

The proof is straightforward, and is therefore omitted.

3.4 Construction of the load term

Let Π`
K denote the L2-projection onto P`(K) and fh be the piecewise poly-

nomial approximation of f on Th given by

fh|K = Π`−2
K f (16)

for ` ≥ 2 and every K ∈ Th. Then, we set

〈fh, vh〉 =
∑
K∈Th

∫
K
fhvh dx. (17)

In view of (16) and using the definition of the L2-projection we find that

〈fh, vh〉 =
∑
K∈Th

∫
K

Π`−2
K fvh dx =

∑
K∈Th

∫
K

Π`−2
K fΠ`−2

K vh dx =
∑
K∈Th

∫
K
fΠ`−2

K vh dx.

(18)
The right-hand side of (18) is computable by using the degrees of freedom
(D1)-(D4) and the enhanced approach [1] that considers the augmented local
space

WK
h,` =

{
vh ∈ H2(K) : ∆2vh ∈ P`−2(K), Mnn(vh)|e ∈ P`−2(e),

T (vh) ∈ P`−3(e) ∀e ∈ ∂K,∫
K

Π∆,K
` vhpdx =

∫
K
vhpdx ∀p ∈ P`−2 \ P`−4

}
.
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Since (D1)-(D4) are still unisolvent in WK
h,`, we can compute the projection

Π`−2
K from the degrees of freedom of vh.

Finally, from (18), employing the Cauchy-Schwarz inequality, standard
approximation error estimates and (3.1) we have the estimate

〈f − fh, vh〉 =
∑
K∈Th

∫
K

(
I −Π`−2

K

)
f
(
I −Π0

K

)
vh dx . h

`|vh|2,h, (19)

which will be useful in the error analysis of the next section.

4 Error estimates

We now turn to the derivation of an optimal error estimate for the virtual
element discretization (8).

On the mesh sequence {Th}h we make the following regularity assump-
tions:

(H) there exists a fixed number ρ0 > 0 independent of Th, such that for
every element K it holds:

(H1) K is star-shaped with respect to all the points of a ball of radius
ρ0hK

(H2) every edge e ∈ Eh has length |e| ≥ ρ0hK .

(H3) There exists a point xB interior toK such that the sub-triangulation
obtained by connecting xB to the vertices of K is made of shape
regular triangles.

The assumptions (H1)-(H2) are standard (see, e.g., [5]) while (H3) is
required to perform the error analysis (see, in particular, (24) and (25) in
the proof of Theorem 4.2).

In view of the assumptions (H1)-(H2) on Th, we can define, for every
smooth enough function w, an “interpolant” in Vh,` with the right interpo-
lation properties. More precisely, if χi(w), i = 1, . . . ,N , denotes the i-th
global degree of freedom of a sufficiently regular function w, there exists a
unique element wI ∈ Vh,` such that

χi(w − wI) = 0 i = 1, 2, . . . ,N .

Moreover, combining Bramble-Hilbert technique and scaling arguments (see
e.g. [5, 34] and [19]) as in the finite element framework we can prove that

‖w − wI‖s,Ω . Chβ−s|w|β,Ω s = 0, 1, 2 3 ≤ β ≤ k + 1.

In accordance with the seminal paper [32] (see also [28]) we obtain the
following result.
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Theorem 4.1 Under the regularity mesh assumptions (H1)-(H2), there ex-
ists a unique solution uh ∈ Vh,` to (8). Moreover, for every approximation
uπ ∈ P`(Th) of the exact solution u of (2), it holds that

|u−uh|2,h . (|u−uI |2,h+ |u−uπ|2,h+ sup
vh∈Vh,`

〈f − fh, vh〉
|vh|2,h

+ sup
vh∈Vh,`

N (u, vh)

|vh|2,h
,

(20)
where uI ∈ Vh,` is the interpolant of u in the virtual element space Vh,` and

N (u, vh) = 〈f, vh〉 −
∑
K∈Th

aK(u, vh)

= D
∑
K∈Th

{∫
∂K

(∆u− (1− ν)u,tt)vh,nds (21)

−
∫
∂K

(
∂n(∆u)vh − (1− ν)u,ntvh,t

)
ds

}
(22)

is the non-conformity error.

