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1 Introduction

Consider the nonlinear optimal control problem

. 1 v
min J(y, u) == =|ly — yall72 + s llull 72 + Bllul L1,
YU 2 2

st. —Ay+cy+bo(y) =f+uin 2, y =0 on 912, (1)
U € Upg :={v € L*(N) : |v| <a@in 2},

where ||+ ||~ denotes the usual norm for L™(£2) with 1 < r < oo, the functions
ya, f € L2(£2) are given, and the scalar parameters b,c, 3 > 0 and v, 3 > 0
are known. Our model includes problems such as the simplified Ginzburg-
Landau superconductivity equation as well as inverse problems where L'-
regularization is used to enhance sparsity of the control function u. For sim-
plicity, the domain 2 C R? is assumed to be a rectangle (0, L) x (0, L). The
function ¢ : R — R is assumed to be of class C?, with locally bounded
and locally Lipschitz second derivative and such that 0y¢(y) > 0. These
assumptions guarantee that the Nemytskii operator y(-) — ¢(y(+)) is twice
continuously Fréchet differentiable in L°((2). In this setting, the optimal
control problem (1) is well posed in the sense that there exists a minimizer
(y,u) € X x L?(2), with X := H}(2)NL>(£2), cf. [7, 1]. Our goal is to derive
efficient nonlinear preconditioners for solving (1) using domain decomposition
techniques.
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Let (y,u) € X x L%(£2) be a solution to (1). Then there exists an adjoint
variable p € X such that (y, u,p) satisfies the system [6, Theorem 2.3]

—Ay+cy+bo(y) =f+u in {2 with y = 0 on 912,
—Ap+cep+ b (yY)p=1y — ya in 2 with p =0 on 942,
u = p(p),

where p: L>®(82) — L?(02) is

p(p) =max(0, (=B — p)/v) +min(0, (8 — p)/v)

—max(0, —u + (—p — 8)/v) — min(0,a + (—p + B)/v). 2)

We remark that for 8 = 0, the previous formula becomes p(p) = Py, (—p/v),
which is the usual projection formula that leads to the optimality condition
u = Py, (—p/v); see [7]. Moreover, if 5 = 0 with & = oo, one obtains that
wu(p) = —p/v, which implies the usual optimality condition vu+p = 0, where
v+ p is the gradient of the reduced cost functional J(u) = J(y(u), u) [7].

Eliminating the control using u(p), the first-order optimality system be-
comes

—Ay+cy+be(y) = f + p(p) in 2 with y =0 on 942,
—Ap+cp+ b (y)(p) =y —ya  in 2 with p =0 on 9.

3)
This nonlinear and nonsmooth system admits a solution (y,p) € X2 [1, 7).

2 Optimized Schwarz method and preconditioner

In this section, we introduce an optimized Schwarz method (OSM) for solving
the optimality system (3). We consider the non-overlapping decomposition
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Fig. 1 Non-overlapping domain decomposition.

of {2 shown in Fig. 1 and given by disjoint subdomains §2;, j = 1,..., N
such that 2 = UN.,02;. The sets I'; :== 2; N 21,5 = 1,...,N — 1 are
the interfaces. Moreover, we define Fje"t =002;,Nn082,j=1,...,N, which
represent the external boundaries of the subdomains. The optimality system
(3) can be written as a coupled system of N subproblems defined on the

subdomains (2;, j =1,..., N, of the form
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—Ay; + cy; +bp(y;) = f; + p(p;) in {25, (4a)
—Ap; + epj + 09" (y;)(Ps) = Yj — Ya; in £2; (4b)
y;=0,p; =0 on I7*", (4c)

qy; + 02y; = qyj+1 + Oxyjt1 on I}, (4d)

qp;j + 0xpj = qpj+1+ Ozpjt1 on I}, (4e)

qYj — 0zY; = qYj—1 — Ozyj—1 on Ij_q, (4f)

qpj — 0zpj = qpj—1 — Ozpj—1 on I'j_q, (4g)

for j = 1,..., N, where for j € {1, N} the boundary conditions at Iy and
I'y, respectively, must be replaced with homogeneous Dirichlet conditions.
Here, ¢ > 0 is a parameter that can be optimized to improve the convergence
of the OSM; see, e.g, [5, 2]. The system (4) leads to the OSM, which, for
a given (y9,p?)}, consists of solving the subdomain problems below for

yh = (yh,ph), k=1,2,3,...:

