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Abstract

While ventricular electromechanics is extensively studied in both physiological and patholog-
ical conditions, four-chamber heart models have only been addressed recently; most of these
works however neglect atrial contraction. Indeed, as atria are characterized by a complex
anatomy and a physiology that is strongly influenced by the ventricular function, developing
computational models able to capture the physiological atrial function and atrioventricular
interaction is very challenging. In this paper, we propose a biophysically detailed elec-
tromechanical model of the whole human heart that considers both atrial and ventricular
contraction. Our model includes: i) an anatomically accurate whole-heart geometry; ii) a
comprehensive myocardial fiber architecture; iii) a biophysically detailed microscale model
for the active force generation; iv) a 0D closed-loop model of the circulatory system, fully-
coupled with the mechanical model of the heart; v) the fundamental interactions among the
different core models, such as the mechano-electric feedback or the fibers-stretch and fibers-
stretch-rate feedbacks; vi) specific constitutive laws and model parameters for each cardiac
region. Concerning the numerical discretization, we propose an efficient segregated-intergrid-
staggered scheme and we employ recently developed stabilization techniques – regarding the
circulation and the fibers-stretch-rate feedback – that are crucial to obtain a stable formula-
tion in a four-chamber scenario. We are able to reproduce the healthy cardiac function for
all the heart chambers, in terms of pressure-volume loops, time evolution of pressures, vol-
umes and fluxes, and three-dimensional cardiac deformation, with unprecedented matching
(to the best of our knowledge) with the expected physiology. We also show the importance
of considering atrial contraction, fibers-stretch-rate feedback and suitable stabilization tech-
niques, by comparing the results obtained with and without these features in the model.
The proposed model represents the state-of-the-art electromechanical model of the iHEART
ERC project – an Integrated Heart Model for the Simulation of the Cardiac Function – and
is a fundamental step toward the building of physics-based digital twins of the human heart.
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Cardiac anatomy Cardiac cycle
AO Aorta AC Atrial Contraction
AV Aortic Valve EDV End Diastolic Volume
AVN AtrioVentricular Node ESV End Systolic Volume
BB Bachmann’s Bundle IVC IsoVolumetric Contraction
ChT Chordae Tendineae IVR IsoVolumetric Relaxation
CrT Crista Terminalis SV Stroke Volume
EAT Epicardial Adipose Tissue VE Ventricular Ejection
HB His Bundle VPF Ventricular Passive Filling
InfVC Inferior Vena Cava
LA Left Atrium Modeling
LAA Left Atrial Appendage BDF Backward Differentiation Formula
LBB Left Bundle Branch BDF1 BDF of order 1
LV Left Ventricle BDF2 BDF of order 2
MV Mitral Valve CRN Courtemanche et al. [1]
PF Pericardial Fluid DOFs Degrees Of Freedom
PFs Purkinje Fibers FE Finite Element
PT Pulmonary Trunk HPC High Performance Computing
PV Pulmonary Valve ICI Ionic Current Interpolation
PVs Pulmonary Veins IMEX Implicit-Explicit
PaMs Papillary Muscles LDRBM Laplace-Dirichlet RBM
PeMs Pectinate Muscles MEF Mechano-Electric Feedback
RA Right Atrium RBM Rule-Based-Method
RAA Right Atrial Appendage RDQ20 Regazzoni et al. [2]
RBB Right Bundle Branch TTP06 ten Tusscher and Panfilov [3]
RV Right Ventricle
SAN SinoAtrial Node
SupVC Superior Vena Cava
TV Tricuspid Valve

Table 1: List of abbreviations.

1. Introduction

We propose a biophysically detailed, numerically stable and accurate computational
model of the electromechanics of the whole human heart, considering an active contraction
model for both atria and ventricles. Our model can accurately reproduce the healthy cardiac
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function, representing a fundamental step toward the building of physics-based digital twins
of the human heart.

Computational models of the cardiac function are progressively increasing their role in
cardiology, revealing diagnostic information, contributing to the development of new ther-
apies and promising patient-specific treatments based on individual pathophysiology [4–6].
Successful examples can be found in the context of cardiac electrophysiology [7–11], elec-
tromechanics [12–16] and fluid-dynamics [17–20].

The growing demand for computational models in clinical applications requires the de-
velopment of increasingly detailed mathematical models and efficient numerical methods
[21–30]. In the context of cardiac electromechanics, a biophysically detailed model of the hu-
man heart encompasses all the multiscale and multiphysics processes underlying the cardiac
function, ranging from the cellular (microscale) to the organ (macroscale) level, such as the
propagation of the electrical signal, the active and passive mechanics, and the interaction
with the circulatory system [22]. Moreover, the biophysics of the heart tissue is substantially
different among atria, ventricles and non-conductive regions (e.g. valves, arteries). Further
modeling difficulties are given by the complex anatomy made up of many components with
non-trivial shapes, each of which plays an important role in the cardiac function [31, 32].

All these complex aspects make accurate simulation of the cardiac cycle – characterized
by highly coordinated electrical, mechanical and valvular events – a very challenging subject
still not fully addressed. In particular, the literature lacks electromechanical models of the
entire human heart that take into account both atrial and ventricular contraction in detailed
whole-heart geometries. While ventricular electromechanics in image-based geometries is
extensively studied in both physiological and pathological conditions [7, 14, 22, 26, 27, 33–38],
whole-heart models emerged only in recent years [19, 21, 25, 39–47]. Some studies focus only
on electrophysiology [45, 47] or, if they consider electromechanics, include the atrial muscle
only as passive tissue [19, 21, 39, 40, 43, 44]. More specifically, Sugiura et al. [39] review the
essential methodologies for a multiscale and multiphysics heart model using the University
of Tokyo whole-heart simulator. However, the electromechanical results are limited to the
ventricles, as well as those of related papers using this simulator [48, 49]. Fritz et al. [40]
propose a whole-heart image-based model of the ventricular contraction that considers the
interaction with passive atria, pericardium and surrounding organs, demonstrating their
impact on the modeling of a physiological heart deformation. Augustin et al. [21] focus their
study on the importance of considering anatomically accurate image-based geometries of the
entire heart. They also develop novel numerical techniques that allow solving these complex
problems in high-resolution computational meshes. Santiago et al. [19] present a fluid-electro-
mechanical model of the heart focusing on the ventricles and the arterial flow. They perform
simulations in the anatomically accurate Zygote Solid 3D Heart Model [50], considering
simplified passive atria filled with a soft material in their cavity. Despite this simplification,
they show the impact of including atria to achieve physiological ventricular motion. Pfaller
et al. [43] analyze the importance of proper epicardial boundary conditions in the mechanical
model to correctly surrogate the effect of the pericardium and surrounding organs. Strocchi
et al. [44] propose simular boundary conditions but considering spatially varying coefficients,
to take into account the different stiffness of the surrounding organs. Both of these studies
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are based on whole-heart geometries reconstructed from medical images, that are also used
to validate the results. Finally, Strocchi et al. [25] release a publicly available cohort of four-
chamber heart meshes reconstructed from CT-images to facilitate the study of the whole-
heart electromechanics. They also perform simulations of the ventricular electrical activation
and contraction on this cohort.

All the aforementioned electromechanical models neglect atrial contraction, that, to the
best of our knowledge, is instead considered only in a few works, namely [41, 42, 46]. Bail-
largeon et al. [41] present the Living Heart project, a simulator of the human cardiac function
that includes a phenomenological representation of both ventricular and atrial active con-
traction. This simulator has been extensively used in recent years, but mainly to study
ventricular pathologies [15, 16, 51, 52], while more details on atrial contraction (such as
pressure-volume loops) have never been shown. The work of Land and Niederer [42] is
the first one focusing on the influence of atrial contraction on the cardiac function, inves-
tigating also an atrial fibrillation scenario. Active contraction is taken into account using
the lumped-parameter model previously proposed for the ventricles [53], by adapting some
parameters to the atrial case. This work shows, as a result, atrial pressure-volume loops
that qualitatively tend to the distinguishing physiological eight-shape. Gerach et al. [46]
use the same active contraction model while also including a three-dimensional representa-
tion of the pericardium, the adipose tissue and the beginning of the major vessels. They
show atrial pressure-volume loops that qualitatively match the characteristic eight-shape,
representing the most realistic result concerning atrial function available in the literature.
However, blood fluxes across the semilunar valves thereby shown substantially exceed the
physiological values. As we show in our paper, these anomalies can be explained by the lack
of the fibers-stretch-rate feedback (between passive mechanics and active force generation
model). Indeed, this feedback is commonly neglected since it can generate, at a numerical
level, strong non-physical oscillations [46, 54].

Compared to the ventricles, the atria exhibit a more complex anatomy and physiology,
characterized by a thinner and weaker muscle strongly influenced by ventricular contraction
and relaxation. Consequently, computational models of the atrial function are very challeng-
ing and must consider properly calibrated biophysically detailed models of the four chambers
in order to obtain physiologically meaningful results.

In this paper, we propose a novel mathematical model of whole-heart electromechanics
endowed with biophysically detailed core models for electrophysiology, passive mechanics,
and ventricular and atrial active contraction. Specifically, our mathematical model – that
extends the left-ventricular model we have recently proposed in [26] – features several inno-
vative contributions:

� an anatomically accurate whole-heart model consisting of detailed geometries for the
four chambers, simplified valves acting as electrically insulating regions, and the initial
tracts of the arteries;

� an accurate myocardial fiber architecture using a novel whole-heart Rule-Based-Method
(RBM) that takes into account also the characteristic atrial fiber bundles [45, 55];
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� chamber-specific and accurate ionic models for atria and ventricles [1, 3];

� a biophysically detailed microscale model for the active force generation [56];

� a 0D closed-loop model of the circulatory system, fully-coupled with the mechanical
model [26];

� specific spring-damper Robin boundary conditions to model the pericardium and the
surrounding organs [43].

The core models are specifically calibrated for each cardiac compartment and coupled with
each other taking into account the most important feedbacks, such as the Mechano-Electric
Feedback (MEF) or the fibers-stretch and fibers-stretch-rate feedbacks. Concerning the nu-
merical discretization, we use the efficient segregated-intergrid-staggered scheme proposed
in [26, 27] and we employ recently developed stabilization terms – related to the circu-
lation [57] and the fibers-stretch-rate feedback [54] – that are crucial to obtain a stable
formulation in a four-chamber scenario. The numerical models proposed in this work are
characterized by high dimensionality and huge computational complexity, thus calling for
efficient and accurate computational tools. To this aim, the solver that we developed for the
numerical simulation of the whole-heart electromechanics has been built upon lifex1, an
in-house Finite Element (FE) library focused on large-scale cardiac applications in a High
Performance Computing (HPC) framework.

This paper is structured as follows: in Section 2 we shortly review the anatomy and
physiology of the heart; in Section 3 we describe the full electromechanical model; Section 4
is devoted to the numerical discretization; in Section 5 we discuss the numerical results;
finally, in Section 6 we draw our conclusions.

2. Cardiac anatomy and physiology

In this section we briefly review the anatomy of the human heart aiming at introduc-
ing all the cardiac components that – with different level of details – we consider in our
electromechanical model. We also describe the phases of the cardiac cycle, focusing on the
differences of the atrial and ventricular function. For a more in-depth overview of the cardiac
anatomy and physiology, we refer to [20, 32, 58–62].

As shown in Fig. 1, (a)-(b), the human heart is characterized by a very complex anatomy
and is made up of several components, each of which plays a crucial role in the cardiac
function. The heart is made up of four muscle chambers: Right Atrium (RA) and Left Atrium
(LA) on the upper part, Right Ventricle (RV) and Left Ventricle (LV) on the lower part.
Commonly, RA and RV are collectively referred to as right heart and their left counterparts
(LA and LV) as left heart. The right heart pumps the oxygen-depleted blood – coming
from the systemic venous return and flowing through the Superior Vena Cava (SupVC) and
the Inferior Vena Cava (InfVC) – toward the Pulmonary Trunk (PT) into the lungs, where

1https://lifex.gitlab.io/
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Figure 1: The anatomy of the heart: (a) a sketch of the internal view of the four chambers and their
components (picture elaborated from https://commons.wikimedia.org/w/index.php?curid=830253); (b)
an external view of the cardiac anatomy; (c) a sketch of the electrical conduction system (picture elaborated
from https://commons.wikimedia.org/w/index.php?curid=10197958). All the abbreviations are defined
in Table 1.

oxygenation takes place; the left heart pumps oxygenated blood – coming from the lungs
through the Pulmonary Veins (PVs) – toward the Aorta (AO) into the systemic circulation,
closing the loop of the circulatory system.

The blood flow is regulated by four cardiac valves made of strong fibrous tissue: the
Tricuspid Valve (TV) and Mitral Valve (MV) lie in the atrioventricular plane and divide the
RA and LA from the RV and LV, respectively, also acting as electrical insulators between
atria and ventricles; the Pulmonary Valve (PV) and Aortic Valve (AV) connect the RV
and LV to the PT and AO, respectively. Valves passively open and close depending on the
pressure exerted on their leaflets; TV and MV are also supported by Chordae Tendineae
(ChT) and Papillary Muscles (PaMs) to avoid valve prolapse while closed.

The tissue of the cardiac chambers is made up of three layers: the endocardium is the thin
innermost layer in direct contact with the blood; the myocardium is the thick muscle layer
made of cardiomyocytes, the cells responsible for generating contractile force in the heart;
the epicardium forms the thin outermost layer. This latter layer, mainly characterized by
a smooth surface, features a complex rough anatomy in some regions (see Fig. 1, (b)). In
particular, the atrioventricular regions, the initial part of the arteries (PT and AO) and
the presence of the Left Atrial Appendage (LAA) and the Right Atrial Appendage (RAA)
contribute to create some empty regions among the different cardiac components. These
regions are filled of the Epicardial Adipose Tissue (EAT), a visceral fat deposit that creates
a sort of soft pillow among the nearby cardiac components and contributes to make the
external surface of the heart a smooth surface.