Proof. Existence and uniqueness of the discrete solution follows easily from
the Lax-Milgram theorem by observing that ah(·, ·) is continuous and coercive with
respect to | · |2,h , which is a norm in H2,nc in view of Lemma 3.1, and thus on Vh,`
for any ` ≥ 2, cf. (10). We now address the proof of (20). Using the triangular
inequality we have that

|u− uh|2,h ≤ |u− uI |2,h + |uh − uI |2,h.

Setting δh = uh − uI , employing (15) and (7) we obtain the developments

|δh|22,h =
∑
K∈Th

aK(δh, δh) .
∑
K∈Th

aKh (δh, δh)

= ah(uh, δh)− ah(uI , δh) = 〈fh, δh〉 − ah(uI , δh)

= 〈fh, δh〉 −
∑
K∈Th

aKh (uI − uπ, δh)−
∑
K∈Th

aKh (uπ, δh)

= 〈fh, δh〉 −
∑
K∈Th

aKh (uI − uπ, δh)−
∑
K∈Th

aK(uπ, δh)

= 〈fh, δh〉 −
∑
K∈Th

aKh (uI − uπ, δh) +
∑
K∈Th

aK(u− uπ, δh)−
∑
K∈Th

aK(u, δh)

= 〈fh − f, δh〉+N (u, δh)−
∑
K∈Th

aKh (uI − uπ, δh) +
∑
K∈Th

aK(u− uπ, δh),

from which inequality (22) follows. �
Finally, from the above result and bounding each term in (20) we obtain an
estimate of the approximation error in the broken energy norm as stated in
the following theorem.
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Theorem 4.2 Let us assume that the solution to (2) satifies u ∈ H3(Ω).
Under the regularity assumption (H) on the mesh Th, for ` ≥ 2 the unique
solution uh ∈ Vh,` to (8) satisfies the following error estimate

|u− uh|2,h . h`−1. (23)

Proof. In order to prove (23) it is sufficient to combine (19) with (20), use
standard interpolation error estimates and the estimate of the conformity error
N (u, δh). Let us focus on the last step. Assuming that u is sufficiently smooth we
rewrite the conformity error as follows:

N (u, δh)=D
∑
e∈Eh

{∫
e

(∆u− (1− ν)u,tt)[δh,n]ds−
∫
e

∂n(∆u)[δh]ds+

∫
e

(1− ν)u,nt[δh,t]ds

}
=D(I + II + III).

To estimate the above terms we employ the fact that δh belongs to Vh,` and use
standard interpolation error estimates for the L2-projection Π`

e on polynomials
defined on e. In particular, for the first term for ` ≥ 2 we use the definition of the
global virtual element space Vh,` and we find that

I =
∑
e∈Eh

∫
e

(I −Π`−2
e )(∆u− (1− ν)u,tt)(I −Π0

e)[δh,n]ds

. h`−2+1− 1
2h

1
2 |δh|2,h = h`−1|δh|2,h.

For the second term we first consider the case ` = 2, 3 and, in view of (H3),
introduce, for each edge e ⊂ ∂K, the linear Lagrange interpolant I1

T (e) of δh on

the triangle T (e), which is obtained by connecting the point xB (interior to K)
and the endpoints of e. Clearly, due to the H2 regularity of δh, the interpolant
I1
T (e)δh can be built based on employing the values of δh at the vertices of T (e).

