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Abstract

Subsurface flows are strongly influenced by the presence of faults and
large fractures that alter the permeability of the medium acting as barriers
or conduits for the flow. An accurate description of the hydraulic properties
of the fractures is thus essential for the modelling of oil migration or the
exploitation of unconventional sources. However, the width of fractures is
often small compared to the typical mesh size. To approximate the problem
without refining the mesh to resolve the fracture we replace them with sur-
faces immersed in the porous matrix. Moreover we allow the surfaces to be
non matching with the edges of the grid handling the discontinuities within
elements with the XFEM approach. The method, originally developed for
the single-phase Darcy problem is extended to the case of passive transport
and multiphase flow.

1 Introduction

Subsurface flows are strongly influenced by the presence of fractures. While
small and microfractures can be easily accounted for by means of a simple ho-
mogenization resulting in an increase of permeability, large fractures and faults
play a more complex role, acting as paths of barriers for the flow and connect-
ing different regions of the domain. These effects are very relevant for many
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applications such as oil migration, oil recovery, CO2 storage and groundwater
contamination and remediation.
Due to the spatial scales involved the simulation of fractured porous media is a
very challenging task. The typical size of these features, compared to the do-
main size, is usually such that a very fine mesh is needed to resolve the fracture
width. Moreover, in realistic cases, the porous media are usually crossed by a
large number of fractures that can intersect each other. This geometric complex-
ity makes the simulation of the flow in fractured porous media very challenging.
If we consider the finite element method on an unstructured tetrahedral grid
the construction of a good computational grid is essential to achieve accurate
results. However, the conformity of the grid to possibly numerous and inter-
secting fractures can be a strong constraint and can affect the quality of the
elements. Besides, the mesh refinement required to capture the fault or fracture
aperture leads to a very high, if not unaffordable, computational cost.
These problems can be in part overcome with the model reduction strategy pro-
posed in [1, 11] and later extended in [3]. It consists in a domain decomposition
approach where the fractures are regarded as n− 1 dimensional interfaces inside
a n-dimensional porous matrix, i.e. surfaces in 3D or lines in 2D. This ap-
proach can effectively reduce the number of unknowns in simulations because it
removes the need for fine grids inside the fractures [7]. However, the aforemen-
tioned works are restricted to the case of grids that follow the shape of faults and
fractures. In [5] the authors remove the constraint of mesh conformity by means
of the extended finite element method (XFEM) [9], allowing the fracture to cross
the elements of the grid in an arbitrary way. This approach has reduced the ef-
fort in constructing the computational grid, since this operation does not have
to account for the possibly complicated geometry of the fractures and, moreover,
can be performed only once even if the position of fractures or faults changes
due to multiple scenarios or sensitivity analysis. The method was, however, lim-
ited to the case of one interface, or at most, of more non intersecting interfaces
[7]. The difficulty in dealing with intersecting fractures is twofold. On one hand
suitable coupling conditions have to be introduced at the intersections between
two or more fractures. Furthermore, in an XFEM approach, the elements of the
mesh that are crossed by more that one interface require an additional enrich-
ment of the finite element space. Realistic simulations of intersecting faults in a
three dimensional domain are presented in [2], where the continuity of pressure
and mass conservation are enforced at the intersections. More general coupling
conditions are introduced and discussed in [6] to account for different proper-
ties of the fractures allowing for pressure and velocity jumps at the intersection,
similarly to the conditions derived in [11] for the matrix-fracture system. The
aforementioned work considers the case of a network isolated by the porous ma-
trix, in the limit case where the matrix can be regarded as impermeable with
respect to the fractures. In the present paper we present discretization strategy
for the fully coupled problem of porous media crossed by intersecting fractures,
where the fractures exchange fluid between each other (we limit ourselves to the
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intersections of two fractures at a time), and with the porous matrix surrounding
them. To obtain a method that is as flexible as possible, in the view of future
realistic applications, we employ the XFEM on two levels. First of all, we allow
the grid of the medium to be non-conforming with the fractures. Moreover, we
allow the grids of the fractures to be arbitrary, i.e. non-matching at the inter-
section, and handle the pressure and velocity jumps at the intersection points
with n− 1 dimensional extended finite elements, as done in [6]. A particular at-
tention is devoted to the enrichment of the finite element spaces in the elements
crossed by two fractures, where we extend the method proposed by [8] to allow
the solution to be discontinuous across the two interfaces.
The paper is structured as follows: in Section 2 we present both the physical
equations and the reduced model, with the interface conditions which couple
the matrix-fracture system and the fracture-fracture system. In section 3 we
present also the numerical discretization of the problem with an highlight on the
enrichment of the finite element spaces. In Section 4 we present some numerical
experiments to asses the effectiveness of the proposed method. Finally Section
5 is devoted to conclusions and to ongoing works.

