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Abstract

The aim of this article is to propose a simple way of describing a tumour as a

linear elastic material from a reference configuration that is continuously evolv-

ing in time due to growth and remodelling. The main assumption allowing this

simplification is that the tumour mass is a very ductile material, so that it can only

sustain moderate stresses while the deformation induced by growth, that can ac-

tually be quite big, mainly induces a plastic reorganisation of malignant cells. In

mathematical terms this means that the deformation gradient can be split into a

volumetric growth term, a term describing the reorganisation of cells, and a term

that can be approximated by means of the linear strain tensor. A dimensionless

analysis of the importance of the different terms also allows to introduce a second

simplification consisting in the decoupling of the equations describing the growth

of the tumour mass from those describing the flow of the interstitial fluid.

1 Introduction

In order to describe growth and mechanical behaviour of tumour masses, several mul-

tiphase models have been developed under the observation that tumours are made of

several constituents, including at least a cellular population (that can be classified as

belonging either to the tumour or to the host tissue), the interstitial fluid, and the fibrous

environment constituted by the extracellular matrix (ECM) with all its components,

such as collagen, elastin and proteoglycans. Such models are capable not only of de-

scribing the variation of mass density within the tumour and the host tissue, but also of

evaluating the evolution of stresses and interstitial pressure, linking the mechanics of

tumours to their growth and interaction with the outer environment. For more details

the reader is referred to the following reviews [1–6].

Most of the models describe the tumour mass as a fluid, which is of course a strong

simplification. On the other hand, in some cases, it is fundamental to be able to describe

it as a solid-like material. The generalisation is not trivial at all. In fact, in dealing with

the mechanics of tumour growth one has to take into account that cells duplicate and die,

the ECM and the external environment are continuously remodelled, and tumour cells

are subjected to an internal re-organisation and to changes in the adhesion properties,

which might also be related to the detachment of metastases. All this implies that it

is impossible to define a unique natural configuration for the growing mass, leading to

difficulties in the development of an elasticity theory in standard terms. After some

early immature attempts [7–10], this problem was tackled in [11–14] by applying the

concept of evolving natural configurations, which consists in splitting the evolution in

growth, plastic remodelling, and elastic deformation. However, the application of the

full theory might result rather cumbersome.

The aim of this work is the outline of a simplified mathematical setting, derived

from the theory of evolving natural configurations, that can be used in several biolog-

ical relevant problems. The analysis is based on the fact that tumour masses and the
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soft tissues they live in are very ductile materials, so that they can only sustain moder-

ate stresses, while the deformations induced by growth (that can actually be quite big)

mainly induce a plastic reorganisation of cells. In mathematical terms this means that

the deformation gradient can be split into a volumetric growth term, a term describing

the plastic behaviour, and a term that can be approximated by means of the linear strain

tensor. This leads to a strong simplification of the theory of evolving natural config-

urations, so that it is possible to describe the tumour as a linear elastic material that

uses a natural configuration that is continuously changing in time due to growth and

remodelling.

Another simplification is made possible by the evaluation of the relative importance

of the different terms appearing in the equations. In fact, since the pressure drops are

sufficiently smaller than the Young modulus of the tumour, and the characteristic veloc-

ity of the interstitial fluid is much smaller than the one related to cell duplication, the

growth problem decouples from the interstitial flow problem in many practical cases,

leading to a strong simplification of the mathematical models usually employed to de-

scribe growing systems.

2 A Multiphase Model

For the purposes of this article, a medium comprising three distinct phases is considered

and treated as a mixture. The three phases represent the cell population, the extracellular

matrix (ECM), and the interstitial (or extra-cellular) fluid. These are labelled by the

subscripts “c”, “m”, and “ℓ”, respectively. The presence of blood and lymphatic vessels

may be included in the ECM because they can be considered as cross-linked with it.

The multiphase approach proposed in [15,16] to describe tumour and tissue growth

consists of a set of mass and momentum balance equations. Within a purely mechanical

framework, and under the assumptions that all phases are intrinsically incompressible

and external body forces (such as the gravitational force) are negligible, the balance

laws write

∂tφα + div(φαvα) = Γα, (1)

∂t(φαvα) + div(φαvα ⊗ vα) =
1

ρα
div

(
T̃α

)
+

1

ρα
(m̃α + ραΓαvα) . (2)

In (1) and (2), and with reference to the αth phase, φα is the volumetric fraction, vα is

the velocity, ρα is the true volumetric mass density, T̃α is the partial stress tensor, and,

finally, Γα and m̃α represent, respectively, the rates at which the αth phase exchanges

mass and momentum with the other phases. Recently, the action of body forces on

tumour growth has been investigated in [17].

In the case of a saturated medium, the constraint
∑

α=c,ℓ,m φα = 1 has to hold.
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Consequently, summing Eq. (1) over all phases yields

div




∑

α=c,ℓ,m

(φαvα)


 =

∑

α=c,ℓ,m

Γα . (3)

As a first step, the early avascular stage of tumour growth is considered. In this case,

mass exchange is assumed to occur only among the constituents taken into account, the

mixture is said to be closed with respect to mass, and one can write

ρcΓc + ρℓΓℓ + ρmΓm = 0 . (4)

Note that, if the true mass densities are assumed to be approximately equal to each

other, e.g., to the density of water, Eq. (4) becomes
∑

α=c,ℓ,m Γα = 0.

