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Sommario

We cast mesh adaptation based on point relocation in a continuum me-
chanics analogy. The movement of the mesh points is thus interpreted as a
displacement of points of the continuum. We describe our approach on the
Dirichlet problem for the Poisson equation in 2D. It is well known that, for
a fixed mesh, the best approximation in the energy norm, |||·|||, to the exact
solution, u, is the Galerkin approximation, uh, in a finite element space,
and that uh minimizes also a suitable energy functional. The best error,
however, still depends on the mesh. The energy functional is then rewrit-
ten in terms of the displacement through its displacement-gradient tensor.
Thus finding the optimal mesh, where |||u − uh||| is a minimum, among a
family of possible meshes, amounts to computing the displacement field
which minimizes the energy functional. This is carried out via the optimal
control approach, after enforcing the constraint that the displacement sati-
sfies a diffusion equation with the control functions in the role of a variable
diffusivity. This in turn yields the optimal movement of the mesh nodes.
An algorithm based on a gradient flow delivers the actual adapted mesh.

Keywords: Mesh adaptation, Node relocation, Continuum mechanics, Op-
timal control
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1 Introduction

In the context of finite element analysis of partial differential equations (PDEs),
adaptive procedures try to automatically refine, coarsen, or relocate a mesh to
achieve a solution having a specified accuracy or to compute the most accurate
solution for a given number of degrees of freedom. Common procedures studied
to date include either of the following strategies [33]:

• h-adaptivity: find an optimal distribution of the mesh elements, possibly
varying the size, shape and orientation of the triangles (see, e.g., [26, 27]);

• p-adaptivity: find an optimal distribution of the polynomial degree, pos-
sibly employing a different formulation which allows to associate different
degrees with the elements (see, e.g., [17]);

• r-adaptivity: find an optimal distribution of the mesh points, for a fixed
topology of the mesh and a given polynomial degree.

Of course, all of these techniques can be applied singly or combined in parallel
to get a better efficiency, sacrificing simplicity. Our approach fits the third issue,
namely, mesh point relocation. This undoubtedly enjoys some advantages, since
the topology of the mesh does not change over the adaptation iterations, and
hence the number of mesh elements can be established a priori, with the desirable
benefit that one knows up front the size of the memory required to store the data.
On the other hand, it is clear that one cannot hope for the same effectiveness
in reducing the error, as the one obtained via, e.g., the h- or the combined
hp-adaptivity.

In [2], the two classical ways of relocating nodes, i.e., equidistribution and
direct minimization are discussed. In the case of equidistribution, which is a
standard device for achieving grid relocation in one dimension, a monitor func-
tion is introduced and the (irregularly spaced) grid points in the physical space
are related to the (regularly spaced) grid points in the computational space by
discrete values of a suitable continuous variable. For example, a very well known
monitor function is the so-called arc-length, which ensures that the arc length
itself be equidistributed. The alternative approach based on direct minimization
consists of minimizing a measure of the error directly with respect to nodal posi-
tions as well as to the coefficients of the approximation. This yields the so-called
Moving Finite Element equations [3]. These equations are nonlinear and their
solution, therefore, requires some form of iteration.

As an example of a complex application, in [22], grid movement and adapta-
tion for viscous flow simulations are controlled by a monitor function which may
depend on velocity gradient or other flow variables, such as density or pressure.
It is shown that the use of an adaptive mesh improves considerably the efficien-
cy and accuracy of the method in comparison with methods with static mesh
points, since the grid points can be easily moved and concentrated towards the
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regions with large velocity and density gradients, such as boundary layers and
multi-material interfaces.

Another research area has been devoted to the generation of adaptive grids
through harmonic maps between Riemannian manifolds, see, e.g., [14, 15, 16, 24].
These are essentially works based on differential geometry. The warping of
one manifold onto another is realized via an appropriate choice of the metric
tensor. In [14] the method is introduced and its reliability is corroborated by
providing conditions under which existence and uniqueness for one-to-one maps
between multidimensional multiconnected domains hold. The problem of finding
a harmonic map between noncompact manifold is dealt with in [16] where, given
some sufficient conditions on the domain, the target and the initial map, proof of
the existence of a harmonic map that deforms the given map is furnished. The
extension of the moving mesh methods based on harmonic maps to deal with
mesh adaptation in three space dimensions is carried out in [24]. In obtaining the
variational mesh, an optimization problem with some appropriate constraints is
solved. The key idea of this approach is to update the interior and boundary
grids simultaneously, rather than considering them separately. With any smooth
mapping of one Riemannian manifold into another it is possible to associate a
variety of invariantly defined functionals. Each such functional determines a
class of extremal mappings, in the sense of the calculus of variations, and those
extremals play an important role in a number of differential-geometric theories.
The contribution of [15] is devoted to a rather general study of a functional
of geometrical and physical interest, analogous to an energy, and the central
problem is that of deforming a given mapping into an extremal of this functional.

There are many formulations of adaptive meshes and of the objective func-
tions that are used to drive them. There is, however, agreement that an adaptive
mesh should be continuous and differentiable with nonvanishing Jacobian. One
reliable way to generate such a mesh is by solving elliptic equations to gene-
rate body-fitted coordinates [32], which transform the irregular physical mesh
to a square computational domain. In practice, one tries to mould a gene-
ral curvilinear system of coordinates into Cartesian coordinates, or vice versa.
Orthogonality versus skewness of curvilinear coordinates is an issue of major
concern in these cases, along with an appropriate mesh spacing. In [5], a sui-
table variational formulation based on a variable diffusion method is combined
with a directional control functional which allows one to align mesh lines to a
prescribed vector field while adapting the spacing to resolve the data. Other
numerical grid generation techniques based on parabolic and hyperbolic systems
are also reviewed in [32].