2 Mathematical model

We call fracture, or fault, a thin zone of the porous medium with data different
several order of magnitude from the neighbour medium, however its extension
is comparable with the domain size. In the analyses we consider only the case
of two intersecting fractures with only one intersection region. Nevertheless
the results presented can be extended, rather easily and under the forthcoming
hypotheses, to the case of several fractures with several intersections. Examples
can be found in Section 4.

2.1 Physical equations

Let us consider a domain D ∈ R
2, crossed by two intersecting fractures called

Ω1,Ω2 ∈ D. Here and in the sequel we indicate with the lower case subscript
·i the restriction of data and unknowns to Ωi. We assume that the intersecting
region, called I := Ω1 ∩ Ω2, form a connected subset of each Ωi, i.e. we allow
only one intersection between the fractures. For simplicity we assume that I can
be approximated by a quadrilateral with parallel sides. Given I each fracture Ωi

can be written as the union of disjoint sets Ωi = Ωi1∪I∪Ωi2, the two non-empty
branches Ωij of the fracture and the intersecting region. We indicate with ·ij and
·I the restriction of data and unknowns to Ωij and to I, respectively. Finally,
thanks to the previous splitting of D, we define the surrounding porous medium
to the fractures as Ω := D\(Ω1 ∪ Ω2). Figure 1 shows an example of the domain
subdivision.
We divide the boundary of each fracture Ωi into three disjoint pieces γi,1, γi,2
and a part common with ∂D, as Figure 1 shows.
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Figure 1: Example of the set subdivision for a given problem.

Following [6, 11] we introduce the thickness di of Ωi, which is a regular function
of the centre line γi of Ωi. We can write each fracture Ωi from its thickness as

Ωi =

{
x ∈ R

2 : x = s+ rni, s ∈ γi, r ∈

(
−
di (s)

2
,
di (s)

2

)}
,

where we have indicated with ni the inward, respect to Ωi, unit normal to γi,1.
We are interested in computing the steady pressure field p and the velocity field
u in the whole domain D, which are governed by the Darcy problem formulated
in Ω, Ω1, Ω2 and I as

{
K

−1
j uj +∇pj = 0

∇·uj = fj
in Ωj for j = , 1, 2

{
K

−1
I

uI +∇pI = 0

∇·uI = fI
in I. (1a)

Where Kj and KI denote the, symmetric and positive definite, permeability
tensors and fj and fI source terms. To couple all the problems in (1a) we use
the classical interface conditions

{
pi = p

ui · ni = u · ni

on ∂γi,j and

{
pi = pI

ui · nI = uI · nI

on ∂I (1b)

for i, j = 1, 2. In (1b) we have indicated with nI the outward, respect to I, unit
normal. Finally we impose, for the sake of simplicity, homogeneous boundary
condition on the pressure

{
p = 0 on ∂D ∩ ∂Ω,

pi = 0 on ∂D ∩ ∂Ωi.
(1c)

Following [4] we can prove that problem (1) is well posed.

2.2 Reduced model

In [11] a reduced model is derived for a single fracture coupled with the porous
media, while in [6] a similar model is derived for networks of fractures uncoupled
with the surrounding porous medium. We present a reduced model, based on
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the aforementioned works, which describe the coupling between a network of
fractures and the porous medium obtaining a complete model for a single phase
flow in fractured porous media.
We recall, for readers convenience, the main idea for both models. We start by
collapsing each Ωi with its centre line γi. Given a regular function a : Ω → R

m,
m = 1 or 2, let us set the jump and mean operators as JaKγ := a1 − a2 and
{{a}}γ := (a1 + a2) /2 with aj (x) = limǫ→0± a (x− ǫn). We define the same
operators across the intersection point ip := γ1 ∩ γ2 as JaiKip := ai1 − ai2 and
{{ai}}ip := (ai1 + ai2) /2 for i = 1, 2. We define the projection matrix on the
normal space as Ni := ni ⊗ ni and on the tangential space as Ti := I − Ni.
Given a regular function a : Ωi → R the tangential operators, equal in this
bi-dimensional case, are ∇τi

a := Ti∇a and ∇τi
· a := Ti : ∇a. Following [6, 11]

we suppose that Ki = Ki,nNi +Ki,τTi in Ωi \ I with Ki,· positive, while KI is
constant. We will indicate with ·̂ the reduced variables defined in each γi. We
introduce, for each fracture γi, the reduced velocity ûi and pressure p̂i as