The term m̃α in Eq. (2) contains all forces acting on the αth phase due to its in-

teractions with the other phases. On the basis of thermodynamic arguments, it can be

shown that it is given by the sum m̃α = m̃α
(d) + p∇φα, where p is the pressure of the

interstitial fluid, and the summands m̃α
(d) and p∇φα represent the dissipative and the

non-dissipative contribution to m̃α, respectively [18]. If the mixture is required to be

closed also with respect to momentum, the interaction terms m̃α (with α = c, ℓ,m) are

constrained to satisfy the condition

∑

α=c,ℓ,m

(m̃α + ραΓα(vα − v)) =
∑

α=c,ℓ,m

(
m̃α

(d) + ραΓα(vα − v)
)
= 0 , (5)

where v = ρ−1
∑

α=c,ℓ,m (φαραvα) is referred to as the mixture velocity, and ρ =∑
α=c,ℓ,m φαρα is the mass density of the mixture as a whole [19]. In Eq. (5), the

first equality follows from the saturation condition, which implies that the sum over all

phases of the non-dissipative terms p∇φα vanishes identically. The dissipative terms

m̃α
(d) (α = c, ℓ,m) can be expressed as

m̃α
(d) = −

φαρα
ρ

∑

γ=c,ℓ,m

ργΓγ(vγ − v) +mα , (6)

with
∑

α=c,ℓ,mmα = 0, and mα =
∑

β 6=α mαβ [19]. Each term mαβ represents

the force acting on the αth phase due to the βth phase, with α 6= β. By invoking the

action-reaction principle for each interaction pair, it holds that mαβ = −mβα.

In particular, the interaction of the fluid with the other constituents can be given the

following expression:

mℓβ = −φℓφβµ [K(φℓ)]
−1

vℓβ , β = c,m , (7)

where vℓβ := vℓ − vβ is the velocity of the fluid relative to that of the βth constituent

(β 6= ℓ), µ is the viscosity of the extra-cellular fluid and K(φℓ) is related to the perme-

ability tensor. The classical Kozeny-Carman relation [21] for K(φℓ) can be recovered

by assuming K(φℓ) =
[
φ2
ℓ/(1 − φℓ)

]
K0, with K0 independent of φℓ. However, in
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many practical situations, φℓ does not significantly vary, thereby allowing to take K

independent of φℓ.

The interaction between the cellular phase and the extracellular matrix is generally

more complex than that of the fluid with the other constituents. The higher complexity

is due, for instance, to the presence of the adhesion forces that the cells exchange with

the ECM and to the high heterogeneity of this extracellular structure. However, when

the dissipative nature of cell-matrix interactions can be assumed to be exclusively due

to the dynamic friction between the two phases, then, within an approximation of the

first order in the relative velocity vcm := vc − vm, one can write mcm = −Mcmvcm,

where the second-order tensor Mcm is taken to be symmetric, positive semi-definite,

and such that Mcm = Mmc [20]. In general, the tensor Mcm is a function of physical

quantities that need not vanish when the relative velocity vcm is null.

The remainder of this article is based on the hypothesis that inertial forces are neg-

ligible in the momentum balance law of each phase. Therefore, Eq. (2) becomes

div
(
T̃α

)
+ m̃α = 0 , α = c, ℓ,m. (8)

Moreover, also the contribution
∑

α=c,ℓ,m ραΓα(vα − v) shall be neglected both in (5)

and in the expression of m̃α
(d) given in (6). Consequently, m̃α

(d) is set approximately

equal to mα, i.e. m̃α
(d) ≈ mα, and the closure condition (5) reduces to

∑
α=c,ℓ,mmα =

0.

2.1 Momentum Balance Laws for the Saturated Case

In a saturated mixture, the partial Cauchy stress associated with the αth phase of the

mixture can be written as T̃α = −φαpI+Tα, where Tα is referred to as effective (or

extra-) stress, and the purely hydrostatic contribution −φαpI indicates the amount of

pressure sustained by the αth phase (note that, in the present theory, p is a Lagrange

multiplier rather than a constitutively determined quantity). Using the definitions of T̃α

and m̃α given above, Eq. (2) can be specialised as:

− φc∇p+ div (Tc) +mcm − φcφℓµ [K(φℓ)]
−1

vcℓ = 0, (9a)

− φm∇p+ div (Tm)−mcm − φmφℓµ [K(φℓ)]
−1

vmℓ = 0, (9b)

− φℓ∇p− φℓφcµ [K(φℓ)]
−1

vℓc − φℓφmµ [K(φℓ)]
−1

vℓm = 0, (9c)

with vαβ := vα − vβ = −vβα, for all α, β = c, ℓ,m such that α 6= β.

Coherently with the hypotheses usually made to deduce Darcy’s law, Eq. (9c) is

obtained by requiring that the extra-stress Tℓ is negligible with respect to the pressure

gradient and the interaction forces. It is possible to include vessels among the extracel-

lular constituents, which implies a constrained mixture assumption, meaning that the

fibre network of elastin, collagen and proteoglycans is strongly connected to the vessel

network, so that they move together with the same velocity. This also implies that the

stress tensor Tm includes a further contribution due to the response of the vessels to

deformations.
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Computing vℓ explicitly from Eq. (9c), and substituting the result into (9a) and (9b),

one obtains

−
φc

1− φℓ
∇p+ div (Tc) +mcm +

φcφℓφm

1− φℓ
µ[K(φℓ)]

−1
vmc = 0, (10a)

−
φm

1− φℓ
∇p+ div (Tm)−mcm +

φcφℓφm

1− φℓ
µ[K(φℓ)]

−1
vcm = 0, (10b)

vℓ =
1

φc + φm

(
φcvc + φmvm −

K(φℓ)

µ
∇p

)
, (10c)

where φℓ = 1− (φc + φm). Equation (1), written once for α = c and once for α = m,

is used to determine the volumetric fractions φc and φm, i.e.,

∂tφc + div(φcvc) = Γc , (11a)

∂tφm + div(φmvm) = Γm , (11b)

whereas Eq. (3) is used to determine the pressure p, and can be rewritten as

div

(
φℓ

1− φℓ

K(φℓ)

µ
∇p

)
= div

(
φcvc + φmvm

φc + φm

)
−

∑

α=c,ℓ,m

Γα . (12)

The last term on the right-hand-side of (12) can be dropped if the mass densities of all

the phases are equal to each other (e.g., to the mass density of water) and the mixture is

closed (cf. Eq. (4)).