— Ay +eyf +bo(yy) = fi + u(p]) in £2;, (5a)
—ApF 4 epf + b () (0F) = ¥ — ya, in £2; (5b)
y? =0, on I, (5¢)

qy§ +0uyy = ayii + ey on I, (5d)

ay; =0y =ay, i —Oys oD, (50)

Now, we use the OSM to introduce a nonlinear preconditioner by setting
v; = (y;,p5), j =1,..., N, and defining the solution maps S; as

S1(y2) =y1 solution to (4) with j = 1 and y2 given,
Si(¥yj—1,¥j+1) =y; solution to (4) with 2 < j < N —1 and y,;1; given,
Sn(yn-1) =y~ solution to (4) with j = N and yny—_1 given.

Hence, using the variable y = (y1,...,yn~), we can rewrite (4) as
— Si(y2)
y2 = 52(y1,¥3)
Fr(y) =0, where Fp(y):= : : (6)

YyN-1—SN-1(yN—2,¥N)
yN —Sn(yn—1)

This is the nonlinearly preconditioned form of (3) induced by the OSM (4)-
(5), to which we can apply a generalized Newton method. For a given initial-
ization y°, a Newton method generates a sequence (y*)ren defined by

solve  DFp(y¥)(d*) = —Fp(y*) and update y**'=y*+dF. (7)
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Notice that at each iteration of (7) one needs to evaluate the residual function
Fp(y*), which requires the (parallel) solution of the N subproblems (4).
The computational cost is therefore equivalent to one iteration of the OSM
(5). As an inner solver for the subproblems, which involve the (mildly) non-
differentiable function u, a semismooth Newton can be employed.

We now discuss the problem of solving the Jacobian linear system in (7).
Letd = (dy,...,dyn), whered; = (dy,j,dp;),5 = 1,..., N. Then a direct cal-
culation (omitted for brevity) shows that the action of the operator DFp(y)
on the vector d is given by DFp(y)(d) = d —y(d), wherey := (y1,...,Yn),
and each y; = (y;, p;) satisfies the linearized subdomain problems

—Ay; + cy; + b9 (y;)y; = Dulp;)(p;) in £2;, (8a)
—Ap; + cpj + 0" (y;)ps, Y] = Uj in £2; (8b)
y; =0, on 7%, (8¢)

qy; +0.y; = qdjt1 + 0dj14 on I}, (8d)

qy; — 0:¥; = qdj_1 — 0,d;_y on Ij_q, (8e)

where

Du(p)(p) :% [—gmax(—ﬁ —p) = Gmin(8 — D)

+ Gunax (=0 — B = V1) + Guuin(—p + B+ v3) |,

with Gmax(v)(2) =

0 ifwu(z) <0,

b iz e =) 1020

and where the boundary values for j € {1, N} have to be modified as in (4).
Note that this is the same linearized problem that must be solved repeat-
edly within the inner iterations of semismooth Newton, so its solution cost is
only a fraction of the cost required to calculate Fp(y). Our matrix-free pre-
conditioned semismooth Newton algorithm that corresponds to the Newton
procedure (7) is summarized in Algorithm 1.