ûi(si) :=

∫ di
2

−
di
2

Tiui (si + rni) dr and p̂i(si) :=
1

di

∫ di
2

−
di
2

pi (si + rni) dr,

with si ∈ γi. Moreover, the reduced source term f̂i and the inverse of the scaled
permeabilities ηγi and η̂i are defined as

f̂i(si) :=

∫ di
2

−
di
2

fi (si + rni) dr, ηγi :=
di

Ki,n
and η̂i :=

1

diKi,τ
.

Following [6] we indicate with τi the tangential unit vector to γi, and with τi,ip its
value at ip. We define d∗i := di/ sin θ, with θ the angle between the two fractures
at ip. The reduction process approximate the pressure in the intersecting region
to a scalar value p̂I in ip. The latter and the reduced source term fI are defined
as

p̂I :=
1

|I|

∫

I

pI (x) dx and f̂I :=
1

|I|

∫

I

fI (x) dx.

Moreover we indicate the inverse of the reduced permeability, along the directions
τi,ip and τj,ip , in the intersection as ηIij := τ

⊤
i,ip

·K−1
I

τj,ip .
The complete reduced model describe the evolution of u, p, ûi, p̂i and p̂I using
the following system of partial differential equations for i = 1, 2




K
−1

u+∇p = 0

∇·u = f
in Ω

p = 0 on ∂D ∩ ∂Ω





η̂iûi +∇τi
p̂i = 0

∇τi
· ûi = f̂i + Ju · niKγi

in γi \ ip

p̂i = 0 on ∂γi

(2a)

coupled with the interface conditions for the matrix-fracture system for j = 1, 2
{
ξ0iηγiJu · niKγi = {{p}}γi − p̂i

ηγi{{u · ni}}γi = JpKγi
on γi, (2b)
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with ξ0j ∈ (0, 0.25] a first model parameter, see [3, 11] for its meaning. Moreover
the coupling conditions for the fracture-fracture system for i 6= j = 1, 2 are





2∑

k=1

Jûk · τkKip = f̂I

|I|

di

2∑

k=1

ηIik
d∗k

{{ûk · τk}}ip = Jp̂iKip

ξ̂0
dj
di
ηIiiJûi · τiKip = {{p̂i}}ip − p̂I

in ip. (2c)

The value of the second model parameter ξ̂0 is discussed in [6].

3 Numerical discretization

The discretization of (2) is based on the XFEM method [9] for both the porous
medium and the intersecting fractures. In fact we allow non-matching grids
between the fractures and the porous media and in the intersection point of
the intersecting fractures. To this purpose we introduce suitable enriched finite
element spaces based on the standard Raviart-Thomas finite element RT0, for
vector fields, and piecewise constant finite element P0, for scalar fields.
We consider a family of regular tessellation Th, h := maxK∈Th diam (K), with
∂Th := {e ∈ ∂K, K ∈ Th}. For each fracture i we introduce a family of regular
tessellation γ

ĥ,i
with ĥ := maxl∈γ

ĥ,i
|l|. We suppose that if a fracture intersect a

triangle then it intersects exactly two edges moreover, for the sake of simplicity,
we suppose that at most two fractures cross a triangle and, if an intersection
occurs, it happens inside a triangle. We introduce the following subset of Th, for
i 6= j and for i, j = 1, 2

Ih := {K ∈ Th : (γi ∩ γj 6= ∅) ∈ K} ,

Mh := {K ∈ Th : K ∩ (γi ∪ γj) 6= ∅} \ Ih,

Gh,i := {K ∈ Th : K ∩ γi 6= ∅ ∧K ∩ γj = ∅} ,

CRh := Mh ∪ Ih ∪ Gh,1 ∪ Gh,2 and Nh := Th \ CRh.