In particular, using the fact that δh is continuous at the endpoints of e we have
[I1
T (e)δh]|e = 0. Hence, for ` = 2 employing standard interpolation error estimates

and a trace inequality we get

II =
∑
e

∫
e

∂n(∆u)([δh]− [I1T (e)δh])ds

. h2−
1
2 |δh|2,h. (24)

On the other hand, for ` = 3, we have

II =
∑
e

∫
e

(I −Π0
e)(∂n(∆u))([δh]− [I1T (e)δh])ds

. h2|δh|2,h, (25)

where we employed the definition of the global space Vh,3 together with standard
interpolation error estimates and a trace inequality. In case ` ≥ 4 we have

II =
∑
e

∫
e

(I −Π`−3
e )(∂n(∆u))(I −Π1

e)[δh]ds

. h`−3+1− 1
2h1+1− 1

2 |δh|2,h = h`−1|δh|2,h. (26)
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Finally, we consider the third term. Using the fact that δh is continuous at the
vertexes of Th and the fact that

∫
e
[δh]pds = 0 ∀p ∈ P`−3(e) we deduce after inte-

gration by parts that
∫
e
[δh,t]qds = 0 ∀q ∈ P`−2(e). Indeed, after observing that for

any p ∈ P`−3(e) there exists q ∈ P`−2(e) \ P0(e) such that p = q′ we have

0 =

∫
e

[δh]pds =

∫
e

[δh]q′ds = −
∫
e

[δh,t]qds+ ([δh]q)(v2)− ([δh]q)(v1)

= −
∫
e

[δh,t]q,

where we used the fact that the jump [δh] is zero when evaluated at the endpoints
v1 and v2 of e. Finally, for q ∈ P0(e) we immediately have, after integration by
parts, ∫

e

[δh,t]q = 0.

In view of the above result we get

III =
∑
e

∫
e

(1− ν)(I −Π`−2
e )u,nt(I −Π0

e)[δh,t]ds

. h`−2+1− 1
2h

1
2 |δh|2,h = h`−1|δh|2,h,

and this concludes the proof. �

5 Numerical results

The numerical experiments presented in this section are aimed to confirm the
a priori analysis developed in the previous sections. To study the accuracy
of our new nonconforming method we solve the biharmonic problem (1a)-
(1c) on the domain Ω =]0, 1[×]0, 1[. The forcing term f in (1a) is set in
accordance with the exact solution:

u(x, y) = x2(1− x)2 y2(1− y)2,

which obviously satisfies the boundary conditions in (1b)-(1c).

The performance of the VEM is investigated by observing experimen-
tally the convergence behavior on four different sequences of unstructured

meshes labelled by
{
T (1)
h

}
h
,
{
T (2)
h

}
h
,
{
T (3)
h

}
h
, and

{
T (4)
h

}
h
. All mesh data

are reported in Tables 1-4 in the Appendix. Figs. 2(a)-(d) show the first
and second mesh of each sequence (top and right plots, respectively). The

meshes in
{
T (1)
h

}
h
, also known as criss-cross meshes, are composed by first

partitioning Ω in regular square grids and then splitting each square cell into
four triangular subcells by connecting the four vertices along the diagonal.
It is worth recalling that our nonconforming VEM for ` = 2 on triangular
meshes coincides with the Morley finite element method [35]. The meshes

14



in
{
T (2)
h

}
h

are built as follows. First, we determine a primal mesh by remap-
ping the position (x̂, ŷ) of the nodes of a uniform square partition of Ω by
the smooth coordinate transformation (see [22]):

x = x̂+ 0.1 sin(2πx̂) sin(2πŷ),

y = ŷ + 0.1 sin(2πx̂) sin(2πŷ).