The whole heart – including EAT – is surrounded by the pericardium, a sac that holds
the heart in place. This sac is filled with the Pericardial Fluid (PF) which allows the free
sliding of the heart external surface, thus also allowing the volume of the four chambers to
increase or decrease during the different phases of the cardiac cycle.
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Figure 2: The five phases of the cardiac cycle: on the top, a sketch of the direction of the blood flow, the
status of the valves and the contraction of the chambers (darker color) during the different phases (pic-
tures elaborated from https://commons.wikimedia.org/w/index.php?curid=30148227); on the bottom,
schematic ventricular and atrial pressure-volume loops with the opening and closing of the valves and colored
with the five phases.

The cardiac cycle is a highly coordinated, temporally related series of electrical, mechan-
ical, and valvular events [63]. The contraction of the four cardiac chambers is regulated
by the electrical conduction system of the heart whose main components are sketched in
Fig. 1, (c). The pacemaking electrical signal arises in the SinoAtrial Node (SAN), located
in the RA near the junction of the SupVC. From SAN the signal propagates into the RA
myocardium and reaches the LA through specific interatrial bundle connections, of which
the most important is the Bachmann’s Bundle (BB). On the other side, the conduction net-
work continues toward the AtrioVentricular Node (AVN) where the signal is delayed until
the end of the atrial contraction. Then, the signal travels through the His Bundle (HB)
and, in the interventricular septum, splits between the Left Bundle Branch (LBB) and the
Right Bundle Branch (RBB) to end in the respective Purkinje Fibers (PFs) network located
in the subendocardial layer. Through the connection of the PFs with the cardiomyocytes
the signal transmurally propagates from the endocardium to the epicardium stimulating the
ventricular contraction.

The main mechanical events of the cardiac cycle are sketched in Fig. 2, top, where the
heart chambers are darker in color when contracting – i.e. during systole – and lighter when
relaxing – i.e. during diastole. Atrial and ventricular systole and diastole occur in different
phases of the cycle. During the IsoVolumetric Relaxation (IVR) phase, the ventricular
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muscle is relaxing after the end of the ejection phase of the previous heartbeat. Since all the
valves are closed, the ventricular volume remains constant while its pressure quickly drops
down until it reaches the atrial pressure, causing the opening of the atrioventricular valves
(TV and MV). At this moment the Ventricular Passive Filling (VPF) phase begins, blood
flows from the atria to the ventricles and the volumes of both ventricles increase, driven by
the muscle relaxation that thins the myocardium and moves the ventricular base upwards.
At the same time, the atrial volumes decrease due to the passive deformation of the atrial
myocardium squeezed by the movement of the atrioventricular plane. We remark that none
of the four chambers is contracting during these first two phases. When the passive filling
slows down, the Atrial Contraction (AC) begins, stimulated by the pacemaking of the SAN.
The active deformation of the atrial muscle pushes additional blood toward the ventricles
giving an additional ventricular preload; for this peculiarity, this phase is also called atrial
kick. The AVN delays the electrical signal, allowing the ventricular contraction to begin
only when the atrial contraction has ended. When the ventricular muscle begins to contract,
the ventricular pressure suddenly rises, exceeding the atrial pressure and determining the
closure of the TV and MV. This event starts the IsoVolumetric Contraction (IVC) phase, in
which all the cardiac valves are closed again. This short phase ends when the pressures of the
ventricles (RV and LV) reach the pressures of the respective arteries (PT and AO), triggering
the opening of the semilunar valves (PV and AV) and the beginning of the Ventricular
Ejection (VE) phase. During this last phase, the ventricular volumes drop down – driven by
the myocardial thickening and the downward movement of the base – and the blood flows
toward the pulmonary and systemic circulation. At the same time the atria fill, passively
dilating due to the downward movement of the atrioventricular plane.

A plot of the pressure against the volume has long been used to measure the work done
by a system and is also widely applied to assess the efficiency of the cardiac pump. In
Fig. 2, bottom, the different phases of the cardiac cycle are shown in this kind of diagram
– usually called pressure-volume loop – for both ventricles and atria. The squared shape
of the ventricular diagram is a direct consequence of the state of the valves and of the two
isovolumetric phases. To this counterclockwise loop is associated the (positive) ejection work
exerted by the tissue on the blood [20], that increases if the maximum difference in pressures
(or in volumes) arises. The difference among the ventricular End Diastolic Volume (EDV)
and End Systolic Volume (ESV) is called Stroke Volume (SV) and represents the volume of
blood pumped out from each ventricle during a heartbeat. Instead, the interpretation of the
eight-shaped atrial loop needs more explanations and can be divided into two parts. The
V-loop is dominated by the effect of the ventricles on the atria. Indeed, for a substantial
part of the cardiac cycle, the atria fill or empty only passively, dragged by the contraction
or relaxation of the ventricles. Thus, the clockwise V-loop represents the (negative) work
exerted by the ventricles on the atria, since the atria are not contracting during this period
(i.e. their muscle is not consuming energy). Conversely, the counterclockwise A-loop is
dominated by the atrial contraction and relaxation and is associated with the (positive)
work exerted by the atrial muscle on the blood. This complex pressure-volume loop is
related to the threefold atrial function of reservoir, conduit, and booster pump [64–70] (see
Fig. 2, bottom-right): while the atrioventricular valves (TV and MV) are closed, the atria
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store blood for later delivery to the ventricles (reservoir) when the valves open, atria release
blood to the ventricles, passively driven by the ventricular relaxation (conduit) [71]; finally,
at the end of ventricular diastole, the atrial muscle contraction actively supplies additional
blood to the ventricles (booster pump), increasing the efficiency of the heart pump as is also
evident from the effect on the ventricular pressure-volume loop.

This partial introduction to the heart anatomy and to the cardiac cycle aims at highlight-
ing the complexity of concurring events that contribute to a physiological heart function and
regulation. In order to capture these events in a computational framework, an electrome-
chanical model must accurately grasp the interaction among the heart chambers, the complex
biophysics and all the multiscale and multiphysics aspects underlying the cardiac function.

3. Mathematical models

The mathematical model that we propose is based on the model by Regazzoni et al. [26],
a cardiac electromechanical model fully coupled with a lumped-parameter model of blood
circulation. In that work, the only heart chamber considered as a 3D domain was the LV.
This work was then extended by Piersanti et al. [27] to a 3D domain for both ventricles.
However, in both cases, the 3D computational domain consists only of the ventricular muscle,
which can be considered as a unique tissue with homogeneous electrical and mechanical
properties. Here, we propose the extension of these ventricular models to the whole heart,
taking into account the heterogeneity of the cardiac tissue in the different cardiac components
(e.g. atria, ventricles, valves and vessels) for what concerns both electrical signal conduction
and active/passive mechanics.

In the following sections we detail our mathematical model, focusing on the novelties
introduced with respect to [26, 27] to account for the extension to the entire human heart.
In Section 3.1 we define the whole-heart computational domain and we describe the choices
made in terms of domain partitioning and boundaries; in Section 3.2 we discuss the modeling
of the cardiac fibers; in Section 3.3 we present the full mathematical model by highlighting
each core model; in Section 3.4 we describe the strategy employed to recover the unloaded
(i.e. stress-free) configuration and to subsequently compute the initial displacement.

3.1. Computational domain

In Fig. 3, (a), we show the computational domain Ω0 ⊂ R3 of the entire human heart,
subdivided in the following subdomains:

� the myocardium of the four cardiac chambers – named Ωmyo
0 – in turn divided into:

(i) the RA and LA – named ΩRA
0 and ΩLA

0 , respectively – characterized by a detailed
anatomy that includes the two appendages (RAA, LAA) and physically connected to
each other through the interatrial septum and the BB; (ii) a unique subdomain for the
two ventricles – named ΩV

0 – with a smoothed endocardium layer deprived of PaMs;

� the two arteries (PT, AO) – named ΩPT
0 and ΩAO

0 , respectively – modeled up to their
main bifurcations so that they can be fixed sufficiently far from their connection with
the heart, where their movement can be considered negligible;
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Figure 3: The computational domain Ω0: (a) the division in subdomains; (b) the artificial boundaries; (c)
the epicardial boundaries; (d) the endocardial boundaries.

� the cardiac valves (TV, MV, PV, AV) – named Ωvalve
0 – as flat simplified geometries

filling the valvular orifices and connecting the atria to the ventricles (TV, MV) and
the ventricles to the arteries (PV, AV). Although very simplified anatomycally, this
representation allows to model some crucial aspects of valvular functioning such as the
role of their annuli as stiff and insulating fibrous tissue that connects different cardiac
compartments and the high pressure difference across their closed leaflets occurring
during some phases of the cardiac cycle;

� some artificial caps – named Ωcaps
0 – placed in all the entry veins (InfVC, SupVC, PVs)

and included in the domain in order to close the atrial blood pools, facilitating the
calculation of their volumes (see Section 3.3.4).

In order to apply proper boundary conditions to the mechanical model, the boundaries of
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Figure 4: The myofibers architecture of the four cardiac chambers obtained using the whole-heart Laplace-
Dirichlet RBM proposed by Piersanti et al. [45], Piersanti [55]. The transmural variation is pointed out
through anterior and posterior views of the entire epicardium and chamber-specific views of the endocardium.
On the endocardium of RA also the Crista Terminalis (CrT) and the Pectinate Muscles (PeMs) are clearly
visible.

the domain are divided as follows:

� some artificial boundaries (see Fig. 3, (b)) – named Γrings
0 – placed where the veins

(InfVC, SupVC, PVs) and the arteries (PT, AO) are cut;

� the external cardiac surface Γepi (see Fig. 3, (c)) in turn divided into: (i) the regions of
the epicardium in contact with the PF, named Γepi,PF

0 ; (ii) the regions of the epicardium
in contact with the EAT, named Γepi,EAT

0 ; (iii) the epithelium of the two arteries, named
Γepi,AR

0 ;

� the internal cardiac surface (see Fig. 3, (d)) made up of the endocardium of the four
cardiac chambers (RA, LA, RV, LV) – named Γendo,RA

0 , Γendo,LA
0 , Γendo,RV

0 and Γendo,LV
0 ,

respectively – and the endothelium of the two arteries (PT, AO) – named Γendo,PT
0 and

Γendo,AO
0 , respectively.

3.2. Modeling the cardiac fibers

To prescribe the muscular fiber architecture in the myocardium Ωmyo
0 , we rely on a par-

ticular class of Rule-Based-Methods (RBMs), known as Laplace-Dirichlet RBMs (LDRBMs)
[22, 72, 73] recently reviewed in a communal mathematical description and also extended to
account for atrial geometries in [45]. Specifically, we use the whole-heart LDRBM proposed
by Piersanti et al. [45] in its improved version detailed in [55, Chapter 4].
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To properly reproduce the characteristic features of the cardiac fiber bundles in all the
four chambers, the whole-heart LDRBM first defines a transmural distance φ (from epi-
cardium to endocardium) and several internal distances ψi These are obtained by solving
Laplace boundary-value problems of the type

−∆ξ = 0 in Ωmyo
0 ,

ξ = ξa on Γa
0,

ξ = ξb on Γb
0,

∇ξ ·N = 0 on Γn
0,

(1)

where ξa, ξb ∈ R are suitable Dirichlet data set on generic partitions of the heart boundary

Γa
0, Γb

0, Γn
0, with Γ

a

0 ∪ Γ
b

0 ∪ Γ
n

0 = ∂Ωmyo
0 . In particular, the internal distances are used both

to discriminate the left from the right heart and the atria from the ventricles, and also
to represent different atrial and ventricular distances, characteristic of the four-chambers.
Then, for each point of the cardiac computational domain, the whole-heart LDRBM suitably
combines the gradients of the heart distances with the aim of defining an orthonormal local
coordinate axial system [ê`, ên, êt] owing to êt = ∇φ

‖∇φ‖ , ên = ∇ψi−(∇ψi·êt)êt
‖∇ψi−(∇ψi·êt)êt‖ and ê` =

ên × êt, defined as the unit transmural, normal, and longitudinal directions, respectively.
Finally, the reference frame [ê`, ên, êt] is properly rotated to define the myofiber orientations

[ê`, ên, êt]
αj ,βj−−−→ [f0,n0, s0], where f0 is the fiber direction, n0 is the sheet-normal direction, s0

is the sheet direction, and αj and βj are suitable helical and sheetlet angles following linear
relationships θj(dj) = θepi,j(1 − dj) + θendo,jdj, (with θj = αj, βj) in which dj ∈ [0, 1] is the
transmural normalized distance and θendo,j, θepi,j are suitable prescribed rotation angles on
the endocardium and epicardium of the j-th heart fibers bundle.

Fig. 4 shows that the whole-heart LDRBM is able to accurately reproduce the myocardial
fiber architecture, capturing the helical structure of LV, the characteristic fibers of RV,
the outflow tracts regions and the fiber bundles of LA and RA, including the inter-atrial
connections, the Crista Terminalis (CrT) and the Pectinate Muscles (PeMs). For further
details about this whole-heart LDRBM we refer to [55].