Other approaches, which deal with applications of some impact, exploit an
equivalence between node movement and deformation of an elastic body. For
example, in [6], to model the structural deformation of an aircraft, the domain
must be modified at each time step to be compatible with the changing aircraft
shape. The grid is represented as an elastic continuum, introducing a natural
mechanisms to prevent node-face collisions of tetrahedra. In particular, to ob-
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tain good quality grids, an inverse power law with respect to the the minimal
vertex distance is used to model the elementwise Young moduli. A technique
combining global node repositioning and mesh optimization in order to perform
arbitrary large deformations is proposed in [10] . The work [11] presents a robu-
st, adaptive method for animating dynamic visco-elastic deformable objects that
provides a guaranteed frame rate. The approach uses an automatic space and
time adaptive level of detail technique, in combination with a large-displacement
(Green) strain tensor formulation. In [19] the authors describe an incompressi-
ble Unified Continuum model in Euler (laboratory) coordinates with a moving
mesh for tracking the fluid-structure interface as part of the discretization, al-
lowing simple and general formulation and efficient computation. They target
realistic 3D turbulent fluid-structure interaction applications, and introduce and
compensate for mesh motion by defining a local Arbitrary Euler-Lagrange map
on each space-time slab as part of the discretization, allowing a sharp phase
interface on cell facets. In [29], mass-spring systems are employed to graphi-
cally model and animate the realistic behavior of deformable tissue in surgical
simulations. A variationally consistent mesh adaptation method for triangular
elements in explicit Lagrangian dynamics involving local mesh changes for trian-
gular meshes is presented in [23]. Moving from the fact that time-integration
methods developed from a variational principle as that of Hamilton’s stationary
action, necessarily conserve linear and angular momentum, topological changes
for mesh adaptation are developed from Hamilton’s principle and space-time
discretization, leading to variational mesh adaptation which conserves the total
momentum (linear and angular) of the discrete system. A multiscale method
in surface processing is presented in [9], which combines the image processing
methodology based on nonlinear diffusion equations and the theory of geometric
evolution problems. Its aim is to smooth discretized surfaces while simultaneou-
sly enhancing geometric features such as edges and corners. This is obtained by
an anisotropic curvature evolution, where time is the multiscale parameter. The
diffusion tensor depends on the shape operator of the evolving surface.

We finally cite the recent monograph [21] which thoroughly reviews the state-
of-the-art adaptive moving mesh methods.

The approach that we pursue in this paper is somewhat related to the works
[30, 31, 12]. In all these works, the concern is with computing the derivative of
some quantity with respect to node coordinates. In particular, in [12], the shape
derivative calculus is employed to compute the derivative of the energy functio-
nal associated with the Poisson equation. In [30, 31] a mesh adaptation strategy
which allows suitable anisotropy within the mesh is introduced. The approach
draws upon methods from numerical optimization in order to modify the node
positions of a given (isotropic) mesh such that an a posteriori error estimate is
minimized. The discrete adjoint technique [18] is utilized to efficiently evaluate
the gradient of the a posteriori error estimate. The Dual Weighed Residual er-
ror estimate [4] for the error in a quantity of interest is employed to allow goal
driven adaptivity. Thus, all of these last three approaches may be considered
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“discrete” since they use directly the coordinates of the mesh nodes as degrees
of freedom which must be determined in an optimal way in order to minimize a
given functional. In our approach, we pursue the same objective as in [12], i.e.,
to minimize the energy norm of the difference between the exact solution and
the numerical approximation to the Poisson equation, as described in section 3.
We work mainly, however, on the continuous level, since we rely on the displace-
ment field as the main independent variable, see section 2. The actual position
of the mesh points is computed as a by-product of the numerical discretization
of the optimality equations, since the mesh nodes are just particular points of
the continuum. Moreover, in contrast to [30, 31, 12], we are not only dealing
with a variational setting, but we are also resorting to a full optimal control
approach. In fact, the displacement field is subjected to a diffusion equation,
where the diffusion tensor plays the role of the control function, see section 4.
Thus, it is this diffusivity which actually drives the mesh adaptation, modifying
the displacement field which becomes the state variable. This diffusion equation,
like many elliptic problems, satisfies a maximum principle, which in turn ensures
that the mapping between the computational and the physical domains be one-
to-one, (see, e.g., [1], where sufficient conditions for injectivity of such mappings
are provided). In general, however, this is no longer true upon discretization of
the diffusion equation [20], so that a certain care has to be exerted in order to
guarantee that this property hold also on the discrete level. For this purpose, we
resort to a suitable numerical algorithm to solve the optimality system. This is
based on the discretization of a suitable gradient flow, introduced in section 4.1,
via a numerical time stepping procedure. The advantages of this approach are
that, on the one hand, the gradient flow ensures that the target error be mo-
notonically decreasing as a function of time and that, on the other hand, the
approach to the equilibrium state be gradual, so that it is less likely that invalid
mesh elements are generated, i.e., elements overlapped one with the other. To
further reduce the occurrence of this phenomenon, a Tikhonov regularization is
added to the main energy functional to help restraining node movement. The
numerical assessment is carried out in sections 5.1-5.3 and conclusions and a
look ahead are discussed in section 6.

