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Reduced models for liquid food packaging
systems

Nicola Parolini, Chiara Riccobene and Elisa Schenone

Abstract Simulation tools are nowadays key elements for effective production, de-
sign and maintenance processes in various industrial applications. Thanks to the
advances that have been achieved in the past three decades, accurate and efficient
solvers for computational fluid dynamics and computational mechanics are routinely
adopted for the design of many products and systems. However, the most accurate
models accounting for the complete three-dimensional complex physics (of even
multi-physics) are not always the best option to pursue, in particular in the prelimi-
nary design phase or whenever very fast evaluations are required. In this paper, we
present a set of reduced numerical models that have been developed in the past few
years to support the design of paperboard packaging systems.

Introduction

Food packaging is an important industrial sector in which the development of highly
specialized automation systems plays a fundamental role. The entire process should
be able to meet the tight standards for safety and quality control in food industry, as
well as the demand of high reliability and productivity in complex industrial plants.

Laminated paperboard is a widely used material in the packaging industry, since
box shaped solids can be easily obtained fromflat paper roll, and the formed packages
are light and stiff. The most efficient way to assemble and fill carton based boxes
consists in deforming a cylindrical sleeve filled with liquid, using a jaw system in
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whichmechanical clamps enter periodically in contact with the carton tube squeezing
it until it is closed and shaping its lateral sides to a rectangular section (see Figure
1).

Fig. 1 The action of the jaw system that shapes a cylindrical carton tube in boxes (courtesy of Tetra
Pak Packaging Solution s.p.a.)

In this paper, we will consider a specific packaging technology, for the assem-
bling of carton-based liquid food packages in highly performing automatized filling
machines, able to assemble several packages per seconds in an aseptic environment
with a fully automatic material supply.

1 A complex FSI problem

A filling machines is a complex system in which, starting from a roll of laminated
paperboard and a continuous liquid food supply, filled bricks are assembled at a
production rate of several thousands per hour. The paperboard is initially unrolled
and is subject to a sterilization process crossing a peroxide bath, then is wrapped and
vertically sealed in a cylindrical tube moving downward around the injector pipe.
At the end of the process, which occurs around the outflow of the injector pipe, the
bricks are assembled through the following steps (sketched in Figure 2):

(a) the bottom end of the package is folded and sealed;
(b) the package is laterally shaped by the jaw system;
(c) the top end of the package is closed and the bottom end is cut;
(d) the semi-finished package is released.

The fluid is injected into the carton tube through the co-axial injector pipe. The
carton tube is deformed by the combined action of the jaw system and the action
of the fluid, whose motion is, in turn, affected by the carton tube deformation. This
coupled interaction defines a complex fluid-structure interaction (FSI) problem.

A simulation of the complete three-dimensional FSI problem coupling the in-
compressible Navier-Stokes equations governing the product fluid dynamics with
the elasticity equations governing the structural deformation has been subject of
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(a) (b) (c) (d)

Fig. 2 Different phases of the forming cycle: a) bottom closure b) side forming c) top closure d)
package release

research for the specific application at hand (see, e.g., [21, 20, 1]), as well as applica-
tions which share some key characteristics of the considered problem, as the strongly
coupled nature of the FSI coupling [8, 7, 2, 6, 16, 5, 17]. In particular, it is well
known from the literature that most staggered fluid-structure interaction coupling
can be subjected to numerical instabilities whenever the so-called added mass effect
is present [3], which is most often the case when a liquid interacts with a deformable
thin structure. In such conditions, a strongly coupled FSI algorithm is necessary,
which typically requires a number of sub-iterations at each time step solving for the
fluid and the structural problems. As a consequence, the computational cost of a full
3D FSI simulation for this kind of applications is most of the time unaffordable and
resorting to reducing strategies become unavoidable.

2 Geometrical model reduction

A first numerical reduction approach for the filling machine has been obtained
deriving a geometrical reduced mathematical model governing the fluid-structure
interaction between the filling liquid and the papertube. The filling portion of the
packaging system has been modeled adopting a low dimensional (1D-0D) geomet-
rical multiscale model inspired by a similar simulation framework that has been
successfully adopted in the past few years for modeling the human cardiovascular
system [9, 22, 10, 11].

