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Abstract

The study of flow in fractured porous media is a key ingredient for many geoscience
applications, such as reservoir management and geothermal energy production. Modelling
and simulation of these highly heterogeneous and geometrically complex systems require
the adoption of non-standard numerical schemes. The Embedded Discrete Fracture Model
(EDFM) is a simple and effective way to account for fractures with coarse and regular
grids, but it suffers from some limitations: it assumes a linear pressure distribution around
fractures, which holds true only far from the tips and fracture intersections, and it can be
employed for highly permeable fractures only. In this paper we propose an improvement
of EDFM which aims at overcoming these limitations computing an improved coupling
between fractures and the surrounding porous medium by a) relaxing the linear pressure
distribution assumption, b) accounting for impermeable fractures modifying near-fracture
transmissibilities. These results are achieved by solving different types of local problems
with a fine conforming grid, and computing new transmissibilities (for connections between
fractures and the surrounding porous medium and those through the porous medium
itself near to the fractures). Such local problems are inspired from numerical upscaling
techniques present in the literature. The new method is called Local Embedded Discrete
Fracture Model (LEDFM) and the results obtained from several numerical tests confirm
the aforementioned improvements.

Keywords: Porous media, Fracture modelling, Embedded methods, Local upscaling, Multi-
scale methods.

1 Introduction

The simulation of flow and transport in fractured porous media is an essential ingredient
for many geoscience applications, such as reservoir management tasks, that include planning
hydrocarbon production or Enhanced Oil Recovery (EOR) operations. Other examples of
relevant applications in this field include CO2 storage and sequestration, water resources
management, nuclear waste disposal and geothermal energy production.

A typical geological porous medium is heterogeneous on different length scales. The mate-
rial properties, such as rock permeability, may vary locally by many orders of magnitude, and
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the geometry is typically complex. An important source of heterogeneity are fractures, which
are thin inclusions whose conductivity can be both orders of magnitude higher and lower than
the surrounding material, called porous matrix. Hence, they either serve as preferential paths
or barriers for the fluid flow. The fracture aperture is typically several orders of magnitude
smaller than the characteristic size of the porous medium domain, and the fracture charac-
teristic length. See [46, 9, 1, 5, 42] for basic knowledge on flow and transport in fractured
porous media.

Due to the strong heterogeneities and complicated geometries characterizing reservoirs,
it is often challenging to correctly simulate such systems. In particular, fractures, due to
their features, require special treatments in reservoir simulation, and they should be modelled
adequately depending on the considered length scale [47, 4]. Typically, from small to mid
length scales they are explicitly described through Discrete Fracture Models (DFM), that
often model fractures as lower-dimensional objects, meaning that they are represented by
(n − 1)-dimensional objects, where n refers to the dimension of the porous matrix domain
[2, 33, 14, 44]. On large scales, instead, Continuum Fracture Models (CFM) are often used.
DFM typically provide more accurate results than CFM, but, since fractures are ubiquitous,
they cannot be used to model every single fracture present in a certain domain. Hence, there
exist Hybrid Fracture Models (HFM), that use DFM to model the most dominant, largest
fractures, while the remaining ones are handled with CFM [29].

Depending on how the grid generation is performed, two different classes of numerical
methods for DFM can be mainly distinguished. On one side we have conforming methods,
that honour the fractures geometry exploiting the flexibility of unstructured grids [41, 3, 26,
43]. However, for complex fracture networks conformity may result in having small matrix
cells near the fractures, and eventually large, ill-conditioned linear systems. On the other
side we have embedded methods, that, in order to overcome the limitations associated to
conforming methods, usually adopt structured grids where fractures are allowed to cut arbi-
trarily the matrix grid. However, transfer functions taking into account the fracture-matrix
coupling must be added to the model, and these methods are often based on some restrictive
assumptions.

Among the latter we mention the Embedded Discrete Fracture Model (EDFM) [29, 30],
which is a simple and effective way to account for fractures with coarse and regular grids,
but it suffers from some limitations: the expressions for the flux interaction terms between
matrix and fracture domains stems from the assumption of linear pressure distribution around
fractures, which holds true only far from the tips and fracture intersections. Moreover, it can
be applied for highly permeable fractures only.

The method has been extended to the three-dimensional case in [34] within a compositional
reservoir simulator, and it can handle fractures arbitrarily oriented in space, allowing to
perform simulations for geometrically complex fractured reservoirs. Nonplanar fractures are
taken into account in [53], where the issue of very small fracture segments is tackled as well
to avoid excessive limitations of the timestep and preconditioning problems. In [54] EDFM
has been extended to corner-point grids, widely used in the industry to better represent
geological features, and to the case of full-permeability-tensors. [52] focuses on geometrical
preprocessing, accounting for special limit cases, and proposes a geometrical algorithm to
find the intersections between a general polyhedron and a general polygon with the aim of
determining the intersections between corner-point cells and fractures.

Various improvements have been proposed for the EDFM method. In [49] the Projection-
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based Embedded Discrete Fracture Model (pEDFM) is introduced to take into account even
the case of “impermeable” fractures, meaning by that fractures whose normal permeability
is lower than that of the porous matrix. A modified version of pEDFM has been proposed
in [25], which differs slightly in the definition of matrix-fracture transmissibilities. In [37]
pEDFM has been extended to the 3D case for compositional simulation of realistic fractured
reservoirs and in [23] it has been applied to corner-point grids to simulate both flow and heat
transfer phenomena.

Other contributions focused on getting a better representation of the matrix-fracture flow
with respect to the original version of EDFM, which simply assumes a linear pressure distri-
bution around fractures, to derive improved matrix-fracture transmissibility expressions. This
is particularly relevant to get a more accurate modelling of transient effects, which is a critical
issue in the case of very low matrix permeabilities. To this end, in [6] the matrix-fracture flow
expressions are derived using the Boundary Element Method (BEM) in a two-dimensional
framework rather than using the linear approximation, thus allowing to consider the effect
of local grid geometry and boundary pressure. This work has been later extended in [40] to
the 3D case and the resulting method was successfully applied to production simulation of a
multi-stage fractured horizontal well. In [10] the pressure distribution around fractures is com-
puted using an integral method and assuming steady-state flow. In this way, a suitable and
accurate representation of the pressure is also obtained at fracture tips and intersections. New
matrix-fracture transmissibilities are then computed based on the steady-state near-fracture
pressure solution. In [45] the Integrally Embedded Discrete Fracture Model (iEDFM) is pre-
sented, where the transmissibilities between matrix and fracture cells are computed with a
semi-analytic method in which fractures are represented through a collection of point sinks.
The near-fracture pressure distribution is obtained superimposing the pressure solutions of
the sinks and is then used to compute the new transmissibilities.

The original EDFM employs the classic Two-Point Flux Approximation (TPFA) scheme to
approximate the fluxes at porous matrix interfaces. However, it is well known that this scheme
is not consistent in the case of non-orthogonal grids and/or anisotropic media characterized
by a full permeability tensor. This issue is addressed in [36], where the monotone embedded
discrete fracture method (mEDFM) is presented. This method couples the original EDFM
with two different nonlinear schemes: the monotone TPFA scheme [8] and the compact multi-
point flux approximation scheme [7, 50], which satisfies the discrete maximum principle. In
particular, the nonlinear schemes are used to approximate the fluxes only at matrix faces,
but this is sufficient to get accurate results also in the cases where TPFA fails. The method
has been later extended in [55] to account also for blocking fractures, and called Projection-
based monotone embedded discrete fracture method. Indeed it couples the pEDFM with the
nonlinear compact multi-point flux approximation scheme.

This paper focuses on the development of a new method, belonging to the general class
of embedded methods, called Local Embedded Discrete Fracture Model (LEDFM), which is
capable to overcome both the limitations of the EDFM, here applied to the single-phase fluid
flow case and in a two-dimensional framework. The method adopts local flow based upscaling
methods, see [11], to compute new matrix-fracture and near-fracture matrix-matrix coarse
scale transmissibilities. Here the coarse model coincides with an EDFM model, whereas in
classical numerical upscaling techniques with fracture networks found in the literature [27,
18, 48, 16] the coarse model is usually a MINC (i.e. a continuum approach), which is not
capable of explicitly representing fractures. The definitions of the local fine scale problems
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for the new upscaled transmissibilities are inspired from the aforementioned techniques, and
conforming methods are used to solve them [26, 43]. Unlike previous works fractures having
any conductivity contrast with respect to the porous matrix are considered in the local fine
scale problems.

Numerical tests, comparing the solutions of different embedded methods, including the
newly developed LEDFM, with respect to reference solutions, show that LEDFM overcomes
both the limitations of the classic EDFM method: the matrix-fracture coupling is improved
by relaxing the linear pressure distribution assumption and it can be successfully applied for
both permeable and impermeable fractures in most cases.

As we will see, in some cases a higher accuracy of the description of the near fracture flow
is needed, so that the local problems for the computation of matrix-matrix transmissibilities
are substituted with a multiscale approach [24, 20].

The paper is organized as follows: in Section 2 the hybrid dimensional formulation of the
Darcy problem in the incompressible single-phase flow case is presented and the EDFM and
pEDFM methods are recalled for readers’ convenience. In Section 3 the new LEDFM method
is described in detail while in Section 4 several numerical tests are presented to validate
the local method. Convergence analyses for different fracture geometries and matrix-fracture
permeability contrasts are run for the purpose. Moreover, a tracer transport test is considered
to highlight possible differences in the Darcy flow given by the different methods. Finally, in
Section 5 the main results are summarized and possible future developments and perspectives
are discussed.

2 Governing Equations and Discretization

In this work we focus on the case of incompressible single-phase Darcy flow in a two-dimensional
porous medium domain Ω having a single immersed straight fracture, but the case of a fracture
cutting the entire domain can be easily obtained modifying the model described below, as well
as the case of multiple, non intersecting fractures. Moreover, gravity effects are neglected.
The work focuses on the two-dimensional case for reasons of simplicity in the presentation of
the new local embedded method, described in Section 3, and of computational cost, but the
method can be in principle extended to the three-dimensional case.