2 The continuum mechanics background

We identify the computational domain, Ω ⊂ R
2, as a generic two dimensional

polygonal body whose motion under loading is allowed [7]. The reference con-
figuration, Ω̂ ⊂ R

2, corresponding to the configuration of the body at rest is
assumed to coincide with Ω. The material coordinates, x̂ = (ξ1, ξ2), are used to
label the particles of the body. At any arbitrary time, t, the position of particle
x̂ is given by the coordinate, x = (x1, x2), and in general, the motion of the
body is described by a deformation mapping,

x = X(x̂, t), (1)
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where it is assumed that X is one-to-one with respect to the pair x̂−x, and that

X(Ω̂, t) ≡ Ω, t ≥ 0, (2)

that is, the domain appears to be unchanged as a whole, although the material
particles may assume different positions inside the domain. Associated with X,
we introduce the displacement vector

U(x̂, t) = x− x̂ = X(x̂, t) − x̂, (3)

which represents the displacement of a point from the initial configuration to
the final configuration. Its gradient, ∇bxU, the so-called displacement-gradient

tensor, ca be related to the deformation gradient tensor

M(x̂, t) = ∇bxX(x̂, t), (4)

through the relation

∇bxU(x̂, t) = ∇bx(X(x̂, t) − x̂) = ∇bxX(x̂, t) − I = M(x̂, t) − I, (5)

where I is the identity tensor, and the derivatives are defined with respect to
the material coordinate x̂. In practice, we associate the reference configuration,
Ω̂, with the computational domain covered with an isotropic mesh, and the
generic configuration, Ω, with a deformation of Ω̂, which yields, in general, an
anisotropic mesh. Thus, if we introduce the computational mesh, T̂h, of Ω̂, then

Th(t) = X(T̂h, t) (6)

represents the computational mesh embedded in Ω. We recall that a triangu-
lar computational mesh, Th, is a conformal, shape-regular partition of Ω into
simplices {K}, where h denotes the maximum diameter of the triangles [8].

Actually, we are looking at an arbitrarily adapted, and in general anisotropic
mesh, as the image of a fixed isotropic mesh under the mapping X.

Remark 2.1 The present point of view is just a useful physical analogy which

helps understanding our mathematical approach with a more intuitive language.

One need not identify the computational domain with an actual elastic material.

3 The variational setting

To illustrate our approach, we consider the model Poisson problem:
{

−∆u = f in Ω,
u = 0 on ∂Ω,

(7)

where ∆ is the Laplacian operator and f ∈ L2(Ω) is a given function. The weak
formulation associated with (7) is: Find u ∈ H1

0 (Ω) such that
∫

Ω
∇u(x) · ∇v(x) dx =

∫

Ω
f(x)v(x) dx ∀v ∈ H1

0 (Ω), (8)
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where H1
0 (Ω) is the subspace of the Sobolev space H1(Ω), consisting of functions

that together with their first weak derivatives are Lebesgue integrable, which ha-
ve zero trace on the boundary, ∂Ω, [25]. Notice that hereafter, the domain, Ω, is
to be understood as the deformed configuration of the reference domain, Ω̂, and
that all the differential operators without any subscript act on the body coor-
dinate, x. It is also well known that the weak formulation (8) can be obtained
as the Euler-Lagrange equation associated with the minimization of the energy
functional (the Dirichlet integral), J : H1

0 (Ω) → R, given by

J(v) =
1

2

∫

Ω
|∇v(x)|2 dx−

∫

Ω
f(x)v(x) dx ∀v ∈ H1

0 (Ω), (9)

namely,
J(u) = min

v∈H1

0
(Ω)

J(v). (10)

The Galerkin approximation to (8) based on finite elements (FEM) is obtained
in a straightforward way, after introducing the FEM space V r

h = {vh ∈ C0(Ω) :
vh|K ∈ Pr(K),∀K ∈ Th}, where Pr(K) is the space of polynomials of maxi-
mum degree r over K [8]. We then let V r

h,0 = V r
h ∩ H1

0 (Ω). Thus the discrete
formulation reads: Find uh ∈ V r

h,0 such that

∫

Ω
∇uh(x) · ∇vh(x) dx =

∫

Ω
f(x)vh(x) dx ∀vh ∈ V r

h,0. (11)

It is also straightforward to check that the discrete solution, uh, can be charac-
terized as the minimum of the energy functional (9) over the finite dimensional
space V r

h,0, i.e.,
J(uh) = min

vh∈V r
h,0

J(vh). (12)

From (10) and (12), we have that

J(uh) − J(u) =
1

2

∫

Ω
(|∇uh|

2 − |∇u|2) dx−

∫

Ω
f(uh − u) dx

=
1

2

∫

Ω
|∇(uh − u)|2 dx +

∫

Ω
∇u · ∇(uh − u) dx−

∫

Ω
f (uh − u) dx

︸ ︷︷ ︸
(a)

=
1

2

∫

Ω
|∇(uh − u)|2 dx, (13)

where we have omitted the dependence on x for simplicity, and we have exploited
the weak form (8) with v = uh − u to infer that the term (a) in (13) is zero.
Thus we have obtained the result that

J(uh) = J(u) +
1

2

∫

Ω
|∇(u − uh)|2 dx, (14)
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which provides a link between J(uh) − J(u) with the so-called energy norm,
|||u − uh|||, of the discretization error, i.e.,

|||u − uh||| =
(∫

Ω
|∇(u − uh)|2 dx

)1/2
. (15)