The last two are the cut region and the collection of elements in Th not crossed by
any fracture, respectively. We split also the mesh of the fractures into intersected
elements and non intersected elements, in particular we define for i = 1, 2

C
ĥ,i

:=
{
l ∈ γ

ĥ,i
: l ∩ ip 6= ∅

}
and B

ĥ,i
:= γ

ĥ,i
\ C

ĥ,i
.

See Figure 2 for an example. With this subdivision, we define the following
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Figure 2: Example of subdivision of Th, in the left, and γ
ĥ,i
, in the right.

enriched finite elements spaces for the medium

R̃T0 (Th) := RT0 (Nh)⊕
2⋃

k,j=1

RT0 (Gh,k)⊕
3⋃

m=1

RT0 (Mh)⊕
4⋃

l=1

RT0 (Ih) ,

P̃0 (Th) := P0 (Nh)⊕
2⋃

k,j=1

P0 (Gh,k)⊕
3⋃

m=1

P0 (Mh)⊕
4⋃

l=1

P0 (Ih) .

With these definitions we can represent, for both p and u, four discontinuities
in K ∈ Ih, two in K ∈ Mh and one in K ∈ Gh,k. An example is reported in
Figure 3.

(a) Example of P0 (I).
(b) Example of RT0 (Gh).

Figure 3: Example of some base functions for cut elements.

Moreover for each fracture i = 1, 2 the enriched finite elements spaces are

R̃T0

(
γ
ĥ,i

)
:= RT0

(
B
ĥ,i

)
⊕

2⋃

k=1

RT0

(
C
ĥ,i

)
,

P̃0

(
γ
ĥ,i

)
:= P0

(
B
ĥ,i

)
⊕

2⋃

k=1

P0

(
C
ĥ,i

)
.

Using a standard procedure we can write problem 2 in its discrete counterpart,
see [5, 6] for more details. Hence the global algebraic system is the following
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symmetric saddle problem




A B 0 E1 0 E2 0

B
⊤ 0 0 0 0 0 0

0 0 Â1 B̂1 0 0 Ê1

E
⊤
1 0 B̂

⊤
1 0 0 0 0

0 0 0 0 Â2 B̂2 Ê2

E
⊤
2 0 0 0 B̂

⊤
2 0 0

0 0 Ê
⊤
2 0 Ê

⊤
2 0 0







u

p
û1

p̂1
û2

p̂2
p̂I




=




0

Fq

0

F̂1

0

F̂2

F̂I




.

The matricesEi and Êi are the interpolations matrices, for the pressure, between
the matrix-fracture system and the fracture-fracture system.

4 Applicative examples

We present some examples and test cases to asses the reduced model presented
in Section 2.2. Example 4.1 highlight the model error using the reduced method
instead the physical equations, while Example 4.2 shows a synthetic test case.

4.1 Model error

The model error is the error we commit if we use the reduced model (2) instead of
solving the real equations (1). We define the error err as the difference between
a reference solution, obtained using the original equations solved on a fine grid,
and the reduced solution; moreover we introduce also the relative error as

err := ‖p− pref‖L2(Ω) and errrel :=
err

‖pref‖L2(Ω)

. (3)

We consider a two-dimensional problem in a square domain cut by two inter-
secting fractures characterized by different properties, let us set Ω = (0, 1)2,

γ1 = {(x, y) ∈ Ω : y = 0.387} and γ2 = {(x, y) ∈ Ω : y = −2x+ 1.4}.

In the boundaries for the domain ∂Ω and for each fracture ∂γi, for i = 1, 2,
we prescribe homogeneous natural boundary conditions. The bulk flow and the
flow in the intersecting fractures are described by (2) with source terms f = 10
and f̂i = 10d for both fractures and K = I, with d the thickness of the fracture.
Fracture γ1 is characterized by the same tangential and normal permeability as
the porous medium in Ω thus η̂1 = d−1 and ηγ1 = d. Fracture γ2 is instead
characterized by the same tangential permeability as the porous medium in Ω
i.e. η̂2 = d−1, and a low normal permeability ηγ2 = 50d. We set ξ̂0 = 0. The
computational domain is sketched in Figure 6.
Figure 4 shows the pressure field in the domain Ω and in the fractures γ1 and
γ2, with and without the reduced model. Due to the small normal permeability
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of γ2 there is a jump in the pressure across this fracture, furthermore the effect
of fracture γ1 is null since it has the same permeability tensor as the porous
matrix.