Then, the corresponding mesh of
{
T (2)
h

}
h

is built from the primal mesh
by splitting each quadrilateral cell into two triangles and connecting the
barycenters of adjacent triangular cells by a straight segment. The mesh
construction is completed at the boundary by connecting the barycenters of
the triangular cells close to the boundary to the midpoints of the boundary
edges and these latter ones to the boundary vertices of the primal mesh. The

meshes in
{
T (3)
h

}
h

are obtained by filling the unit square with a suitably
scaled non-convex octagonal cell, which is cut at the domain boundaries to

fit into the unit square domain. The meshes in
{
T (4)
h

}
h

are built by parti-
tioning the domain Ω into square cells and relocating each interior node to a
random position inside a square box centered at that node. The sides of this
square box are aligned with the coordinate axis and their length is equal to
0.8 times the minimum distance between two adjacent nodes of the initial
square mesh. All the meshes are parametrized by the number of partitions
in each direction. The starting mesh of every sequence is built from a 5× 5
regular grid, while for the n-th refined mesh the underlying resolution is
10n × 10n. For the virtual element spaces of order 2 ≤ ` ≤ 4 we consider
a sequence of 9 meshes; for ` = 5 the calculation is arrested after the fifth
mesh when rounding errors begin affecting the accuracy of the approxima-
tion due to the increasing ill-conditioning of the algebraic problem.

For ` ≥ 2, we define the relative “2h” error by

Error2,h =
|Π∆

` (u− uh)|2,h
|Π∆

` (u)|2,h
.

with Π∆
` |K = Π∆,K

` . Thus, on every element K ∈ Th, we compare Π∆,K
` u,

the elliptic projection of the exact solution u and Π∆,K
` uh, the projection

of the virtual element solution uh. These relative errors are shown in the
log-log plots of Figs. 3, 4, 5, and 6, with respect to the mesh size parameter
h (left panels) and the number of degrees of freedom (right panels). The
convergence rate is reflected by the slope of the experimental error curves
that are obtained by joining the error values measured on the sequence of
refined meshes for each polynomial degree 2 ≤ ` ≤ 5. Each experimen-
tal slope has to be compared with the theoretical slope, which is shown for
each curve by a triangle and whose value is indicated by the nearby number.
From the a priori analysis of Section 4, cf. Theorem 4.2 and inequality (23)),
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the 2h-approximation errors must decrease proportionally to h`−1 when we
use the virtual element space V h

` . These errors are also expected to decrease

proportionally to |V `
h |
− `−1

2 , where |V `
h | is the total number of degrees of free-

dom of the `-th virtual element space, because |V `
h | is roughly proportional

to h−1/2, Accordingly, the experimental slopes for Error2,h are expected to
be closed to `−1 and (`−1)/2 when we plot the error curves versus the mesh
size parameter h and the number of degrees of freedom. The experimental
convergence rates are in perfect agreement with the theoretical ones for all
such calculations.

Finally, it is worth mentioning that in a preliminary stage of this work,
the consistency of the nonconforming VEM of order ` for 2 ≤ ` ≤ 5, i.e., the
exactness of the method for polynomial solutions of degree up to `, has been
tested numerically by solving the bi-harmonic equation (1a) with Dirichlet
boundary conditions and forcing term determined by the monomials xµyν

for all possible combinations of integers µ and ν such that µ+ ν ≤ `. Non-
homogeneous Dirichlet conditions were imposed in strong form by setting
the boundary degrees of freedom to the values determined by the exact
solution. For these experiments, we considered a wider set of polygonal
meshes (including the four considered in this section). In all the cases,
the magnitude of the 2h errors was comparable to the arithmetic precision,
thus confirming the polynomial consistency of the method. We also verified
that our nonconforming VEM for ` = 2 on the criss-cross triangular meshes
provides the same results of an independent implementation of the Morley
finite element method. For the sake of brevity, these results are not reported
here.