3.3. The full electromechanical model

A multiphysics and multiscale whole-heart electromechanical model consists of several
core models, each of them describing biophysical processes that occur at different spatial and
temporal scales during the cardiac cycle: electrophysiology, in turn consisting of ionic activity
(I ) at the microscale [1, 3, 74–79] and electrical activity (E ) in terms of propagation of the
transmembrane potential at the macroscale [80–84]; active force generation of cardiomyocites
(A ) [2, 56, 85–87]; active and passive mechanics of the cardiac tissue (M ) [88–92]; blood
circulatory system (C ) [26, 93, 94]. These core models are coupled to each other through
some fundamental variables or feedbacks that represent biophysical processes. In Fig. 5,
(a), we sketch the variables, interactions and feedbacks that we consider in our whole-heart
electromechanical model: the electrical and the ionic activities are coupled by the trans-
membrane potential and the ionic currents, respectively; the ionic activity determines the
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Figure 5: A sketch of the electromechanical model. (a) The underlying core models and the fundamental
quantities for their coupling. (b) The 0D model of the circulatory system made of resistance-inductance-
capacitance (RLC) circuits for the systemic and pulmonary circulation and diodes for cardiac valves, coupled
with the electromechanical model of the four 3D cardiac chambers. On the right, we highlight the models
employed in the three main regions of the computational domain, i.e. atria, ventricles and non-conductive
regions (CRN, Courtemanche et al. [1]; TTP06, ten Tusscher and Panfilov [3]; RDQ20, Regazzoni et al. [2];
Usyk, Usyk et al. [33].

calcium dynamics which is of fundamental importance for the active force generation model;
the cardiac mechanics is strongly influenced by the active stress provided by the force gener-
ation model which in turn is affected by the fibers-stretch and fibers-stretch-rate provided by
the mechanics; the loop is closed by the influence of the mechanical strains on the electrical
activity; finally, a volume conservation condition on the four cardiac chambers handles the
two-way coupling between the 0D model of the circulatory system (see Fig. 5, (b)) and the
3D cardiac mechanics. More in detail, the proposed model features the following unknowns:

u : Ωmyo
0 × [0, T ]→ R, w1 : {ΩRA

0 ∪ ΩLA
0 } × [0, T ]→ Rnw1 ,

w2 : ΩV
0 × [0, T ]→ Rnw2 , z : Ωmyo

0 × [0, T ]→ Rnz ,

d : Ω0 × [0, T ]→ R3, c : [0, T ]→ Rnc ,

pi : [0, T ]→ R, i ∈ {RA,LA,RV,LV},

(2)

where u denotes the transmembrane potential, w1 and w2 the ionic variables on atria and
ventricles, respectively, z the state variables of the force generation model, d the mechanical
displacement of the tissue, c the state vector of the circulation model (including pressures,
volumes and fluxes in the different compartments of the vascular network), and pRA, pLA,
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pRV, and pLV the blood pressures inside the four cardiac chambers. The full model reads as
follows:

(E )


Jχm

[
Cm

∂u

∂t
+ Iion(u,w1,w2)

]
+

−∇ · (JF−1DMF−T∇u) = JχmIapp(t) in Ωmyo
0 × (0, T ],(

JF−1DMF−T∇u
)
·N = 0 on ∂Ωmyo

0 × (0, T ],

(3a)

(3b)

with u = u0 in Ωmyo
0 , at time t = 0;

(I )


∂w1

∂t
−H1(u,w1) = 0 in {ΩRA

0 ∪ ΩLA
0 } × (0, T ],

∂w2

∂t
−H2(u,w2) = 0 in ΩV

0 × (0, T ],

(4a)

(4b)

with w1 = w1,0 in {ΩRA
0 ∪ ΩLA

0 } and w2 = w2,0 in ΩV
0 , at time t = 0;

(A )

{
∂z

∂t
= K

(
z, wCa, SL,

∂SL

∂t

)
in Ωmyo

0 × (0, T ], (5)

with z = z0 in Ωmyo
0 at time t = 0;

(M )



ρs
∂2d

∂t2
−∇ ·P(d, Ta(z, SL)) = 0 in Ω0 × (0, T ],

P(d, Ta(z, SL))N+

+ (N⊗N)

(
Kepi
⊥ d + Cepi

⊥
∂d

∂t

)
= 0 on Γepi

0 × (0, T ],

P(d, Ta(z, SL))N = −pRA(t) JF−TN on Γendo,RA
0 × (0, T ],

P(d, Ta(z, SL))N = −pLA(t) JF−TN on Γendo,LA
0 × (0, T ],

P(d, Ta(z, SL))N = −pRV(t) JF−TN on Γendo,RV
0 × (0, T ],

P(d, Ta(z, SL))N = −pLV(t) JF−TN on Γendo,LV
0 × (0, T ],

P(d, Ta(z, SL))N = −pPT(t) JF−TN on Γendo,PT
0 × (0, T ],

P(d, Ta(z, SL))N = −pAO(t) JF−TN on Γendo,AO
0 × (0, T ],

d = 0 on Γrings
0 × (0, T ],

(6a)

(6b)

(6c)

(6d)

(6e)

(6f)

(6g)

(6h)

(6i)

with d = d0 and
∂d

∂t
= ḋ0 in Ω0 at time t = 0;

(C )

{
dc(t)

dt
= D(t, c(t), pRA(t), pLA(t), pRV(t), pLV(t)) for t ∈ (0, T ], (7)
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with c(0) = c0 at time t = 0;

(V )


V 3D

RA(d(t)) = V 0D
RA(c(t)) for t ∈ (0, T ],

V 3D
LA (d(t)) = V 0D

LA (c(t)) for t ∈ (0, T ],

V 3D
RV (d(t)) = V 0D

RV (c(t)) for t ∈ (0, T ],

V 3D
LV (d(t)) = V 0D

LV (c(t)) for t ∈ (0, T ].

(8a)

(8b)

(8c)

(8d)

We remark that (E ) and (A ) are both defined in the whole domain Ωmyo
0 , but with specific

parameters for atria and ventricles. Thus, since the myocardial domain is composed of the
two disconnected parts {ΩRA

0 ∪ ΩLA
0 } and ΩV

0 , they behave independently in the atria and
ventricles. Instead, (I ) is composed of two distinct ionic models, each one characterized
by different variables and equations for the atria and ventricles. The variability of the
parameters and models employed in the different regions of the heart is sketched in Fig. 5,
(b).

In Sections 3.3.1 to 3.3.4 we describe each core model (Eqs. (3) to (8)), detailing how
they are coupled to each other and how they vary along the heart domain.

3.3.1. Electrophysiology (E )-(I )

Eqs. (3) and (4) represent the electrophysiological model and are solved only in the cardiac
chambers Ωmyo

0 , since the rest of the domain is made up of non-conductive regions. The model
consists of the monodomain equation (3) – describing the propagation of the transmembrane
potential u [81, 84] – coupled with suitable ionic models, one for the atria in {ΩRA

0 ∪ ΩLA
0 }

(Eq. (4a)) and one for the ventricles in ΩV
0 (Eq. (4b)). The vectors w1 = {w1,i}

nw1
i=1 and

w2 = {w2,j}
nw2
j=1 constitute the gating variables and the concentrations of ionic species.

Among them, the intracellular calcium ions concentration [Ca2+]i plays a crucial role for
active force generation. We denote this quantity with w1,Ca and w2,Ca for the atria and
ventricles, respectively, and we define in the whole myocardium the corresponding function
wCa (used in Eq. (5)) as:

wCa =

{
w1,Ca, in {ΩRA

0 ∪ ΩLA
0 } × [0, T ],

w2,Ca, in ΩV
0 × [0, T ].

(9)

We use the Courtemanche et al. [1] (CRN) model for the atria and the ten Tusscher and
Panfilov [3] (TTP06) model for the ventricles, respectively. These two models are used to
define the nonlinear reaction term Iion(u,w1,w2) of Eq. (3a) that models the ionic currents
taking into account the multiscale effects from the cellular to the tissue level:

Iion(u,w1,w2) =

{
Iion(u,w1), in {ΩRA

0 ∪ ΩLA
0 } × [0, T ],

Iion(u,w2), in ΩV
0 × [0, T ].

(10)

The monodomain model is finally closed by the no-flux Neumann boundary condition of
Eq. (3b) that represents an electrically insulated domain. Moreover, since the domain Ωmyo

0

is composed of the two disjoint parts (ΩRA
0 ∪ ΩLA

0 and ΩV
0 ) separated by the insulating
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fibrous tissue of the atrioventricular valves (the TV and MV parts of Ωvalve
0 ), also the atrial

and ventricular muscles are electrically insulated from each other.
The anisotropic transmission of the transmembrane potential u is regulated by the diffu-

sion term ∇· (JF−1DMF−T∇u) of the monodomain model (Eq. (3a)) [26], where DM repre-
sents the diffusion tensor in the deformed configuration and F = I+∇d and J = det(F) are
the deformation gradient tensor and the deformation Jacobian, respectively. Being F depen-
dent on the unknown displacement d of the mechanical model (M ) (Eq. (6)), this diffusion
term takes into account the variation of the electrical properties due to the tissue deforma-
tion, modeling the so-called Mechano-Electric Feedback (MEF) [95]. The diffusion tensor
DM regulates the anisotropic conduction of the electrical signal using the local orthonormal
coordinates system (f0, s0,n0) (see Section 3.2) by prescribing three different conductivities
σ∗f , σ∗s , and σ∗n along the fiber, sheet normal and crossfiber directions, respectively [26, 27]:

DM = σ∗f
Ff0 ⊗ Ff0
‖Ff0‖2

+ σ∗s
Fs0 ⊗ Fs0

‖Fs0‖2
+ σ∗n

Fn0 ⊗ Fn0

‖Fn0‖2
. (11)

In addition to varying along the local direction, the conductivities vary in space depending
on the cardiac compartment:

σ∗k =


σA
k in {ΩRA

0 ∪ ΩLA
0 },

σV
k (φ) =

σ
V,myo
k if φ > ε,

σV,endo
k if φ ≤ ε,

in ΩV
0 ,

for k = f , s,n. (12)

Following Piersanti et al. [27], the conductivities in the ventricles ΩV
0 also depend on a

scalar function φ that smoothly connects the endocardium to the epicardium, allowing the
definition of an endocardial layer where the electric signal propagates faster. This surrogates
the PFs network [47, 96] and represents a valid alternative (at least in sinus rhythm) to the
generation of the PFs as a 1D network [97–100]. Instead, in the atria {ΩRA

0 ∪ΩLA
0 }, different

conduction velocities of the various bundles characterize the atrial fibers morphology (see
Section 3.2), varying from fast to slow conduction regions [101]. This feature is of paramount
importance in the modeling of atrial electrical disorders and related pathologies [102, 103].
However, as this work is focused on a healthy scenario, we do not vary the conductivities
σA
f , σA

s , and σA
n in space, considering only the variation along the local fibers orientation, as

done in [45].
Finally, the forcing term Iapp(t) of Eq. (3a) represents an applied current that triggers

the action potential of the myocardium at specific locations and times. This term is used
to model a series of electrical impulses that mimic the behavior of the electrical conduction
system (see Section 2 and Fig. 1, (c)), starting from the SAN and ending into a series of
points on the ventricular endocardium which, combined with the fast endocardial layer,
surrogate the effect of the PFs.

3.3.2. Active force generation (A )

We model the subcellular processes by which cardiomyocytes generate an active force in
response to changes in calcium concentration wCa using the model proposed by Regazzoni
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et al. [2] (RDQ20). RDQ20 is based on a biophysically accurate description of the subcellu-
lar mechanisms of force generation and regulation. Despite its computational lightness (its
state z has only 20 variables), this model explicitly describes the end-to-end interactions of
tropomyosin, which are responsible for the cooperative tissue response to calcium ion concen-
tration, manifested in a markedly enhanced sensitivity to calcium around the half-maximal
effective concentration (so-called EC50). Moreover, the RDQ20 model takes into account the
effect of sarcomere length on the total force generated and, thanks to its explicit represen-
tation of the attachment-detachment mechanism of crossbridges, it is able to reproduce the
force-velocity relationship, according to which the generated force decreases while the mus-
cle fibers are shortening. These subcellular mechanisms are responsible for two organ-level
feedbacks, namely the fibers-stretch and the fibers-stretch-rate feedback, which regulate the
force generated in each region of the myocardium depending on how much and how quickly
it deforms [104]. The former is related to the dependence of the model (5) on SL, while
the latter is related to the dependence of the model on ∂SL/∂t. The variable SL represents
the local sarcomere length, obtained as SL = SL0‖Ff0‖, where SL0 is the sarcomere length
at rest. The regulatory and feedback mechanisms mentioned above play a key role in the
cardiac function. Nevertheless, some of them are sometimes neglected in multiscale models,
due to the difficulty of capturing them in mathematical models of low computational cost
and because of the difficulties involved in their numerical approximation.

The RDQ20 model describes subcellular mechanisms inherent to both atrial and ventric-
ular cells. The model can be adapted to reproduce experimental measurements of different
cell types by calibrating the parameters, which reflect the different calcium-sensitivity and
kinetics of protein interactions. See [105] for an adaptation to ventricular cells and [106]
for a calibration to atrial cells. Therefore, we use the same model throughout the computa-
tional domain, but with different parameter calibration to reflect the specificities of the cells
belonging to the different chambers.