The domain Ω is divided into two connected subsets, namely Ωm for the porous matrix
part and γ for the fracture, where γ is one-dimensional. The fracture is assumed to be lower
dimensional with respect to the matrix part. We require Ωm and γ to be disjoint, i.e.

Ω = Ωm ∪ γ and Ω̊m ∩ γ̊ = ∅.

We denote the boundary of the porous medium domain as Γ := ∂Ω and we subdivide it into
two disjoint parts, ΓD and ΓN , such that

Γ = Γ
D ∪ Γ

N
and Γ̊D ∩ Γ̊N = ∅.

On ΓD Dirichlet conditions are enforced, while on ΓN we set Neumann conditions. nΓ is the
unit outward normal to the boundary of the domain Ω.

The boundary of γ is composed by two points ∂γ = {∂γ+, ∂γ−}, i.e. the tips of the
fracture, and we define n∂γ+ and n∂γ− as the unit outwards normals to ∂γ+ and ∂γ−, re-
spectively. We also indicate with τ the unit tangential vector on γ directed from ∂γ− to ∂γ+
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Figure 1: Schematic representation of the domain Ω. The matrix subdomain is denoted by
Ωm and the fracture by γ.

and with n the unit normal vector to the fracture, such that (τ ,n) are positively oriented.
The domain is depicted in Fig. 1.

The hybrid dimensional formulation of the Darcy problem can be written as
−∇ ·

(
Km

µ
∇pm

)
+ qmf = Qm in Ωm ⊂ R2, (1a)

−∇τ ·
(
Kγ,τ

µ
∇τpγ

)
+ qfm = Qγ in γ ⊂ R, (1b)

along with the boundary conditions

pm = pD,m on ΓD, (2a)

−
(
Km

µ
∇pm

)
· nΓ = gN,m on ΓN , (2b)

−
(
Kγ,τ

µ
∇τpγ

)
· n∂γ− = 0 on ∂γ−, (2c)

−
(
Kγ,τ

µ
∇τpγ

)
· n∂γ+ = 0 on ∂γ+, (2d)

where pm and pγ are the matrix and fracture pressure, respectively, µ the fluid dynamic
viscosity, qmf and qfm the so-called flux interactions between matrix and fracture and Qm
and Qγ the source terms for matrix and fracture, respectively. Moreover, ∇τ · and ∇τ denote,
respectively, the divergence and gradient operators on the line tangent to the fracture.

Km is the matrix permeability tensor, which is symmetric and positive definite, while the
fracture permeability is assumed to be orthotropic, meaning that it is possible to identify a
normal permeability Kf,n and a tangential one Kf,τ with respect to the fracture tangential
plane. In particular, in (1)–(2) a key role is played by the equivalent tangential permeability
Kγ,τ = Kf,τd, where d is the fracture aperture, assumed to be constant. Clearly, the perme-
ability values in the matrix and fracture are likely to differ of several orders of magnitude.

Note that no flow conditions (2c)–(2d) are adopted at the fracture tips, which is a common
choice due to its simplicity from an implementation point of view, but the physical motivation
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Figure 2: The matrix domain is discretized with a Cartesian grid with spacings ∆x and
∆y in the horizontal and vertical directions, respectively. The fracture grid is obtained by
the fracture-matrix grid intersections. The matrix cells cut by the fracture are highlighted in
grey.

behind it is not obvious. Finally, note that, to close the problem, we need to provide an
expression for the interaction terms qmf and qfm.

The problem given by (1)–(2) is discretized using an embedded approach, meaning that
the fracture is allowed to cut arbitrarily the matrix cells, and is thus not forced to lie on
the faces of the matrix grid. For simplicity a structured Cartesian grid is considered for
the discretization of the matrix domain and the fracture grid is obtained by intersecting the
fracture with the background matrix grid, as shown in Fig. 2.

A standard Two-Point Flux Approximation (TPFA) finite volume scheme is used to dis-
cretize fluxes for the problem (1)–(2), hence we will have one pressure degree of freedom for
each matrix and fracture cell. The matrix-matrix flux Fm1m2 between two generic matrix cells
m1 and m2 and the neighbouring fracture-fracture flux Ff1f2 between two generic fracture cells
f1 and f2 belonging to the same fracture are then written as

Fm1m2
:=

Tm1m2

µ
(pm1 − pm2), Ff1f2 :=

Tf1f2
µ

(pf1 − pf2),

where Tm1m2 is the total matrix-matrix transmissibility and pm1 and pm2 are the pressures
of the cells m1 and m2, respectively. Similar explanations apply for the fracture flux and, in
particular, Tf1f2 is the total neighbouring fracture-fracture transmissibility.

Both transmissibilities are computed by taking the half of the harmonic average of the
corresponding half-transmissibilities, i.e.

Tm1m2 =

(
1

Tm1

+
1

Tm2

)−1

=
Tm1Tm2

Tm1 + Tm2

, Tf1f2 =

(
1

Tf1
+

1

Tf2

)−1

=
Tf1Tf2
Tf1 + Tf2

,

where Tm1 and Tm2 are the half-transmissibilities of the matrix cells m1 and m2, respectively,
while Tf1 and Tf2 are, respectively, the half-transmissibilities of the fracture cells f1 and f2.
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The expressions for the half-transmissibilities in the case of a 2D Cartesian grid and
constant aperture d for the fracture are given by

T Vmi
= 2kmi,x

∆y

∆x
, THmi

= 2kmi,y
∆x

∆y
, Tfi = 2kfi,τ

d

|fi|
, i = 1, 2,

where T Vmi
and THmi

are the i-th matrix half-transmissibilities for a vertical and horizontal
interface, respectively, kmi,x is the matrix permeability for the cell mi in the x direction and
kmi,y in the y direction. ∆x and ∆y are the horizontal and vertical uniform spacings of the
Cartesian grid, kfi,τ is the tangential fracture permeability for the cell fi and |fi| denotes the
length of the fracture cell fi.

The full transmissibilities are then given by

T Vm1m2
= k̃m1m2,x

∆y

∆x
, THm1m2

= k̃m1m2,y
∆x

∆y
, Tf1f2 =

2kf1,τkf2,τ
kf1,τ |f2|+ kf2,τ |f1|

d,

where k̃m1m2,x denotes the harmonic average of km1,x and km2,x, while k̃m1m2,y the harmonic
average of km1,y and km2,y. Note that assuming a uniform spacing for the grid simplifies the
final transmissibility expressions.

In the following section we describe methods that differ in the way they describe the
coupling between the matrix and fracture domains with the aim of considering different types
of connections and expressions for the transmissibilities.

2.1 Embedded Discrete Fracture Model (EDFM)

The first embedded method, described in [29, 30], was conceived for an efficient handling
of long fractures, i.e. those whose length is greater than the characteristic grid cell size,
and is known as the Embedded Discrete Fracture Model (EDFM). This method works only
in presence of highly permeable fractures with respect to the matrix: with this assumption
the pressures in the matrix cells cut by the fracture can be taken as continuous and can be
described by a single average constant value. Following [29] we then model the flux interaction
terms qmf and qfm as one typically does in classical well models, such as that of Peaceman
[38], and assume a linear pressure profile in the direction normal to the fracture, yielding the
following expressions:

qmf :=
2 · CImf
|m|

n>Kmn

µ
(pm − pγ), qfm :=

2 · CImf
|f |

n>Kmn

µ
(pγ − pm), (3)

where |m| and |f | indicate the measure of the matrix and fracture cell, respectively, while
CImf is the connectivity index, which is in analogy with the well productivity indices defined
by Peaceman, which depends only on grid parameters as

CImf :=
|f |
〈d〉mf

,

where 〈d〉mf is the average distance of the matrix cell m from the fracture cell f . 〈d〉mf can
be computed as

〈d〉mf =
1

|m|

∫
m
|(x− xf ) · n| dV,
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where x ∈ m and xf ∈ f are generic and |(x−xf ) ·n| indicates the distance of a point in the
matrix cell from the fracture. Typically the average distance is computed numerically using
simple quadrature rules, but for very simple cases analytical expressions are available [49, 19,
39].

Clearly, qmf is nonnull only in those matrix cells intersected by the fracture. The matrix-
fracture fluxes Fmf and Ffm exchanged between a generic matrix cell m and fracture cell f
are given by

Fmf =

∫
m
qmfdV, Ffm =

∫
f
qfmdS. (4)

Using the expressions of the flux interaction terms (3) to compute the matrix-fracture fluxes (4)
we get the same result, i.e.

Fmf =

∫
m
qmfdV = −

∫
f
qfmdS.

This implies that the local conservation of mass between matrix and fracture is satisfied. In
particular, the expression of the matrix-fracture flux is given by

Fmf =
Tmf
µ

(pm − pf ), (5)

where pm and pf are the pressures of the cells m and f , respectively, while Tmf is the matrix-
fracture transmissibility, which can be computed as

Tmf = 2 · CImf · n>Kmn. (6)

The above transmissibility expression stands for a fracture cell f immersed in a matrix
cell m, hence a single matrix-fracture flux exchange takes place. However, it may happen that
a fracture coincides with a face of the matrix grid: in this case the fracture cell exchanges
flux with the two matrix cells sharing the face, and the corresponding transmissibilities are
halved with respect to (6). Other expressions for the matrix-fracture transmissibility have
been proposed in the literature, e.g. in [49, 25], but the results are very close to those provided
by (6) since the fracture is assumed to be highly permeable with respect to the matrix.

2.2 Projection-based Embedded Discrete Fracture Model (pEDFM)

The Projection-based Embedded Discrete Fracture Model (pEDFM), introduced in [49], is an
extension of the EDFM method that allows to take into account, unlike the original embedded
formulation, even the case of impermeable fractures. To this aim, matrix-fracture and matrix-
matrix transmissibilities near to the fractures are modified properly.