On the other hand, using the inclusion, V r
h,0 ⊂ H1

0 (Ω), along with (10) and
(12), we have immediately that J(uh) ≥ J(u), but relation (14) provides a more
quantitative information, and shows also that J(uh) = J(u) if and only if u = uh.
Actually, relations (12) together with (14)-(15) show that

uh = arg min
vh∈V r

h,0

J(vh) ≡ arg min
vh∈V r

h,0

|||u − vh|||, (16)

that is, minimizing the functional J over V r
h,0 is equivalent to computing the

best approximation to u in the energy norm, out of the finite element space.
Thanks to this property, we thus know that one cannot do better (in the

energy norm) than minimizing the functional J over the discrete space, V r
h,0,

namely, than computing the Galerkin approximation, uh, solution to (11). Ho-
wever, the resulting error still depends on the finite element space, i.e., on the
polynomial degree, r, and on the computational mesh, Th, defined as in (6),
through the deformation mapping, X, in (1). Sticking to r-adaptivity, the key
point of our approach is that the problem of relocating the mesh points in an
optimal way can be thus equivalently reformulated as the task of computing the
deformation mapping which provides the mesh Th, among all the other possible
meshes with the same topology, where the Galerkin approximation features the
least error in the energy norm. Formally, we would like to solve

min
X∈X

|||u − uh(Th)||| : Th = X(T̂h), uh = uh(Th) solution to (11), (17)

where we have dropped the time dependence, we have agreed that uh is the
Galerkin approximation to u, depending only the actual mesh, Th, and X is
some function space, yet to be defined, collecting all the possible deformation
mappings. In principle, this space should consist of all of the possible smooth,
one-to-one, mapping from Ω̂ onto Ω. Of course, this is not practical to deal with.
We now show how to define the actual space of trial deformation mappings.

The first step is to observe that, from (3), the displacement vector, U, is
thoroughly equivalent to the deformation mapping, X, i.e., to assign a given de-
formation mapping is equivalent to enforcing a related displacement. Thus, from
now on, we focus on the displacement vector as the new independent unknown,
instead of the deformation mapping. In order to satisfy (2), suitable boundary
conditions should be enforced on U. In particular, a necessary condition is that
U · n = 0, where n is the unit outward normal vector to ∂Ω̂.

As a second step, by relating the body coordinate with the material coor-
dinate, it is possible to recast the functional J in (9) as a functional defined
on H1

0 (Ω̂). We introduce the pullback of an arbitrary function v ∈ H1
0 (Ω) as
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v̂(x̂) = v(x) = v(x̂ + U(x̂)), and recall that, via the differentiation chain rule,
∇v(x) = M−T (x̂)∇bxv̂(x̂), M−T denoting the transposed inverse of M , and the
differential transform dx = |detM(x̂)|dx̂, where U(x̂) and M(x̂) = I +∇bxU(x̂)
are defined in (3) and (4), respectively.

As a third step, we can express the functional J in (9) as the new functional,
Ĵ(v̂,U), with

Ĵ(v̂,U) =
1

2

∫

bΩ
|M−T (U(x̂))∇bxv̂(x̂)|2 |detM(U(x̂))|dx̂

−

∫

bΩ
f(x̂ + U(x̂)) v̂(x̂) |detM(U(x̂))|dx̂ ∀v̂ ∈ H1

0 (Ω̂). (18)

It is important to notice that, whereas the source function, f , has to be evaluated
in the body coordinate, where it is naturally defined, the arbitrariness of v ∈
H1

0 (Ω) reflects in the arbitrariness of v̂ ∈ H1
0 (Ω̂), so that it is no longer required to

keep track of the implicit dependence of v̂ on U. Moreover, we have emphasized
the dependence of M on U due to the relation M = I+∇bxU. We anticipate that
in order for this functional to be well defined, we require that the deformation
mapping be a C1-diffeomorphism, i.e., a continuously differentiable bijection,
with a continuously differentiable inverse, and that the orientation-preserving
constraint, detM(x̂) > 0 for a.e. x̂ ∈ Ω̂, hold. With a view to the numerical
approximation, this regularity can be relaxed, i.e., it suffices that the deformation
mapping be a piecewise C1-homeomorphism.

The Gâteaux derivative of (18) with respect to U is

∂Ĵ

∂U
(v̂,U)W =

∫

bΩ

(∂M−T

∂U
(U)W

)
(x̂)∇bxv̂(x̂) · M−T (U(x̂))∇bxv̂(x̂) |detM(U(x̂))|dx̂

+
1

2

∫

bΩ
|M−T (U(x̂))∇bxv̂(x̂)|2

(∂|detM |

∂U
(U)W

)
(x̂) dx̂

−

∫

bΩ
f(x̂ + U(x̂)) v̂(x̂)

(∂|detM |

∂U
(U)W

)
(x̂) dx̂

−

∫

bΩ
∇f(x̂ + U(x̂)) ·W(x̂) v̂(x̂) |detM(U(x̂))|dx̂, (19)

where the differential terms can be computed using the auxiliary results provided
in the Appendix. Moving from the expression (19), one can already devise a
minimization algorithm for computing the optimal pair (û,U). One possibility is
to resort to a steepest descent method. Alternatively, one can adopt the strategy
based on the following gradient flow. For this purpose, let us now introduce the
time dependence of the displacement vector, i.e., we assume that U = U(x̂, t)
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and, for every x̂ ∈ Ω̂, we introduce the ordinary differential problem:





∂U

∂t
(x̂, t) = −

∂Ĵ

∂U
(û(x̂, t),U(x̂, t)), t ∈ (0,+∞)

U(x̂, 0) = U0(x̂),

(20)

where ∂ bJ
∂U

(û,U) is the gradient of Ĵ with respect to U, which can be recovered
from the directional derivatives in (19), and U0 is a given initial displacement.
The function û(x̂, t) solves the Euler-Lagrange relation