The tissue level active tension Ta of the RDQ20 can be defined as a nonlinear function of
the state z and of the sarcomere length SL [2]. This quantity determines the coupling with
the mechanical model (6) and contributes to the active stress part of the Piola-Kirchhoff
stress tensor (see Section 3.3.3). More specifically, Ta can be written as:

Ta(z, SL) = aiXBG(z, SL), for i ∈ {RA,LA,RV,LV}, (13)

where the microscale crossbridge stiffness aiXB links the microscopic force with the macro-
scopic active tension and G(z, SL) is a nonlinear function (see [2]). Thus, the organ-level
contractility of each chamber is calibrated using the aiXB parameter. Moreover, in order to
set a specific contractility also in the RV and LV (that belong to the same subdomain ΩV

0 ),
we use the same strategy proposed by Piersanti et al. [27] (for the previous version of the
active force generation model [107]) defining the ventricular microscale crossbridge stiffness
aV

XB : ΩV
0 → R as a function of space:

aV
XB(x) = aLV

XB

(
ξ̂(x) + Clrv(1− ξ̂(x))

)
, (14)

where ξ̂ : ΩV
0 → [0, 1] is the normalized interventricular distance [27, 45] – that smoothly

goes from 0 to 1 in the interventricular septum – and Clrv ∈ R is a coefficient that represents
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the left-right ventricle contractility ratio. In practical terms, this is equivalent to setting two
constant values in the two ventricles (smoothly connected in the septum): aLV

XB in the LV
and aRV

XB = Clrv a
LV
XB in the RV.

3.3.3. Active and passive mechanics (M )

The mechanics of the cardiac tissue is modeled by the problem (M ) of Eq. (6), describing
the dynamics of the tissue displacement d by the momentum conservation (Eq. (6a)) under
the hyperelasticity assumption [88] and employing an active stress approach [108]. The
active and passive mechanical properties are embedded in the Piola-Kirchhoff stress tensor
P(d, Ta(z, SL)):

P(d, Ta(z, SL)) =
∂W(F)

∂F
+

+ Ta(z, SL)

[
nf

Ff0 ⊗ f0√
I4f

+ ns
Fs0 ⊗ s0√
I4s

+ nn
Fn0 ⊗ n0√
I4n

]
in Ωmyo

0 ,

P(d, Ta(z, SL)) =
∂W(F)

∂F
in {Ω0 \ Ωmyo

0 } .

(15a)

(15b)

The passive part of the tensor is modeled by the term ∂W(F)/∂F whereW is the hyper-
elastic strain energy density function. In the myocardium Ωmyo

0 we employ the exponential
constitutive law of Usyk et al. [33], with a volumetric term enforcing quasi-incompressibility
[26, 109–111]. In the non-conductive regions {Ω0 \ Ωmyo

0 }, instead, we use a Neo-Hookean
model [88]. The resulting strain energy density function reads:

W(F) =


Ci

2

(
eQ − 1

)
+
B

2
(J − 1) log(J), in Ωmyo

0 ,

µj

2

(
J−

2
3F : F− 3

)
+
κj

4

[
(J − 1)2 + log2(J)

]
, in {Ω0 \ Ωmyo

0 } ,

(16a)

(16b)

where, in the Usyk et al. [33] model (16a), B ∈ R+ represents the bulk modulus contributing
to the term that realizes a weakly incompressible constraint [26], Ci, for i ∈ {RA,LA,V},
is the stiffness scaling parameter that assumes a specific value in each subdomain of the
myocardium ΩRA

0 , ΩLA
0 , and ΩV

0 . Instead, in the Neo-Hookean model (16b), µj and κj, for
j ∈ {valve, caps,AO,PT}, are the shear modulus and the bulk modulus, respectively, and
assume specific values in each non-conductive region Ωvalve

0 , Ωcaps
0 , ΩAO

0 , and ΩPT
0 . Finally,

the term Q of the Usyk et al. [33] model (16a) reads:

Q = bffE
2
ff + bssE

2
ss + bnnE

2
nn + bfs

(
E2

fs + E2
sf

)
+ bfn

(
E2

fn + E2
nf

)
+ bsn

(
E2

sn + E2
ns

)
,

Eab = Ea0 · b0, for a, b ∈ {f, s, n},

where E = 1
2

(C− I) is the Green-Lagrange strain energy tensor, being C = FTF the right
Cauchy-Green deformation tensor.

The active part of the Piola-Kirchhoff stress tensor acts only in the conductive subdo-
mains Ωmyo

0 . This tensor depends on the active tension Ta(z, SL), provided by the active
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force generation model (5), and on the fiber orientation in the deformed configuration. We
consider the orthotropic active stress tensor (15a), where the coefficients I4f , I4s, and I4n

(equal to Fk ·Fk, for k = f0, s0,n0) represent the tissue stretches along the fiber, sheet, and
sheet-normal directions, respectively, while nf , ns, and nn model the proportion of active
tension along these directions [27]. In this way the active stress tensor can mainly act in the
fiber direction f while also being applied on the cross-fiber directions s and n, to surrogate
the contraction caused by the dispersed myofibers [112, 113].

The mechanical model is closed by the boundary conditions of Eqs. (6b) to (6i). On the
epicardium Γepi

0 we apply the Robin-like condition (6b) originally proposed in the whole-
heart context by Pfaller et al. [43]. This condition surrogates the pressure exerted by the
pericardium and surrounding organs on the external cardiac surface by penalizing only the
normal displacement [43, 44]. No constraints are added on the other directions as the peri-
cardial fluid allows free sliding within the pericardial sac [43, 44]. Instead, an additional
constraint on the tangential direction can be necessary to avoid rigid rotation when the
computational domain consists of the sole ventricles [26]. The calibration of the pericardial
stiffness Kepi

⊥ of Eq. (6b) plays a fundamental role in the realistic movement of the heart
[43, 44]. Pfaller et al. [43] have tested different constant values on the whole external cardiac
surface, but they model the EAT as a 3D subdomain. More recently, Strocchi et al. [44] have
proposed a spatially varying coefficient to surrogate the different stiffness of the organs in
contact with the pericardial sac, without including the EAT as a 3D subdomain. Inspired by
both of these works, we vary the Kepi

⊥ only between two regions: we prescribe a stiffer value
on Γepi,PF

0 – where the external organs are in contact with the pericardium – and a much
lower value Kepi,EAT

⊥ on Γepi,EAT
0 – where the presence of the EAT leaves the ventricular base

and the lower part of the LAA and RAA more free to move.
On the endocardium and endothelium surfaces, we apply the normal stress boundary

conditions of Eqs. (6c) to (6h) that model the pressure exerted by the blood. The blood
pressure of the various chambers and arteries depends on the circulation model (7), as
detailed in Section 3.3.4. Finally, we apply the homogeneous Dirichlet boundary condition
(6i) on all the artificial boundaries Γrings

0 , since the arteries and veins can be considered
almost fixed where we cut the computational domain (see Fig. 3).

3.3.4. Blood circulation (C ) and 3D-0D coupling (V )

We model the blood circulatory system using the 0D lumped-parameter closed-loop model
proposed by Regazzoni et al. [26] and inspired by Blanco and Feijóo [93], Hirschvogel et al.
[94]. In this model, as sketched in Fig. 5, (b), resistance-inductance-capacitance (RLC)
circuits represent the systemic (SYS) and pulmonary (PUL) circulations in both their arte-
rial (AR) and venous (VEN) compartments, while non-ideal diodes model the four cardiac
valves. The state vector c comprises the volumes of the cardiac chambers and the sys-
temic/pulmonary arterial/venous pressures and flow rates:

c(t) =
(
VRA(t), VLA(t), VRV(t), VLV(t),

pSYS
AR (t), pSYS

VEN(t), pPUL
AR (t), pPUL

VEN(t),

QSYS
AR (t), QSYS

VEN(t), QPUL
AR (t), QPUL

VEN(t)
)
.
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The corresponding ODE system (C ), summarized by Eq. (7), reads:

CSYS
VEN

dpSYS
VEN(t)

dt
= QSYS

AR (t)−QSYS
VEN(t),

CPUL
VEN

dpPUL
VEN(t)

dt
= QPUL

AR (t)−QPUL
VEN(t),

LSYS
VEN

RSYS
VEN

dQSYS
VEN(t)

dt
= −QSYS

VEN(t)− pRA(t)− pSYS
VEN(t)

RSYS
VEN

,

LPUL
VEN

RPUL
VEN

dQPUL
VEN(t)

dt
= −QPUL

VEN(t)− pLA(t)− pPUL
VEN(t)

RPUL
VEN

,

dVRA(t)

dt
= QSYS

VEN(t)−QTV(pRA(t), pRV(t)),

dVLA(t)

dt
= QPUL

VEN(t)−QMV(pLA(t), pLV(t)),

dVRV(t)

dt
= QTV(pRA(t), pRV(t))−QPV(pRV(t), pPUL

AR (t)),

dVLV(t)

dt
= QMV(pLA(t), pLV(t))−QAV(pLV(t), pSYS

AR (t)),

CPUL
AR

dpPUL
AR (t)

dt
= QPV(pRV(t), pPUL

AR (t))−QPUL
AR (t),

CSYS
AR

dpSYS
AR (t)

dt
= QAV(pLV(t), pSYS

AR (t))−QSYS
AR (t),

LPUL
AR

RPUL
AR

dQPUL
AR (t)

dt
= −QPUL

AR (t)− pPUL
VEN(t)− pPUL

AR (t)

RPUL
AR

,

LSYS
AR

RSYS
AR

dQSYS
AR (t)

dt
= −QSYS

AR (t)− pSYS
VEN(t)− pSYS

AR (t)

RSYS
AR

,

(17)

with t ∈ [0, T ] and where the flow rates of the valves read:

Qi(p1, p2) =


p1 − p2

Rmin

, if p1 < p2

p1 − p2

Rmax

, if p1 ≥ p2

for i ∈ {TV,MV,PV,AV}, (18)

where p1 and p2 denote the proximal and distal pressures of the valve, whereas Rmin and
Rmax are its minimum and maximum resistance [26].

While in the fully 0D model the four cardiac chambers consists of time-varying elas-
tance elements [26], in the 3D-0D whole-heart model the pressure-volume relationships of
each chamber is provided by the 3D electromechanical model and must satisfy the volume-
consistency conditions (V ) of Eq. (8), where V 0D

i (c(t)) = Vi(t), for i ∈ {RA,LA,RV,LV},
represent the volumes of the four cardiac chambers in the 0D circulation model, while the
3D volumes are computed using the divergence (Gauss) theorem on the closed endocardial
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surfaces of the four cardiac chambers:

V 3D
i (d(x, t)) =

1

3

∫
Γendo,i

J(x, t) (x + d(x, t)) · F−T (x, t)N(x) dx, i ∈ {RA,LA,RV,LV}.

(19)
We remark that these volumes can be exactly computed since the endocardial surfaces
Γendo,i are closed surfaces thanks to the presence of the valves Ωvalve

0 and of the artifi-
cial caps Ωcaps

0 (see Fig. 3). The resulting model (C )-(V ) of Eqs. (7) and (8) consists of
nc + 4 equations and unknowns, where the four additional unknowns are the chamber pres-
sures (pRA(t), pLA(t), pRV(t), pLV(t)) that act as Lagrange multipliers enforcing the volume-
consistency constraints. These four pressures take into account the coupling with the (M )
model through the normal stress boundary conditions of Eqs. (6c) to (6f) applied on the en-
docardium of the four chambers. Instead, on the endothelium of the PT and AO we apply the
pulmonary and systemic arterial pressures by setting pPT(t) = pPUL

AR (t) and pAO(t) = pSYS
AR (t)

in Eqs. (6g) and (6h), respectively.

3.4. Reference configuration and initial displacement

The most interesting applications of computational cardiac electromechanics occur when
the human heart domain is directly reconstructed from medical images, with the aim of
performing patient-specific simulations. However, these reconstructed geometries correspond
to a configuration Ω̃ loaded by the internal blood pressure while, on the contrary, the stress-
strain relationship at the basis of the mechanical model (M ) is formulated in an unloaded
(stress-free) configuration Ω0 (see Eq. (15)). In order to recover this reference configuration

Ω0 from the imaging configuration Ω̃ we extend the procedure proposed by Regazzoni et al.
[26] for the LV to the whole-heart case: starting from Ω̃, we recover the configuration Ω0 by
virtually deflating the whole-heart domain previously subject to the internal pressures p̃i,
for i ∈ {RA,LA,RV,LV,PT,AO}; then, by applying on the endocardium and endothelium
the pressures pi,0, we inflate the domain again in order to compute the displacement d0 for
the initial condition of the mechanical problem (M ) of Eq. (6). Both these two steps are
performed by assuming a quasi-static approximation of the mechanical problem (6) [26].
This hypothesis is reasonable only in a few moments of the cardiac cycle, such as at the
end of the VPF phase just before the beginning of the AC phase (see Section 2 and Fig. 2).
Indeed, at this time of the diastole, the ventricular filling slows down and the movement of
the four chambers becomes negligible. This moment is usually captured in standard cardiac
medical images, because on the one hand it is easy to identify using the ECG signal, on
the other hand the image quality is better when the heart moves slowly. Furthermore, the
small blood pressures that load the heart chambers during this phase make the associated
numerical problem less challenging to solve.