This kind ofmodels can be extremely useful in the design process of the packaging
machine as they allow fast (in some cases, real-time) simulations able to capture
the main flow features associated to the pulsatile flow generated by the periodic
contraction of the papertube. In particular, they are used to simulate the propagation
of the strong pressure waves that are produced by the periodic squeezing of the
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papertube by the jaw system. The objective of this kind of analyses is the design of
effective tools to limit their impact on the final quality of the packages.

In this regard, two are the main technologies that are usually adopted in packaging
systems: the first in which the pressure waves are dampened constraining the pulsatile
flow tomove across small orifices distributed on a counter-pressure flange; the second
where the dampening effect is obtained using an air bucket which is periodically
filled and emptied. Two sketches of the packaging systems each equipped with one of
the pressure dampeners are displayed in Figure 3. For both configurations, a constant
inflow is supplied by the injector, while a time dependent flowrate associated to the
squeezing action of the jaw system can be prescribed at the lower boundary. Indeed,
in the reduced model, we will prescribe at lower boundary the net flowrate given
by the difference between the constant flowrate through the injector and the time-
dependent flowrate associated to the change of volume imposed by the jaw system
(that has been estimated solving the full 3D package deformation using the software
Abaqus).

Fig. 3 Two pressure wave dampener technologies: counter-pressure flange (left) and air bucket
(right)

A set of geometrical reduced models, one for each of the sub-domains has been
identified, together with suitable coupling and boundary conditions.

In order to model the machine equipped with the flange (Figure 3, left), we need
to define a 1D model governing the flow in the cylindrical domain under the injector,
a similar 1D model for the flow in the annular domains around the injector and 0D
models accounting for the flange and the floater. These model are accommodated in
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series and the coupling conditions impose the continuity of flowrate and pressure at
the interface between different models.

A similarmodel coupling 1D and 0D elements has been developed for themachine
equipped with the air bucket (Figure 3, right). Also in this case, 1D FSI models for
circular and annular sections are required, while the air bucket and the floater are
modeled by 0D models. In this case, the flowrate is imposed on the bottom surface is
split between a portion that enters the bucket (changing the liquid level inside it and,
therefore, the pressure of the enclosed air) and the remaining part that flows through
the thin annular interspace between the bucket and the papertube. Thus, in this case,
the coupling condition should also account for this flow bifurcation by prescribing a
balance of flowrates and the continuity of pressure at the bifurcation point.

Note that, in order to impose the coupling conditions at each time step of the
numerical solution, the different models may be solved iteratively until continuity of
pressure and flowrate is achieved at each interface (see [19]).

For both configurations, the flowrate in imposed on the bottom boundary while
a pressure boundary condition (accounting for the hydrostatic level) is imposed on
the upper boundary. As will be discussed in Section 2.1, this choice of boundary
conditions is consistent with the hyperbolic nature of the 1D models.

Hereafter, we briefly describe the different 1D and 0D models that are used for
the two types of systems (flange and bucket), starting from the mono-dimensional
FSI models that govern the flow within the deformable papertube.

2.1 1D FSI model

Mono-dimensional FSI models for incompressible flows interacting with elastic ves-
sels have been developed and extensively used for the simulation of the human
cardiovascular system (see, e.g., [9, 22, 11]). These models work under the as-
sumptions of axial symmetry, small displacement of the structure (usually limited
to normal direction), dominance of the axial component. Under this hypotheses, by
integrating the incompressible Navier-Stokes equations over the cross section and
introducing a simplified (algebraic) model for the elastic response of the structure, a
system of partial differential equations can be derived for z ∈ Ω ⊂ R, t > 0, namely:

∂A
∂t
+
∂Q
∂z
= 0, (1a)

∂Q
∂t
+

∂

∂z

(
α

Q2

A

)
+

A
ρ

∂p
∂z
+ Kr

(
α

Q
A

)
+ Ag = 0. (1b)

where A(z, t) is the section area at longitudinal position z at time t, Q(z, t) is the
flowrate, p(z, t) is the mean pressure on the section, α is the Coriolis coefficient
(which depends on the velocity profile over the section), Kr is a friction coefficient
and g is a specific body force (most often the gravity acceleration). In the simplest
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case, for cylindrical domains, the structural response can be described by an alge-
braic relation between the pressure difference across the structure and the normal
displacement η,

p − pext = bη,

where pext is the prescribed pressure distribution on the external side of the structure
and the stiffness parameter b is defined as

b =
Eh

(1 − ξ2)R2
0
, (2)

with E and ξ denoting the Young modulus and the Poisson ratio of the material,
respectively, h its thickness and R0 is the radius of the reference (initial) configuration.