∂Ĵ

∂v̂
(û,U)φ = 0 ∀φ ∈ H1

0 (Ω̂), (21)

where the left-hand side is the Gâteaux derivative of (18), i.e.,

∂Ĵ

∂v̂
(û,U)φ = lim

ε→0

1

ε

(
Ĵ(û + εφ,U) − Ĵ(û,U)

)
, (22)

given by

∂Ĵ

∂v̂
(û,U)φ =

∫

bΩ
M−T (U(x̂))∇bxû(x̂) · M−T (U(x̂))∇bxφ(x̂) |detM(U(x̂))|dx̂

−

∫

bΩ
f(x̂ + U(x̂))φ(x̂) |detM(U(x̂))|dx̂ ∀φ ∈ H1

0 (Ω̂). (23)

The gradient flow problem (20) represents the continuous-in-time form of a stee-
pest descent algorithm. Actually, to first order in the time step ∆t, from (20)
we have that

U(x̂, t + ∆t) ≃ U(x̂, t) − ∆t
∂Ĵ

∂U
(û(x̂, t),U(x̂, t)), (24)

which can be interpreted as a step of a steepest descent method with step length
∆t. Thus, solving (20), will drive us towards the equilibrium solution where
∂ bJ
∂U

(û,U) = 0. In fact, the reduced functional, J̃(t) = Ĵ(û(·, t),U(·, t)), from
(20), satisfies

dJ̃

dt
(t) =

∂Ĵ

∂U
(û(·, t),U(·, t))·

∂U

∂t
(·, t) = −

∥∥∥
∂Ĵ

∂U
(û(·, t),U(·, t))

∥∥∥
2
≤ 0, in Ω̂, t ≥ 0,

(25)
that is, J̃(t) is a non-increasing function of time over all the trajectory. In
practice, it is not possible to solve (20) exactly, and a suitable time-marching
numerical scheme has to be adopted, which might fail to satisfy (25) on the
discrete level. Moreover, we would like to guarantee that, over all the evolution,
no entanglement of the elements occurs on passing from T̂h to Th(t), i.e., we
want that the image of the points that constitute T̂h define a valid mesh, Th(t),
according to (6), with X determined from U through (3).
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4 An approach based on optimal control

In order to try and satisfy these requirements, we resort to an alternative ap-
proach, hinging on optimal control. In particular, we require that all the trial
deformation mappings, X = (x1, x2), satisfy a diffusion equation driven by an
anisotropic diffusion tensor. Namely, we demand that

{
−∇bx ·

(
(I + A2)∇bx xi

)
= 0 in Ω̂, i = 1, 2

x · n = x̂ · n on ∂Ω̂,
(26)

where we recall that n is the unit outward normal vector to ∂Ω̂, and the boundary
condition is equivalent to requiring that U · n = (x − x̂) · n = 0. The diffusion
coefficient depends on the identity matrix, I ∈ R

2×2, and on the symmetric
tensor,

A =

[
q1 q2

q2 q3

]
, (27)

where qi, i = 1, 2, 3, play the role of control variables. In general, I+A2, is a sym-
metric and positive definite non-homogeneous tensor. Thus, we are subjecting
the deformation mapping to satisfy a diffusion equation, where the amount of dif-
fusion is adjusted by tuning the control parameters. When qi = const, i = 1, 2, 3,
it is easy to check that the solution to (26) is x = x̂, that is, there is no de-
formation whatsoever. For a general polygonal domain, due to the boundary
conditions, (26) represents a coupled system of partial differential equations for
the pair (x1, x2). However, when Ω consists only of horizontal and vertical sides,
(26) splits into two independent problems. For example, when the domain is the
square (−1, 1)2, the two sub-problems become the second-order elliptic problems
completed with mixed boundary conditions, given by





−∇bx ·
(
(I + A2)∇bx x1

)
= 0 in Ω̂

x1 = ±1 on {ξ1 = ±1& − 1 < ξ2 < 1}

(I + A2)∇bxx1 · n = 0 on {ξ2 = ±1& − 1 < ξ1 < 1}

(28)

and




−∇bx ·
(
(I + A2)∇bx x2

)
= 0 in Ω̂

x2 = ±1 on {ξ2 = ±1& − 1 < ξ1 < 1}

(I + A2)∇bxx2 · n = 0 on {ξ1 = ±1& − 1 < ξ2 < 1}.

(29)

Notice that the Neumann boundary conditions are somewhat arbitrary, since
they are not directly implied by the constraint U · n = 0. The ones in (28)-
(29) are handy, and enforce the vanishing of the conormal derivative associated
with the anisotropic diffusion operator. Alternatively, they can be replaced by
the standard Neumann conditions ∂x1

∂ξ2
= 0 and ∂x2

∂ξ1
= 0, in (28) and (29),

respectively. As explicit functions of the control variables, the components of
the diffusion tensor, I + A2, are give by:

(I+A2)11 = 1+q2
1+q2

2, (I+A2)12 = q1q2+q2q3, (I+A2)22 = 1+q2
2+q2

3. (30)
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Figura 1: Deformed meshes associated with different control functions: q1 (left),
q2 (center), and q3 (right).