More in detail, the procedure is based on the following quasi-static approximation, ob-
tained by neglecting the time derivative term of Eq. (6a) in the mechanical problem (M ):
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(
M static

)



∇ ·P(d, T a) = 0 in Ω0 × (0, T ],

P(d, T a)N + (N⊗N)

(
Kepi
⊥ d + Cepi

⊥
∂d

∂t

)
= 0 on Γepi

0 × (0, T ],

P(d, T a)N = −pRA JF
−TN on Γendo,RA

0 × (0, T ],

P(d, T a)N = −pLA JF
−TN on Γendo,LA

0 × (0, T ],

P(d, T a)N = −pRV JF
−TN on Γendo,RV

0 × (0, T ],

P(d, T a)N = −pLV JF
−TN on Γendo,LV

0 × (0, T ],

P(d, T a)N = −pPT JF
−TN on Γendo,PT

0 × (0, T ],

P(d, T a)N = −pAO JF
−TN on Γendo,AO

0 × (0, T ],

d = 0 on Γrings
0 × (0, T ],

(20a)

(20b)

(20c)

(20d)

(20e)

(20f)

(20g)

(20h)

(20i)

where T a > 0 represents the residual active tension and pi, for i ∈ {RA,LA,RV,LV,PT,AO},
are the constant pressures loading the endocardium and the endothelium. Being x0 the co-
ordinates associated to Ω0, the solution d = d(x0, pi, T a) of Eq. (20) can be used to move the
coordinate x0 into a coordinate x = x0 +d corresponding to a loaded configuration Ω. Thus,
in order to recover the unloaded configuration Ω0 starting from the imaging configuration Ω̃,
we need to solve the following inverse problem: find the domain Ω0 such that, if we displace
x0 by the solution d̃ = d(x0, p̃i, T̃a) of Eq. (20), we get the coordinate x̃ of the domain Ω̃,

i.e. x̃ = x0 + d̃. To solve this problem we employ the algorithm proposed in [26, 114], that
is based on a fixed point method augmented with an adaptive step continuation method to
ensure stability and boost convergence speed.

Finally, once the reference configuration Ω0 has been recovered, we can set proper values
of pi = pi,0 and T a = Ta,0 corresponding to the phase of the cardiac cycle at the initial time
t = 0 of the unsteady electromechanical model and solve again Eq. (20). In this way, we
obtain the initial condition d0 = d(x0, pi,0, Ta,0) for the unsteady mechanical problem (M )
of Eq. (6). Note that, in principle, the phase of the cardiac cycle corresponding to the initial

time t = 0 and the time when the imaging configuration Ω̃ is acquired can be different,
justifying possible different values of T a and pi during the reference configuration recovery
and the initial displacement computation.

4. Numerical approximation

For the numerical approximation of the whole-heart electromechanical model (Eqs. (3)
to (8)) we employ the segregated-intergrid-staggered numerical approach introduced for the
ventricular cases in [26, 27]. In this numerical scheme the core models are sequentially
solved in a segregated manner, using different resolutions in space and time to properly take
into account the heterogeneous space and time scales that characterize the different core
models [22, 38, 115]. In Fig. 6 we show how the different core models are separately solved
and which variables interconnect them, also highlighting which interactions need numerical
stabilization.
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Figure 6: A sketch of the segregated-intergrid-staggered numerical scheme. Each block represents a core
model and we show their order of resolution, which variables interconnect them and which interactions need
stabilization. We also highlight the time and space discretization employed. Note that the electrophys-
iological block, being solved using a smaller timestep, features several repeated solutions of the (EIMEX)
and (IIMEX) blocks for each time tn of the (AIMEX)–(MI)–(V )–(CE) blocks (in the figure, for illustrative
purposes, only two sub-steps are displayed).

4.1. Numerical approximation of the core models

For the time discretization, we employ Backward Differentiation Formula (BDF) schemes [116].
The (E ) and (I ) models are solved using a BDF of order 2 (BDF2), using an Implicit-
Explicit (IMEX) scheme, denoted by (EIMEX) and (IIMEX), respectively, where the diffusion
term is treated implicitly, the reaction term is treated explicitly and the ionic variables are
advanced through the IMEX scheme of [26, 27]. Moreover, the discretization of the ionic
current term Iion is performed following the Ionic Current Interpolation (ICI) approach [117].
Both (M ) and (A ) models are advanced in time with a BDF of order 1 (BDF1) scheme,
with an IMEX scheme for the activation (AIMEX) [2] and a fully implicit scheme for the me-
chanical problem (MI) [26, 27]. Finally, we use an explicit BDF1 scheme for the circulation
(CE) [55].

Concerning the space discretization, we use the FE Method with continuous FEs and
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tetrahedral meshes [116]. We consider a unique mesh Th (h represents the mesh size) for
the entire computational domain Ω0 (see Fig. 7, (a)). We employ a scalable and efficient
intergrid transfer operator on the unique mesh Th that enables the use of arbitrary FEs
among the different core models. In particular, we consider FE of order 2 (P2) for (EIMEX) to
properly capture the dynamics of traveling waves, and FE of order 1 (P1) for both (AIMEX)
and (MI) [21, 26, 27, 118].

Regarding the (EIMEX)-(IIMEX)-(AIMEX) models, which are defined only on the subdo-
main Ωmyo

0 , we assemble and solve the FE system on the cells and Degrees Of Freedom (DOFs)
of the mesh Th corresponding to Ωmyo

0 , neglecting the cells and DOFs belonging only to non-
conductive regions {Ω0 \Ωmyo

0 }. In (EIMEX), this approach models the atrioventricular valves
as electrical insulators between atria and ventricles, representing the discrete counterpart of
the homogeneous Neumann condition (3b) on the internal interfaces between the conductive
and non-conductive regions. At the same time, it allows to use a unique mesh for all the
core models, making the intergrid transfer operator more efficient and easier to define.

4.2. Numerical coupling of the core models

We adopt a segregated approach to couple the different core models, solving them in a
sequential manner. Moreover, we make use of two different time steps, a larger one (denoted
by ∆t) for (AIMEX)–(MI)–(V )–(CE) and a finer one (that is τ = ∆t/Nsub) for (EIMEX)–
(IIMEX), with Nsub ∈ N, see Fig. 6(b). As shown in Fig. 6, we update the variables in the
following order: first, we update (IIMEX) and (EIMEX), by performing Nsub sub-steps; then,
we update (AIMEX); successively, we update (MI) together with the constraint (V ) (more
details are provided below); finally, we update (CE).

This ordering of the core models is defined to reflect the main direction of the interactions
among the core models. The interactions that occur in the opposite direction, the so-called
feedbacks, are instead evaluated using the solution available from the previous time-step
(see, e.g., feedback from mechanics to electrophysiology). To evaluate the feedbacks between
(IIMEX)–(EIMEX) and (AIMEX)–(MI), we employ the intergrid transfer operator described in
Section 4.1. We refer to [26, 27, 119] for further details.

4.3. Stabilizing the coupling of the core models

The use of segregated schemes can lead to numerical instabilities, especially when feed-
backs play a non-negligible role. In the case of cardiac electromechanics, numerical in-
stabilities can arise, on the one hand, due to feedbacks between mechanics and activation
[54, 114, 120–123] and, on the other hand, due to feedbacks between circulation and active-
passive mechanics [57, 94]. These instabilities, which yield non-physical oscillations, do not
affect monolithic methods, which however require higher computational costs than segregated
schemes. Furthermore, they force the use of a single time step size for all the core models.
With the aim of preserving the advantages of segregated schemes, we use stabilization terms
aimed at curing the numerical oscillations. Specifically, we employ the stabilization schemes
that we proposed in [54] and [57]. Since both schemes act on the (MI)–(V ) substep, in what
follows we provide more detail on this block.
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We update the mechanical displacement variable under the constraint of assigned cham-
ber volumes. The chamber pressures (pRA(t), pLA(t), pRV(t) and pLV(t)) are determined
simultaneously with the displacement and play in this context the role of Lagrange mul-
tipliers enforcing the volume conservation constraints (V ). Introducing the discrete times
tn = n∆t (with n ≥ 0) and denoting by anh ' ah(t

n) the fully discretized FE approximation
of the generic (scalar a, vectorial a or tensorial A) variable a(t), we consider the following
fully discretized version of the coupled (M )–(V ) models of Eqs. (6) and (8).
For each time step tn+1, given Ta

n+1
h and cn, find dn+1

h , pn+1
LA , pn+1

RA , pn+1
LV and pn+1

RV by solving:

∫
Ω0

ρs
dn+1
h − 2dnh + dn−1

h

∆t2
·ϕh dΩ0 +

∫
Ω0

P(dn+1
h , Ta

n+1
h ) : ∇ϕh dΩ0 +

+

∫
Γepi
0

Cepi
⊥

dn+1
h − dnh

∆t
(Nh ⊗Nh) ·ϕh dΓ0 +

∫
Γepi
0

Kepi
⊥ (Nh ⊗Nh)d

n+1
h ·ϕh dΓ0 +

+
∑

k∈{RA,LA,RV,LV}

pn+1
k

∫
Γendo,k
0

Jn+1
h (Fn+1

h )−TNh ·ϕh dΓ0+

+
∑

k∈{AO,PT}

pnk

∫
Γendo,k
0

Jn+1
h (Fn+1

h )−TNh ·ϕh dΓ0 = 0

∀ϕh ∈ [X s
h ]3,

V 3D
LA (dn+1

h ) = V 0D
LA (cn)

V 3D
LV (dn+1

h ) = V 0D
LV (cn)

V 3D
RA(dn+1

h ) = V 0D
RA(cn)

V 3D
RV (dn+1

h ) = V 0D
RV (cn)

(21)

with Fn+1
h = I + ∇dn+1

h , Jn+1
h = det(Fn+1

h ) and ϕh being a generic test function for the
finite dimensional space [X s

h ]3 with X s
h = {v ∈ C0(Ω0) : v|K ∈ Ps(K), s ≥ 1, ∀K ∈ Th, v =

0 on Γrings
0 }, where Ps(K) stands for the set of polynomials with degree smaller than or equal

to s over a mesh elementK. We also remark that, unlike chamber pressures, arterial pressures
(pnPT and pnAO) are evaluated at the time step tn since they are equal to the pulmonary and
systemic arterial pressures (pPUL,n

AR and pSYS,n
AR , respectively) of the circulation state vector

cn.
As mentioned above, the formulation of Eq. (21) typically exhibits numerical oscillations

when coupled with an active force model on the one hand, and a circulation model on the
other hand.

One source of instability is represented by the fibers-stretch-rate feedback, i.e. the influ-
ence that the rate at which fibers shorten has on the amount of force generated at each point
in the domain. As shown in [54], these numerical oscillations originate from an inconsistent
description of strain, which is represented in Eulerian coordinates at the microscale, i.e. in
activation models, in Lagrangian coordinates instead at the macroscale, i.e. in the tissue
mechanics model. This can be corrected by introducing an additional term in the formula-
tion, which constitutes a numerically consistent stabilization term. This numerical scheme is
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obtained by replacing the Piola tensor expression in Eq. (21) with the following expression:

P

(
dn+1
h , Ta

n+1
h +Ka

n+1
h

(√
Fn+1
h f0 · Fn+1

h f0 −
√
Fn
hf0 · Fn

hf0

))
(22)

where Ka represents the total stiffness of the attached crossbridges, and is obtained from the
activation model (see [54] for more details).

A second source of instability is related to the interaction between active-passive mechan-
ics and circulation. As discussed in [57], the staggered scheme of Eq. (21) is not uncondition-
ally stable, but can exhibit non-physical oscillations for given values of the parameters and
∆t. This occurs, for example, for sufficiently large values of inertia, viscous dissipation and
stiffness, or again as a consequence of fibers-stretch-rate feedback, which leads to an increase
in apparent stiffness. In order to cure these oscillations without resorting to a monolithic
scheme, we take inspiration from [57] and we correct the volume constraint in Eq. (21),
namely V 3D

k (dn+1
h ) = V 0D

k (cn) for k ∈ {RA,LA,RV,LV}. In particular, the volumes derived
from the circulation model at time tn are replaced by their extrapolation at time tn+1, which
takes into account the effect that the variation of the pressures in the four chambers will have
on the fluxes through the valves. More precisely, the volume constraints of the stabilized
scheme read:

V 3D
LA (dn+1

h ) = V 0D
LA (cn) + ∆t

[
QPUL,n

VEN −QMV(pn+1
LA , pn+1

LV )
]

V 3D
LV (dn+1

h ) = V 0D
LV (cn) + ∆t

[
QMV(pn+1

LA , pn+1
LV )−QAV(pn+1

LV , pSYS,n
AR )

]
V 3D

RA(dn+1
h ) = V 0D

RA(cn) + ∆t
[
QSYS,n

VEN −QTV(pn+1
RA , pn+1

RV )
]

V 3D
RV (dn+1

h ) = V 0D
RV (cn) + ∆t

[
QTV(pn+1

RA , pn+1
RV )−QPV(pn+1

RV , pPUL,n
AR )

]
(23)

We remark that in Eq. (23), while the pressures in the four chambers are evaluated at time
tn+1, the state variables of the circulation model are evaluated at time tn. In other words, the
Eq. (23) does not invalidate the staggered nature of the scheme. Nevertheless, the additional
terms allow for the removal of numerical oscillations. Indeed, it is shown in [57] that this
scheme is absolutely stable for any choice of parameters and ∆t. These stabilization terms
are also straightforward to implement and have no impact on the computational cost. Indeed,
the fully discretized version of the stabilized version of system (21) can be compactly written
as: 

rd(dn+1
h , pn+1

LA , pn+1
LV , pn+1

RA , pn+1
RV ) = 0,

rpLA
(dn+1

h , pn+1
LA , pn+1

LV ) = 0,

rpLV(dn+1
h , pn+1

LA , pn+1
LV ) = 0,

rpRA
(dn+1

h , pn+1
RA , pn+1

RV ) = 0,

rpRV
(dn+1

h , pn+1
RA , pn+1

RV ) = 0,

(24)

where we moved all the terms to the left hand side and rpRA
, rpLA

,rpRV
, rpLV and rd are

suitable functions. Eq. (24) is a nonlinear saddle-point problem, that we solve by means
of the Newton algorithm using the Schur complement reduction [26, 27, 124]. As shown in
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Figure 7: (a) A cut view of the computational mesh. (b) The stimulation protocol highlighting the location
and time of the applied spherical impulses. (c) The baseline simulation results in term of activation time.