3 Numerical experiments

Let us begin with a two subdomain case for 2 = (0,1)2, yu(z,y) =
10sin(4nz) sin(3wy), f = 0, ¢ = 1 and p(y) = y + exp(y). The domain
{2 is discretized with a uniform mesh of 51 interior points on each edge of the
unit square. The discrete optimality system is obtained by the finite differ-
ence method. Fig. 2 shows an example of the solution computed for b = 10,
v =107, @ = 103 and 8 = 10~2. Here, we can observe how the computed
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Algorithm 1 Matrix-free preconditioned generalized Newton method

Require: Initial guess y9, tolerance €, maximum number of iterations kmax-
1: Compute S1(y3), Sj(ygfl,y?+1), j=2,...,N—1,and SN(y?V_l).
2: Set k = 0 and assemble Fp(y°) using (6).
3: while || Fp(y*)|| > € and k < kmax do
4:  Compute d* by solving DFp (y*)(d*) = —Fp(y*) using a matrix-free Krylov
method, e.g., GMRES (together with a routine for solving (8) to compute the
action of DFp(y*) on a vector d).
Update y*+1 = y* + dk.
Set k=k+ 1.
Compute S1(y%), Sj(y;?_l,y;‘?+1), j=2,...,N—1,and Sn(y%_,)-
Assemble Fp(y*) using (6).
end while

10: Output: y*.
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Fig. 2 Target yq (left), optimal state y (middle), and optimal control u (right)
computed for b =10, v = 10~7 and 8 = 10~ 2.

optimal state (middle) has the same shape as the target yq (left), but the
control constraints and the L'-penalization prevent the control function from
making the state equal to the desired target.

To study the efficiency and the robustness of the proposed numerical
framework, we test the nonlinearly preconditioned Newton for several values
of parameters v, 3, 4, b and ¢, and compare the obtained number of iterations
with the ones performed by a (damped) semismooth Newton applied directly
to (3). Moreover, to improve the robustness of our preconditioned Newton
method, we implemented the following continuation procedure with respect
to the regularization parameter v: for k = 1, we set v; = 10~! and solve the
Jacobian system (7) once to obtain y2. Next, we decrease v by a factor of 4
(v2 = 1v1/4), do another solve and update step (7), and so on. When we reach
the true v prescribed by the problem, we set v = v and repeat (7) until con-
vergence; see [3] for convergence results for similar continuation procedures.
We apply the same continuation procedure on semismooth Newton applied
directly to (3) for comparison. Note that because only one Jacobian solve is
performed before v is updated, there are cases where semismooth Newton
with continuation diverges, even when its counterpart without continuation
converges, see Tab. 1. We initialize the four methods by randomly chosen
vectors. The number of iterations performed by both methods to reach a
tolerance of 10~® are reported in Tab. 1, where the symbol x indicates diver-
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=103 U=
q |blv=10"3v=10"°v=10"" [v=10"3]v=10°[v=10""
1({0(|4-5-2-5|6-9-11-11|4-11-41-12|3-5-2-5|3-9-2-9|3-12-3-12
o 10(0(4-5-2-5{6-9-11-11| 8 -11-41-12|3-5-2-5|3-8-2-9|3-11-3-12
I [100{ 0 [3-5-2-5[6-9-11-11| x-11-41-12|3-5-2-5]|3-9-2-9 |3-11-3-12
| 1 |10|6-6-4-7|x-10-12-12| x-12-38-16|6-6-4-7 | x-10-22-23| x-15-%x-15
10 [10(5-6-4-7|7-10-12-12| x-12-38-16|5-6-4-7|x-10-22-23| x-14-x-15
100(10{4-6-4-7|6-10-12-12| x-13-38-16(4-6-4-7|6-10-22-23| x-13-x-15
110(|5-5-3-6[6-9-8-11| x-12-43-13|4-5-3-6|5-9-6-10|x-12-8-15
1 110|0[4-5-3-6|6-9-8-11|x-11-43-13|4-5-3-6[4-9-6-10|x-12-8-15
21100| 0 |4-5-3-6|6-10-8-11|11-12-43-13[4-5-3-6|5-9-6-10| 7-12-8-15
Il 1 [10{6-6-4-6|%x-11-10-12| x-12-x-17|6-6-4-6|x-10-18- x [ x-13-%x-15
@Q| 10 [10(5-6-4-6|x-11-10-12| x-13-x-17|5-6-4-6 | x-10-18- x | x-14-x-15
100(10{4-6-4-6|6-11-10-12| 9-13-x-17(4-6-4-6|6-10-18- x | X-13-x-15

Table 1 Two subdomains: outer iterations of preconditioned Newton (left value),
preconditioned Newton with continuation (middle-left value), semismooth Newton
applied to the original problem (middle-right value), and semismooth Newton with
continuation applied to the original problem (right value).

gence. These results show that if the preconditioned Newton converges, then
it outperforms the semismooth Newton applied directly to the full system
(3). However, the preconditioned Newton does not always converge due to
the lack of damping. With continuation, however, our method always con-
verges, with an iteration count comparable (for moderate values of ) or much
lower (for small ) than for the semismooth Newton method.