As a preliminary step, a set of matrix grid faces is selected such that they define a con-
tinuous projection path of the fractures on the matrix domain, as highlighted in red on the
left side of Fig. 3. As stated in [49], and as we will see in Section 4.1 and Appendix B,
it is important to ensure the continuity of the fracture projection paths to obtain a correct
representation of the pressure fields, especially for fractures acting as barriers for the fluid
flow. This is difficult to achieve in the 3D case and for general, non Cartesian grids. Then,
let us consider a fracture cell f intersecting a matrix cell m. We denote with mH and mV the
matrix cells sharing with m the faces on which the fracture cell is projected along the x and y
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Figure 3: pEDFM for a 2D Cartesian grid. The continuous fracture projection path is
highlighted in red. The fracture cell f is directly connected to the yellow matrix cell m and
the non-neighbouring matrix cells are highlighted in orange. The fracture cell projections are
also put in evidence.

directions, respectively. They are called non-neighbouring matrix cells since they are not cut
by the fracture, but still they are affected by the modification of the transmissibilities. These
cells are depicted in orange in Fig. 3. We also indicate with Amf⊥x and Amf⊥y the areas of
the projections of the fracture cell f along x and y, respectively. Under the assumption of
isotropic and diagonal permeability tensors, we define the following transmissibilities

Tmf =
TmTf
Tm + Tf

, (7)

TmHf =
TmHTf
TmH + Tf

, TmV f =
TmV Tf
TmV + Tf

. (8)

TmmH =
∆x−Amf⊥x

∆y
k̃DWmmH

, TmmV =
∆y −Amf⊥y

∆x
k̃DWmmV

, (9)

where TmHf and TmV f are the new non-neighbouring matrix-fracture transmissibilities, while
TmmH and TmmV are modified matrix-matrix transmissibilities. Both of them are needed to
take into account the isolating effect of impermeable fractures. Tm, TmH , TmV , Tf are all
half-transmissibilities, whose expressions are given by

Tm = CImfkm, TmH =
Amf⊥x
dmHf

kmH , TmV =
Amf⊥y
dmV f

kmV , Tf =
2|f |
d
kf , (10)

where dmHf and dmV f are the distances from the centroids of mH and mV , respectively,
to the centroid of the fracture cell f . Note that the permeabilities appearing in (9) are all
distance-weighted harmonically averaged between neighbouring cells.

We recall that the distance-weighted harmonic average between two generic cells is defined
as follows:

k̃DW12 :=
k1k2

k1d2 + k2d1
(d1 + d2),
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where k1 and k2 are the permeabilities of the cells, while d1 and d2 the distance weights
pertaining to the cells. In particular, for k̃DWmmH

both weights correspond to the distance from
the centre of m to the interface shared by m and mH , i.e. ∆y/2. Following the same reasoning,
for k̃DWmmV

both distance weights are equal to ∆x/2.
The transmissibility expressions reported above are taken from [25] and, apart from the

modified matrix-matrix transmissibility formulae (9), they present small differences with re-
spect to those presented in the original pEDFM paper [49]. In particular, the differences
become more and more evident as the distances of the non-neighbouring matrix cells from
the fracture cells approach the fracture aperture value.

For the special case in which the fracture lies on the matrix grid faces the projection-
based method is equivalent to a conforming approach, while this is not the case for the
EDFM. The computation of the fracture cells projections is definitely the most complicated
part of the method from the implementation point of view, especially in three-dimensional
cases, in presence of grids having cells of generic shape, and when fractures (which could also
be curved in the case of faults) are arbitrarily oriented in space.

3 LEDFM Formulation

The main idea behind the Local Embedded Discrete Fracture Model (LEDFM) is that of using
local transmissibility upscaling methods to define new transmissibilities for the embedded
formulation of the Darcy problem (1)–(2). In particular, two types of local problems are
considered:

• Matrix-Fracture (M-F) local problems, to define new matrix-fracture transmissibilities;

• Matrix-Matrix (M-M) local problems, to define new near-fracture matrix-matrix trans-
missibilities, i.e. those relative to the faces of the matrix grid having at least one of the
neighbour cells cut by a fracture.

In this way, no assumptions are made about the near-fracture pressure distribution to compute
the transmissibilities between matrix and fracture cells, but they are instead directly computed
post-processing the corresponding local problem solution, allowing for improved accuracy at
fracture tips and intersections. Moreover, blocking fractures are accounted for without having
to project them on porous matrix interfaces, which is a necessary step in pEDFM that requires
a lot of effort to implement in practice, especially for complex grids and the three-dimensional
case.

For the sake of simplicity, and also for a faster implementation of the subsequent multiscale
version of the method, we focus on the special case of square matrix grid cells. At the moment
the method is constructed so that only one fracture is allowed to cut each local domain.
Moreover, the case where the fracture lies on the local domain boundary, i.e. on coarse faces,
is not considered. Clearly, fractures that are completely immersed in one coarse cell are
not considered since they should be represented by means of homogenization at the scale of
interest. LEDFM does not adopt a multiple sub-region approach, contrarily to some upscaling
methods for fracture networks that can be found in the literature, e.g. [27, 16], thus only one
upscaled transmissibility for each type of connection within a local domain is computed.

In particular, the LEDFM formulation employs the local flow based upscaling of the
transmissibility, whose description can be found, e.g., in [11] along with a detailed review
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of the most important flow based methods for the upscaling of porous media properties. In
local upscaling methods the transmissibility for a coarse grid face is computed using local
flow solutions on a fine grid region that includes the coarse cells neighbouring the face. This
region could be extended to include more coarse cells (extended local methods, see [21, 35,
22, 51]). These methods are generally easy to implement and their computational cost is low
compared to other flow based methods. However, they are heavily dependent on the boundary
conditions chosen to solve local flow problems, which is the major drawback of these methods.

This section is organized in the following way: the governing equations of both types of
local problems are described in Subsections 3.1 and 3.2, then in Subsection 3.3 we give further
details on the discretization of the local problems and in Subsection 3.4 we point out when
the local problems should be solved and how to use the computed local solutions to construct
the new LEDFM method. Finally, in Subsection 3.5 the multiscale modification of the local
method is described.

3.1 Matrix-Fracture (M-F) Local Problem

Consider the domain depicted in Fig 4. Let Ω be the whole domain and K ∈ Ω a grid cell
cut by a fracture. The solution of the M-F local problem, taking inspiration from [27, 16],
is chosen to be that of a slightly-compressible single-phase flow equation with impermeable
boundaries, in the special case where the porosity Φ is considered to be constant

cΦ
∂p

∂t
−∇ ·

(
K

µ
∇p
)

= qf in K for t > 0,

−
(
K

µ
∇p
)
· nΓ = 0 on ∂K for t > 0,

p = 0 in K for t = 0.

qf =

{
qf in Kf

0 in Km

qf > 0, (11)

where c is the fluid compressibility, qf a piecewise constant source term, strictly positive
inside the fracture and zero elsewhere, and nΓ the unit outward normal vector to the grid
cell boundary Γ := ∂K. Note also that K = Km ∪Kf and Γ = Γm ∪ Γf , where Km and Kf

are the matrix and fracture cell domains, respectively, while Γm and Γf are the parts of their
boundaries lying on ∂K.

Note that the definition of the problem can be easily adapted to the case of a fracture cell
cutting the entire local domain from side to side.

Figure 4: Local domain example for the M-F problem.
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The problem describes a continuous injection of fluid in the fracture, so that the overall
pressure in the domain increases with time and, after a transient period, a pseudo steady state
condition is reached, meaning that the time derivative of pressure reaches a constant value,
i.e.

∂p

∂t
= a a ∈ R.

Following the upscaling procedure described in [27, 16], problem (11) should be solved until
the pseudo steady state condition is reached. It can be shown that the problem is weakly
coercive and the numerical errors accumulated in time may largely affect the accuracy of the
corresponding numerical solution.

However, finding the pseudo steady state solution of the previous problem can be proved
to be equivalent to finding the solution of a stationary problem with a modified source term
that depends on the previous source term qf , fracture porosity Φf , compressibility cf and
pseudo steady state constant af , as well as the measures of the matrix and fracture domains.
We now give the proof that leads to a slightly different problem from that defined in [16].

Let us write problem (11) separately for the matrix and fracture domains
cmΦm

∂pm
∂t
−∇ ·

(
Km

µ
∇pm

)
= 0 in Km for t > 0,

−
(
Km

µ
∇pm

)
· nΓm = 0 on Γm for t > 0,

pm = 0 in Km for t = 0,
cfΦf

∂pf
∂t
−∇ ·

(
Kf

µ
∇pf

)
= qf in Kf for t > 0,

−
(
Kf

µ
∇pf

)
· nΓf

= 0 on Γf for t > 0,

pf = 0 in Kf for t = 0,

where the subscripts m and f refer to porous matrix and fracture quantities, respectively.
Note also that nΓm and nΓf

point in the outward direction with respect to Km and Kf ,
respectively. We denote with ΓI the matrix-fracture interface and with nΓI

the unit normal
vector to ΓI directed from Kf to Km. Pressure and normal flux continuity are enforced on
ΓI pm = pf

−
(
Km

µ
∇pm

)
· nΓI

= −
(
Kf

µ
∇pf

)
· nΓI

on ΓI for t > 0.

Integrating the matrix and fracture governing equations over their respective domains Km

and Kf , and exploiting Gauss’s theorem for the divergence term we obtain∫
Km

cmΦm
∂pm
∂t
−
∫
∂Km

(
Km

µ
∇pm

)
· n∂Km = 0, (12)

∫
Kf

cfΦf
∂pf
∂t
−
∫
∂Kf

(
Kf

µ
∇pf

)
· n∂Kf

=

∫
Kf

qf , (13)
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where n∂Km and n∂Kf
are unit normal vectors pointing outwards with respect to ∂Km and

∂Kf , respectively. Since ∂Km = Γm ∪ΓI and ∂Kf = Γf ∪ΓI , equations (12) and (13) can be
rewritten as∫

Km

cmΦm
∂pm
∂t
−
∫

Γm

(
Km

µ
∇pm

)
· nΓm +

∫
ΓI

(
Km

µ
∇pm

)
· nΓI

= 0, (14)

∫
Kf

cfΦf
∂pf
∂t
−
∫

Γf

(
Kf

µ
∇pf

)
· nΓf

−
∫

ΓI

(
Kf

µ
∇pf

)
· nΓI

=

∫
Kf

qf , (15)

where the matrix-fracture interface term in equation (14) changes sign due to the definitions
of the unit normal vectors. Using the no flow boundary conditions, the flux continuity on ΓI
and then summing equations (14) and (15) the boundary terms vanish and we get∫

Km

cmΦm
∂pm
∂t

+

∫
Kf

cfΦf
∂pf
∂t

=

∫
Kf

qf . (16)

When the system reaches a pseudo steady state condition, we have

∂pm
∂t

= am
∂pf
∂t

= af am, af ∈ R.