2.2 Dimensional Analysis of the Momentum Balance Laws

To identify the dominant contributions in the momentum equations (10a)–(10c), it is

convenient to convert them in the non-dimensional form. For this purpose, a generic

physical quantity q shall be compared with a reference value q̂, which is taken as a

positive constant, and its dimensionless counterpart shall be denoted by q∗, so that

q = q̂q∗. In particular, lengths are scaled with the typical intercapillary distance d,

pressure with p̂ = ∆p, which is identified with the pressure drop between the arterial

and the venous/lymphatic system within the tissue, the stress tensors Tc and Tm with

the tissue’s Young elastic modulus E (i.e. T̂c = T̂m = E), the mass exchange terms Γα

(α = c, ℓ,m) with the cell duplication rate Γ̂c ∼ 1 day−1, the permeability K with K̂ .

Moreover, the true mass densities of all the phases are taken equal to the reference value

ρw = 103 kg/m3, which approximately corresponds to the mass density of water, the

fluid velocity is scaled with v̂ℓ ∼ 10−7 ÷ 10−6 m/s, i.e., the velocity of the interstitial

fluid in a porous medium measured in [22], and the velocities of the cell population and

extracellular matrix are related to cell duplication, so that one can take them to be of

the order of v̂m = v̂c = Γ̂cD, where D is the mean cell diameter (all scaling factors

used in this paper are reported in Table 1). Note that, setting v̂ℓ = ((K̂/µ)∆p)/d,

and assigning v̂ℓ, ∆p and d as independent scaling factors, it is possible to estimate the

ratio K̂/µ (cf. Table 1). Finally, the scaling factor m̂cm, which is associated with the
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momentum exchange term mcm, is assumed to be equal to the ratio E/d. Thus, if mcm

is expressed as mcm = −Mcmvcm, the scaling factor associated with Mcm must be

equal to M̂cm = E/(dΓ̂cD).
Considering that mcm and the mass exchange rates, say, Γc and Γm can be assigned

constitutively (recall that Γℓ can be determined univocally by means of Eq. (4) once Γc

and Γm are known), Eqs. (10a)–(12) constitute a set of twelve independent equations

in the twenty-four unknowns given (in three dimensions) by the motion of the cell

population, the motion of the ECM, the fluid velocity vℓ, the volumetric fractions φc

and φm, the pressure p, and the stress tensors Tc and Tm. Thus, in order to close the

mathematical problem under study, additional information is required to determine the

symmetric second-order tensors Tc and Tm. Before addressing this issue, however,

it is shown in the following how the dimensional analysis of the investigated set of

equations leads to a considerable simplification of the problem at hand. From here on,

it is hypothesised for simplicity that the permeability tensor is spherical, i.e., K = KI,

with I being the identity tensor, which means that the tissue’s hydraulic response is

isotropic.

Although there are situations in which pressure and (constitutive) stress are nat-

urally made non-dimensional by the same scaling factor, in the case studied in this

manuscript, as in other well-established circumstances [23], the most natural non-

dimensionalisation procedure calls for the introduction of different scaling factors (one

for the pressure and one for the stress). Therefore, the dimensionless form of (10a)–

(10c) can be written as

div∗(T∗
c) +m

∗
cm +

∆p

E

[
−

φc

1− φℓ
∇∗p∗ + V

φcφℓφm

1− φℓ

µ∗

K∗(φℓ)
v
∗
mc

]
= 0 , (13a)

div∗(T∗
m)−m

∗
cm +

∆p

E

[
−

φm

1− φℓ
∇∗p∗ + V

φcφℓφm

1− φℓ

µ∗

K∗(φℓ)
v
∗
cm

]
= 0 , (13b)

v
∗
ℓ = V

φcv
∗
c + φmv

∗
m

1− φℓ
−

1

(1− φℓ)

K∗(φℓ)

µ∗
∇∗p∗ , (13c)

with V = v̂c/v̂ℓ = (µΓ̂cdD)/(K̂∆p). By substituting the parameters in Table 1, one

obtains V = 10−4 ÷ 10−3, meaning that the first term on the right-hand-side of (13c)

can be regarded as negligible compared to the second one. Furthermore, in most cases,

the ratio ∆p/E has order of magnitude between 10−2 and 10−1. Indeed, ∆p ∼ 1 kPa
for normal tissues, while, for example, E ∼ 10 kPa for softer fatty regions of the breast

and E ∼ 40 kPa for prostatic tissues [24]. In the case of tumour tissues, ∆p increases

up to one order of magnitude because of the leakiness of the capillaries and the lack

of efficacy of the lymphatic system. However, also the stiffness of the tumour tissue

increases of one order of magnitude, which means that ∆p usually remains at least one

order of magnitude smaller than E. This confirms that, also for tumours, ∆p/E ranges

approximately between 10−2 and 10−1. Thus, in the case of both tumour and healthy

tissues, one can try to look for approximate solutions to the set of equations (13a)–(13c)

by dropping all terms coupling the dynamics of the fluid with the dynamics of the cell

population and the ECM. Hence, in dimensional form, the simplified set of equations
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to study becomes

div(Tc) +mcm = 0 , (14a)

div(Tm)−mcm = 0 , (14b)

vℓ = −
1

(1− φℓ)

K(φℓ)

µ
∇p . (14c)

Equations (14a) and (14b) depend neither on the interstitial pressure nor on the fluid ve-

locity. Therefore, they can be solved without taking into account (12) and (14c), whose

study is only required for the description of the evolution of the interstitial pressure

and the fluid velocity, respectively. Consequently, the set of equations (10a)–(12) splits

into two parts. The first part comprises Eqs. (14a), (14b), (11a) and (11b), with (14a)

and (14b) replacing (10a) and (10b), respectively. The second part, instead, comprises

Eqs. (12) and (14c), which can be solved a posteriori.

Depending on the actual value of ∆p/E, replacing Eqs. (10a)–(10b) with Eqs. (14a)–

(14b) may be quite a strong approximation in some cases. More rigorously, one should

expand Eqs. (13a)–(13b) in asymptotic series of ∆p/E and show that Eqs. (14a)–(14c)

supply the conditions that must be satisfied by the terms of the lowest order in ∆p/E.