In order to close system (1), the structural response can be more conveniently
formulated as an algebraic relation between the flow pressure p and the area A given
by

p − pext = ψ(A; A0, β);

where A0 = πR2
0 and β is a stiffness parameter. The exact definition of ψ and β will

be detailed in the following for the different domain geometries (circular or annular).
System (1) is an hyperbolic system for the conservative variables (A,Q) that

is here numerically solved using a finite element Taylor-Galerkin method [9]. The
characteristic analysis of system (1), that has been carried out in [22], shows that, for
the case at hand, the Jacobian matrix has one positive eigenvalue, corresponding to
a characteristic wave moving in positive z direction and a negative one, correspond-
ing to a second characteristic wave moving backwards. Therefore, one boundary
condition has to be imposed on each boundary of the 1D domain.

2.1.1 Closure for circular sections

For circular sections, the normal displacement is defined as η = R − R0 =
√
A−
√
A0√

π
,

so that the closure of the 1D model (1) can be obtained (as in [11]), by choosing

ψ(A; A0, β) = β(
√

A −
√

A0), (3)

where the stiffness coefficient is given by

β =

√
πEh

(1 − ξ2) A0
. (4)

The Coriolis coefficient α is defined as follows

α =

∫
S

s2dσ

A
,
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where we consider an axisymmetric velocity profile s(r) over the section S as the
power law radial function s(r) = γ−1(γ + 2)(1 − (r/R)γ). The friction coefficient
can be defined as

Kr = −2πνs′(1) = 2πν(γ + 2),

where ν is the kinematic viscosity of the fluid,
For γ = 2, we have a parabolic profile which gives α = 4/3 and Kr = 8πν, while

for the typical choice γ = 9, we get α = 1.1 and Kr = 22πν.

2.1.2 Closure for annular domain

In order to consider the annular subdomains around the injector and the paper tube,
a similar 1D model has been developed. Here the area of the annular section is given
by A = π(R2 − R2

i ), where Ri denotes the internal radius on the annulus. Similarly,
the area of the reference section is A0 = π(R2

0 − R2
i ).

To close system (1) we define the normal displacement as η = R − R0 =√
A+Ai−

√
A0+Ai√

π
, where Ai = πR2

i , and we obtain:

ψ(A; A0, β) = β(
√

A + Ai −
√

A0 + Ai) (5)

with β defined as in (4).
In this case the Coriolis and friction coefficients are computed assuming an axi-

symmetric parabolic profile on the annular section, namely s(r) = ar2 + br + c with
a = − 4

(R0−Ri )2 , b = −(R0 + Ri)a and c = −aR2
i − bRi .

2.2 0D model of the counter-pressure flange

The contribution of the counter-pressure flange is accounted for with a 0D lumped
model, prescribing a concentrated pressure loss as a function of the flowrate. The
flange works as a pressure wave dampener thanks to the dissipation occurring on
the flow which is confined in a number of small orifices distributed on the flange
surface. The orifices are usually designed such that the loss coefficient for the flow
moving upwards is larger than the one for the recovery phase when the flow ismoving
downward across the flange. Assuming N identical orifices on the flange, the 0D
flange model is given by:

∆p = punder − pover =
1
2
ρ sign(Q)

(
Q

N Ai

)2
Cd, (6)

where ∆p is the pressure difference across the flange (positive for upwards flowrate),
Ai is the area of single orifice and Cd is the pressure loss coefficient (that needs to
be estimated).
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2.3 0D model of the air bucket

Air buckets are typically used in packaging system with higher production rates. In
this case the dampening effect is given by the combined action of the energy absorbed
by the gas inside the bucket which is periodically compressed and the viscous
dissipation occurring on the liquid flowing in the tiny annular domain between the
bucket and the papertube (see Figure 3).

A 0Dmodel computing the gas pressure inside the bucket is obtained considering
the ideal gas law (pV = const) and computing the gas volume by updating the liquid
level inside the bucket as a function of the flowrate entering the bucket, namely

hl (t) =
(
h0 +

1
Ab

∫ t

0
Qb dτ

)
, (7)

where h0 is the initial level of liquid in the bucket, Ab is the area of the section of
the bucket and Qb is the flowrate entering the bucket. Indicating with L the length
of the bucket, the volume of the gas inside the bucket is V (t) = Ab (L − hl (t)).