To get a flavor about the different role played by the three control functions,
we solve (28)-(29) with the following three sets of data: {q1 = exp (3 ξ1), q2 =
q3 = 0}; {q1 = 0, q2 = exp (3 ξ1 ξ2), q3 = 0}; {q1 = q2 = 0, q3 = exp (3 ξ2)}. More
precisely, the solution to these equations has been computed by a FEM appro-
ximation of degree 1 on a 20 × 20 structured mesh, T̂h, of the reference domain
Ω̂ = (−1, 1)2. The corresponding deformed meshes, given by (6) (independently
of time), are displayed in Figure 1. Although there is a nonlinear coupling among
the three variables, as indicated by (30), which prevents using the superposition
principle, we can, however, draw some partial conclusions. Strong values of q1

induce a refinement of the mesh in the ξ1 direction, high values of q3 yield an
analogous refinement in the ξ2 direction, whereas a more involved effect is as-
sociated with q2. In each case, no entanglement of the elements occurs, despite
the very steep gradients exhibited by the meshes. For example, in Figure (1)
(left), the size of the mesh elements along the right-hand side of the domain is
on the order of 10−4.

It is convenient to rewrite equations (28)-(29) in terms of the displacement
components, using the transformation (3). This yields




−∇bx ·
(
(I + A2)∇bx u1

)
= ∇bx ·

(
(I + A2) e1

)
in Ω̂

u1 = 0 on {ξ1 = ±1& − 1 < ξ2 < 1}
(I + A2)∇bxu1 · n = −(I + A2)e1 · n on {ξ2 = ±1& − 1 < ξ1 < 1}

(31)
and




−∇bx ·
(
(I + A2)∇bx u2

)
= ∇bx ·

(
(I + A2) e2

)
in Ω̂

u2 = 0 on {ξ2 = ±1& − 1 < ξ1 < 1}
(I + A2)∇bxu2 · n = −(I + A2)e2 · n on {ξ1 = ±1& − 1 < ξ2 < 1},

(32)
where e1 = (1, 0)T and e2 = (0, 1)T denote the two unit vectors associated with
the Cartesian coordinates. With a view to the optimal control problem, these
two equations represent the state equations, i.e., the parameter-to-solution map:
{qi}i=1,2,3 → {ui}i=1,2. Their weak form can be obtained in the usual way.



An optimal control approach to adaptive moving mesh methods 13

Define the two boundary subsets,

Γ1 = {ξ1 = ±1& − 1 < ξ2 < 1}, Γ2 = {ξ2 = ±1& − 1 < ξ1 < 1}, (33)

and the associated Hilbert spaces, H1
Γi

(Ω̂) = {v ∈ H1(Ω̂) : v|Γi
= 0}, i = 1, 2.

Then, the weak form associated with (31) is: Find u1 ∈ H1
Γ1

(Ω̂), such that

∫

bΩ
(I + A2)∇bx u1 · ∇bx ϕ1 dx̂ = −

∫

bΩ
(I + A2) e1 ·∇bx ϕ1 dx̂ ∀ϕ1 ∈ H1

Γ1
(Ω̂), (34)

while the weak form of (32) is: Find u2 ∈ H1
Γ2

(Ω̂), such that

∫

bΩ
(I + A2)∇bx u2 · ∇bx ϕ2 dx̂ = −

∫

bΩ
(I + A2) e2 ·∇bx ϕ2 dx̂ ∀ϕ2 ∈ H1

Γ2
(Ω̂). (35)

We are now in a position to introduce the optimal control problem. This consists
of finding the critical points of the Lagrangian, L : V × Q × Λ → R, given by

L({û,U},q,Λ) =

Ĵ(û,U) +
∑

i=1,2

∫

bΩ
(I + A(q)2)∇bx (ui + ξi) · ∇bxλi dx̂

+
α

2

3∑

j=1

∫

bΩ
qj(x̂)2 dx̂, (36)

which collects the functional (18) with the constraints provided by the weak form
of the state equations, (34)-(35), by adjoining them via Lagrange multipliers, and
we have also included a possible Tikhonov regularization term depending on the
regularization parameter α ≥ 0, which controls the tradeoff between goodness of
fit to the data and stability. In practice, this terms should help preventing the
generation of invalid elements, i.e., elements which overlap with other elements.
In particular, the pair {û,U} = {û, u1, u2} ∈ V represents the state variable,
and we have introduced the compact notation q = {qi}i=1,2,3 ∈ Q to denote
the control variable, and Λ = {λi}i=1,2 ∈ Λ which plays the role of the adjoint
variable. Moreover, the relation ∇bxξi = ei has been used to unify notation.

Remark 4.1 Although the study of the well-posedness of the optimal control

problem is beyond the scope of this manuscript, we just observe that the Lagran-

gian L in (36) is well defined, i.e., it is a continuous functional on V ×Q×Λ, for

the following choices of function spaces: V = H1
0 (Ω̂) × U , where U = {U : Ω̂ →

R
2|X(x̂) = x̂ + U(x̂) ∈ H1(Ω̂)2 ∩Hom1,+(Ω̂)}, where Hom1,+(Ω̂) designates the

set of all piecewise C1-homeomorphisms from Ω̂ onto itself, with the constraint

that detM > 0 a.e. in Ω̂; Q = L∞(Ω̂)3, and Λ = H1
Γ1

(Ω̂) × H1
Γ2

(Ω̂).
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The critical points of the Lagrangian satisfy the well known Karush-Kuhn-
Tucker (KKT) system [28]





∂L

∂Λ
({û,U},q,Λ)Φ = 0 ∀Φ ∈ Λ

∂L

∂û
({û,U},q,Λ)φ = 0 ∀φ ∈ H1

0 (Ω̂)

∂L

∂U
({û,U},q,Λ)W = 0 ∀W ∈ U

∂L

∂q
({û,U},q,Λ) r = 0 ∀r ∈ Q.