Figure 4: On the left the solution with the reduced model, with ξ0 = 0.25 and
d = 0.02, using 4418 triangles for the medium, 101 segments for first fracture
and 102 segments for the second fractures. On the right the reference solution
with 114115 triangles.

In Table 1 the global relative error (3) defined in 1 is reported.

ξ0 = 0 ξ0 = 0.25 ξ0 = 0.5

d = 0.02 0.0437599 0.0440597 0.0456497

d = 0.05 0.072244 0.0726848 0.0724751

Table 1: Global relative error errrel for different values of thickness d and shape
parameter ξ0.

We notice that decreasing the thickness d of the fracture the model error de-
creases, while changing the shape parameter ξ0 the model error does not change
significantly.
Figure 5 shows the model error (3) considering the global domain and the domain
without the first fracture. We take as a reference the solution of the real problem
with a fine grid composed by 114115 triangles. Due to the model reduction the
major errors are localized near the fractures, in particular when a pressure jump
occurs across a fracture.
In Figure 6 we present a zoom of the error near the intersection point ip, we can
notice that the error is comparable with the neighbouring regions.

4.2 A synthetic test case

Let us consider a synthetic test case that aims at reproducing the quarter of
five spots problem in the presence of fractures. The computational domain is
the unit square and no flux boundary conditions are imposed on the edges. The
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Figure 5: On the left image the model error (3) for thickness d = 0.05 while on
the right image the model error (3) for thickness d = 0.02. In both simulation
the shape parameter is ξ0 = 0.25.

Ω

p = 0

p = 0

p
=

0 p
=

0

γ2

γ1

Ω

ip

x
y

Figure 6: On the left image the zoom, coloured in green, of the domain Ω while
on the right image the zoom of the model error for thickness d = 0.02, with
shape parameter ξ0 = 0.25.

presence of the injector well at the left bottom corner and the extracting well at
the top right corner is mimicked with two source terms of equal intensity and
opposite sign, i.e.

f =





1 if x2 + y2 < 0.08

−1 if (1− x)2 + (1− y)2 < 0.08

0 otherwise

.

The geometry of the fracture replicates one of the test cases proposed in [10]
and there solved with the finite volume method on a grid conforming to the
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fractures. In particular we have three fractures,

γ1 :y = 0.20 ≤ x ≤ 0.6

γ2 :x = 0.30 ≤ y ≤ 0.4

γ3 :x = 0.70.3 ≤ x ≤ 0.7

of the same width d = 0.01 and permeability Ki,n = Ki,τ = 100 for i = 1, 2, 3,
while the permeability of the porous matrix is set to 1. The solution is reported in
Figure 7, where the pressure distribution is obviously influenced by the presence
of the fractures. The zoom of the intersection region close to the injector shows
that the fractures can cut the triangles of the mesh, and, moreover, the grids of
the fracture are independent on each other and also on the two-dimensional mesh.
Figure 8 compares the isolines of pressure in the non fractured and fractured case,
highlighting the effect of the higher conductivity due to the fractures.

Figure 7: Pressure distribution for a ”quarter of five spots” configuration in the
presence of three intersecting and highly permeable fratures. On the right, zoom
of the intersection showing the non conformity of the 2D and 1D grids.

Figure 8: Plot of the pressure isolines in the absence (left) and in the presence
(right) of three intersecting and highly permeable fratures.
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5 Conclusions

In this paper we have proposed a numerical method for the numerical approxi-
mation of Darcy problems in fractured porous media. The main original aspect
with respect to the methods already present in literature is the use of the XFEM
to represent discontinuous velocity and pressure across the fractures also in the
case of intersecting fracture. We assessed the validity of this approach com-
paring its results with those computed with the standard mixed finite element
on a grid fine enough to resolve the fracture thickness. The solutions were in
good agreement, except for the error introduced by the use of the reduced one-
dimensional model for the fractures, that vanishes if the fracture aperture tends
to zero. Moreover, the choice of the new coupling conditions introduced in [6] for
intersecting fractures allowed us to represent more general configurations such
as the simultaneous presence of blocking and conductive fractures. Even if the
method has been, so far, implemented only in the two-dimensional case where
the fractures are represented as lines, it can already have an applicative interest
for instance for the simulation of fractured reservoirs with numerical upscaling
techniques. The development of the corresponding three dimensional method is
the subject of ongoing and future work.
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