Since we are considering slightly-compressible flow, both compressibilities cm and cf are con-
stant and small. Moreover, we assume that matrix and fracture porosities are homogeneous
in Km and Kf , respectively. Under these hypotheses, and knowing that qf is constant, equa-
tion (16) can be rewritten in the following way

|Km|cmΦmam + |Kf |cfΦfaf = |Kf |qf .

We are now able to reformulate the pseudo steady state as the solution of a modified stationary
problem: 

−∇ ·
(
K

µ
∇p
)

= qf,s in K,

−
(
K

µ
∇p
)
· nΓ = 0 on ∂K,

qf,s =

qf,s in Kf

−
|Kf |
|Km|

qf,s in Km
, (17)

where qf,s = qf − cfΦfaf . Since only homogeneous Neumann boundary conditions are con-
sidered for the previous system, we also need to fix a condition to ensure the uniqueness of
the pressure, for instance null average:

1

|K|

∫
K
p = 0.

Clearly, the stationary formulation (17) is preferred over the original for reasons of com-
putational time.

It is important to observe that, when the pseudo steady state condition is reached, the
shapes of the isopressure curves do not change any more (even though the associated pressure
values change with time), and they depend only on fracture geometry and permeabilities of
both domains [27]. For this reason the source term qf,s is taken to be equal to qf,s = 1, for
simplicity.
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Figure 5: Local domain example for the M-M problem.

3.2 Matrix-Matrix (M-M) Local Problem

Let us now consider the system depicted in Fig. 5. The solution of the M-M local problem
for two generic grid cells K1,K2 ∈ Ω neighbouring a face and where at least one of the cells is
cut by a fracture is chosen to be that of the usual incompressible single-phase Darcy problem.
With respect to traditional transmissibility upscaling, see e.g. [11], here a different set of
boundary conditions is employed:

∇ ·
(
K

µ
∇p
)

= 0 in D,

p = 1 on Γm1 ,

−
(
K

µ
∇p
)
· n = 1 on Γm2 ,

−
(
K

µ
∇p
)
· n = 0 on ∂D \ (Γm1 ∪ Γm2).

(18)

Here, we have that D = K1 ∪ K2, K1 = Km1 ∪ Kf1 and K2 = Km2 ∪ Kf2 . Km1 and Km2

are the matrix cell domains while Kf1 and Kf2 the fracture cell ones. Γm1 and Γm2 represent
the left and right domain boundaries pertaining to the matrix part, while n denotes the unit
outward normal vector.

The problem is here described for the case of a fracture cutting the entire local domain D
from side to side and for a vertical interface, but its definition can be adapted with ease both
to the case of a fracture partially immersed in the local domain and to that of a horizontal
interface.

Pressure-flux conditions are imposed on Γm1 and Γm2 , respectively, and the remaining part
of the boundary is set to be impermeable: this non-standard choice of the boundary conditions
stems from the observation that they are capable of capturing effectively the barrier effect of
fractures as opposed to the standard pressure-pressure conditions as shown in Fig. 6. Indeed,
it can be seen that the pressure of the matrix cells neighbouring the right domain boundary
reflects more appropriately the barrier effect of the fracture when pressure-flux conditions are
used.

3.3 Discretization

The local problems (17) and (18) are solved with a conforming Discrete Fracture-Matrix
(DFM) model on triangular matrix grids. A Control Volume Finite Difference (CVFD)
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(a) (b)

Figure 6: M-M local problem solutions for an impermeable fracture (kf/km = 10−4, d =
10−3). (a) Pressure-pressure boundary conditions (p = 1 on Γm1 , p = 0 on Γm2). (b)
Pressure-flux boundary conditions as in (18). Note that for the purpose of transmissibility
calculations one should look at pressure differences, not at absolute pressure values.

method is adopted with the possibility of choosing between the standard TPFA scheme and
the Multi-Point Flux Approximation (MPFA) scheme, the latter being capable of providing
a consistent discretization for anisotropic permeabilities. In particular, a hybrid formulation
is adopted, where the fractures are lower-dimensional with respect to the matrix grid, but
equi-dimensional for the purpose of transmissibility computations. We refer to [26, 43] for
more details on the discretization procedure.

Since we are considering triangular matrix grids, the K-orthogonality condition is not
satisfied in general, even with isotropic K, unless the triangulation is of Delaunay type.
However, even if the TPFA scheme is consistent only for K-orthogonal grids, we still used it
most of the times, since we observed that, in this case, the computed upscaled transmissibilities
and the corresponding coarse scale EDFM solution were very similar to those obtained using
a MPFA scheme, and this allowed to spare some computational resources.

Note that in the case of the M-M local problem the grid should also honour the interface
shared by the two matrix coarse blocks to allow for an easy computation of the coarse scale
flux, which is involved in the definition of the new near-fracture matrix-matrix transmissibility,
as it will be evident in Subsection 3.4.

3.4 Workflow

Let us consider the fractured system illustrated in Fig 7. The LEDFM method requires to
solve:

• a M-F local problem whenever a matrix cell is cut by a fracture;

• a M-M local problem whenever a face of the matrix grid has at least one of the neighbour
cells cut by a fracture.

Note that, before solving the local problems, the local domains are transformed to a unit
square for M-F problems and to a 2×1 rectangle for M-M problems in order to standardize the
way local problems are solved. Clearly, also the fractures cutting the local domains should be
transformed so as to reproduce the shape of the original local domain geometry. In particular,
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(a) (b)

Figure 7: LEDFM workflow. (a) It should be solved: a M-F local problem for each yellow
cell, a M-M local problem for each red cell edge. (b) Examples of M-F (orange boundary)
and M-M (green boundary) local problems domains.

since the local domain transformations mentioned above include a scaling transformation, also
the aperture of the fracture cell within the local domain should be scaled accordingly. These
geometrical transformations are introduced to allow also for a simpler implementation of the
routines responsible of the computation of local solutions.

For the M-F problem, let us now denote with Tmf = Tm ∪ Tf the local fine grid, where
Tm is the fine triangle grid of the matrix coarse cell Km and Tf the fine grid of the coarse
fracture cell Kf . Tm honours the fracture geometry, and we indicate with Fmf the set of fine
scale faces f forming the matrix-fracture interface.

Similarly, for the M-M problem we denote with Tmm = Tm1 ∪ Tm2 ∪ Tf1 ∪ Tf2 the corre-
sponding local fine grid, where Tm1 and Tm2 are the fine triangle grids of the matrix coarse
cells Km1 and Km2 , respectively, while Tf1 and Tf2 the fine grids of the coarse fracture cells
Kf1 and Kf2 , respectively. Both the coarse face em1|m2

shared by the matrix coarse blocks
and the fracture should be honoured by the fine discretization, and we indicate with Fm1m2

the set of fine scale faces f forming em1|m2
.

Once that all the M-F and M-M local problems have been solved, the corresponding new
upscaled transmissibilities are computed in the following way

Tmf = µ

∣∣∣∣ Fmf
pm − pf

∣∣∣∣ Tm1m2 = µ

∣∣∣∣ Fm1m2

pm1
− pm2

∣∣∣∣ , (19)

where Fmf is the total flux exchanged through the matrix-fracture interface, while Fm1m2 is
the total flux through the face em1|m2

of the coarse grid, and they are computed as the sum
of fine scale fluxes

Fmf =
∑

f∈Fmf

Tlmlf (plm − plf ) Fm1m2 =
∑

f∈Fm1m2

Tl1l2(pl1 − pl2),

where lm ∈ Tm, lf ∈ Tf are fine scale cells and plm , plf are their corresponding pressure values.
Tlmlf , instead, denotes the fine scale transmissibility of the face f shared by the fine scale cells
lm and lf .
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Finally, pm, pf , pm1
and pm2

are the volume weighted averages of the pressure over the
coarse cells Km, Kf , Km1 and Km2 , respectively, defined as

pm =

∑
l∈Tm |l|pl
|Km|

pf =

∑
l∈Tf |l|pl
|Kf |

pm1
=

∑
l∈Tm1

|l|pl
|Km1 |

pm2
=

∑
l∈Tm2

|l|pl
|Km2 |

,

where pl is the pressure of the fine scale cell l.

3.5 Multiscale Modification

The expression of the upscaled matrix-matrix transmissibility Tm1m2 in (19) comes from a
two-point flux approximation assumed at the coarse grid level. As mentioned before, TPFA
is accurate only for K-orthogonal grids, for instance for Cartesian grids with isotropic K.
However, fractures can be seen as objects that introduce full-tensor effects since they give
preferential paths to the flow. If one wants to accurately capture these effects, the trans-
missibility upscaling procedure for the near-fracture matrix-matrix connections needs to be
reconsidered in a multi-point flux approximation framework. To do that, one of the possible
approaches is that of replacing the M-M local problems with the Multiscale Finite Volume
Method (MSFV). For Cartesian grids, this method constructs 9-point stencil modifications
of the coarse grid cells whose coefficients are computed post-processing local numerical fine
scale solutions of elliptic problems in the interaction regions of the dual grid. A more detailed
explanation of the method is given in [24, 20].

In our case, the 9-point stencil modification of the MSFV method should be applied only
on a subset of the matrix cells of the coarse grid, i.e. those near to the fracture, so that the
increase in computational cost is limited.