An additional 0D model accounting for the floater can be added to the system.
As sketched in Figure (3), the floater is a light coaxial cylinder placed above the
pressure dampener and moving vertically along the injector, used to measure the
level of liquid inside the papertube during the different phases of the filling cycle.
Even if ideally the floater should move with the free-surface level, due to the strong
inertia associated to the fast level variations, a model able to capture the dynamics of
the floater is required. Indeed, the dynamics of the floater seems to play an additional
(non negligible) role in the pressure wave dampening and including it in the model
can be useful to take into account these effects.

2.4 Numerical results of the geometrical reduced FSI models

For the problem at hand, some of the hypotheses that have been introduced to derive
the geometrical reduced models are not completely fulfilled (for instance, close to
the injector the transverse velocity components may not be negligible). However,
the reduce models introduced in the previous section have proved to be able to to
capture the main flow features of the system, in particular concerning the pressure
wave propagation.

These models have been adopted to simulate a number of different packaging
machines of both types. In Figure 4 (left), we compare, for amachinewith the counter-
pressure flange, the numerical prediction and the experimental measurements of the
time evolution over two periods of the pressure level under the flange.We can observe
that amplitude and phase of the two main pressure peaks are well approximated. For
confidentiality limitations, the pressure scale has been removed.
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Similar results, also showing an goodmatching between the numerical results and
the experimental measurements, have been obtained for air bucket systems. In Figure
4 (right), the comparison related to the gas pressure inside the bucket is displayed.

Fig. 4 Comparison with experimental measurements for the pressure drop across the flange (left)
and the gas pressure inside the bucket (right)

3 Reduced 3D FSI using transpiration and absorbing BCs

As we have seen, the geometrical reduction represents a possible reduction strategy
allowing to capture some relevant characteristics of the coupled system. However,
some aspects of the problem can only be captured resorting to the simulation of the
complete flow field in 3D.

Since, we have seen that the solution of a complete 3D FSI problem may be
prohibitively expensive due to the need of a strongly coupled FSI approach, it is worth
trying to devise a simulation framework for FSI simulation with an intermediate level
of complexity. In this respect, the interaction between the fluid and the deformable
walls may be modeled by the so-called transpiration boundary conditions. As in[4,
12], for small displacements, thewall structural response can bemodeled as an elastic
shell where the tangential components of the wall stress and of the displacement are
neglected. The main advantage of this approach, that has been extensively exploited
in aeronautical applications to solve aero-elastic problems, is that it does not require
to change the domain (and thus to move the computational grid) at each time step
and the simplified structural model reduces to a boundary condition for the flow
problem.

Assuming that the displacement η is only in the normal direction, following
the derivation proposed in [4], the transpiration condition can be derived from an
elasto-dynamic equation for η on Σ and can be formulated as a Robin-type boundary
condition for the normal component of the velocity in the time-dependent Navier-
Stokes equations, as follows:
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


∂tu − ν∇2u + (u · ∇)u + ∇p = f, in Ω × (0,T ),
∇ · u = 0, in Ω × (0,T ),
u = u0, in Ω, t = 0,
u = uin, on Γin × (0,T ),
−ν∂nu + pn = 0, on Γout × (0,T ),
u × n = 0, on Σ × (0,T ),
ρsh∂tu · n − ∇c · (T∇cη) + au · n + bη = p, on Σ × (0,T ),

(8)

where u is the fluid velocity, p is the fluid pressure (rescaled with the fluid density), ν
is the fluid kinematic viscosity, ρs is the structure density, h is the structure thickness,
∇c is the covariant gradient, T is the stress (possibly prestressed) tensor, a and b are
damping and elastic coefficients, respectively (see [4] for details).

The normal displacement η can be computed integrating over time the normal
velocity, as

η :=
∫ t

0
u · nds.

The coefficient b depends on the material properties of the deforming structure
and characterize its elastic response: the greater b is, the more rigid the structure. In
particular, for cylindrical structures, b can be defined as in Equation (2).

Further simplification of the structural model may be considered when projection-
based flow solvers are used, resulting on a pressure boundary condition on themoving
wall, as discussed in [12].

A numerical solution of Problem (8) has been obtained using P2/P1 finite element
for velocity and pressure and using an implicit Euler time advancing scheme with a
semi-implicit treatment of the convective term.