[57], this can be done at the cost of 5 solutions of the linear system (that is, the number
or chambers plus one) associated with the Jacobian matrix of the standalone mechanical
subproblem for each Newton iteration.

5. Numerical Simulations and Discussion

In this section we display and discuss the results obtained using our whole-heart elec-
tromechanical model. More specifically, in Section 5.1 we summarize the common settings
for all the numerical simulations. In Section 5.2 we show the results of a baseline simulation.
Eventually, in Sections 5.3 and 5.4, we show the impact of some features of our computa-
tional model, as the atrial contraction, the fibers-stretch-rate feedback and the numerical
stabilization terms.

5.1. Simulation setup

We generate the computational mesh starting from the Zygote Solid 3D Heart Model
[50], an anatomically accurate CAD model of the entire human heart reconstructed from
high-resolution CT scans and representing a healthy male subject from the 50th percentile of
the United States population. The original model – made of disjoint parts of the various car-
diac compartments – has been processed to fit the domain features described in Section 3.1.
With this purpose, we rely on the algorithms recently proposed by Fedele and Quarteroni
[125] to facilitate the surface processing and mesh generation of cardiac geometries, im-
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plemented in the open source software vmtk2 [126]. In particular, we extensively use the
surface-connection, boolean-connection, surface-tagger, and mesh-connector algo-
rithms [125]. The final tetrahedral computational mesh is shown in Fig. 7, (a). This mesh
is characterized by a mesh size of about 1.5 mm in the myocardium – i.e. in the conductive
regions where also the electrophysiology and the active force generation model are solved
– and of about 3 mm in the non-conductive regions – where only the mechanical model is
solved with a less demanding isotropic Neo-Hookean constitutive law.. Starting from this
mesh – that represents the domain in the imaging configuration Ω̃ – we recover the reference
configuration Ω0 by solving the problem illustrated in Section 3.4. The resulting deformed
mesh is then remeshed to improve the quality of the elements that can be adversely affected
by the deformation procedure, especially in the anatomically complex and thin regions of
the atria.

The aforementioned mesh is used only for the baseline simulation (Section 5.2), while for
the tests described in Sections 5.3 and 5.4, in order to reduce the computational burden of
the numerical simulations, we take advantage of a coarser mesh characterized by a mesh-
size of about 3 mm also in the conductive regions. Indeed, those tests aim at describing
the qualitative effects of some changes in the models and the quantities analyzed are not
significantly affected by the coarsening of the mesh. The fine and coarse meshes are made up
of 1.34M and 270K elements and 229K and 51K vertexes, respectively. The corresponding
number of DOFs relative to the electrical (EIMEX) and mechanical (MI) FE problems are
1.71M and 687K, respectively, for the fine mesh, and 337K and 154K, respectively, for the
coarse mesh.

Concerning the time steps, we use τ = 50µs for the electrophysiology and ∆t = 1000µs for
the mechanical, activation and circulation problems [27, 55]. All the other parameters of the
baseline simulation (Section 5.2) are listed in Appendix A. We simulate 9 and 6 heartbeats
for the baseline simulation and the other tests, respectively, showing the results of the last
two heartbeats, when the circulation variables reach their limit cycle.

In all the presented simulations the cardiac electrical conduction system (see Fig. 1, (c))
is modeled using the same series of spherical impulses (see Section 3.3.1). We first stimulate
the atrial muscles at the SAN allowing the propagation of the signal in the RA and, through
the BB and the atrial septum, toward the LA; waiting for the natural delay governed by the
AVN, we then stimulate a series of points on the endocardium of the two ventricles that,
together with the fast endocardial layer, surrogate the effect of the PFs. More in detail, the
ventricular stimuli are first applied to the LV and soon after to the RV in order to model
the physiological lag of the RBB with respect to the LBB. The whole stimulation protocol –
detailed in Fig. 7, (b) – is periodically repeated every heartbeat, representing a simplified but
effective model of the pacemaking activity of the SAN and of the entire electrical conduction
system.

We initialize the ionic models by running a 1000-cycle long single-cell simulation for
each model. Similarly, we run single-cell simulations for the force generation models with a

2https://github.com/marco-fedele/vmtk
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Figure 8: Pressure, volumes, and fluxes evolution over time during the last two heartbeats of the state
variables of the coupled mechanics-circulation model for the baseline simulation. For the MV and TV fluxes
we also highlight the E-wave and the A-wave.

constant calcium input (wCa = 0.1µmol) and a reference sarcomere length SL = 2.2µm [27].
The numerical framework presented in Section 4 has been implemented in lifex, an in-

house high-performance C++ FE library for cardiac applications, based on the deal.II3 FE
core [127]. A public binary release of lifex(including the fiber generation package) is freely
available online, under an open license4 [128]. All the numerical simulations were performed
using either the iHeart cluster (Lenovo SR950 192-Core Intel Xeon Platinum 8160, 2100
MHz and 1.7TB RAM) at MOX, Dipartimento di Matematica, Politecnico di Milano or the
GALILEO100 supercomputer at Cineca (24 nodes endowed with 48-Core Intel CascadeLake
8260, 2.4GHz, 384 GB RAM). A simulation of one heartbeat lasts for the fine mesh about
4 hours with 1152 cores on the GALILEO100 supercomputer, for the coarse mesh about 4.75
hours with 48 cores of the iHeart cluster.

5.2. The baseline simulation

In Fig. 8 we show the temporal variation of some state variables during the last two
heartbeats of the baseline simulation. The obtained curves of pressures, volumes and fluxes
qualitatively correspond to those expected for a physiological heart function [62, 129].

3https://www.dealii.org
4https://doi.org/10.5281/zenodo.5810269
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Figure 9: The pressure-volume loops of the last heartbeat for the baseline simulation: (a) all the curves in a
single figure to highlight the difference in volumes and pressures among the cardiac chambers; (b) the curves
colored with the phases of the cardiac cycle and highlighting the opening and closing time of each cardiac
valve. Abbreviations are defined in Table 1.

Concerning the systolic function, we obtain an excellent agreement with reference values
for a healthy adult available in the literature. Indeed, the maximum fluxes obtained through
the semilunar valves (QPV, QAV) during the VE phase (about 600 mL s−1) are in the physi-
ological range usually measured by PC-MRI data (500–600 mL s−1) [130–132]. This feature
is hardly achieved by computational models which tend to largely overestimate these fluxes,
even when they reproduce the physiological ventricular output in terms of SV (see, e.g., [46,
Fig. 10]). As we will show in Section 5.3, a key component of our model to achieve this result
is the fibers-stretch-rate feedback accounted for by the RDQ20 model, that homogenizes the
fibers shortening velocity and contributes to regulate the blood fluxes.

Concerning the diastolic function, instead, the atrial kick is clearly visible during the
AC phase, for both ventricular and atrial volumes (VRA, VRV, VLA, VLV), atrial pressures
(pRA, pLA), and fluxes through the atrioventricular valves (QTV, QMV). However, the fluxes
during a healthy diastolic function should be characterized by an E-wave – corresponding to
the VPF phase – which is taller than the A-wave – corresponding to the AC phase [133, 134].
In other words, the ventricular filling should be mainly determined by the ventricular relax-
ation than by the atrial contraction. The different behavior that we obtain (see Fig. 8, last
row) can be motivated by a too slow ventricular relaxation during the VPF phase [133, 134].
We expect that a better agreement with literature data can be obtained by resorting to ionic
models with a more realistic decrease transient of calcium concentration [3, 79].

In Fig. 9 we show the pressure-volume loops of the four cardiac chambers, while in
Fig. 10 we display the same curves together with the evolution over time of the pressures
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Figure 10: The phases of the cardiac cycle for the four heart chambers both in terms of pressure-volume
loop (last heartbeat) and in terms of pressure and volume evolution over time (last two heartbeats). The
opening and closing time of each cardiac valve is also reported. For the atrial pressure evolution we also
highlight the a-c-v waves and the x-y descents. Abbreviations are defined in Table 1.

and volumes. In both figures we color each curve with the five phases of the cardiac cycle
described in Section 2 and Fig. 2 and we also represent the opening and closing moments
of the four cardiac valves. As depicted in Fig. 9, (a), the pressure and volume ranges
vary significantly among the four cardiac chambers, as reported, e.g., by Verzicco [20, Fig.
10]). The shape of the pressure-volume loops finds a very good agreement with the medical
literature [20, 61, 67, 68, 135]. While this is not the first time that an electromechanical
model is able to describe the ventricular physiology [26, 27, 46], to the best of our knowledge
the eight-shaped pressure-volume loops of the atria have never been shown so accurately by
a computational model. Indeed, we obtain, as expected by the literature [67, 135], A- and
V-loops that are similar in size. On the contrary, A-loops significantly (and abnormally)
larger than V-loops are obtained by the few other whole-heart electromechanical models
accounting for atrial contraction [42, 46].

The atrial function of reservoir, conduit, and booster pump is also well captured: the
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total emptying volume (Vmax − Vmin, reservoir) is divided between the passive emptying
volume (Vmax − VpreAC, conduit) and the active emptying volume (VpreAC − Vmin, booster
pump), with these last two volumes comparable in size [67, 136, 137]. The contribution of
the atrial booster pump function to the ventricular filling falls within the physiological upper
limit. More quantitatively, the LA contraction contributes to the 33% of the LV filling, while
normal healthy values are reported in the range 15%–30% [67, 135, 138].

The evolution over time of the atrial volume is very well captured. In particular, the LA
curve (see Fig. 10, second row, last plot) matches similar curves reconstructed from medical
images (see, e.g., Thomas et al. [138, Fig. 7] and Badano et al. [139, Fig. 3]): the volume
smoothly increases when the MV is closed (IVC, VE and IVR phases); a sharp decrease
followed by a stationary moment occurs during the VPF phase; an additional sharp decrease
coincides with the AC phase, corresponding to the booster pump function.

The atrial pressure evolution over time is characterized by three waves and two pressure
descents [62, 135, 140]: the a-wave – corresponding to the increase of pressure due to the
atrial contraction; the c-wave – caused by the closure of the atrioventricular valves (TV, MV)
that push the blood back toward the atria; the x-descent – determined by the initial phase
of the ventricular contraction and the consequent downward movement and filling of the
atria; the v-wave – caused by the continuous venous return while the atrioventricular valves
are closed, during the ventricular systole; the y-descent – which begins with the opening of
the atrioventricular valves and continues during the VPF phase. In Fig. 10, first two rows,
central column, all these complex features are captured. Additionally, we also obtain an a-
wave taller than the v-wave in the RA [140] and the opposite behavior in the LA [135, 141],
as described in the medical literature [62, 135, 140–142]. This behavior is also visible in
the atrial pressure-volume loops (Fig. 9, (b), top), where the pressure assumes its maximum
value during the A-loop for the RA and during the V-loop for the LA.

Another captured physiological behavior concerns the opening and closing times of the
cardiac valves. Indeed, looking at the pressure and volume evolution over time (Fig. 10),
we observe how the right valves (TV, PV) close after the left ones (MV, AV). More specif-
ically, the closing of the atrioventricular valves (TV, MV) is almost synchronized, while a
longer delay between the closing of the semilunar valves (PV, AV) occurs. This behavior
corresponds to normal cardiac physiology and can be routinely verified by checking the first
and second heart sounds through cardiac auscultation [143]. We obtain these results thanks
to our stimulation protocol that, albeit simplified, correctly reproduces the activation delay
between LV and RV.

In Fig. 11 we show the three-dimensional motion of the heart during a heartbeat. The
cardiac muscle is colored according to the local value of the active tension Ta, to highlight
which chambers are contracting and which are relaxing during the five phases of the cardiac
cycle. Specifically, we show the cardiac geometry deformed by the displacement d at the
initial and final moments of each phase. Our simulation reproduces the expected motion of
a healthy heart, as summarized below.

� The IVR starts with relaxed atria and contracted ventricle. During this short phase
the ventricular active forces quickly drop down together with the pressure. Since both
the atrioventricular valves (TV and MV) and the semilunar valves (PV and AV) are
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Figure 11: Deformed configuration of the cardiac muscle over time, colored with the active tension Ta

saturated to 20 kPa and 80 kPa for the atria and ventricles, respectively: the internal view (top) and the
external view (bottom) at the initial and final instants of each phase of the cardiac cycle.

closed, the ventricular volumes are constant and no significant motion occurs during
this phase.

� The VPF starts when the TV and MV open and is characterized not only by the active
tension that continues to fall, but also by a clear increase of the ventricular volumes
and a corresponding decrease of the atrial ones. These volumetric changes are mainly
caused by the upward movement of the ventricular base, which compresses the atria
and dilates the ventricles. During this phase the atrial are passively deformed, acting
as a conduit.

� In late diastole, the AC phase starts from the pacemaking stimulation in the RA (near
the SupVC) and propagates toward the LA. The atrial booster pump function gives an
additional preload to the ventricles, visible once again with a clear upward movement
of the base. We recall that the active tension is influenced by the local fiber stretch.
Indeed, being the atrial deformation mainly longitudinal, active tension is higher where
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the fibers are not oriented transmurally. Thanks to our anatomically accurate fiber
model, this feature is clearly visible in the PeMs, where the active tension follows their
characteristic orientation.

� The ventricular contraction starts during the short IVC phase, when the atrioventric-
ular valves close again and the ventricular active tension starts to rise from the left
to the right part. Since also during this phase the ventricular volumes are constant,
no clear deformation are visible. Meanwhile, the atria begin to fill up, starting their
reservoir function fueled by the continuous venous return.