To better gauge the cost of the continuation strategy, we show the total
number of inner iterations required by ‘pure’ preconditioned Newton versus
the one with continuation in Tab. 2. The reported numbers are computed as
> Maxj=1 2it;x, where k is the iteration count and it;x, j = 1,2, are the
number of inner iterations required by the two subdomain solves performed
at the kth outer iteration. (The max accounts for the fact that the two
subdomain problems are supposed to be solved in parallel.) The results show
that the continuation procedure actually reduces the total number of inner
iterations for the most part, except for some very easy cases, such as 8 = b =
0, @ = oo (where the problem is in fact linear).

Finally, Tab. 3 shows the total number of GMRES iterations required for
solving (7) (with or without continuation), together with the GMRES itera-
tion count for semismooth Newton (with or without continuation); the latter
is preconditioned by block Jacobi, using —A + ¢l as diagonal blocks. We see
that for the “easy” case of v = 1072, semismooth Newton requires fewer GM-
RES steps than preconditioned Newton, but the situation reverses for smaller
v. In fact, for a well-chosen Robin parameter such as ¢ = 10, the advantage
of preconditioned Newton with continuation can be quite significant in these
harder cases. All these numerical observations show clearly the efficiency of
the proposed computational framework.
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=103 o= o0
q |blv=103v=10"°r =10 [r =103y =10"°"[r =10""
110 6-5 31-12 X - 18 2-5 3-8 3-11
o|10]0 5-5 26-11 | 96 - 19 2-5 3-8 3-11
|| [100] 0 2-5 18 - 13 x - 19 2-5 2-8 3-11
x| 1 10| x -17 X - 35 X -47 | 27-17 X - 34 X - 60
10 |10 21 - 14 x-31 [103-43| 21-14 X - 32 X - 53
100{10| 8- 14 26 - 32 X - 43 8-14 45 - 30 x - 47
1 (0| 13-8 32-16 | 84-25 8-8 10 - 14 X - 25
Tl10|0| 10-8 22 -17 | 33-23 7-8 11-15 X - 24
S|100] 0 7-6 15-15 | 104 - 20 7-6 12 - 13 X - 22
I 1 f1of x-17 X - 33 X -45 | 28 -17 X - 32 X - 47
€10 |10| 20 - 14 X - 33 X -48 | 20- 14 x - 30 X - 46
100{10| 10-14 | 23-30 | 125-44 | 10- 14 | 40 - 26 X - 44

Table 2 Two subdomains: total number of inner iterations of preconditioned
Newton (left value) and preconditioned Newton with continuation (right value).

