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Abstract

For the numerical solution of second-order elliptic problems featuring
dynamics with a dominant direction (e.g., drug dynamics in the circulatory
system), we proposed a Hierarchical Model (HiMod) reduction procedure.
We actually perform a finite element discretization along the mainstream
direction and a spectral modal approximation for the transverse dynamics.
The number of modes can locally vary along the centerline to properly fit
the relevant transverse dynamics. In previous works we have considered
the cases of rectilinear domains. Here we address the more general case
of curved domains, where the direction of the dominant component of the
solution is non-rectilinear.

1 Introduction and motivations

In [2, 1] we have proposed an approach for the numerical modeling of second-
order elliptic problems featuring dynamics with a dominant direction: the solu-
tion of interest can be regarded as a main component aligned with the centerline
of the domain with the addition of local perturbations along the transverse direc-
tions. Reference application is given, e.g., by advection-diffusion-reaction prob-
lems in pipes (like drug dynamics in the circulatory system). The basic idea
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of the approach is to perform a finite element discretization along the main-
stream component and a spectral modal approximation for the transverse dy-
namics. The rationale is that the transverse dynamics are reliably captured by
few modes (usually < 10). In addition, the number of modes can locally vary
along the centerline to properly fit the relevant transverse dynamics. Thus we
get an actual hierarchy of reduced models: they are essentially locally-enriched
1D models and differ for the level of detail in describing the transverse dynamics
of the full problem. For this reason, we defined this approach Hierarchical Model
(Hi-Mod) reduction.
So far we have essentially applied the Hi-Mod approach to rectilinear domains
[1, 2, 4]. This implies significant simplifications in the computation of the re-
duced model. Nevertheless, domains with a curved centerline are clearly of
paramount interest for practical applications. Aim of this paper is to perform
a complete development of the Hi-Mod reduction in a generic non-rectilinear
domain.

2 The geometrical setting

A Hi-Mod reduction procedure relies upon a specific shape of the computational
domain Ω ⊂ R

d, with d = 2, 3. More precisely, we assume Ω to coincide with a
d-dimensional fiber bundle, where we distinguish a supporting one-dimensional
curved domain Ω1D (aligned with the dominant dynamics), and a set of (d− 1)-
dimensional transverse fibers γ ⊂ R

d−1 (where the transverse dynamics occur).
Following [1, 2], we map the current domain Ω into a reference domain, Ω̂ =
Ω̂1D × γ̂d−1, with Ω̂1D a straight line and γ̂d−1 a reference (vertical) fiber of the
same dimension as γ. For this purpose, we introduce the map Ψ : Ω → Ω̂ and
we denote by z = (x,y) ∈ Ω and ẑ = (x̂, ŷ) ∈ Ω̂ a generic point in Ω and the
corresponding point in Ω̂, respectively so that ẑ = Ψ(z) = (Ψ1(z), Ψ2(z)), with
x̂ = Ψ1(z) and ŷ = Ψ2(z). Likewise, we introduce the inverse map Φ : Ω̂ → Ω,
defined as z = Φ(ẑ) = (Φ1(ẑ), Φ2(ẑ)), with x = Φ1(ẑ) and y = Φ2(ẑ) (see Fig. 1).
Without loss of generality, we assume Ω1D to coincide with the centerline of Ω,
and analogously for Ω̂1D. We assume that both Ψ and Φ are differentiable with
respect to z. Then, we define the Jacobian associated with the map Ψ

I(z) =
∂Ψ

∂z
=





∂Ψ1

∂x
∇yΨ1

∂Ψ2

∂x
∇yΨ2



 ∈ R
d×d, (1)

where ∇y is the gradient with respect to y. Notice that the first row in (1)
accounts for the centerline deformation and it is not trivially the first row of the
identity matrix as in the rectilinear case ([2]).
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Figure 1: Sketch of the main geometrical quantites involved in the Hi-Mod
procedures (d = 3)

3 The Hi-Mod reduction procedure

Let us first introduce the model we aim at reducing, i.e., the so-called full prob-

lem. In particular, we consider directly the weak formulation, given by

find u ∈ V : a(u, v) = F (v) ∀v ∈ V, (2)

with V a Hilbert space, a(·, ·) : V × V → R a continuous and coercive bilinear
form and F (·) : V → R a continuous linear functional. Since we deal with
second-order elliptic problems, we have V ⊆ H1(Ω).