(37)

Equation (37)1 yields the state equations (34)-(35); the adjoint equation (37)2
corresponds to (21) while the adjoint equation (37)3 yields

∂L

∂U
({û,U},q,Λ)W =

∂Ĵ

∂U
(û,U)W

+
∑

i=1,2

∫

bΩ
(I + A(q)2)∇bx wi · ∇bxλi dx̂ = 0 ∀W = (w1, w2) ∈ U, (38)

where ∂ bJ
∂U

(û,U)W is given in (19). The optimality condition (37)4, the so-called
gradient equation, becomes

∂L

∂q
({û,U},q,Λ) r =

∑

i=1,2

∫

bΩ
B(q, r)∇bx (ui + ξi) · ∇bxλi dx̂

+α
3∑

j=1

∫

bΩ
qj(x̂)rj(x̂) dx̂ = 0 ∀r = (r1, r2, r3) ∈ Q, (39)

where the tensor B(q, r) = ∂A
∂q

(q)r can be derived from (30) and is

B =

[
2(q1r1 + q2r2) r1q2 + q1r2 + r2q3 + q2r3

r1q2 + q1r2 + r2q3 + q2r3 2(q2r2 + q3r3)

]
. (40)

4.1 The gradient flow

In order to compute the solution to (37), we again resort to a gradient flow,
analogously to (20). For this purpose, we first recall that, as is well known in
the optimal control framework, the quantity ∂L

∂q
({û,U},q,Λ) appearing on the

left-hand side of (39), can be thought of as the derivative with respect to q of
the reduced functional, appearing in the Lagrangian, (36),

J (q) = Ĵ(û(q),U(q)) +
α

2

3∑

j=1

∫

bΩ
qj(x̂)2 dx̂, (41)
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where it is understood that the state variable, {û,U}, as well as the adjoint
variable, Λ (entering ∂L/∂q), are functions of the control variable, q, through
the state equation (37)1 and the adjoint equations (37)2−3, respectively. Then,
we consider the problem, for any x̂ ∈ Ω̂,





∂q

∂t
(x̂, t) = −

∂J

∂q
(q(x̂, t)) t ∈ (0,+∞)

q(x̂, 0) = q0(x̂),
(42)

where q0 is a given initial guess for the control variable. Thus, the solution
to (37) can be recovered as the asymptotic solution to (42), when ∂J

∂q
(q) = 0.

Indeed, along the trajectory of this dynamical system, the functional

J̃ (t) = J (q(·, t)) (43)

is nonincreasing, since

dJ̃

dt
(t) = −

∂J

∂q
(q(·, t)) ·

∂q

∂t
(·, t) = −

∥∥∥
∂J

∂q
(q(·, t))

∥∥∥
2

≤ 0, t ≥ 0.

Of course, also in this case, we shall compute an approximate solution to (42)
via a suitable time marching procedure.

5 Numerical assessment

We carry out some experiments aimed at validating the proposed adaptive proce-
dure. For this purpose, we resort to suitable approximations of the function spa-
ces required in (37). In particular, both the finite element solution, uh, and the
components of the displacement, say u1,h, u2,h, are picked in V 1

h ∩ H1
Γ1

(Ω̂), V 1
h ∩

H1
Γ2

(Ω̂), i.e., continuous piecewise linear vanishing on Γ1,Γ2, respectively; a con-
sistent choice is made for the components, λi, i = 1, 2 of the adjoint variable,
while the control variables, {qi}i=1,2,3 are approximated by piecewise constant

functions over the elements, i.e., qi ∈ {q ∈ L2(Ω̂) : q|K = const, ∀K ∈ T̂h}. In all
cases, the computational domain for (7) coincides with the square Ω̂ = (−1, 1)2,
and the reference mesh, T̂h, shown in Figure 2 (top left), consists of 312 trian-
gles. We have also adopted the time marching procedure, ode23, provided by the
Matlab ode suite. This handy function employs a Runge-Kutta pair of explicit
methods and incorporates time step adaptivity as well. To enhance precision,
the optional parameter, RelTol, is set to 10−6. The initial guess q0 in (42)
is picked as a piecewise random function. The final time, say T , is a problem
dependent parameter that has to be set for each test case. However, the ac-
tual stopping criterion exploits the events options of the ode suite to enforce
termination on the occurrence of the condition

∥∥∥
∂J

∂q
(q(·, t))

∥∥∥
∞

< TOL, (44)

for a given tolerance TOL.
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Figura 2: Deformed meshes: reference computational grid T̂h (top left); deformed
mesh for test case 1 (top right); deformed mesh for test case 2 (bottom left);
deformed mesh for test case 3 (bottom right).

5.1 Test case 1

We choose the source function f = 1 in (7). This gives a “hill” like solution,
and we expect only a moderate degree of deformation to occur. The final time
of the simulation is set to T = 105. The tolerance TOL in (44) is set to 10−5.
The Tikhonov regularization parameter is not used, i.e., α = 0. The ode suite
function carries out 145 time steps, and the deformed mesh, associated with the
final value T = 8.1340 · 104, is displayed in Figure 2 (top right). The behavior
of the functional J in (43) as a function of time is plotted in Figure 3 (left).
Notice that the trend is monotonous throughout all the iterations, as expected.
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Figura 3: Trend of the functional J as a function of time: test case 1 (left), test
case 2 (center), and test case 3 (right).

5.2 Test case 2

The source f is manufactured such as the exact solution be

u = sin(2πx1) cos(π/2x2).

It is characterized by a wavy behavior along the x1 direction, where two full
waveforms occur, whereas only a hill is featured in the orthogonal direction. The
final time is fixed to T = 104, while TOL = 10−3. The Tikhonov regularization
parameter is set to α = 0. The simulation takes 791 time steps to complete,
converging at the actual value T = 3.4543 · 103. The final deformed mesh is
shown in Figure 2 (bottom left). The trend of the functional J in (43) as a
function of time is captured in Figure 3 (center).