� Finally, the VE phase is characterized by the opening of the semilunar valves (PV and
AV), the strong ventricular contraction, and the consequent decrease of the ventricular
volumes. Again, the key factor driving this emptying phase is the downward movement
of the atrioventricular plane [144], which also determines most of the atrial filling during
its reservoir function.

The just described physiological motion of the entire heart during the whole cardiac cycle has
been obtained thanks to several features of our electromechanical model. According to our
experience, the key factors are the following: i) the anatomical accuracy of the geometry; ii)
the use of comprehensive and calibrated mathematical models for the atria and the ventricles,
in terms of electrophysiology, active-force generation, passive mechanics; iv) the modeling
of the most relevant feedbacks among the different core models, with particular reference
to the fibers-stretch and fibers-stretch-rate feedbacks in the force generation model; v) the
mechanical boundary conditions on the epicardium taking into account both the presence
of the PF and of the EAT. The latter, in particular, is of fundamental importance for the
correct downward and upward movement of the ventricular base.

5.2.1. A quantitative analysis of volumetric indexes

Quantitative volume-based indexes of the four cardiac chambers are routinely used in
clinics to assess the physiology of the heart. Reference values for these indexes are available
in the medical literature, but their values significantly vary depending on the kind of medical
images used or the methods employed to compute the volume. Echocardiography and cardiac
magnetic resonance are the most used techniques, but the former usually underestimates the
chambers’ volume because of the low spatial resolution. Indeed, reference values for cardiac
magnetic resonance [137, 145] are consistently larger than the ones for echocardiography
[67, 70, 136]. In both these techniques the volumes can be computed either using surrogate
formulas (based on the chambers’ area on specific image slices) or employing the more
accurate Simpson’s method (consisting in the segmentation of stack of contiguous slices that
cover the whole cardiac chamber). Based on these considerations, in Table 2 we compare
the volume-based indexes computed from the baseline simulation with the current reference
ranges for cardiac magnetic resonance for adult men, computed using the Simpson’s method.
To this purpose we use values reported in the recent meta-analysis by Kawel-Boehm et al.
[145] and some additional values focused on the atrial conduit and booster pump function
from the study of Li et al. [137], being this paper the unique one of the meta-analysis
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Index Value
Reference ranges

Description
mean ± SD [LL, UL]

RA Vmax [mL/m2] 43.68 52± 12 [28, 76] RA maximum volume
RA VpreAC [mL/m2] 32.83 40± 10∗ [19, 61]∗ RA volume before atrial contraction
RA Vmin [mL/m2] 25.16 27± 9 [9, 45] RA minimum volume
RA PassEF [%] 24.82 23± 9∗ [4, 41]∗ RA passive ejection fraction: (Vmax − VpreAC)/Vmax

RA ActEF [%] 23.39 33± 10∗ [11, 55]∗ RA active ejection fraction: (VpreAC − Vmin)/VpreAC

RA TotEF [%] 42.40 49± 10 [29, 68] RA total ejection fraction: (Vmax − Vmin)/Vmax

LA Vmax [mL/m2] 30.65 41± 8 [24, 57] LA maximum volume
LA VpreAC [mL/m2] 24.70 30± 8∗ [15, 46]∗ LA volume before atrial contraction
LA Vmin [mL/m2] 17.14 19± 5 [9, 28] LA minimum volume
LA PassEF [%] 19.43 26± 9∗ [8, 44]∗ LA passive ejection fraction: (Vmax − VpreAC)/Vmax

LA ActEF [%] 30.59 37± 10∗ [17, 58]∗ LA active ejection fraction: (VpreAC − Vmin)/VpreAC

LA TotEF [%] 44.08 54± 8 [37, 70] LA total ejection fraction: (Vmax − Vmin)/Vmax

RV EDV [mL/m2] 86.78 88± 17 [53, 123] RV End Diastolic Volume
RV ESV [mL/m2] 41.73 38± 11 [17, 59] RV End Systolic Volume
RV SV [mL/m2] 45.06 52± 12 [28, 75] RV Stroke Volume (EDV − ESV)
RV EF [%] 51.92 57± 8 [42, 72] RV ejection fraction (SV/EDV)

LV EDV [mL/m2] 85.28 77± 15 [47, 107] LV End Diastolic Volume
LV ESV [mL/m2] 41.28 29± 9 [11, 47] LV End Systolic Volume
LV SV [mL/m2] 44.00 48± 9 [30, 66] LV Stroke Volume (EDV − ESV)
LV EF [%] 51.60 63± 6 [51, 76] LV ejection fraction (SV/EDV)

Table 2: Volumetric indexes of the four cardiac chambers: the values computed from the baseline simulation
compared to the reference ranges for cardiac magnetic resonance [137, 145] (SD standard deviation, LL lower
limit, UL upper limit). All the volumes are indexed by the body surface area. Reference ranges are taken
from the recent meta-analysis by Kawel-Boehm et al. [145], with the exception of the values marked with ∗

taken from Li et al. [137], the only paper included in the meta-analysis in which additional parameters for
atrial conduit and booster pump function are analyzed.

reporting this kind of indexes – often computed in echocardiography [67, 136] – for cardiac
magnetic resonance. Concerning the atria, we compute all the indexes by not considering
the appendages and the veins (which contribute about 25% of the total volume), as usually
done in the image-based indexes such as the ones taken as reference ranges.

All the indexes calculated, both for the atria and for the ventricles, fall within the refer-
ence ranges. In conclusion, the results presented in this section demonstrate the ability of
our whole-heart electromechanical model to capture all fundamental aspects of the healthy
physiology of the heart. To the best of our knowledge, the cardiac function has never been
modeled so comprehensively by a computational model of the heart.

5.3. The impact of the atrial contraction and of the fiber-stretch-rate feedback

In this section we aim at showing the critical role that atrial contraction and fiber-stretch-
rate feedback play in simulating the physiological cardiac function. We do not consider the
MEF, as it mostly plays a role in pathological conditions involving arrhythmogenic behavior
[14, 146].
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Figure 12: Pressure-volume loops (top) and circulation state variables (bottom) with and without the atrial
contraction in the model.
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Most of the whole-heart electromechanical models, as discussed in Section 1, neglect the
atrial contraction [19, 21, 39, 40, 43, 44]. To discuss the impact of this choice, in Fig. 12
we show the effect of switching off the atrial contraction in the model. This is simulated by
considering the atria as purely passive tissues, by ignoring in the atrial domain {ΩRA

0 ∪ΩLA
0 }

the active stress part of the Piola-Kirchhoff stress tensor (see Eq. (15a)). The results show
irrefutably the importance of atrial contraction for both atrial and ventricular function: on
the one hand the A-loop disappears from the atrial pressure-volume loops; on the other
hand, the ventricular cycle also changes drastically with a significant decrease in ventricular
preload. This non-physiological behavior is also evident in the evolution of the state variables
(Fig. 12, bottom), where the contributions of the atrial contraction in terms of pressures,
volumes and fluxes disappear. In other words, neglecting atrial contraction means neglecting
the booster pump function of the atria and its preloading effect on the ventricles, modeling
a pathological scenario rather than a healthy one. For instance, as shown by Pagel et al.
[135], similar pressure-volume loops are captured during atrial fibrillation, when the chaotic
propagation of the electrical signal causes the atrium to lose its booster pump function.

In Fig. 13 we show the effects on the results of the fibers-stretch-rate feedback off in the
model. In terms of pressure-volume loops (Fig. 13, top) no substantial changes are visible,
with a small increase of the A-loop size in the atria and a small increase of the ventricular
pressures during the VE phase. Conversely, looking at the state variables (Fig. 13, bottom),
the fluxes through the semilunar valves (AV and PV) dramatically change. More specifically,
without the fiber-stretch-rate feedback we obtain about 1200 mL s−1 in the AV and almost
1500 mL s−1 in the PV. This abnormal values are similar to the ones reported by the whole-
heart model of Gerach et al. [46], that indeed neglects the fibers-stretch-rate feedback since,
without suitable stabilization terms, it yields strong non-physical oscillations in the multi-
scale model resulting in an unstable numerical scheme [46]. A large increase of the fluxes
appears also in the atrioventricular valves during the AC phase.

We conclude that the fibers-stretch-rate plays a fundamental role in the regulation of
the cardiac function. As a consequence of this feedback, indeed, the active force decreases
for the cardiac cells located in regions where fibers are rapidly shortening, thus resulting in
slowing down the contraction velocity of fibers. As this feedback acts locally (i.e. at the
cell level), the resulting macroscopic effect is a homogenization of fibers shortening velocity,
preventing sharp variations. From a hemodynamic perspective, this results into a smoothing
of the ejected blood flux, as highlighted by our results. Hence, we postulate that the fibers-
stretch-rate feedback, despite originating from the microscale force-velocity relationship of
sarcomeres, plays a crucial role in the regulation of blood fluxes.

5.4. The need of the numerical stabilization

To highlight the role of the stabilization terms described in Section 4.3, we present the
results of two numerical simulations obtained by switching off the stabilization terms on
active stress (see Eq. (22) and [54]) and on the 3D-0D mechanics-circulation coupling (see
Eq. (23) and [57]), respectively.

In Fig. 14 we show results obtained without the active stress stabilization. As soon as
active tension is being developed, non-physical oscillations occur, mainly in pressure and
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Figure 13: Pressure-volume loops (top) and circulation state variables (bottom) with and without the fibers-
stretch-rate feedback in the model.
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flux traces, finally leading to failure of the nonlinear mechanics solver. In the simulation
shown in the figure, failure occurs after nearly 0.35 s of physical time. While the time of
failure depends on the time step size and on the parameters, in our experience the numerical
simulation of cardiac active mechanics with realistic parameter values always leads to this
kind of numerical oscillations, whenever stretch-rate-feedback is accounted for by the model.
These instabilities cannot be cured by reducing the time step size: on the contrary, as
analytically demonstrated [54], they are amplified by a rapid exchange of variables between
the tissue mechanics and the activation model.

In Fig. 15 we report the results obtained by switching off the stabilization term on the
3D-0D mechanics-circulation coupling. Unlike for the active stress stabilization term, the
numerical oscillations obtained in this case do not lead to failure of the simulation. However,
the results are clearly not physically meaningful. This is particularly evident from the
transients of blood fluxes across valves, that exhibit very large oscillations. As demonstrated
in [57], also in this case reducing the time step size does not solve this issue, but on the
contrary it typically contributes to the onset of oscillations.

Thanks to the stabilization terms of Eq. (22) and Eq. (23) we are able to remove the
non-physical oscillations, for any choice of parameters and of time step size. These numerical
tests demonstrate that the interplay between accurate mathematical models and efficient and
stable numerical methods is of fundamental importance to model the cardiac function and
to obtain physiological results.

6. Conclusions

In this paper, we proposed a biophysically detailed, numerically stable and accurate
computational model of the electromechanics of the whole human heart, by considering an
active contraction model for both atria and ventricles.

In developing whole-heart computation models, several aspects are crucial to comprehen-
sively model the cardiac function and to accurately capture the highly coordinated events
underlying the cardiac cycle. In this context, our model embeds different determinant fea-
tures. We use an anatomically accurate computational domain including the main cardiac
components such as atrial appendages, major arteries, and simplified cardiac valves (Fig. 3).
In order to characterize the varying biophysical properties of the cardiac tissue, we split the
whole domain into several regions, representing cardiac chambers, arteries, and insulating fi-
brous tissue of the cardiac valves. To capture the anisotropy of the muscular tissue, we model
the myocardial fiber architecture by taking advantage of the anatomically-accurate whole-
heart LDRBM that we have recently proposed in [45, 55] (Fig. 4). Our full electromechanical
model comprises of several biophysically detailed core models. We employ chamber-specific
and accurate ionic models for atria and ventricles [1, 3], coupled with the monodomain
equation to describe the transmembrane potential propagation at the macroscale. We use
the RDQ20 model [56] for the active force generation, a biophysically detailed microscale
model that captures the crucial influence of the fiber-stretch and fibers-stretch-rate on the
generation of the active forces. We employ a 0D closed-loop model of the circulatory system,
fully-coupled with the mechanical model [26]. We use specific constitutive laws and model
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without active-stress stabilization
baseline

without active-stress stabilization
baseline

Figure 14: Pressure-volume loops (top) and circulation state variables (bottom) with and without the sta-
bilization terms in the active stress model.
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without circulation stabilization
baseline
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baseline

Figure 15: Pressure-volume loops (top) and circulation state variables (bottom) with and without the sta-
bilization terms in the circulation model.
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parameters for each cardiac region. The core models are mutually coupled by considering
the most important feedbacks that represent the interactions among electric signal propa-
gation, microscopic and macroscopic cardiac tissue contraction and deformation, and blood
circulatory system (see Fig. 5). Among them, in this paper we pay special attention to the
fibers-stretch-rate feedback (between passive mechanics and active force generation model).
Concerning the numerical discretization, we use the efficient segregated-intergrid-staggered
scheme proposed in [26, 27] and we employ recently developed stabilization terms – related
to the circulation [57] and the fibers-stretch-rate feedback [54] – that are crucial to obtain
a stable formulation in a four-chamber scenario (see Fig. 6). To cope with the high com-
putational complexity associated with whole-heart electromechanical simulations, we have
developed our solver in lifex, an efficient in-house FE library focused on large-scale cardiac
applications in an HPC framework.