Thus, the solution to Eqs. (14a)–(14c) may need to be corrected by adding higher order

terms, when the ratio ∆p/E does not fully justify the asymptotic limit. For this reason,

in order to evaluate the reliability of the solution to Eqs. (14a)–(14c), an a posteriori

estimate of the results becomes necessary. This will be done in Section 4 by comparing

the results obtained by solving (10a)–(12) with those obtained by solving (14a)–(14c)

and (11a)–(12).

Table 1: Characteristic biological scaling factors
d [m] ∆p[N/m2] E [N/m2] Γ̂c[s−1] D[m] ρw [kg/m3] v̂ℓ [m/s] v̂c [m/s] K̂/µ [m4/(Ns)]

3·10−4 103÷104 104 ÷

105
10−5 10−5 103 10−7÷

10−6

10−10 10−15 ÷ 10−12

[25] [26, 27] [24] [28] [28] [22] [29]

3 Stress Tensor

The scope of this section is to determine a self-consistent evolution law for the Cauchy

stress tensor Tc associated with the cellular population. For this purpose, it is recalled

that a tissue undergoing growth and reorganisation of its internal structure generally

experiences inelastic distortions. It is possible to keep track of them by decomposing

multiplicatively the deformation gradient of the cellular population, Fc, as

Fc = FeFpFg. (15)

In Eq. (15), Fe is the purely elastic contribution to the overall deformation gradient,

whereas Fg and Fp represent, respectively, the inelastic distortions related to growth
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and to the “plastic” reorganisation of the tissue’s internal structure. Note that each

tensor introduced in (15) is non-singular.

Equation (15) is known as Bilby-Kröner-Lee decomposition and was firstly in-

troduced in the context of the theory of dislocations in finite-strain elastoplasticity.

Skalak [30] proposed the idea that growth is accompanied by incompatible deforma-

tions and residual stresses. Rodriguez et al. [31] suggested to decompose deformation

into an elastic (accommodating) and a growth (inelastic) part. According to the picture

put forward by Rajagopal [32], the tensors Fg and Fp determine evolving natural (i.e.,

stress-free) configurations of a body undergoing inelastic processes.

A consequence of Eq. (15) is that the volumetric part of the deformation gradient,

Jc = det(Fc), can be written as Jc = JeJpJg, with Je = det(Fe), Jp = det(Fp) and

Jg = det(Fg). In the following, it is assumed that plastic distortions are isochoric, i.e.,

Jp = 1, and that Fg has the form Fg = gI, with I being the identity tensor. Thus, it

holds that FpFg = gFp, and Jg = g3 [11, 12].

Due to (15), the velocity gradient associated with the motion of the cells is given by

the sum of three contributions:

Lc = ḞcFc
−1 = Le + Lp + (ġ/g)I. (16)

In Eq. (16), and in the following, a superimposed dot denotes the time derivative fol-

lowing the motion of the cell population. Moreover, Le = ḞeFe
−1 and Lp = FeΛpFe

−1,

with Λp = ḞpFp
−1, represent, respectively, the elastic and plastic part of the velocity

gradient, whereas the purely volumetric term (ġ/g)I is the contribution due to growth.

Since Fp is unimodular (i.e., it has unitary determinant), both Lp and Λp are deviatoric.

Considering the cell population as a quasi-incompressible elastic material [33] ex-

hibiting isotropic behaviour from its natural state, and assuming that the strain energy

density function Wn, expressed per unit volume of the natural state, is of Neo-Hookean

type, one can write

Wn(Be) =
1
2κ0

(√
det(Be)− 1

)2
+ 1

2µ0

(
tr
(
Be

)
− 3

)
. (17)

In (17) Be = FeFe
T is said to be the elastic left Cauchy-Green deformation tensor,

and Be = Je
−2/3

Be is the modified left Cauchy-Green deformation tensor [38], while

κ0 and µ0 are, respectively, the bulk and shear modulus measured with respect to the

natural state of the cell population. The Cauchy stress tensor Tc can be expressed

constitutively as follows:

Tc = T̂c(Be) = κ0

(√
det(Be)− 1

)
I+ µ0[det(Be)]

−5/6dev(Be), (18)

where the operator dev( · ) extracts the deviatoric part of the second-order symmetric

tensor to which it is applied, i.e. dev(A) = A− 1
3tr(A)I, for all A ∈ Lin (here, Lin is

the space of all linear applications from the three-dimensional Euclidean vector space

into itself).

Since Eq. (15) implies that Be = g−2
Fc(Fp

−1
Fp

−T )Fc
T , the constitutive expressions

of the Cauchy stress tensor Tc, the elasticity tensor C, and the strain energy density
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function Wn must be accompanied by equations determining Fc, Fp and g. However,

the tensor Fc, which is entirely defined by the motion of the cell population, is not an

additional unknown for the model. Tensors Fp and Fg, instead, must be determined by

solving appropriate evolution equations.

The equation determining g can be obtained self-consistently by working out Eq. (11a),

see for instance [35, 36]. Firstly, Eq. (11a) is multiplied by Jc and written in the form
˙Jcφc = JcΓc. Secondly, recalling the equality Jc = JeJg (which applies because

Jp = 1), one obtains

(Jeφc)J̇g + Jg
˙

(Jeφc) = JcΓc. (19)

Furthermore, since it holds that J̇g = Jgtr(Lg), Eq. (19) becomes

Jcφctr(Lg) + Jg
˙

(Jeφc) = JcΓc. (20)

Thirdly, it is imposed that the rate of mass change of the cell population, Γc, is entirely

compensated for by the volume change due to growth. This requirement leads to the

condition Jcφctr(Lg) = JcΓc, which can be rewritten as

ġ

g
=

1

3

Γc

φc
, (21)

as well as it constrains the product Jeφc to be constant in time. Thus, by introducing

the constant auxiliary quantity φcn := Jeφc, which measures the volumetric fraction

of the cell population per unit volume of the natural state and is assumed to be known

from the outset, φc is determined by

φc = Je
−1φcn = g3 (det(Fc))

−1 φcn. (22)

Equation (21), equipped with an initial condition, determines g univocally, provided

that Γc is given constitutively. An alternative form of the evolution equation for g can

be obtained by substituting (22) into (21).