Hence, the workflow of the multiscale modification of the LEDFM method is the following:

• construct the coarse dual grid;

• find the interaction regions Ω̃H of the dual grid that are cut by the fracture;

• for each intersected interaction region solve the four local fine scale problems [20, equa-
tion (2.4)] and build the corresponding transmissibility matrices T ∈ R4x4 [20, equa-
tion (1.8)], that relate the fluxes f1 to f4 across the four subinterfaces s1 to s4 of the
interaction region Ω̃H to the coarse cell pressures p1 to p4 in the corners of Ω̃H , see
Fig. 8;

• find the subset of near-fracture coarse matrix cells, i.e. those for which at least one of
the associated interaction regions is cut by the fracture;

• compute, using the transmissibility matrices T , MSFV 9-point stencil modifications [20,
equations (1.6), (1.9)–(1.16)] for the coarse matrix cells belonging to the subset of cells
defined in the previous point, hence getting a near-fracture multi-point approximation.

In our case, differently from the original version of the MSFV method, the local fine scale
problems [20, equation (2.4)] for the interaction regions should take into account the presence
of a fracture.

As already done for the M-F and M-M local problems, the conforming method mentioned
in Subsection 3.3 has been adopted to solve the local problems with triangle matrix grids.
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Figure 8: Example of an interaction region Ω̃H (black and red solid lines) cut by a fracture
(blue line). p1 to p4 are the pressures of the coarse cells (dashed lines) associated to the
interaction region Ω̃H . The subinterfaces s1 to s4 are also highlighted (green dashed lines). In
this case, the 1D problems on the boundary [20, equation (2.6)] in Γ̃2 and Γ̃3 should be replaced
with a 1D Lower-Dimensional Discrete Fracture-Matrix Model, explained in Appendix A.

Once again, the TPFA version of the method has been employed at the fine local scale
for the same reasons explained in Subsection 3.3. Clearly, the fine grids used to solve the
local problems should honour the fracture geometry as well as the four subinterfaces s1 to
s4 of the interaction region Ω̃H , see Fig. 8. Moreover, before solving the local problems
in the interaction regions, the latter are transformed in unit squares, as done for the M-
F problems. The fracture cells within the interaction regions are also rescaled in the way
previously described in Subsection 3.4.

Since the effect of fractures on the solution is non-negligible, reduced boundary condi-
tions [20, equation (2.6)] are the best choice in this case. Here, the word reduced is used
to point out that the lower dimensional version of the problem considered in the interac-
tion region should be solved on its boundary to obtain the conditions to be imposed on it.
Hence, the 1D problems that should be solved in order to get the reduced boundary conditions
should take into account the presence of the fracture when it intersects any of the boundary
segments Γ̃n, with n = 1, 2, 3, 4, see Fig. 8 for an example. This is done by replacing the
1D elliptic problems on the boundary [20, equation (2.6)] with a 1D Lower-Dimensional Dis-
crete Fracture-Matrix Model, described in Appendix A, where the intersection of the fracture
with the boundary is assumed to be a point in a mixed-dimensional setting. For simplicity,
we assume that the matrix fine scale permeability along the boundary segments is constant,
meaning that the interaction region is associated to four matrix coarse cells characterized by
the same permeability tensor, but the 1D model that will be introduced in Appendix A can
be extended to the heterogeneous case too. It is worth mentioning that, thanks to their sim-
plicity, the equations relative to the 1D Lower-Dimensional Discrete Fracture-Matrix Model
can be solved analytically, so that no further source of errors nor computational cost are
introduced in the overall procedure.
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4 Numerical Tests

In this section some numerical tests in two-dimensional fractured porous media are presented
to test the performance of the newly developed LEDFM. First, convergence tests are carried
out in the case of incompressible single-phase Darcy flow. Then, a tracer transport test is
presented, where the advective velocity field is obtained from the single-phase flow problem.

4.1 Convergence Tests

The local method is compared to two other numerical schemes, namely EDFM and pEDFM,
in terms of convergence results. The MATLAB Reservoir Simulation Toolbox (MRST), see
[31], is used to perform the simulations: EDFM and pEDFM are already implemented in the
toolbox, while routines related to local problems solutions have been written and integrated
in MRST to obtain the implementation of LEDFM. In particular, the MESH2D toolbox [12]
has been used to generate conforming triangular grids for the local problems. It should be
pointed out that some modifications have been made to the pEDFM code of MRST to correctly
simulate the fractured systems presented in this section. The most important changes, along
with some general warnings about pEDFM implementation, are detailed in Appendix B. In
the results reported in the next subsections we will refer to the original implementation of
the pEDFM code of MRST as “MRST pEDFM” and to the updated version of the code as
“updated pEDFM”.

To compare results in a quantitative way, we compute a fine scale equidimensional reference
solution pref and the error indicator is the L2 pressure error in the matrix domain, computed
with the following formula, borrowed from [13]:

e2
m =

1

|Ω| (∆pref )2

∑
I=Kref,m∩Km

|I|
(
p|Km

− pref |Kref,m

)2
,

where |Ω| indicates the size of the matrix domain, ∆pref the maximum pressure difference in
the reference solution for normalization, I a generic intersection between a reference matrix
element Kref,m and a coarse one Km, |I| the size of the intersection and p the coarse pressure
field. We stress that for the computation of the pressure matrix error defined above, only
cells belonging to the matrix part of the equidimensional grid are considered.

In Subsection 4.1.1 we show the convergence results obtained in the case of an oblique
highly permeable fracture for the different embedded methods, then in Subsection 4.1.2 we
do the same in the case of a horizontal impermeable fracture and lastly in Subsection 4.1.3
we run the same analyses for the oblique fracture presented initially, now considered to be
impermeable with respect to the surrounding porous matrix.

4.1.1 Test 1 – Permeable Oblique Fracture

The first example considers a two-dimensional square domain Ω = [0, 1]2 where an immersed
permeable oblique fracture Ωf is present, whose aperture is constant and equal to d = 10−4.
The fracture domain is then defined as

Ωf = {x ∈ Ω : x = s+ rn, s ∈ γ, r ∈ (−d/2, d/2)} ,
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Figure 9: Oblique fracture problem domain. Boundary conditions are put in evidence.

where γ is the line segment connecting the points s1 = [0.15, 0.63]> and s2 = [0.45, 0.09]>.
Using the definitions introduced in Section 2, we identify s1 with ∂γ− and s2 with ∂γ+, so
that the unit tangential vector τ and unit normal vector n to γ can be defined as explained
in Section 2. The porous matrix domain is then given by Ωm = Ω \ Ωf , or, in the case of
hybrid dimensional methods, as Ωm = Ω \ γ. Fig. 9 shows the considered domain along with
boundary conditions, where the fracture is identified with γ. The flow is driven in the upward
direction by imposing pressure values of p = 1 and p = 0 on the bottom and top boundaries
of the domain, respectively, while no-flow conditions are set on the left and right sides. No
source terms are present in the domain. Viscosity is set to µ = 1 in the whole domain. The
permeability of the matrix region is considered to be homogeneous, isotropic and equal to
Km = kmI, with km = 1. The same stands for the fracture permeability tensor, which is
equal to Kf = kfI.

Two different scenarios are considered: one in which the fracture is 8 orders of magni-
tude more conductive than the matrix (kf/km = 108), and another with a lower conductiv-
ity contrast, where the fracture is 4 orders of magnitude more conductive than the matrix
(kf/km = 104).

The equidimensional reference solution is computed on a very fine grid that discretizes the
matrix in 1, 512, 320 triangular elements and the fracture in 5, 376 quadrilateral elements. The
software Gmsh has been used to create the grid [17]. The Virtual Element Method of order
k = 2, already implemented in MRST and based on [28], is used to discretize the problem.

Fig. 10a shows the reference solution in the scenario in which kf/km = 108, while in
Fig. 10b the corresponding convergence plot for all the competing embedded methods is
reported. We employ N ×N square Cartesian grids, where N is gradually increased. To be
specific, grids with N = 19, 37, 73, 145, 289 cells over each axis are considered. We observe
that all methods show approximately the same behaviour, i.e. linear convergence.

Similar results are obtained for the second scenario in which kf/km = 104. In particular,
Fig. 11a shows the corresponding reference solution, while Fig. 11b the convergence plots,
that show once again linear behaviours for all the methods.
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(a) (b)

Figure 10: Permeable oblique fracture. Scenario kf/km = 108. (a) Reference solution. (b)
Convergence plot.

(a) (b)

Figure 11: Permeable oblique fracture. Scenario kf/km = 104. (a) Reference solution. (b)
Convergence plot.
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Figure 12: Horizontal fracture problem domain. Boundary conditions are put in evidence.

4.1.2 Test 2 – Impermeable Horizontal Fracture

The second example considers the same two-dimensional square domain Ω = [0, 1]2, but this
time an immersed impermeable horizontal fracture is present. In particular γ now is the line
segment joining the points s1 = [0.25, 0.5]> and s2 = [0.75, 0.5]>. The same aperture of
the previous case is considered. Fig. 12 depicts the considered domain along with boundary
conditions, which are the same of the previous example. As in Test 1, no source terms are
present.

Viscosity and permeability tensors are also taken to be equal to Test 1, but, since the
fracture considered now is impermeable, the two scenarios that will be examined are kf/km =
10−8 and kf/km = 10−4.

The equidimensional reference solution is computed on a fine rectilinear grid that dis-
cretizes the matrix in 1, 000, 000 rectangular elements and the fracture in 10, 000 rectangular
elements as well. The grid is progressively refined in the y direction as we approach the frac-
ture. MRST has been used for generating the grid and solving the problem using a simple
TPFA scheme, since the grid is K-orthogonal.