u=10% U =00

q|b v=10"" v=10"° v=10"" v=10"7 v=10""° v=10""
1 |0 |143-128-26-17|279-163-303-123|139-175-1255-155(100- 128 - 26- 17|170-140- 69 - 46 | x -149-371- 66
- 100 | 90- 75 -26-17|179-101-303-123|254-108-1255-155| 64- 75 -26-17|114- 88- 69 - 46 | x - 92-371- 66
111100 0| 73- 90 -26-17|177-114-303-123| x -125-1255-155| 73- 90 -26-17| 60 - 88 - 69 - 46 | 54 - 93 -371- 66
@l 1 {10]266-204-49-66| x -251-397-255| x -268-1479-457|256 - 204 - 49- 66| x -240-2000-1172| x -379- x -928
10 (10(124- 88 -49-66|226-129-397-255| x -168-1479-457|117- 88 -49-66| x -152-2000-1172| x -190- x -928
100[10]122-155-49-66|139-239-397-255| x -274-1479-457|122-155-49-66|161-234-2000-1172| x -250- x -928
1 10 (226-164-31-42|290-198-187-123| x -223-1065-168|188- 164 - 31 -42|246-168- 183 - 109 | x -218-522-380
T110{0 [111- 95 -31-42|178-121-187-123| x -130-1065-168{115- 95 - 31-42{143-124- 183 - 109 | x -145-522-380
=[100] 0 [135-118-31-42|179-158-187-123|333-175-1065-168 | 135 - 118 - 31 - 42| 145-147- 183 - 109 |165-173-522-380
171 [10]273-235-49- 54| x -238-299-233| x -228- x -416[261-235-49-54] x -254-1362- x | x -311- x -752
110 10[139-124-49-54| x -158-299-233| x -164- x -416|138-124-49-54| x -161-1362- x | x -179- x -752
100]10]122-162-49-54|141-251-299-233|215-300- x -416{122-162-49-54|167-219-1362- x | x -303- x -752

Table 3 Two subdomains: GMRES iterations of preconditioned Newton (left value),
preconditioned Newton with continuation (middle-left value), semismooth Newton
applied to the original problem (middle-right value), and semismooth Newton with

continuation applied to the original problem (right value).

U = o0

v=10"7

v=10"

v=10"

v=10"

v=10"

94-116-131-157
178-157-176-217
228-229-217-301

X -185-541-329
X -244-503-365
X -383-747-509

- 196 -1974- 436
- 259-2261- 455
- 384 -2915- 554

92-112-131-157
121-155-176-217
159-238-217-301

64 -115- 151 -246
83 -180- 140 -322
130-281- 195 -444

58 -128-513- 528
59 -204-438- 537
X -314-201- 569

[ P

=y

145-184-202-234
192-247-232-314
272-346-364-425

218-287-447-517
286-381-453-557
X -625-648-777

T382-1207- 910
- 498 -1475- 979
X - 744 -1361-1180

X
X
X
X
X

143-186-202-234
196-247-232-314
280-345-364-425

171-276- 633 -506
214-368- 621 -552
327-549- 819 -765

X -296- x -1238
X -368- x -1217
x -510- x -1200

PN

0

=
=

177-139-169- 204
231-191-266-277
319-241-314-372

221-220-389-301
X -291-448-383
552-395-667-528

399- 255 -1745- 439
X - 340 -1594- 487
X - 452 -2244- 630

179-135-169- 204
231-199-266-277
227-234-314-372

175-196- 340 -315
275-264- 350 -385
438-365- 517 -529

243-273-992- 649
300-360-983- 658
520-449-899-1714

10
10
10

o
=]
Il

@

00 |

ey

145-201-209- 248
196-262-267-323
268 - 365 - 368 - 444

230-312-369-500
356-408-402-574
538-660-577-794

380- 408 -1536- 851
X - 641 -1625-1020
X -1017-2000-1312

147-201-209- 248
193-261-267-323
260 - 365- 368 - 444

193-312- 982 -492
247-406-1041-568
432-599-1425-790

x -392- x -1320
X -488- x -1396
X -702- x -1686

Table 4 Multiple subdomains: GMRES iterations of preconditioned Newton (left
value), preconditioned Newton with continuation (middle-left value), semismooth
Newton applied to the original problem (middle-right value), and semismooth Newton
with continuation applied to the original problem (right value).

‘We now consider a multiple subdomain case. This time, the mesh is refined
to have 101 interior points on each edge of 2. We then fix ¢ = 100 and
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repeat the experiments above for N = 4,8,16 subdomains. In Tab. 4, we
compare the GMRES iteration counts for preconditioned Newton (with and
without continuation) to those of semismooth Newton applied to (3). We see
that preconditioned Newton with continuation works well in all cases, and
for smaller v values, the iteration count is much lower than for semismooth
Newton. The outer iteration counts are omitted for brevity, but we observed
a behaviour similar to the two-subdomain case, and one which is robust for
11 1

the mesh sizes h = 55, =7, 757 ; see [2, 4] for related scalability discussions.