Following the standard theory of isotropic elasto-plastic materials, it can be shown

that sym(Λp) can be related to stress by means of an expression of the type

sym(Λp) = λFe
Tdev(Tc)Fe

−T , (23)

where λ is a non-negative scalar function, see, e.g., [37]. It should be remarked that the

constitutive form of Tc guarantees that the right-hand-side of Eq. (23) is a symmetric

second-order tensor. Furthermore, it can be proven that, if the plastic spin, skew(Λp),
is assumed to vanish identically, Eq. (23) can be equivalently rewritten as

Lp = sym(Lp) = λdev(Tc). (24)

By exploiting the kinematic relation Λp = ḞpFp
−1, and using the result (23) and the

assumption skew(Λp) = 0, the following evolution equation for Fp can be written:

Ḟp = λ
[
Fp

−T
(
Fc
Tdev(Tc)Fc

−T
)
Fp

T
]
Fp. (25)

10



In Eqs. (23)–(25), the function λ is defined as in [40, 41]

λ(φc,T
′
c) =

1

2η(φc)

[
1−

τ(φc)

f(T′
c)

]

+

, (26)

where T
′
c ≡ dev(Tc) denotes the deviatoric part of the Cauchy stress tensor Tc, τ(φc)

is the maximum stress that can be sustained by the cell aggregate (this stress is referred

to as yield stress), f(T′
c) defines a proper measure of equivalent stress, and η(φc) (with

units [η(φc)] = (Ns)/m2) is a function assigned phenomenologically.

By means of some algebraic calculations [38, 39], a given constitutive law Tc =
T̂c(Be) can be rewritten in differential form as follows

Ṫc−LcTc−TcLc
T +tr(Lc)Tc = C : (Dc−Dd)−LdTc−TcLd

T +tr(Ld)Tc, (27)

with Dc = sym(Lc), Ld = Lp + ġg−1
I, and Dd = sym(Ld). The left-hand-side of

Eq. (27) is referred to as the Truesdell rate of the Cauchy stress [38], and it is defined by

Jc
−1Lvc

(JcTc), where Lvc
is the Lie-derivative operator following vc (given a second-

order tensor A, Lvc
A can be computed as Lvc

A = Fc
˙

(Fc
−1AFc

−T )Fc
T ). The fourth-

order tensor C is the spatial elasticity tensor, i.e. the push-forward of the elasticity

tensor Cn = 4(∂2Wn/∂C
2
e) associated with the natural configuration, and is defined

by JeC = Fe⊗Fe :Cn :F
T
e ⊗F

T
e . For any pair of second-order tensors A and B, the

product A⊗B has components (A⊗B)abcd = AacBbd. Note that, to compute Cn,

the strain energy density Wn has been reformulated as a function of the elastic right

Cauchy-Green deformation tensor Ce = Fe
T
Fe. For the specific form of Wn given

in (17), C becomes

C = −2
3µ0Je

−5/3[Be ⊗ I+ I⊗Be] +
(
κ0 +

8
9µ0Je

−5/3tr(Be)
)
I⊗ I (28)

+
(
2κ0(Je − 1) − 2

3µ0Je
−5/3tr(Be)

)
(I⊗ I− I⊗ I),

where the symbol ⊗ denotes the standard tensor product, and the fourth-order tensor

I⊗ I, which has components (I⊗ I)abcd = 1
2(IacIbd + IadIbc), is such that (I⊗ I) :

A = sym(A), for all second-order tensors A ∈ Lin, with sym( · ) being the operator

that extracts the symmetric part of the second-order tensor to which it is applied.

By using the constitutive expression of C given in Eq. (28), taking the deviatoric

part of both sides of Eq. (27), and performing some algebraic manipulations that involve

the relation reported in Eq. (21), one obtains

Ṫ
′
c +

(
5

3
div(vc)−

Γc

φc

)
T

′
c + 2µ0

(
φc

φcn

)5/3

devsym (LpBe) = 2µ0

(
φc

φcn

)5/3

devsym((∇vc)Be) .

(29)

Equivalently, substituting Lp with the right-hand-side of Eq. (24) leads to

11



Ṫ
′
c +

(
5

3
div(vc)−

Γc

φc

)
T

′
c + 2µ0λ(φcT

′
c)

(
φc

φcn

)5/3

devsym
(
T

′
cBe

)
= 2µ0

(
φc

φcn

)5/3

devsym((∇vc)Be) .

(30)

In (29) and (30), the operator devsym( · ) extracts the deviatoric part of the symmetric

part of the second-order tensor to which it is applied.

Equation (30) can be simplified considerably by assuming that the elastic part of the

overall deformation gradient is small enough throughout the evolution of the system.

The experiments reported in [42] give an indication of the order of magnitude of the

yield stress, that depends on φc, and is below 1 Pa (for φc = 0.6, the maximum volume

ratio tested).