The Hi-Mod reduction strongly relies upon the fiber structure of Ω. The idea
is to tackle the dependence of the full solution on the dominant and transverse
dynamics in different ways. In particular, with reference to Ω̂, we introduce
a one-dimensional space VbΩ1D

of functions compatible with the boundary con-
ditions assigned along the vertical sides of Ω, and a modal basis {ϕk}k∈N

+ of

functions orthonormal with respect to the L2-scalar product on γ̂d−1 and taking
into account the boundary conditions imposed on the horizontal sides of Ω. A
suitable combination of the space VbΩ1D

with the modal basis allows us to intro-
duce a so-called hierarchically reduced model. In particular, in the following, we
focus on two possible Hi-Mod reduction procedures proposed in [1, 2] and here
generalized to the non-rectilinear case.

3.1 Uniform Hi-Mod reduction

The reduced space Vm characterizing a uniform Hi-Mod reduction essentially
coincides with the set of the linear combinations of the modal functions whose
coefficients belong to the one-dimensional space VbΩ1D

, i.e.,

Vm =
{

vm(z) =
m∑

k=1

vk(Ψ1(z))ϕk(Ψ2(z)), with vk ∈ VbΩ1D

}
. (3)
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The map Ψ plays a crucial role since all the functions involved are defined on
the reference framework. Space Vm establishes an actual hierarchy of reduced
models marked by the modal index m, i.e., by the different level of detail in
describing the transverse dynamics of the full problem. The uniform Hi-Mod
reduced formulation for (2) reads: given a modal index m ∈ N

+, find um ∈ Vm,
such that

a(um, vm) = F (vm) ∀vm ∈ Vm. (4)

To guarantee the well-posedness and the convergence of the reduced solution
um to u, we introduce a conformity (Vm ⊂ V, ∀m ∈ N

+) and a spectral ap-
proximability (limm→+∞(infvm∈Vm

‖v − vm‖V ) = 0,∀v ∈ V ) assumptions on Vm

([1, 2]).

Let us detail now the uniform Hi-Mod reduction procedure on a specific
differential problem. In particular, we select the full model (2) as a standard
linear scalar advection-diffusion-reaction (ADR) problem completed with full
homogeneous Dirichlet boundary conditions, so that V = H1

0 (Ω),

a(u, v) =

∫

Ω
µ∇u · ∇v dΩ +

∫

Ω

(
b · ∇u + σu

)
v dΩ, F (v) =

∫

Ω
fv dΩ, (5)

and where the following choices are made for the problem data to ensure the
well-posedness of the weak form (2): f ∈ L2(Ω), µ ∈ L∞(Ω), with µ ≥ µ0 > 0
a.e. in Ω, σ ∈ L∞(Ω), b = (b1,b2)

T ∈ L∞(Ω)× [L∞(Ω)]d−1, with ∇·b ∈ L∞(Ω)
and such that −1

2∇ · b + σ ≥ 0 a.e. in Ω.
Now we consider the reduced model (4); we replace um with the correspond-
ing modal representation um(z) =

∑m
j=1 uj(Ψ1(z))ϕj(Ψ2(z)) and vm with the

product ϑ(Ψ1(z))ϕk(Ψ2(z)), where ϑ, uj ∈ VbΩ1D
= H1

0 (Ω̂1D) for j = 1, . . . , m, to
get

m∑

j=1

[ ∫

Ω
µ(z)∇

(
uj(Ψ1(z))ϕj(Ψ2(z))

)
· ∇

(
ϑ(Ψ1(z))ϕk(Ψ2(z))

)
dΩ (6)

+

∫

Ω
b(z) · ∇

(
uj(Ψ1(z))ϕj(Ψ2(z))

)
ϑ(Ψ1(z))ϕk(Ψ2(z)) dΩ

+

∫

Ω
σ(z)uj(Ψ1(z))ϕj(Ψ2(z))ϑ(Ψ1(z))ϕk(Ψ2(z)) dΩ

]

=

∫

Ω
f(z)ϑ(Ψ1(z))ϕk(Ψ2(z)) dΩ,

where ∇ denotes the gradient with respect to z. The actual unknowns of the Hi-
Mod reduced formulation (4) are the modal coefficients uj ∈ VbΩ1D

. We expand
separately the four integrals, by exploiting the gradient expansion

∇(w(Ψ1(z))ϕs(Ψ2(z))) =

w′(Ψ1(z))ϕs(Ψ2(z))




∂Ψ1(z)

∂x

∇yΨ1(z)