5.3 Test case 3

We choose the source f in order that the exact solution be

u = (x2 − 1)(x2 + 1)
(
(x1 − 1)/2 + exp (−100(x1 + 1))

)
,

which satisfies only approximately the boundary conditions on the vertical right-
hand side, {ξ1 = 1& − 1 < ξ2 < 1}. The actual value, however, on the order of
10−87, seems really an acceptable approximation to 0. This solution exhibits a
very steep gradient across the vertical left-hand side, {ξ1 = −1& − 1 < ξ2 < 1}.
We thus expect very large deformations to occur near to this side. The final time
takes on the value T = 103, and the stopping tolerance is set to TOL = 2.5 ·10−3.
Due to the strong boundary layer, the Tikhonov regularization parameter is set
to α = 10−1, in order to prevent element flipping. The simulation takes 236
time steps to converge, yielding T = 9.2456 · 102. The deformed mesh at the
final time is displayed in Figure 2 (bottom right). Figure 3 (right) shows the
evolution of the functional J in (43) as a function of time.
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Appendix

We recall some results which are required in the body of the paper. Let A = A(s)
be a square regular matrix whose entries depend on the real parameter s. Then
the following results can be proved.

Lemma 5.1 (Derivative of a matrix inverse) The derivative of the inverse

of A with respect to s satisfies

d

ds
A−1(s) = −A−1(s)

d

ds
A(s)A−1(s).

Proof. Differentiating the relation, A(s)A−1(s) = I, where I is the identity matrix, we

get, d
ds

A(s)A−1(s)+A(s) d
ds

A−1(s) = 0, which yields the desired result after rearranging

the terms. �

From this Lemma, it is also easy to prove the following statement.

Corollary 5.1 (Derivative of a transposed inverse matrix)

d

ds
A−T (s) = −A−T (s)

( d

ds
A(s)

)T
A−T (s).

It also hods

Lemma 5.2 (Jacobi’s formula: Derivative of a matrix determinant)

d

ds
detA(s) = detA(s) trace

(
A−1(s)

d

ds
A(s)

)
= detA(s) trace

( d

ds
A(s)A−1(s)

)
.

Proof. See, e.g., [13]. �

Lemma 5.3 (Deformation gradient tensor)

M(x̂) = I + ∇bxU(x̂) =




1 +
∂u1

∂ξ1

∂u1

∂ξ2

∂u2

∂ξ1
1 +

∂u2

∂ξ2




Lemma 5.4 (Determinant of the deformation gradient tensor)

detM = 1 + ∇bx · U + det∇U = 1 +
∂u1

∂ξ1
+

∂u2

∂ξ2
+

∂u1

∂ξ1

∂u2

∂ξ2
−

∂u1

∂ξ2

∂u2

∂ξ1

Lemma 5.5 (Inverse of the deformation gradient tensor)

M−1 =
1

detM




1 +
∂u2

∂ξ2
−

∂u1

∂ξ2

−
∂u2

∂ξ1
1 +

∂u1

∂ξ1
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Definition 5.1 (Gâteaux derivative) The Gâteaux derivative of either a sca-

lar, vector, or tensor quantity, q = q(U), at U in the direction W, is the scalar,

vector, or tensor given by

∂q

∂U
(U)W = lim

s→0

1

s

(
q(U + sW) − q(U)

)
=

d

ds
q(U + sW)

∣∣∣
s=0

. (45)

Applying Definition 5.1 to the deformation gradient tensor in Lemma 5.3, we
have

Corollary 5.2 (Gâteaux derivative of the deformation gradient tensor)

∂M

∂U
W =

∂M

∂u1
w1 +

∂M

∂u2
w2,

with

∂M

∂u1
w1 =




∂w1

∂ξ1

∂w1

∂ξ2

0 0




and

∂M

∂u2
w2 =




0 0

∂w2

∂ξ1

∂w2

∂ξ2


 .

6 Conclusions

The moving mesh method that we have proposed may be interpreted as a sort
of elliptic mesh generator, in the sense of [32], where a diffusion equation with
a variable diffusivity tensor is solved in the reference/computational domain, Ω̂,
to obtain the deformed mesh in the physical space, Ω. This exploits an analogy
by which the movement of the mesh nodes is described in continuum mecha-
nics terminology, resorting to the concept of displacement field. Thus the mesh
nodes of a given isotropic mesh, T̂h, in the computational domain move as a
part of a continuum body. The novelty is that the diffusion tensor acts as a
control variable through which one can exert control over the displacement. In
particular, the optimal control variables are determined in such a way that a
suitable energy functional, measuring the error between exact and approximate
solution to the Poisson problem, and dependent on the displacement, be minimi-
zed. This eventually yields the optimal mesh, Th, as the image of T̂h under the
resulting deformation mapping. The actual movement of the nodes is realized
by introducing a suitable gradient flow, i.e., a time-dependent differential equa-
tion, which drives the evolution of the hypothetical dynamical system associated
with the body along a trajectory where the energy functional is nonincreasing,
and hopefully decreasing, until the equilibrium state is reached where the ener-
gy, and thus the error, is at a minimum. In practice, the optimality equations
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are discretized by finite element approximations on T̂h, and the gradient flow is
solved through a suitable time marching procedure.

So far, we have applied our approach to the Poisson equation, but the exten-
sion to other problems is straightforward, whenever the exact solution minimi-
zes an energy functional, e.g., when the differential operator is self-adjoint and
coercive. The theoretical analysis of the well-posedness of the optimal control
problem is still an open issue.
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