In the limit of small elastic deformations, i.e., Be ≈ I, Eq. (30) acquires the simpli-

fied form

Ṫ
′
c +

(
5

3
div(vc)−

Γc

φc

)
T

′
c + 2µ0λ(φcT

′
c)

(
φc

φcn

)5/3
T

′
c = 2µ0

(
φc

φcn

)5/3
devsym(∇vc) ,

(31)

with Ṫ
′
c = ∂tT

′
c + (∇T

′
c)vc. Equation (31), equipped with appropriate initial and

boundary conditions, determines completely the evolution of T′
c within the approxi-

mation of small elastic deformations. Working with (31) permits to regard T
′
c as an

independent (tensorial) unknown, whose determination involves the knowledge of the

velocity vc (rather than the motion of the cellular phase) and the volumetric fractions

φc and φm, which can be found by solving (11a) and (11b). In particular, there are two

main advantages of expressing the constitutive law for the Cauchy stress in differential

form. The first one is that the whole system of equations can be formulated and solved

in Eulerian formalism, i.e., without having to define a reference configuration. The sec-

ond advantage is that, by formulating the constitutive law for the stress in differential

form, the evolution equations (21) and (25) are already included in (31). Thus, (21)

and (25) need not be explicitly considered in the global system of equations, and can be

used a posteriori to determine g and Fp, if required. Moreover, the partial differential

equation (31) offers a formal analogy between the elasto-plastic model presented in the

paper and some viscoelastic constitutive models available in the literature, such as the

Maxwell’s model. In principle, a result analogue to Eq. (31) can be obtained for T′
m.

The function λ in Eq. (31) plays the role of a stress relaxation term that is activated

as soon as the stress is above the yield stress τ(φc). In principle, the limit in which

[λ(φc,T
′
c)]

−1
is much larger than the characteristic time of the process of interest would

lead to the models used in [7–10]. However, in this case, the procedure is incompatible

with the small deformation assumption because the stress relaxes very slowly and, thus,

large stresses and deformations can build up.
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4 The Case of Rigid and Inert ECM and Small Elastic Defor-

mations of the Cellular Phase

Several simplifications can be obtained by assuming that mcm can be expressed as

mcm = −Mcm(vc − vm), with Mcm = McmI being a spherical tensor, and studying

the case in which the ECM is assumed to be rigid and at rest (i.e., vm = 0), and inert.

Requiring the ECM to be inert means that the ECM does not exchange mass with the

other constituents, so that the condition Γm = 0 applies. The first consequence of this

condition is that Eq. (4) reduces to Γℓ = −(ρc/ρℓ)Γc, this implying that, in a closed

system, the mass exchange rate of the fluid phase Γℓ is entirely determined by Γc and

the (constant) ratio ρc/ρℓ. The second consequence is that the volumetric fraction of

the ECM, φm, is constant in time. Indeed, setting Γm = 0, and recalling the condition

vm = 0, the mass balance law associated with the ECM becomes ∂tφm = 0 (cf. (11b)),

which yields φm(x, t) = φm0(x), with φm0(x) being known from the outset. The

third consequence is that the volumetric fraction of the fluid phase can be expressed as

φℓ = 1−(φc+φm0). Furthermore, the momentum balance law (10a), the mass balance

law (11a), and Eqs. (12) and (10c) can be put in the following form:

vc = −
φc

Q(φc)
∇p+

φc + φm0

Q(φc)
div(Tc) , (32a)

∂tφc + div(φcvc) = Γc , (32b)

div

(
1− (φc + φm0)

φc + φm0

K

µ
∇p

)
= div

(
φc

φc + φm0
vc

)
−

(
1−

ρc
ρℓ

)
Γc, (32c)

vℓ = −
1

φc + φm0

(
φ2
c

Q(φc)
+

K

µ

)
∇p+

φc

Q(φc)
div(Tc) , (32d)

where the auxiliary function Q(φc) is defined by

Q(φc) := (φc + φm0)Mcm + φcφm0(1− φc − φm0)
µ

K
, (33)

and, for consistency with Eq. (7), Mcm is taken as Mcm = φcφm0M
(0)
cm , with M

(0)
cm

being a given constant. Note that, if the mass densities of the cellular phase, ρc, and of

the fluid, ρℓ, are approximately equal to each other, the last term on the right-hand-side

of Eq. (32c) can be neglected.

Since the ECM is rigid in the present formulation, the stress tensor Tm becomes

constitutively indeterminate, and only its divergence, div(Tm), is determined univo-

cally by the force balance

div(Tm) = ∇p− div(Tc) , (34)

which is obtained by adding together Eqs. (10a) and (10b). This means that (34) is

decoupled from (32a)–(32d), and div(Tm) can be computed a posteriori once ∇p and

div(Tc) are known. Finally, since vℓ features only on the left-hand-side of (32d), it is

decoupled from Eqs. (32a)–(32c), and can thus be determined a posteriori too.
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To close the mathematical problem, Tc has to be expressed constitutively, as done,

e.g., in (18). This requires, however, to consider also the evolution equations for g and

Fp, given by (21) and (25), respectively, in addition to the already introduced model

equations. Consequently, the effective unknowns of the problem are fourteen (in three

dimensions) and are given by the three components of the motion of the cellular phase,

the volumetric fraction φc, the pressure p, the scalar field g, and the unimodular tensor

field Fp (recall that, due to the constraint det(Fp) = 1, only eight of the nine compo-

nents of Fp can be independent).

4.1 The reduced and the unreduced model

In conclusion, the conditions of rigid, immobile, and inert ECM lead to a highly non-

linear, closed mathematical model based on Eqs. (32a)–(32c), (18), (21) and (25). Such

a model can be further drastically simplified, if the hypothesis of small elastic deforma-

tions is invoked. Indeed, by expressing the Cauchy stress Tc as

Tc = κ0tr(Ee)I+T
′
c , (35)

where Ee is the elastic strain tensor, the deviatoric part T′
c plays the role of an in-

dependent tensorial variable involving (in three dimensions, and due to the condition

tr(T′
c) = 0) only five independent scalar unknowns, and the spherical contribution

κ0tr(Ee) is determined by κ0tr(Ee) = κ0(φcn/φc − 1). The latter equality is obtained

by recalling that, from (22), the ratio φcn/φc is equal to Je, and that Je can be approx-

imated as Je ∼ 1 + tr(Ee) in the limit Ee → 0. Moreover, if Γc is assumed to be

independent on g and Fp, neither the growth term g, nor the remodelling tensor Fp, ap-

pear explicitly in (31), so that Eqs. (21) and (25) can be solved a posteriori. By virtue

of this reasoning, and within the range of validity of the hypotheses introduced so far,

the mathematical model requires the solution of the ten coupled equations (32a)–(32c)

and (31), which are needed to determine the ten independent unknowns vc, φc, p and

T
′
c. An important consequence of this approach is that vc is used as an independent

vector variable, in place of the three components of the motion of the cellular phase.