6 Conclusions

In this paper we presented the arbitrary-order accurate fully nonconform-
ing virtual element method for biharmonic problems on polygonal meshes.
The virtual element space is made of functions that may be globally not-
continuous. An optimal error estimate in the broken energy norm is derived
for all polynomial approximation orders and numerical results assess the
validity of the theoretical estimate.
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Figure 2: Base mesh (top row) and first refinement (bottom row) of the four
mesh families: (a) criss-cross triangular mesh; (b) mainly hexagonal mesh;
(c) non-convex regular mesh; (d) randomized quadrilateral mesh.
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Figure 3: Relative 2h-approximation errors using the sequence of criss-cross
triangular meshes versus the mesh size parameter h (left panel) and the total
number of degrees of freedom #dofs (right panel).
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Figure 4: Relative 2h-approximation errors using the sequence of remapped
hexagonal meshes versus the mesh size parameter h (left panel) and the
total number of degrees of freedom #dofs (right panel).
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Figure 5: Relative 2h-approximation errors using the sequence of non-convex
regular meshes versus the mesh size parameter h (left panel) and the total
number of degrees of freedom #dofs (right panel).
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Figure 6: Relative 2h-approximation errors using the sequence of random-
ized quadrilateral meshes versus the mesh size parameter h (left panel) and
the total number of degrees of freedom #dofs (right panel).
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A Appendix

In Tables 1–4, we report the geometric data and the total number of degrees
of freedom of the associated VEM spaces for the sequences of considered
meshes. More precisely, in Tables 1–4 the first column reports the refine-
ment level n = 0, 1, 2, . . ., the second, third and fourth columns show the
corresponding total number of polygonal cells (NP ), faces (NF ) and vertexes
(NV ), respectively, whereas in the fifth column the corresponding mesh size
h is shown. Finally, in the last four columns we report the total number of
degrees of freedom of the corresponding VEM spaces V `

h , ` = 2, . . . , 5.

Table 1: Geometric data and number of degrees of freedom of the sequence
of criss-cross meshes.

n NP NF NV h |V 2
h | |V 3

h | |V 4
h | |V 5

h |
0 100 160 61 2.00 10−1 221 541 961 1481
1 400 620 221 1.00 10−1 841 2081 3721 5761
2 1600 2440 841 5.00 10−2 3281 8161 14641 22721
3 3600 5460 1861 3.33 10−2 7321 18241 32761 50881
4 6400 9680 3281 2.50 10−2 12961 32321 58081 90241
5 10000 15100 5101 2.00 10−2 20201 50401 90601 −−
6 14400 21720 7321 1.67 10−2 29041 72481 130321 −−
7 19600 29540 9941 1.43 10−2 39481 98561 177241 −−
8 25600 38560 12961 1.25 10−2 51521 128641 231361 −−

Table 2: Geometric data and number of degrees of freedom of the sequence
of remapped hexagonal meshes.

n NP NF NV h |V 2
h | |V 3

h | |V 4
h | |V 5

h |
0 36 125 90 3.28 10−1 215 465 751 1073
1 121 400 280 1.85 10−1 680 1480 2401 3443
2 441 1400 960 9.69 10−2 2360 5160 8401 12083
3 961 3000 2040 6.49 10−2 5040 11040 18001 25923
4 1681 5200 3520 4.89 10−2 8720 19120 31201 44963
5 2601 8000 5400 3.91 10−2 13400 29400 48001 −−
6 3721 11400 7680 3.26 10−2 19080 41880 68401 −−
7 5041 15400 10360 2.80 10−2 25760 56560 92401 −−
8 6561 20000 13440 2.45 10−2 33440 73440 120001 −−
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Table 3: Geometric data and number of degrees of freedom of the sequence
of nonconvex octagonal meshes.

n NP NF NV h |V 2
h | |V 3

h | |V 4
h | |V 5

h |
0 25 120 96 2.91 10−1 216 456 721 1011
1 100 440 341 1.46 10−1 781 1661 2641 3721
2 400 1680 1281 7.29 10−2 2961 6321 10081 14241
3 900 3720 2821 4.86 10−2 6541 13981 22321 31561
4 1600 6560 4961 3.64 10−2 11521 24641 39361 55681
5 2500 10200 7701 2.92 10−2 17901 38301 61201 −−
6 3600 14640 11041 2.43 10−2 25681 54961 87841 −−
7 4900 19880 14981 2.08 10−2 34861 74621 119281 −−
8 6400 25920 19521 1.82 10−2 45441 97281 155521 −−