4 Further discussion and conclusion

This short manuscript represents a proof of concept for using domain decom-
position-based nonlinear preconditioning to efficiently solve nonlinear, non-
smooth optimal control problems governed by elliptic equations. However,
several theoretical and numerical issues must be addressed as part of a com-
plete development of these techniques. From a theoretical point of view, to
establish concrete convergence results based on classical semismooth Newton
theory, it is crucial to study the (semismoothness) properties of the sub-
domain solution maps S;, which are implicit function of semismooth maps.
Another crucial point is the proof of well-posedness of the (preconditioned)
Newton linear system. From a domain decomposition perspective, more gen-
eral decompositions (including cross points) must be considered. Finally, a
detailed analysis of the scalability of the GMRES iterations is necessary.

References

1. E. Casas, R. Herzog, and G. Wachsmuth. Optimality conditions and error analysis
of semilinear elliptic control problems with L1 cost functional. SIAM J. Optim.,
22(3):795-820, 2012.

2. F. Chaouqui, G. Ciaramella, M. J. Gander, and T. Vanzan. On the scalability
of classical one-level domain-decomposition methods. Vietnam Journal of Math-
ematics, 46(4):1053—-1088, 2018.

3. G. Ciaramella, A. Borzi, G. Dirr, and D. Wachsmuth. Newton methods for the
optimal control of closed quantum spin systems. SIAM J. Sci. Comp., 37(1):A319—
A346, 2015.

4. G. Ciaramella and M. J. Gander. Analysis of the parallel Schwarz method for grow-
ing chains of fixed-sized subdomains: Part I. STAM J. Numer. Anal., 55(3):1330—
1356, 2017.

5. M. J. Gander. Optimized Schwarz methods. SIAM J. Numer. Anal., 44(2):699—
731, 2006.

6. G. Stadler. Elliptic optimal control problems with L1-control cost and applications
for the placement of control devices. Comput. Optim.Appl., 44(2):159-181, 2009.

7. F. Troltzsch. Optimal Control of Partial Differential Equations: Theory, Methods,
and Applications. American Mathematical Society, 2010.



MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, ViaBonardi 9 - 20133 Milano (Italy)

50/2021

49/2021

50/2021

47/2021

48/2021

46/2021

45/2021

44/2021

43/2021

42/2021

Ciaramélla, G.; Vanzan, T.
On the asymptotic optimality of spectral coarse spaces

Rea, F.; Savarg, L; Franchi, M.; Corrao, G; Mancia, G
Adherence to Treatment by Initial Antihypertensive Mono and Combination
Therapies

Rea, F.; Savaré, L; Franchi, M.; Corrao, G; Mancia, G
Adherence to Treatment by Initial Antihypertensive Mono and Combination
Therapies

Orlando, G; DellaRocca, A; Barbante, P. F.; Bonaventura, L.; Parolini, N.
An efficient and accurate implicit DG solver for the incompressible
Navier-Sokes equations

Riccobelli, D.
Active elasticity drives the formation of periodic beading in damaged axons

Diquigiovanni, J.; Fontana, M.; Vantini, F.
Conformal Prediction Bandsfor Multivariate Functional Data

Diquigiovanni, J.; Fontana, M.; Vantini, S.
Distribution-Free Prediction Bands for Multivariate Functional Time Series:
an Application to the Italian Gas Market

Gentili, G.G.; Khosrongjad, M.; Bernasconi, G.; Perotto, S.; Micheletti, S.
Efficient Modeling of Multimode Guided Acoustic Wave Propagation in
Deformed Pipelines by Hierarchical Model Reduction

Salvador, M.; Fedele, M.; Africa, P.C.; Sung, E.; Dede, L.; Prakosa, A.; Chrispin, J.; Trayanov
Electromechanical modeling of human ventricles with ischemic

cardiomyopathy: numerical simulations in sinus rhythm and under

arrhythmia

Calissano, A.; Fontana, M.; Zeni, G.; Vantini, S.
Conformal Prediction Sets for Populations of Graphs