In view of the Finite Element (FE) analysis of Eqs. (32a)–(32c) and (31), it should

be remarked that, since the independent components of T′
c are regarded as degrees of

freedom in the present dissertation, suitable FE functional spaces have to be introduced

to interpolate T
′
c over a given computational domain. Furthermore, in contrast to stan-

dard FE methods, in which the stress is usually evaluated at the integration points of the

finite elements, T′
c is computed at the nodes of the elements in the present formulation.

It is worth to mention that, by taking κ0 and φcn as model constants and Γc as a

function of φc, and rewriting vc as

vc = −D(φc)∇φc +wc = −

(
κ0φcn

φ2
c

φc + φm0

Q(φc)

)

︸ ︷︷ ︸
:=D(φc)

∇φc +

(
−

φc

Q(φc)
∇p+

φc + φm0

Q(φc)
∇ ·T′

c

)

︸ ︷︷ ︸
:=wc

,

(36)
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the mass balance law (32b) can be recast in the form of a non-linear advection-diffusion-

reaction equation in the variable φc:

∂tφc = div

(
κ0φcn

φc

φc + φm0

Q(φc)
∇φc

)
+ div

[
φc

(
φc

Q(φc)
∇p−

φc + φm0

Q(φc)
∇ ·T′

c

)]
+ Γc(φc).

(37)

Indeed, since κ0 and Q(φc) are positive, and so are also φc, φcn and φm0, the coefficient

D(φc) is positive definite and can be identified with a non-linear diffusion coefficient;

the auxiliary velocity wc is responsible for advection, and Γc(φc) is a non-linear reac-

tion term.

Finally, by performing the dimensional analysis discussed in Section 2.2 to Eqs. (32a)–

(32c) and (31), and noticing that only Eq. (32a) involves the ratio ∆p/E, one can con-

clude that, when the ratio ∆p/E is sufficiently small, the expression of vc simplifies as

follows

vc =
1

Mcm

(
∇

(
κ0

φcn

φc

)
+ div(T′

c)

)
, (38)

and the mathematical model further reduces to Eqs. (38), (32b), and (31), whereas the

equations pertaining to the fluid phase, i.e. (32c) and (32d), become decoupled from the

former ones and can thus be solved independently a posteriori.

In the following, the set of equations (32a)–(32c) and (31) shall be referred to as

the unreduced model, whereas Eqs. (32b), (31) and (38) (with the latter one replacing

Eq. (32a)) as reduced model.

4.2 A Benchmark Problem: The Uniaxial Expansion Test

To test the mathematical model introduced in the previous sections and, above all, to

compare the results obtained by the reduced model with those of the unreduced one, a

benchmark problem is studied hereafter. The problem considers the evolution of a bio-

logical portion of tissue confined in a fixed region of space Ω = [−h/2, h/2]2 × [0, L],
with h > 0 and L > 0. The boundary of Ω, ∂Ω, is assumed to be rigid. Moreover, only

∂Ωper = [−h/2×h/2]2×{L} allows exudation of the interstitial fluid, while ∂Ω\∂Ωper

is impermeable. Cancer cells, which undergo abnormal growth, occupy at time t ∈ R
+
0

the time-dependent region ωt ⊂ Ω defined by ωt = {x ∈ Ω | H (ζ(x, t)) > 0}, where

H( · ) is a mollified Heaviside function, and ζ is a level set function introduced to in-

stantaneously separate the subregion of tissue in which growth occurs from the rest of

the tissue.

As stated in Section 3, growth is described by purely volumetric inelastic distor-

tions, while the distortions due to remodelling are taken to be isochoric, so that Eqs. (21)

and (24) hold. The mass exchange rate Γc is chosen as Γc(φc) = γcφc [φmax − φc]+H(ζ),
where γc is a phenomenological coefficient, φmax ≤ 1 is the maximal volumetric frac-

tion attainable by the cell population, and [f]+ returns f, if f is positive, and zero other-

wise.
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Consistently with what prescribed by Eq. (26), remodelling is triggered only in

those regions of the tissue in which f(T′
c) exceeds the yield stress, i.e., f(T′

c) > τ(φc).
In the case of theories based on von Mises’ equivalent stress, f is chosen as f(T′

c) =√
(3/2)‖T′

c‖ =
√

(3/2)tr(T′
cT

′
c) [43], whereas f is defined by

2f(T′
c) = max {|σ1 − σ2|, |σ1 − σ3|, |σ2 − σ3|} ,

with {σi}
3
i=1 being the principal stresses, in the case of theories based on Tresca’s

equivalent stress. In the present treatment, however, the function f is simply given

by f(T′
c) = |T ′

cxx|, where T ′
cxx is the axial component of the deviatoric part of Tc.

Although |T ′
cxx| does not necessarily represent an equivalent stress, setting f(T′

c) =
|T ′

cxx| has the advantage that the yield criterium, i.e. the condition |T ′
cxx| > τ(φc), to be

met for triggering plastic (i.e., remodelling) distortions, does not require the knowledge

of the transversal components of the stress.

As previously discussed, by considering the case in which the extracellular matrix is

inert (Γm = 0), homogeneous (φm0(x) = φm0, with φm0 being a model constant), rigid

and immobile (vm(x, t) = 0), and assuming that the elastic deformations of the cellular

phase are small, the evolution of the system is represented by Eqs. (32a)–(32c), (31),

and a proper equation representing the evolution of the level set function ζ , i.e.