Table 4: Geometric data and number of degrees of freedom of the sequence
of randomized quadrilateral meshes.

n NP NF NV h |V 2
h | |V 3

h | |V 4
h | |V 5

h |
0 25 60 36 3.311 10−1 96 216 361 531
1 100 220 121 1.865 10−1 341 781 1321 1961
2 400 840 441 9.412 10−2 1281 2961 5041 7521
3 900 1860 961 6.130 10−2 2821 6541 11161 16681
4 1600 3280 1681 4.693 10−2 4961 11521 19681 29441
5 2500 5100 2601 3.808 10−2 7701 17901 30601 −−
6 3600 7320 3721 3.167 10−2 11041 25681 43921 −−
7 4900 9940 5041 2.751 10−2 14981 34861 59641 −−
8 6400 12960 6561 2.389 10−2 19521 45441 77761 −−
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for piecewise H2 functions. Numer. Funct. Anal. Optim., 25(5-6):463–
478, 2004.

[21] F. Brezzi, R. S. Falk, and L. Donatella Marini. Basic principles of
mixed virtual element methods. ESAIM: Mathematical Modelling and
Numerical Analysis, 48(4):1227–1240, 2014.

[22] F. Brezzi, K. Lipnikov, and M. Shashkov. Convergence of the mimetic
finite difference method for diffusion problems on polyhedral meshes.
SIAM J. Numer. Anal., 43(5):1872–1896 (electronic), 2005.

[23] F. Brezzi and L. D. Marini. Virtual element methods for plate bending
problems. Comput. Methods Appl. Mech. Engrg., 253:455–462, 2013.

[24] F. Brezzi and L. D. Marini. Virtual element and discontinuous Galerkin
methods. In Recent developments in discontinuous Galerkin finite ele-
ment methods for partial differential equations, volume 157 of IMA Vol.
Math. Appl., pages 209–221. Springer, Cham, 2014.

23



[25] A. Cangiani, V. Gyrya, and G. Manzini. The non-conforming virtual
element method for the Stokes equations. SIAM J. Numer. Anal., pages
1–25, 2016 (online). DOI:10.1137/15M1049531.

[26] A. Cangiani, G. Manzini, and O. J. Sutton. Conforming and noncon-
forming virtual element methods for elliptic problems. IMA J. Numer.
Anal., pages 1–38, 2016 (online). DOI:10.1093/imanum/drw036.

[27] C. Chinosi and L. D. Marini. Virtual Element Method for fourth order
problems: L2-estimates. Comput. Math. Appl., 72(8):1959–1967, 2016.

[28] P. G. Ciarlet. The finite element method for elliptic problems, volume 40
of Classics in Applied Mathematics. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2002. Reprint of the 1978
original [North-Holland, Amsterdam; MR0520174 (58 #25001)].

[29] A. L. Gain, C. Talischi, and G. H. Paulino. On the virtual element
method for three-dimensional linear elasticity problems on arbitrary
polyhedral meshes. Comput. Methods Appl. Mech. Engrg., 282:132–
160, 2014.

[30] F. Gardini and G. Vacca. Virtual Element Method for Second Order
Elliptic Eigenvalue Problems. ArXiv e-prints, October 2016.

[31] L. D. Landau and E. M. Lifshitz. Theory of elasticity. Course of The-
oretical Physics, Vol. 7. Translated by J. B. Sykes and W. H. Reid.
Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing
Co., Inc., Reading, Mass., 1959.

[32] P. Lascaux and P. Lesaint. Some nonconforming finite elements for the
plate bending problem. Rev. Française Automat. Informat. Recherche
Operationnelle Sér. Rouge Anal. Numér., 9(R-1):9–53, 1975.

[33] K. Lipnikov, G. Manzini, and M. Shashkov. Mimetic finite difference
method. J. Comput. Phys., 257(part B):1163–1227, 2014.

[34] D. Mora, G. Rivera, and R. Rodŕıguez. A virtual element method
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