Fig. 13a shows the reference solution in the scenario in which kf/km = 10−8, while
in Fig. 13b the corresponding convergence plots for all the competing embedded methods
are reported. The square Cartesian grids have, for the different refinement levels, N =
5, 9, 19, 37, 73, 145 cells over each axis. With this choice we avoid that the horizontal fracture
coincides with the matrix grid interfaces, which is a limit case not yet handled by the local
method. We notice that the classical EDFM is not able to provide the correct solution since
the fracture is impermeable, while pEDFM and LEDFM can do it. In particular, we note
that the MRST and updated pEDFM curves coincide since the fracture is highly impermeable
and the fracture projection path is determined correctly for both cases. However, the order
of convergence is approximately equal to O(

√
h) and not linear as in the permeable case for

both pEDFM and LEDFM. This is due to the fact that, see Fig. 14, the fracture is cutting
matrix grid cells. There, in embedded FV methods, pressure is represented by a single value
so an error of O(1) is observed with respect to the true, discontinuous solution. If the number
of the cut cells is O(N) this leads to the observed

√
h convergence. Indeed, if we exclude the

cut cells from error computation, linear convergence is restored. We also notice that lower
errors are obtained with the local method compared to pEDFM.
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(a) (b)

Figure 13: Impermeable horizontal fracture. Scenario kf/km = 10−8. (a) Reference solution.
(b) Convergence plot.

(a) (b)

Figure 14: Impermeable horizontal fracture. Scenario kf/km = 10−8. (a) LEDFM solution
on 37× 37 grid. (b) pEDFM solution on 37× 37 grid.
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(a) (b)

Figure 15: Impermeable horizontal fracture. Scenario kf/km = 10−4. (a) Reference solution.
(b) Convergence plot.

(a) (b) (c)

Figure 16: Impermeable horizontal fracture. Scenario kf/km = 10−4. (a) LEDFM solution
on 37× 37 grid. (b) MRST pEDFM solution on 37× 37 grid. (c) updated pEDFM solution
on 37× 37 grid.
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Moreover, from Fig. 14 we observe that pressure maps for the pEDFM and LEDFM
method are quite different, especially in correspondence of the matrix cells cut by the fracture:
in pEDFM the fracture is projected to the lower matrix grid interfaces and the pressure is
discontinuous across them, while in LEDFM the pressure jump is redistributed on the upper
and lower interfaces.

Moving to the second scenario in which kf/km = 10−4, in Fig. 15a and Fig. 15b the
reference solution and the convergence plots are shown, respectively. Here, an additional
refinement level for the square Cartesian grids corresponding to N = 289 has been considered.
The main difference in performance with respect to the previous case is observed for the MRST
pEDFM curve. Indeed, the convergence rate of the MRST pEDFM degrades as the grid is
refined, while this does not occur for the updated version and LEDFM. This occurs since the
transmissibility formulae implemented in MRST apply a simple harmonic averaging of the
permeabilities, as explained in detail in Appendix C.

Fig. 16 depicts the pressure maps obtained for the second scenario in the case of a 37× 37
grid for the LEDFM, MRST pEDFM and updated pEDFM method, respectively. Observa-
tions similar to those made for Fig. 14 apply to the LEDFM and updated pEDFM pressure
maps. The pressure map of the MRST pEDFM, instead, shows an higher pressure jump at
the fracture with respect to the other methods. This is, once again, the consequence of using
the wrong pEDFM transmissibility formulae with intermediate (impermeable) fracture-matrix
permeability contrast values, as can be seen in Fig. 27c for the 1D case.

4.1.3 Test 3 – Impermeable Oblique Fracture

The third and last example considers the same configuration described in the first test, see
Fig. 9, but this time the oblique fracture is considered to be impermeable. In particular, two
scenarios in which kf/km = 10−8 and kf/km = 10−4 will be examined.

Fig. 17a shows the reference solution in the scenario in which kf/km = 10−8, while in
Fig. 17b the corresponding convergence plot for all the competing embedded methods is
reported, including the multiscale modification of the LEDFM method (LEDFM+MSFV).
The square Cartesian grids have, for the different refinement levels, N = 19, 37, 73, 145, 289
cells over each axis, as in the permeable case. As already mentioned in the second example, the
classical EDFM is not capable of representing this scenario due to the fact that the fracture
is impermeable, regardless of the grid resolution. The LEDFM method, instead, still shows
a good convergence behaviour, corresponding to a convergence rate of approximately O(

√
h),

as in the horizontal fracture case. Similar results are obtained for the multiscale modification
of the local method. In particular, the latter performs slightly better than the standard
version for coarser grids and slightly worse for finer grids. The updated pEDFM method also
performs well, with slightly lower errors compared to both LEDFM versions. In the MRST
pEDFM case, instead, as the grid is refined the error rises. This is because, due to the MRST
implementation, the projection of the fracture may not create a continuous path and, as the
grid is refined, more and more holes are created in the projection, allowing the fluid to flow
across the fracture through multiple spots. These “leaks” greatly lower the barrier effect of
the fracture, so that very inaccurate pressure solutions are obtained.

Fig. 19 depicts the pressure for a 145 × 145 grid for all the competing methods: note
that the pressure jump across the fracture is not correctly captured with the MRST pEDFM,
contrarily to the other methods, as if the presence of the impermeable fracture is not accounted
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(a) (b)

Figure 17: Impermeable oblique fracture. Scenario kf/km = 10−8. (a) Reference solution.
(b) Convergence plot.

(a) (b)

Figure 18: Impermeable oblique fracture. Scenario kf/km = 10−4. (a) Reference solution.
(b) Convergence plot.
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(a) (b)

(c) (d)

Figure 19: Impermeable oblique fracture. Scenario kf/km = 10−8. (a) MRST pEDFM
solution on 145 × 145 grid. (b) updated pEDFM solution on 145 × 145 grid. (c) LEDFM
solution on 145× 145 grid. (d) LEDFM+MSFV solution on 145× 145 grid.
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(a) (b)

(c) (d)

Figure 20: Impermeable oblique fracture. Scenario kf/km = 10−4. (a) MRST pEDFM
solution on 145 × 145 grid. (b) updated pEDFM solution on 145 × 145 grid. (c) LEDFM
solution on 145× 145 grid. (d) LEDFM+MSFV solution on 145× 145 grid.
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for, especially with fine grids, as it happens in the classical EDFM.
Fig. 18a shows the reference solution in the second scenario in which kf/km = 10−4, while

in Fig. 18b the corresponding convergence plot for all the methods is reported. The same grids
used in the first scenario are employed. This time the standard version of LEDFM shows a
poor convergence rate with respect to the other methods, apart of course from the classical
EDFM and the MRST pEDFM, the latter showing the same behaviour observed in the high
contrast case. We believe that, in this moderate contrast case, full-tensor effects due to the
presence of the fracture in conjunction with non negligible flow velocities in the vicinity of it
could lead to inconsistencies with a TPFA approximation. Indeed, the Cartesian background
grid is K-orthogonal only if K is diagonal whereas fractures create different preferential
directions. We thus applied the MSFV version of the method obtaining an improvement of
the convergence rate with respect to the standard version of the method. In particular, for
coarser grids it provides very similar results to those of the pEDFM, whose updated version
overall performs slightly better than the MSFV version of the local method. However, the
trend is still not optimal for fine grids: as the grid is refined the error tends to saturate
reaching an almost constant value.

Fig. 20 depicts the pressure maps obtained for the second scenario in the case of a 145×145
grid for all the competing methods. The standard LEDFM map, as well as the MRST
pEDFM one, are substantially different from the reference solution, where the pressure jump
across the fracture is more visible. In the case of the multiscale modification of LEDFM and
updated pEDFM, instead, the pressure distribution is represented more accurately than with
the previous methods.

4.2 Tracer Transport Test

After verifying the convergence of the local method in the incompressible single-phase flow
case, we want to use the corresponding velocity field to transport a tracer through a fractured
porous medium. This allows us to test the accuracy of the velocity field.

Denoting the tracer concentration with the scalar quantity c, its advective transport
through a porous medium Ω is described by the conservation equation:

Φ
∂c

∂t
+∇ · (cu) = 0 in Ω, (20)

where Φ is the porosity and u = −(K/µ)∇p the velocity field obtained from the single-phase
flow problem. We consider Dirichlet boundary conditions on the inflow boundary:

c = cD on ΓDc , ΓDc = {x ∈ ∂Ω: u · n < 0}, (21)

where cD is the prescribed concentration value on the inflow boundary ΓDc and n the unit
outward normal vector to it.

The transport term is approximated with the standard first-order upwind scheme and
the backward Euler method with a fixed time step is used for time discretization. The flow
and transport problems are solved both with the classic and local versions of the embedded
method on a 51 × 51 Cartesian grid and the results are compared to those obtained with
a conforming method, already mentioned in Subsection 3.3, which uses triangular grids of
2594 elements and the MPFA scheme. In-house codes have been written to implement the

29



embedded methods to solve both the single-phase flow and tracer transport problem. MRST
was used, instead, to simulate both problems with the conforming method.

Let us now consider a square domain Ω = (0, 100)2 crossed by a fracture γ, represented
by the line segment joining the points s1 = [25, 24]> and s2 = [75, 74]> and characterized by
a constant aperture d = 10−2. The flow is driven upwards by imposing p = 1.1 · 106 on the
bottom boundary and p = 106 on the top boundary, while the remaining part of the boundary
is impermeable. Hence, the inflow boundary is the bottom one and a tracer concentration of
cD = 5.8 · 10−5 is imposed here. µ = 2.8 · 10−4, Φ = 0.15 in the whole domain and the matrix
and fracture permeability tensors are homogeneous and isotropic with values km = 10−13 and
kf = 10−9, respectively, so that the fracture is more conductive than the porous matrix. The
final simulation time is 5 · 107 discretized with 100 time steps.

In Fig. 21 we observe that the pressure fields computed with all the considered methods
are very similar to each other.

(a) Classic EDFM. (b) Local EDFM. (c) Conforming DFM.

Figure 21: Tracer transport test. Pressure field for all the considered methods.

(a) Classic EDFM. (b) Local EDFM. (c) Conforming DFM.

Figure 22: Tracer transport test. Tracer concentration field for all the considered methods
at time t = 1.5 · 107.