∂tζ +∇ζ · vc = 0 , (39a)

ζ(x, 0) = ζ0(x). (39b)

The problem can be strongly simplified by assuming ζ0(x) = ζ0(x) and vc(x, t) =
vcx(x, t)ex, with x ∈ [0, L], and ex being the unit vector along the axial direction of Ω
(normal to its cross section), and exploiting the fact that T′

c is diagonal. Therefore, the

effective unknowns characterising the unreduced model are six and are given by vcx,

φc, p, T ′
cxx, T ′

cyy , and the level set function ζ . Moreover, the particularly simple choice

of the function f(T′
c) = |T ′

cxx| decouples Eq. (31), written for T ′
cyy , from the rest of

the system of equations. This allows to eliminate T ′
cyy from the list of the effective

unknowns of the unreduced model.

By invoking the same hypotheses as above also for the case of the reduced model,

the effective unknowns become vcx, φc and T ′
cxx, while p, together with all other quan-

tities pertaining the fluid phase, can be computed a posteriori.

In order to solve the problem, proper boundary conditions should be provided. In

particular, the velocity of the solid phase should vanish at both x = 0 and x = L, since

the boundary is rigid. This leads to the constraints ∂xT
′
cxx|x=0,L = 0 and ∂xφc|x=0,L =

0. On the other hand, for what concerns the calculation of the pressure, the bound-

ary conditions ∂xp|x=0 = 0 (impermeable wall) and p|x=L = 0 (permeable wall) are

imposed.

Fig. 1 shows a comparison between the results obtained for the cell volume fraction,

φc, the component T ′
cxx of the deviatoric part of the cellular stress tensor, the constitu-

tive part of the normal stress along the x-direction, Tcxx, and the pressure p, obtained

by employing both the reduced model (solid lines) and the unreduced model (dots). The

results almost overlap in the first instant of times. However, some slight differences are
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perceivable only for very long times, mostly in the pressure field (see Fig. 1-d), and

mainly due to its smallness.
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0.5

0.55

0.6

0.65

φc

x [mm]

 

 

(a)

0 5 10
−0.01

0

0.01

T ′

cxx [MPa]

x [mm]

 

 

(b)

0 5 10
−0.15

−0.1

−0.05

0

0.05
Tcxx [MPa]

x [mm]

(c)

0 5
−6

−4

−2

0
x 10

−5 p [MPa]

x [mm]

(d)

(e)

Figure 1: Comparison of the results obtained in terms of (a) φc, (b) T ′
cxx, (c) Tcxx

and (d) p for the uniaxial expansion test, solving the unreduced problem (dots) and the

reduced problem (solid lines) in the case in which no remodelling occurs. In the simu-

lations: κ0 = 0.667MPa, µ0 = 0.019MPa, φcn = 0.5, φmax = 0.65, γc = 1/24 h−1,

χ = µ0/η = 0.1 h−1, τ(φc) = τ0 = 25MPa, µ = 1cP, K/µ = 10−12 m4/(Ns) and

M
(0)
cm = 104 (MPa s)/mm2. At time t = 0, the initial configuration of the tumour is

given by ω0 = {x ∈ Ω | H (xT − x) > 0}, with xT = 2.5 mm.

From Fig. 1-a, it is clear that the tumour mass located in the right-region of the

tissue grows and expands, so that the healthy tissue, that does not experience growth, is

compressed (see Fig. 1-c). For the particular case shown in Fig. 1, remodelling is not

triggered for the chosen value of τ(φc), since |T ′
cxx| is always smaller than the yield

stress. Moreover, it is possible to see from Fig. 1-d that the pressure drop in the tissue

is very small compared with the elastic modulus of the tissue (E = 0.02MPa), so that

the assumptions for the decoupling of the model are satisfied.

The reduced model proposed in this paper also allows to study the effects of remod-

elling on the tissue. In particular the results obtained for φc and T ′
cxx using the reduced

model are reported in Fig. 2, where the solid blue line refers to the case in which re-

modelling occurs (τ(φc) = τ0 = 0.0025MPa), and the red dashed lines to the case in

which remodelling is not triggered, with τ(φc) = τ0 unrealistically set to 25MPa. The

unreduced model leads to similar results. As it is possible to see in Fig. 2, remodelling

starts when |T ′
cxx| > τ0 and it has the effect of limiting the magnitude of |T ′

cxx| to a

value slightly bigger than τ0 (because of the particular chosen remodelling criterion),

see Fig. 2-b. Moreover, as it is possible to notice in Fig. 2-a, the effect of remodelling

is also to redistribute the volumetric fraction of the cellular phase in the whole region,

reducing the amplitude of the discontinuity in φc between the proliferative and the non-

proliferative region.
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Figure 2: Comparison at different instants of time, between (a) φc and (b) T ′
cxx in the

case in which no remodelling occurs (red dashed lines) and in which the remodelling

is triggered (blue solid lines). The results are obtained solving the reduced problem.

Solving the unreduced problem leads to similar results. The yield stress is equal to

τ(φc) = τ0 = 25MPa in the case in which no remodelling occurs, whereas it is

τ(φc) = τ0 = 0.0025MPa in the simulations with remodelling. All the other parame-

ters are the same used in Fig. 1.

5 Conclusions

In this work, a reduced model has been proposed, which has been derived from the

theory of evolving natural configurations. Such reduced model is applicable whenever

the assumptions discussed in Sections 2.2, 3 and 4.1 hold. The two principal facts, on

which the reduced model relies, are: (i) that many living tissues can sustain only mod-

erate elastic deformations, so that the elastic part of the deformation gradient can be

approximated by means of the linear strain tensor; (ii) that, as shown by some exper-

imental results, the typical pressure drops ∆p are smaller than the Young modulus of

the tumour, and the characteristic velocity of the interstitial fluid is much smaller than

the one related to cell duplication. These biological observations allow to decouple the

growth problem from the interstitial flow one, and lead to a strong simplification of

the mathematical description. The analytical speculation is confirmed by the numerical

simulations.

In conclusion, this work demonstrates that, in many relevant biological problems,

the equations describing the theory of evolving natural configurations strongly simpli-

fies, becoming easily manageable without much loss of accuracy.
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