The ability of the model in capturing the propagation of the pressure wave gen-
erated by the time-dependent inlet velocity profile uin(t) has been investigated. In
order to avoid (or at least minimize) the numerical wave reflection that are generated
when homogeneous Neumann condition are imposed on the outflow boundary, the
linearized absorbing condition (LAC) proposed in [14] is imposed at the outflow
boundary. This condition prescribe a linear dependence of the pressure on the flow
rate Q:

p =
π
√

b√
2ρA5/4

Q on Γout, (9)

where A is the area of the outflow boundary.
A simple test case to assess the reduced 3D FSI model with transpiration and

absorbing boundary conditions has been setup. We consider the propagation of a
pressure wave in the flange system. We start from the fluid at rest, an hydrostatic
pressure distribution and null flowrate imposed on the bottom boundary. At a given
time t = t̄, a sinusoidal pulse on the inlet flowrate is started, which causes a pressure
wave to propagate along the papertube domain, thanks to the deformability of the
wall accounted for by the transpiration conditions.

In Figure 5, the solution obtained on a longer domain are compared with two
solutions on a shorter domain with and without absorbing boundary conditions. The
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effectiveness of the linearized absorbing condition in reducing the spurious reflection
at the outflow boundary can be clearly appreciated.

t=0.0035 s t=0.0045 s t=0.0055 s t=0.0060 s t=0.0068 s

Fig. 5 Propagation of the pressure wave at different time instants. For each time, the solution
obtained on a longer domain (left), with homogeneous Neumann outflow condition (middle) and
with the linear absorbing condition (right) are reported

A second test case is presented in order to highlight the importance of accounting
for FSI effects in this kind of problems, even if with simplified approach as the one
based on transpiration boundary conditions. In Figure 6, we compare the different
behaviors of the pressure for different values of the wall rigidities (E = 5 × 109 GPa
and E = 5 × 1010 GPa). The peaks on the pressure drop across the flange is almost
doubling when the higher stiffness is considered and the pressure wave travels much
faster. With this results in mind, it is clear that no meaningful indication on the
pressure can be obtained when simulating the problem with rigid CFD simulations
that do not account, at any level of details, for FSI effects.

4 Reduced order modeling for multi-query problems

A further possible reduction approach that is currently being investigated for the con-
sidered application is based on reduced order models (ROM), such as the Reduced
Basis (RB) method [18, 23, 13] or the Proper Orthogonal Decomposition (POD)
method [15, 24]. These approaches are particularly interesting when multi-query
problems are considered, that is when a large number of CFD evaluations on the 3D
geometry are required (such as, for instance, parametric, optimization or uncertainty
quantification studies). In all reduced order models, the approximate solutions can be
computed very efficiently (sometime in real time) as a suitable (linear or nonlinear)
combination of ad-hoc basis functions. The latter are pre-computed in a (computa-
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Fig. 6 Time history of the pressure drop on the flange for different values of Young modulus

tionally expensive) offline phase by solving the high fidelity problem for a limited
set of parameters.

In the application at hand, preliminary results have been obtained on the fluid-
dynamic analysis of the counter-pressure flange. This kind of analyses can be used,
for instance, to obtain the pressure/flowrate characterization for various design pa-
rameters in order to evaluate the pressure drop coefficient to be used in the 0Dmodel
described in Section 2.2.

A parametric study considering two parameters (fluid viscosity and papertube
diameter) has been carried on using a reduced basis method and taking as basis
functions the first 10 modes obtained by a POD computed on 24 snapshots uniformly
distributed in the parameter space. In Figure 7, we report a comparison between the
velocity and pressure field computed using a high fidelity finite-element solver and
the corresponding reduced solution. The relative error for the solution obtained with
a choice of parameters different from those used for the snapshots shows that the
reduced solution is able to guarantee a good accuracy. The advantage in terms of
computational cost can be appreciated comparing the CPU time required for the
high fidelity finite-element solution (4.5 hours) with that of the online phase of the
reduced method (7.3 minutes).

Concluding remarks

We have presented a set of numerical simulation tools that have been developed to
support the design of packaging systems for liquid food products. Different reduction
strategies, ranging from geometrical reduction, to a simplified treatment of 3D
FSI problems based on transpiration wall conditions and including reduced order
models for multi-query problems, have been developed and effectively integrated in
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Fig. 7 Comparison of the velocity (left) and pressure (right) fields: for each field the high fidelity
FEM solution, the POD solution and the relative error are reported (from left to right).

a complex design framework, in which the role of numerical simulations, at all levels
of computational complexities, plays an increasingly important role.
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