 + w(Ψ1(z))ϕ
′
s(Ψ2(z))




∂Ψ2(z)

∂x

∇yΨ2(z)



 ,
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where w′(Ψ1(z)) = dw/dx̂|bx=Ψ1(z), ϕ′
s(Ψ2(z)) = dϕs/dŷ|by=Ψ2(z) and with w ∈

VbΩ1D
. The idea is to rewrite each term on the reference domain by properly

exploiting the maps Ψ, Φ. Let us first consider the diffusive contribution in (6):

∫

bΩ
µ(Φ(ẑ))

{[(∂Ψ1(Φ(ẑ))

∂x

)2
+

(
∇yΨ1(Φ(ẑ))

)2
]
ϕj(ŷ)ϕk(ŷ)u′

j(x̂)ϑ′(x̂)

+
[∂Ψ1(Φ(ẑ))

∂x

∂Ψ2(Φ(ẑ))

∂x
+ ∇yΨ1(Φ(ẑ))∇yΨ2(Φ(ẑ))

]
(7)

[
ϕj(ŷ)ϕ′

k(ŷ)u′
j(x̂)ϑ(x̂) + ϕ′

j(ŷ)ϕk(ŷ)uj(x̂)ϑ′(x̂)
]

+
[(∂Ψ2(Φ(ẑ))

∂x

)2
+

(
∇yΨ2(Φ(ẑ))

)2
]
ϕ′

j(ŷ)ϕ′
k(ŷ)uj(x̂)ϑ(x̂)

}
|I−1(Φ(ẑ))| dΩ̂,

with I the Jacobian defined in (1). The convective term is changed into

∫

bΩ

{ [
b1(Φ(ẑ))

∂Ψ1(Φ(ẑ))

∂x
+ b2(Φ(ẑ))∇yΨ1(Φ(ẑ))

]
ϕj(ŷ)ϕk(ŷ)u′

j(x̂)ϑ(x̂)

[
b1(Φ(ẑ))

∂Ψ2(Φ(ẑ))

∂x
+ b2(Φ(ẑ))∇yΨ2(Φ(ẑ))

]
ϕ′

j(ŷ)ϕk(ŷ)uj(x̂)ϑ(x̂)
}

|I−1(Φ(ẑ))| dΩ̂, (8)

while, for the reactive term, we have

∫

bΩ
σ(Φ(ẑ))ϕj(ŷ)ϕk(ŷ)uj(x̂)ϑ(x̂)|I−1(Φ(ẑ))| dΩ̂. (9)

Finally, for the source term in (6), we simply obtain

∫

bΩ
f(Φ(ẑ))ϕk(ŷ)ϑ(x̂)|I−1(Φ(ẑ))| dΩ̂. (10)

From (7) and (8) we notice that the treatment of the diffusive term generates
advective and reactive contributions in the reduced setting. Similarly, the re-
duced convection term features also a reactive contribution. A straightforward
combination of (7)-(10) leads to the following Hi-Mod reduced formulation for
the ADR problem defined in (5): find uj ∈ VbΩ1D

with j = 1, . . . , m, such that,
for any ϑ ∈ VbΩ1D

and k = 1, . . . , m,

m∑

j=1

{ ∫

bΩ1D

[
r̂ 1,1
kj (x̂)u′

j(x̂)ϑ′(x̂) + r̂ 1,0
kj (x̂)u′

j(x̂)ϑ(x̂) + r̂ 0,1
kj (x̂)uj(x̂)ϑ′(x̂) (11)

+ r̂ 0,0
kj (x̂)uj(x̂)ϑ(x̂)

]
dx̂

}
=

∫

bΩ1D

[ ∫

bγd−1

f(Φ(ẑ))ϕk(ŷ)|I−1(Φ(ẑ))| dŷ
]
ϑ(x̂) dx̂,

where

r̂ s,t
kj (x̂) =

∫

bγd−1

r s,t
kj (x̂, ŷ) |I−1(Φ(ẑ))| dŷ, s, t = 0, 1, k = 1, . . . , m, (12)
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with

r 1,1
kj (ẑ) = µ(Φ(ẑ))α1(ẑ)ϕj(ŷ)ϕk(ŷ), r 0,1

kj (ẑ) = µ(Φ(ẑ)) δ(ẑ)ϕ′
j(ŷ)ϕk(ŷ),

r 1,0
kj (ẑ) = µ(Φ(ẑ)) δ(ẑ)ϕj(ŷ)ϕ′

k(ŷ) + β1(ẑ)ϕj(ŷ)ϕk(ŷ), (13)

r 0,0
kj (ẑ) = µ(Φ(ẑ))α2(ẑ)ϕ

′
j(ŷ)ϕ′

k(ŷ) + β2(ẑ)ϕ′
j(ŷ)ϕk(ŷ) + σ(Φ(ẑ))ϕj(ŷ)ϕk(ŷ),

and

αi(ẑ) =
(∂Ψi(Φ(ẑ))