In Fig. 22 the tracer concentration distribution is depicted for both the embedded and
conforming methods at time t = 1.5 · 107. Similar results are obtained for the two embedded
methods, but small differences are observed near to the upper fracture tip, where higher
concentration values are attained with LEDFM compared to the classic version. This is
believed to be the consequence of the slightly higher flux values obtained with LEDFM near
fracture tips. The conforming DFM concentration distribution, instead, is quite different from
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the previous ones, especially in the near-fracture region: this is believed to happen due to
differences in the gridding strategy and matrix-fracture flow modelling between conforming
and embedded methods. Indeed, in Fig. 23 we can observe the net flux exiting the fracture
in the embedded and the conforming methods, computed as the difference between the flux
exiting the fracture and directed towards the upper cells and the flux entering the fracture
from the lower cells for the conforming method, while in the case of embedded methods it is
represented by the flow directed from the fracture to the corresponding cut cell, computed
from the matrix-fracture flow formula (5). The average trend (excluding the oscillations due
to grid effects) is similar for the two methods and it shows that the flux is entering the fracture
from the lower tip to approximately half of the fracture length and exiting the fracture from
the middle of it to the upper tip. However net flux values are greater in magnitude for the
conforming method near to the fracture tips with respect to embedded methods, justifying
the different concentration maps.

Figure 23: Tracer transport test. Net flux exiting the fracture for all the considered methods.
s is the arc length variable going from the lower to the upper fracture tip.

5 Conclusions

This paper presents a novel embedded method for flow simulation in fractured porous media,
namely the Local Embedded Discrete Fracture Model (LEDFM). Its formulation requires the
solution of local problems, whose definitions are inspired from flow-based upscaling methods,
for the computation of improved transmissibility coefficients.

The performance of the new method was compared to other well-known embedded meth-
ods, namely the Embedded Discrete Fracture Model (EDFM) and the Projection-based Embed-
ded Discrete Fracture Model (pEDFM). The results showed that LEDFM is able to capture
the effect of the presence of both permeable and impermeable fractures with any orientation,
even though, when dealing with impermeable fractures having intermediate conductivity con-
trasts, and not parallel to the underlying grid, a degradation of the convergence was observed
for fine grids.

To improve the performance of the local method a modified version of LEDFM replacing
the M-M local problems with the Multiscale Finite Volume Method (MSFV) was proposed.
The suggestion for the adoption of the MSFV method stems from the observation that full-
tensor effects are accurately represented with MPFA methods, and fractures can be seen as
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objects that introduce full-tensor effects since they give preferential paths to the flow. Indeed,
using a MSFV method is equivalent to adopting a MPFA scheme at the coarse grid level, while
the solution of M-M local problems on cells pairs corresponds to the adoption of a TPFA
scheme. Better results are obtained with the multiscale modification of the local method for
tilted impermeable fractures having intermediate conductivity contrasts. However, some loss
of convergence is still experienced in these cases.

Results similar to those obtained with the local method were observed with pEDFM, pro-
vided that the correct transmissibility expressions are used and that fracture cells projections
are computed properly, as pointed out in Appendix B.

The local embedded method applicability was also verified for a tracer transport problem,
where the velocity field computed in the single-phase flow case was used to transport the
tracer through a porous medium cut by a conductive fracture. The results were compared
both with the classic EDFM and a conforming method. The net flux exiting the fracture
showed oscillations for the embedded methods due to grid effects, but the average trends were
similar to that of the conforming method. Moreover, LEDFM net flux values were closer to
those of the conforming method compared to the classic EDFM, hence showing an improved
matrix-fracture coupling.

In conclusion, LEDFM is an accurate, although expensive, model. Indeed, it requires the
solution of many local problems. In order to reduce the computational burden of the method,
neural networks could be used in an offline case and trained to compute transmissibilities for
different fractures geometries and permeability contrasts. This extension will be the subject
of a forthcoming paper.

Possible directions for future work include the possibility of allowing the presence of more
than one fracture in the local domain (possibly intersecting), the handling of the limit case of
fractures lying on the local domain boundary and the extension of the method to the three-
dimensional case. Furthermore, the performance of the method in the case of impermeable
intermediate conductivity contrasts should be improved. To do that, first the performances
of the multiscale modification of the local method need to be further investigated, as well as
the reasons behind the convergence degradation observed in some cases.

A 1D Lower-Dimensional Discrete Fracture-Matrix Model

This section provides the details of the 1D Lower-Dimensional Discrete Fracture-Matrix
Model, that can be obtained, for the most part, as a particularization of the correspond-
ing two- and three-dimensional model introduced, e.g., in [33, 15]. Such problems provide the
boundary conditions for the local problem in the multiscale version of the local method.

Let us consider the case of a single “fracture” in the 1D porous medium domain, and in-
compressible single-phase flow. A “fracture” in this context should be intended as a narrow 1D
region with respect to the porous domain size, characterized by a very different permeability
value compared to the neighbouring matrix regions.

The domain is Ω = (0, 1) ⊂ R, where the fracture is originally equidimensional, and
corresponds to the region Ωf = (xf − d/2, xf + d/2) ⊂ Ω. In the equi-dimensional case we
have a Darcy problem with a different permeability in Ωf and in the remaining part of the
domain, Ωm = Ω \ Ωf , and pressure and flux continuity at the interface. We want to reduce
the dimensionality of the fracture by collapsing it to a point to obtain a reduced formulation
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Figure 24: Domain Ω for the 1D Lower-Dimensional Discrete Fracture-Matrix Model. The
fracture is positioned at x = xf and has a thickness d� 1.

of the Darcy problem. Assuming that the thickness d of the fracture region is much smaller
than the characteristic size of the porous medium domain we collapse the fracture region Ωf

to a point γ = {xf}. The matrix region is now given by Ωm = Ω \ γ, which can be split in
two disjoint parts: Ωm1 = (0, xf ) on the left and Ωm2 = (xf , 1) on the right of the fracture γ,
as shown in Fig. 24.

Let us consider the domain Ωm1 . The 1D incompressible single-phase flow equation simply
becomes

d2p

dx2
= 0 x ∈ Ωm1 , (22)

since the permeability is constant in this region. Solving equation (22) with the boundary
conditions {

p(x = 0) = p0

p(x = xf−) = pL
,

where pL is the pressure on the left side of the fracture, gives

p(x) =
pL − p0

xf
x+ p0 x ∈ Ωm1 . (23)

Repeating the same steps for the domain Ωm2 , but with the boundary conditions{
p(x = xf+) = pR

p(x = 1) = p1

,

where pR is the pressure on the right side of the fracture, gives

p(x) =
p1 − pR
1− xf

x+
pR − p1xf

1− xf
x ∈ Ωm2 . (24)

pL and pR can be obtained by particularizing to the 1D case the interface conditions
described in [15, Problem 3.2] for the multi-dimensional case. Since the fracture is 0D the net
incoming flux should be null in the absence of source terms, therefore(

dp

dx

)
L

=

(
dp

dx

)
R

. (25)

Thus the pressure slopes will be identical to the left and right of the fracture. The second
interface condition, instead, becomes

−d
2

km
kf

[(
dp

dx

)
L

+

(
dp

dx

)
R

]
= pL − pR, (26)
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Figure 25: Example of a pressure profile p(x) for the 1D Lower-Dimensional Discrete
Fracture-Matrix Model. Case p1 > p0.

where (
dp

dx

)
L

=
pL − p0

xf
,

(
dp

dx

)
R

=
p1 − pR
1− xf

.

Using these relations in equations (25) and (26) we get
pL − p0

xf
=
p1 − pR
1− xf

−d
2

km
kf

(
pL − p0

xf
+
p1 − pR
1− xf

)
= pL − pR

,

which is a linear algebraic system giving the following expressions for pL and pR:

pL =
(1− xf )kf + dkm

kf + dkm
p0 +

xfkf
kf + dkm

p1, (27)

pR =
(1− xf )kf
kf + dkm

p0 +
xfkf + dkm
kf + dkm

p1. (28)

Finally, the pressure profile for the entire 1D porous medium domain is given by

p(x) =



kf
kf + dkm

(p1 − p0)x+ p0 x ∈ Ωm1 = (0, xf ),

2(1− xf )kf + dkm
2(kf + dkm)

p0 +
2xfkf + dkm
2(kf + dkm)

p1 x ∈ γ = {xf},
kf

kf + dkm
(p1 − p0)x+

kf
kf + dkm

p0 +
dkm

kf + dkm
x ∈ Ωm2 = (xf , 1).

(29)

A qualitative trend of the pressure is shown in Fig. 25 for a case in which p1 > p0.

B Notes on the pEDFM implementation

Here we present some of the most important modifications made to the pEDFM code of
MRST, described in [37, 32], along with some general warnings about the implementation of
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the method itself. The changes were necessary to correctly simulate the examples proposed
in Section 4.1.

First of all, the code implemented in MRST employs the transmissibility expressions pro-
posed in the original pEDFM paper [49]. To be precise, and using the notation introduced
in Section 2.2, the distances dmHf and dmV f are used in the non-neighbouring transmissibil-
ity formulae instead of the average ones 〈d〉mHf and 〈d〉mV f . However, a simple harmonic
averaging of the permeabilities is used to compute the transmissibilities instead of a distance-
weighted one: this has no effect on the modified matrix-matrix transmissibility expressions,
but leads to differences in the matrix-fracture and non-neighbouring matrix-fracture trans-
missibility formulae with respect to the original version of the method. The latter can have
a negative impact on the accuracy of the numerical solution if impermeable fractures are to
be simulated, especially if they are thin, as explained in detail in Appendix C. For this rea-
son, the transmissibility formulae (7)–(10) proposed in [25] have been implemented in MRST,
which give accurate results in every situation, as also pointed out in Appendix C.

Another issue detected in the code is the incomplete identification of the non-neighbouring
matrix-fracture connections. Indeed, it may happen that some of them are missing and this
negatively affects the quality of the numerical solution. This problem has also been solved.

As stated in [49], the pEDFM method requires the construction of a continuous projection
path of the fracture cells on the matrix grid faces in order for it to work. Note that the
construction of this path is, in general, not straighforward: indeed, as can be seen in Fig. 26,
there are cases in which it is not sufficient to consider only the cells neighbouring a matrix cell
cut by a fracture to obtain a continuous projection path of the fracture itself. Not considering
this possibility, as it happens for the original implementation of the pEDFM code in MRST,
results in having holes in the fracture projection path in some cases, which results in leakage
across the fracture. If the fracture is impermeable, the holes greatly lower its barrier effect
on the fluid flow leading to very inaccurate pressure solutions, as described in Section 4.1.3.