We simulate all the phases of the cardiac cycle, showing numerical results that com-
prehensively capture the atrial and ventricular physiology, the threefold atrial function of
reservoir, conduit and booster pump, and the atrioventricular interaction. To the best of our
knowledge, some of the physiological features that we catch have never been shown all to-
gether by a computational model of the heart. Specifically, we mention the fluxes through the
semilunar valves (Fig. 8), the eight-shaped atrial pressure-volume loops characterized by the
correct proportion between A- and V-loops (Fig. 9), the evolution over time of the atrial vol-
umes (Fig. 10), the a-, c-, v-waves of the atrial pressure (Fig. 10), and the three-dimensional
deformation driven by the upward and downward movement of the atrioventricular plane
(Fig. 11). More quantitatively, we compute volumetric indexes for all the cardiac chambers,
finding values that always fall within the reference physiological ranges (Table 2).

We also analyze the impact of atrial contraction, fibers-stretch-rate feedback and stabi-
lization terms, by comparing the results obtained with and without these features in the
model. Due to the complex anatomy and physiology of the atria, atrial contraction is often
neglected in electromechanical models of the whole heart [19, 21, 40, 43, 44]. However, we
show that neglecting atrial contraction (and the associated atrial booster pump function act-
ing as preload for the ventricles) means modeling a pathological rather than healthy scenario
(Fig. 12). Concerning the fibers-stretch-rate feedback, we show that without this feedback
the fluxes across the semilunar valves largely exceed the physiological range (Fig. 13). This
feedback originates from the microscale force-velocity relationship of sarcomeres, decreasing
the active force in regions where fibers are rapidly shortening. The macroscopic effect is a
homogenization of fibers shortening velocity that, from a hemodynamic perspective, results
into a smoothing of the ejected blood flux, as highlighted by our results. Hence, we postulate
that the fibers-stretch-rate feedback, despite originating at the microscale, plays a crucial
role in the macroscopic regulation of blood fluxes. Moreover, if not properly managed at the
numerical level, this feedback produces non-physical oscillations that may lead the numer-
ical simulation to fail [46, 54]. Thus, the interplay between accurate mathematical models
and efficient and stable numerical methods is of utmost importance to reproduce the heart
physiology. We show that, thanks to the introduction of the stabilization terms relative
to the circulation model and to the fibers-stretch-rate feedback, we are able to remove the
non-physical oscillations (Figs. 14 and 15).
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To conclude, the presented electromechanical model of the whole human heart has shown
an unprecedented ability in reproducing the healthy cardiac function of both atria and ven-
tricles and can be considered a fundamental step toward the construction of physics-based
digital twins of the human heart.
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Appendix A. Model and numerical parameters

We provide more details about the parameters used for the baseline simulation (Sec-
tion 5.2). Concerning the fiber generation procedure (Section 3.2), we use the parameters
reported in Piersanti [55, Chapter 4]. In Table A.3 we report the parameters of the mon-
odomain model (E ) of Eq. (3). Concerning the ionic models (4), we use the parameters
reported in Courtemanche et al. [1] and ten Tusscher and Panfilov [3] (endocardium cells)
for the atria (Eq. (4a)) and ventricles (Eq. (4b)), respectively. Additionally, for the TTP06
ionic model, we rescale the calcium peak by a factor of 0.48 to bring the calcium transient
into a more physiological range. In Table A.4 we report the calibration for the RDQ20
active generation model (A ) both for ventricles and atria. We only report parameters mod-
ified with respect to the original paper of Regazzoni et al. [105]. In particular, the atrial
calibration is based on Mazhar et al. [106]. We also report the values of the microscale
crossbridge stiffness aiXB, for i ∈ {RA,LA,RV,LV}, used to define the tissue level active
tension of each cardiac chamber (see Eq. (13)). In Table A.5 we report the parameters of
the passive mechanical model (M ) of Eq. (6) and the additional parameters specific to its
quasi-static approximation (M static) of Eq. (20) used for the reference configuration recov-
ery (see Section 3.4). The parameters of the circulation model (C ) of Eqs. (7) and (17) are
reported in Table A.6. Finally, concerning the numerical parameters, we report the setting
used for the linear and nonlinear solvers in Tables A.7 and A.8, respectively.
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Variable Value Unit Description

Thb 0.8 s Heartbeat duration
ε 0.05 − Threshold of the fast conduction layer(
σV,endo

f , σV,endo
s , σV,endo

n

)
/(χmCm) (8.00, 4.40, 2.20) × 10−4 m2/s Ventricular fast layer conductivities(

σV,myo
f , σV,myo

s , σV,myo
n

)
/(χmCm) (2.00, 1.10, 0.55) × 10−4 m2/s Ventricular myocardial conductivities(

σA
f , σ

A
s , σ

A
n

)
/(χmCm) (7.00, 1.41, 1.41) × 10−4 m2/s Atrial conductivities

Iapp/Cm 25.71 V s−1 Applied current value
δt 3.0 ms Applied current duration
tRA 0.0 ms Applied current RA initial time
tLV (160, 160, 160) ms Applied current LV initial times
tRV (165, 172) ms Applied current RV initial times
r 3× 10−3 m Applied current radius

Table A.3: Parameters of the electrophysiological model (E ).

Variable Value Unit Description

Ventricles (ΩV
0 )

SL0 1.9 µm Reference sarcomere length
(nf , ns, nn) (1, 0, 0.4) − Share of active tension along the fiber directions

aLV
XB 15.0× 108 Pa LV upscaling constant of crossbridge stiffness

aRV
XB 10.5× 108 Pa RV upscaling constant of crossbridge stiffness

kd 0.36 µmol Calcium-troponin dissociation constant
αkd

−0.2083 µmol µm−1 Sensitivity to sarcomere length of calcium-troponin dissociation constant
γ 30 − End-to-end tropomyosin cooperativity parameter
koff 8 s−1 Reaction rate associated with troponin kinetics
kbasic 4 s−1 Reaction rate associated with tropomyosin kinetics
µ0
fP 32.225 s−1 Zero order moment of XB attachment rate
µ1
fP 0.768 s−1 First order moment of XB attachment rate

Atria (ΩLA
0 ∪ ΩRA

0 )
SL0 1.9 µm Reference sarcomere length
(nf , ns, nn) (1, 0, 0.4) − Share of active tension along the fiber directions

aLA
XB 30.0× 107 Pa LA upscaling constant of crossbridge stiffness

aRA
XB 30.0× 107 Pa RA upscaling constant of crossbridge stiffness

kd 0.865 µmol Calcium-troponin dissociation constant
αkd

−1.25 µmol µm−1 Sensitivity to sarcomere length of calcium-troponin dissociation constant
γ 20 − End-to-end tropomyosin cooperativity parameter
koff 180 s−1 Reaction rate associated with troponin kinetics
kbasic 20 s−1 Reaction rate associated with tropomyosin kinetics
µ0
fP 32.225 s−1 Zero order moment of XB attachment rate
µ1
fP 0.768 s−1 First order moment of XB attachment rate

Table A.4: Parameters of the active force generation model (A ) used in the ventricular (ΩV
0 ) and atrial

(ΩLA
0 ∪ ΩRA

0 ) domains, if modified from the calibration proposed in Regazzoni et al. [105].
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Variable Value Unit Description

B 50× 103 Pa Bulk modulus in the myocardium Ωmyo
0

bff 8 − Fiber strain scaling in the myocardium Ωmyo
0

bss 6 − Radial strain scaling in the myocardium Ωmyo
0

bnn 3 − Cross-fiber in-plain strain scaling in the myocardium Ωmyo
0

bfs 12 − Shear strain in fiber-sheet plane scaling in the myocardium Ωmyo
0

bfn 3 − Shear strain in fiber-normal plane scaling in the myocardium Ωmyo
0

bsn 3 − Shear strain in sheet-normal plane scaling in the myocardium Ωmyo
0

CV 0.88× 103 Pa Material stiffness in the ventricular domain ΩV
0

CRA 1.47× 103 Pa Material stiffness in the right atrial domain ΩRA
0

CLA 1.76× 103 Pa Material stiffness in the left atrial domain ΩLA
0

µvalve,caps 10× 105 Pa Shear modulus in the domains {Ωvalve
0 ∪ Ωcaps

0 }
κvalve,caps 50× 105 Pa Bulk modulus in the domains {Ωvalve

0 ∪ Ωcaps
0 }

µAO,PT 5.25× 105 Pa Shear modulus in the arterial domains {ΩAO
0 ∪ ΩPT

0 }
κAO,PT 10× 105 Pa Bulk modulus in the arterial domains {ΩAO

0 ∪ ΩPT
0 }

ρs 103 kg m−3 Tissue density in the whole domain Ω0

Kepi,PF
⊥ 2× 105 Pa m−1 Normal stiffness on Γepi,PF

Cepi,PF
⊥ 2× 103 Pa s m−1 Normal viscosity on Γepi,PF

Kepi,EAT
⊥ 2× 102 Pa m−1 Normal stiffness on Γepi,EAT

Cepi,EAT
⊥ 2 Pa s m−1 Normal viscosity on Γepi,EAT

p̃RA 900 Pa Residual RA pressure for the reference configuration recovery
p̃LA 1200 Pa Residual LA pressure for the reference configuration recovery
p̃RV 650 Pa Residual RV pressure for the reference configuration recovery
p̃LV 1150 Pa Residual LV pressure for the reference configuration recovery
p̃AO 9500 Pa Residual AO pressure for the reference configuration recovery
p̃PT 1700 Pa Residual PT pressure for the reference configuration recovery

Table A.5: Parameters of the mechanical model (M ) and the reference configuration recovery (M static).

Variable Value Unit Variable Value Unit

RSYS
AR 0.48 mmHg s mL−1 LSYS

AR 5× 10−3 mmHg s2 mL−1

RPUL
AR 0.032116 mmHg s mL−1 LPUL

AR 5× 10−4 mmHg s2 mL−1

RSYS
VEN 0.26 mmHg s mL−1 LSYS

VEN 5× 10−4 mmHg s2 mL−1

RPUL
VEN 0.035684 mmHg s mL−1 LPUL

VEN 5× 10−4 mmHg s2 mL−1

CSYS
AR 1.50 mL mmHg−1 Rmin 0.0075 mmHg s mL−1

CPUL
AR 10.0 mL mmHg−1 Rmax 75000 mmHg s mL−1

CSYS
VEN 60.0 mL mmHg−1

CPUL
VEN 16.0 mL mmHg−1

Table A.6: Parameters of the circulation model (C ).
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Physics/Fields Linear solver Preconditioner Abs. tol.

Monodomain model CG AMG 10−10

Activation GMRES AMG 10−10

Mechanics GMRES AMG 10−8

Table A.7: Tolerances of the linear solver for the different physics.

Physics/Fields Nonlinear solver Rel. tol. Abs. tol.

Mechanics Newton 10−8 10−6

Reference configuration Newton 10−8 10−6

Table A.8: Tolerances of the nonlinear solver for the mechanical problem.
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for the cardiac interventional electrophysiologist, BioMed Research International 2015 (2015).

[32] A. M. Katz, Physiology of the Heart, Lippincott Williams & Wilkins, 2010.

[33] T. P. Usyk, I. J. LeGrice, A. D. McCulloch, Computational model of three-dimensional cardiac
electromechanics, Computing and Visualization in Science 4 (2002) 249–257.

[34] N. P. Smith, D. P. Nickerson, E. J. Crampin, et al., Multiscale computational modelling of the heart,
Acta Numerica 13 (2004) 371–431.

[35] S. Göktepe, E. Kuhl, Electromechanics of the heart: a unified approach to the strongly coupled
excitation-contraction problem, Computational Mechanics 45 (2010) 227–243.

[36] D. A. Nordsletten, S. A. Niederer, M. P. Nash, et al., Coupling multi-physics models to cardiac
mechanics, Progress in Biophysics and Molecular Biology 104 (2011) 77–88.

[37] M. Genet, L. C. Lee, R. Nguyen, H. Haraldsson, G. Acevedo-Bolton, Z. Zhang, L. Ge, K. Ordovas,
S. Kozerke, J. M. Guccione, Distribution of normal human left ventricular myofiber stress at end
diastole and end systole: a target for in silico design of heart failure treatments, Journal of applied
physiology 117 (2014) 142–152.

[38] A. Quarteroni, L. Dede’, A. Manzoni, C. Vergara, Mathematical Modelling of the Human Cardiovas-
cular System: Data, Numerical Approximation, Clinical Applications, Cambridge University Press,
2019.

[39] S. Sugiura, T. Washio, A. Hatano, J. Okada, H. Watanabe, T. Hisada, Multi-scale simulations of
cardiac electrophysiology and mechanics using the University of Tokyo heart simulator, Progress in
Biophysics and Molecular Biology 110 (2012) 380–389. doi:10.1016/j.pbiomolbio.2012.07.001.

48

http://dx.doi.org/10.1371/journal.pone.0235145
http://dx.doi.org/10.1016/j.jcp.2022.111083
http://dx.doi.org/10.1016/j.cma.2022.114607
http://dx.doi.org/10.1142/S0218202522500439
http://dx.doi.org/10.3934/dcdss.2022052
http://dx.doi.org/10.3934/mine.2023026
http://dx.doi.org/10.1016/j.pbiomolbio.2012.07.001
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[102] O. Dössel, M. Krueger, F. Weber, M. Wilhelms, G. Seemann, Computational modeling of the human
atrial anatomy and electrophysiology, Medical & Biological Engineering & Computing 50 (2012) 773–
799.

[103] R. Lemery, D. Birnie, A. Tang, M. Green, M. Gollob, M. Hendry, E. Lau, Normal atrial activation
and voltage during sinus rhythm in the human heart: an endocardial and epicardial mapping study
in patients with a history of atrial fibrillation, Journal of cardiovascular electrophysiology 18 (2007)
402–408.
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