∂x

)2
+

(
∇yΨi(Φ(ẑ))

)2
i = 1, 2,

βi(ẑ) = b1(Φ(ẑ))
∂Ψi(Φ(ẑ))

∂x
+ b2(Φ(ẑ)) · ∇yΨi(Φ(ẑ)) i = 1, 2, (14)

δ(ẑ) =
∂Ψ1(Φ(ẑ))

∂x

∂Ψ2(Φ(ẑ))

∂x
+ ∇yΨ1(Φ(ẑ)) · ∇yΨ2(Φ(ẑ)).

In the reduced model (11) the dependence of the solution on the dominant and
on the transverse directions is split. The Hi-Mod reduction procedure yields a
special one-dimensional model associated with the main curved stream, whose
coefficients, r̂ s,t

kj , are properly enriched to include the effects of the transverse
dynamics. In particular, the coefficients in (13) reduce to the ones in [1] for
rectilinear domains, where ∂Ψ1/∂x = 1 and ∇yΨ1 = 0. From a computational
viewpoint, the solution to (11) requires solving a system of m coupled one-
dimensional problems instead of a full d-dimensional problem. Following [1, 2],
we discretize these 1D problems by introducing a finite element discretization
along Ω̂1D, while preserving the modal expansion in correspondence with the
transverse directions. We are led to solve a linear system with an m × m block
matrix, where each block is an Nh ×Nh matrix with the sparsity pattern of the
selected finite element space Xh, with dim(Xh) = Nh.
An appropriate choice of the modal index m in (3) is certainly a critical issue of
the uniform Hi-Mod reduction. In [2] a “trial and error” approach is suggested:
we move from the computationally cheapest choice m = 1 and then we grad-
ually increase such a value until the addition of the successive modal function
does not significantly improve the accuracy of the reduced solution. This strat-
egy may be sometimes speeded up, e.g., when a partial physical knowledge of
the phenomenon at hand is available, so that the initial guess can be properly
calibrated.

3.2 Piecewise Hi-Mod reduction

The uniform approach may become really uneffective when strongly localized
transverse dynamics are present: a large number of modal functions is employed
on the whole Ω, even though it would be strictly necessary only where significant
transverse dynamics occur. This justifies the proposal of a new formulation,
where a different number of modes is employed in different parts of Ω: many
modes where the transverse dynamics are important, few modes where these
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dynamics are less significant. The modal index m becomes therefore a piecewise
constant vector: this justifies the name of this approach. In more detail, let us
assume to locate s subdomains Ωi in Ω such that Ω = ∪s

i=1Ωi, with Σi = Ωi∩Ωi+1

the interface between Ωi and Ωi+1, and let {Ω̂i}
s
i=1 be the corresponding partition

on Ω̂, with Σ̂i = Ψ(Σi) = Ω̂i ∩ Ω̂i+1 (see Fig. 1). In particular, we employ mi

modal functions on Ωi, for i = 1, . . . , s. Following [3], the piecewise Hi-Mod
reduced formulation for (2) reads: given a modal multi-index m = {mi}

s
i=1 ∈

[N+]s, find um ∈ V b
m

, such that

aΩ(um, vm) = FΩ(vm) ∀vm ∈ V b
m

, (15)

where aΩ(um, vm) =
∑s

i=1 ai(um|Ωi
, vm|Ωi

), FΩ(vm) =
∑s

i=1 Fi(vm|Ωi
) with

ai(·, ·) and Fi(·) the restriction to Ωi of the bilinear and of the linear form in (2),
respectively. The reduced space in (15) is a subset of the broken Sobolev space
H1(Ω, TΩ) associated with the partition TΩ = {Ωi}

s
i=1, and it is defined by

V b
m

=
{

vm ∈ L2(Ω) : vm|Ωi
(z) =

mi∑

k=1

vi
k(Ψ1(z))ϕk(Ψ2(z)) ∈ H1(Ωi)