Remark B.1. There are special cases in which the straightforward algorithm implemented
in MRST produces a correct result, i.e. the path is continuous even if one considers only
neighbouring matrix cells. If we consider Cartesian grids, such cases correspond to: horizon-

(a) (b)

Figure 26: Fracture projection on matrix grid faces. (a) Only the cells neighbouring a cut
cell are considered in the procedure. A hole is created in the fracture projection path. (b)
Cells both neighbouring and not a cut cell are considered in the procedure.
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tal fractures, vertical fractures, and fractures forming an angle α = arctan(hy/hx) with the
horizontal direction, where hx and hy are the discretization steps in the x and y directions,
respectively.

The code has been fixed to obtain continuous fracture projection paths for any fracture
inclination and grid refinement level, but it must be observed that this was possible thanks to
the simplicity of the structure of the Cartesian grid. More complex grids would entail more
difficulties in the implementation of the method.

C Comparison of pEDFM formulations in a 1D setting

In this section we want to compare the implementation of pEDFM in MRST, denoted as
”MRST pEDFM”, and the updated version of the code where the formulation proposed in [25]
is adopted, denoted as ”updated pEDFM”. The two formulations differ in the way some of
the transmissibilities are defined, as explained in Appendix B. To this aim we consider, for
the sake of simplicity, a 1D incompressible single-phase flow problem in presence of a single
fracture with pEDFM. Ω = (0, 1) ⊂ R and the fracture corresponds to a point γ = {xf}, with
xf = 1/2. The matrix domain is then given by Ωm = Ω \ γ. Let us denote with km and kf
the porous matrix and fracture permeability, respectively, and consider a null left boundary
pressure and a unit right boundary pressure, i.e. p0 = 0 and p1 = 1.

Far from being a proof, this comparison will however show that the MRST version cannot
simulate well some impermeable fracture scenarios, especially if the fracture is thin. On the
other hand, the updated version will prove to be accurate in any situation.

Let us now discretize the 1D domain (0, 1) in N subintervals of width h = 1/N . The nodes
of the discretization are xi = ih, with i = 0, . . . , N , while the grid cells and their centroids
are defined as Ci = [xi−1, xi] and xCi = (xi−1 + xi) /2, respectively, with i = 1, . . . , N . N is
assumed to be an odd number so that the fracture does not coincide with a grid node.

The matrix-matrix transmissibility Tm1m2 and the modified matrix-matrix transmissibility
Tmmn , where mn is the non-neighbouring matrix cell, i.e. the matrix cell sharing with m the
grid point on which the fracture is projected, in this case are given by

Tm1m2 =
km
h
, Tmmn = 0

for both pEDFM versions. Indeed, the two versions differ only in the expressions for the
matrix-fracture and non-neighbouring matrix-fracture transmissibilities. Note that Tmmn is
always null in the one-dimensional case since the fracture projection always coincides with
the entire interface shared by the cells m and mn, i.e. a point.

Particularizing to the 1D case the matrix-fracture and non-neighbouring matrix-fracture
transmissibility expressions of the MRST pEDFM we obtain

TMmf =
8

h

kmkf
km + kf

, TMmnf =
2

h

kmkf
km + kf

, (30)

where the superscript M stands for “MRST”.
Proceeding in a similar manner, from (7), (8) and (10) we obtain the following transmis-

sibility formulae for the updated version

TUmf =
4kmkf

2kmd+ kfh
, TUmnf =

2kmkf
kmd+ 2kfh

, (31)
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(a) Rk = 108. (b) Rk = 10−8. (c) Rk = 10−4.

Figure 27: MRST and updated pEDFM pressure solutions compared with the analytical so-
lution of the 1D Lower-Dimensional Discrete Fracture-Matrix Model (DFMM-L) for different
permeability contrast cases. The fracture aperture is set to d = 10−4.

where the superscript U stands for “Updated”.
We now compare the results obtained using both versions with the corresponding analyti-

cal solution (29) of the 1D Lower-Dimensional Discrete Fracture-Matrix Model. The fracture
aperture and matrix permeability are set to d = 10−4, km = 1, respectively, and we exam-
ine three different permeability contrasts Rk := kf/km between porous matrix and fracture
domains: Rk = 108, Rk = 10−8, and Rk = 10−4.

Fig. 27 shows the numerical and analytical pressure solutions for the different permeability
contrast cases, for N = 21. From Figs. 27a and 27b we note that both pEDFM versions pro-
vide results very close to the analytical ones in the highly permeable and impermeable cases.
However, in the intermediate impermeable case (Rk = 10−4), depicted in Fig. 27c, it is clear
that the MRST pEDFM is not able to capture correctly the solution behaviour, contrarily to
the updated version. In particular, the barrier effect of the fracture is overestimated, leading
to a much higher pressure jump across the fracture than that of the analytical and updated
pEDFM solutions. This occurs because a simple harmonic averaging of the permeabilities is
adopted in the matrix-fracture and non-neighbouring matrix-fracture transmissibility expres-
sions of the MRST pEDFM, so that the fracture aperture is not accounted for.

To study the source of error, we determine the expressions of the numerical pressures for
both the MRST and updated versions of pEDFM in a very coarse case, e.g. with N = 5
subintervals, solving exactly the linear system stemming from the finite volume discretization
and then we compute the L1 errors of the numerical solution with respect to the analytical
one. Although this is more an experiment rather than a formal proof, to make the comparison
as fair as possible, the fracture position is shifted to xf = 0.6 for the analytical solution, since
in the pEDFM formulation the fracture is projected from xf = 0.5 right onto x = 0.6, i.e.
on the right interface of the matrix cell containing the fracture. This is possible since the
fracture position xf has no effect on the slope of the analytical linear pressure solution, as
can be seen in (29).

The linear system arising from the discretization can be written as

Ap̃ = q, (32)

where p̃ =
[
p̃>m p̃f

]> ∈ R6 is the unknown vector of pressures, p̃m ∈ R5 being the vector of
matrix pressures and p̃f the fracture pressure. A ∈ R6×6 is the coefficient matrix and q ∈ R6
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the right hand side vector containing boundary contributions, and are given by

A =



3km
h −km

h 0 0 0 0

−km
h

2km
h −km

h 0 0 0

0 −km
h

km
h + Tmf 0 0 −Tmf

0 0 0 km
h + Tmnf −km

h −Tmnf

0 0 0 −km
h

3km
h 0

0 0 −Tmf −Tmnf 0 Tmf + Tmnf


, q =



2km
h p0

0
0
0

2km
h p1

0

 ,

where the blocks contain the terms related to the porous matrix or pertaining to the fracture.
Setting p0 = 0 and p1 = 1 as boundary pressures, knowing the expressions for Tmf and

Tmnf (30)–(31) for the MRST and updated pEDFM versions, respectively, and using the
fact that h = 1/5 yields the following expressions for the matrix pressures once the linear
system (32) has been solved

p̃Mm =
1

5 + 37Rk


4Rk
12Rk
20Rk

5 + 25Rk
5 + 33Rk

 , p̃Um =
1

20d+ 21Rk


2Rk
6Rk
10Rk

20d+ 15Rk
20d+ 19Rk

 ,
where p̃Mm is the vector of matrix pressures of the MRST pEDFM and p̃Um the one relative to
the updated version.

Moreover, using (29), we compute the vector of analytical pressures pa at the grid cell
centroids xCi :

pa =
1

10(Rk + d)


Rk
3Rk
5Rk

7Rk + 10d
9Rk + 10d

 .
The L1 error ||E||1 is defined as

||E||1 = h
N∑
j=1

|Ej | with Ej = paj − p̃mj ,

where paj and p̃mj are the j-th elements of the pressure vectors pa and p̃m, respectively. The
L1 errors associated to the MRST and updated versions of pEDFM, denoted as ||E||M1 and
||E||U1 , are given respectively by

||E||M1 =
13

50

Rk|5− 3Rk − 40d|
37R2

k + 5Rk + 37Rkd+ 5d
, ||E||U1 =

13

50

R2
k

21R2
k + 20d2 + 41Rkd

.

Fig. 28 depicts the trend of the errors with respect to the permeability ratio Rk for a fixed
value of the fracture aperture d = 10−4. We notice that when the fracture is much more
impermeable than the porous matrix the errors tend to be small for both pEDFM versions,
while it can be clearly seen that the error of the MRST version of pEDFM is much higher
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Figure 28: MRST and updated pEDFM L1 errors for variable Rk. The fracture aperture is
set to d = 10−4.

(a) MRST pEDFM. (b) Updated pEDFM.

Figure 29: L1 error maps for variable Rk and d.

than that of the updated one from low to intermediate (impermeable) conductivity contrast
values.

We stress that the error is computed for a fixed coarse grid. Refining the grid would then
reduce the value of the aforementioned constant error.

If we also consider the dependence of the error on the fracture aperture d we obtain the
2D maps shown in Fig. 29 for the L1 errors. The interval of fracture aperture values is
chosen to be [10−8, 10−1] to cover cases of both thick and thin fractures with an upper bound
equal to h/2, so that it is smaller than the grid size h. The L1 error map for the MRST
pEDFM (Fig. 29a) shows that as d decreases, the model is inaccurate for a wider range of
Rk. As d approaches its upper bound value, instead, we obtain errors similar in magnitude to
those obtained with the updated pEDFM. The L1 error for the updated pEDFM, shown in
Fig. 29b, is always low, albeit depending on the fixed grid size. In particular, as the fracture
gets thicker, the interval of impermeable Rk values for which the error is very low widens
starting from impermeable fractures.
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The results obtained show that the adoption of the updated version of pEDFM is more
appropriate than the MRST one, especially if one wants to correctly represent the presence
of thin, impermeable fractures. Assuming that similar arguments also apply to finer 1D grids
and multidimensional cases, the updated version of pEDFM should always be preferred over
the MRST one.
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