∀i = 1, . . . , s, with vi
k ∈ H1(Ω̂1D, i) and s.t., ∀k = 1, . . . , mj

⊥ with j = 1, . . . , s − 1,∫

bγd−1

[
vm|Ωj+1

(Φ(Σ̂j)) − vm|Ωj
(Φ(Σ̂j))

]
ϕk(ŷ) dŷ = 0

}
,

with mj
⊥ = min(mj , mj+1) and Ω̂1D, i = Ω̂1D∩Ω̂i. The integral condition weakly

enforces the continuity of the solution in correspondence with the minimum
number of modes employed on the whole Ω. This does not guarantee a priori

the conformity of the reduced solution um. According to [3], we resort to a
relaxed iterative substructuring Dirichlet/Neumann method to impose the weak
continuity at the interfaces. From a computational viewpoint, at each iteration
of the Dirichlet/Neumann scheme, we apply a uniform Hi-Mod reduction on
each subdomain Ωi, i.e., we solve s systems of coupled 1D problems which are
suitably approximated via a finite element discretization along Ω̂1D, analogously
to the uniform case. The choice of the modal multi-index m in (15) is hereafter
based on an a priori approach, driven by some knowledge of the solution u. The
generalization of the approach proposed in [3] for rectilinear domains, where an
a posteriori modeling error estimator drives the automatic selection of both the
Ωi’s and m is a possible follow up of this work.

4 Numerical results

We numerically assess the two proposed Hi-Mod reduction procedures in a two-
dimensional setting. In particular, we use affine finite elements to discretize the
problem along Ω̂1D, while employing sinusoidal functions to model the trans-
verse dynamics. We evaluate the integrals of the sine functions via Gaussian
quadrature formulas, with, at least, four quadrature nodes per wavelenght.
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Figure 2: Full solution and uniform Hi-Mod reduced solutions u3, u5, u7 (top-
bottom, left-right)

We reduce the ADR problem defined in (5) on the annular region Ω between
the two concentric circles x2 + y2 = 1 and x2 + y2 = 9. We select µ = 1, the cir-

cular clockwise advective field b =
(
30 sin(atan2(y, x)),−30 cos(atan2(y, x))

)T
,

with −π ≤ atan2(y, x) ≤ π, σ = 30χ+ with χ+ = {(x, y) ∈ Ω : x > 0}, and
the source term f = 1000χD localized in the small circular region D = {(x, y) :
(x + 2)2 + (y − 1)2 < 0.05}. Finally, full homogeneous Dirichlet boundary con-
ditions complete the problem. The choice of the data identifies a full solution
characterized by a peak in D; it is convected by the field b and damped by the
reaction (see Fig. 2, top-left).
Figure 2 gathers the reduced solutions provided by the uniform Hi-Mod reduc-
tion for different choices of the modal index m and when a uniform finite element
discretization of size h = π/40 is employed on Ω̂1D. Solution u3 clearly fails in
detecting the peak in D. At least seven modal functions are demanded to get a
reliable reduced model: the peak of u is well captured for this choice, while the
successive modes essentially do not improve the accuracy of um.

The most significant localization of the transverse dynamics in the left part
of Ω suggests us employing a higher number of modes in this part of the domain,
according to a piecewise Hi-Mod reduction. We split Ω into two subdomains via
the interface Σ1 = {0}× (1, 3); then we make two different choices for the modal
multi-index, m = {5, 1} and m = {7, 3}, while preserving the finite element
partition of the uniform approach. Concerning the domain decomposition algo-
rithm, we set the convergence tolerance for the relative error to 10−3 and the
relaxation parameter to 0.5. Moreover, to guarantee the well-posedness of the
ADR subproblems, we assign the Dirichlet and the Neumann condition on the
right- and on the left-hand side of Σ1, respectively. The algorithm converges
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Figure 3: Piecewise Hi-Mod reduced solutions u{5,1} (left) and u{7,3} (right)

after ten iterations for both choices of m. Figure 3 shows the reduced solu-
tions u{5,1} (left) and u{7,3} (right) at the last iteration. As expected, u{7,3}

provides a better approximation of the full solution; in particular, by comparing
the color maps, we can state that u{7,3} essentially coincides with u7 in Fig. 2,
bottom-right. Finally, according to [2], both u{5,1} and u{7,3} are H1-conforming
approximations: the model discontinuity across Σ1 is therefore consequence of
the truncation of the iterative domain decomposition algorithm.
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