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Abstract

Hierarchical Model (HiMod) Reduction provides an efficient way to solve
Partial Differential Equations in domains with a geometrically dominant
direction, like slabs or pipes. The associated solution is regarded as the
combination of mainstream dynamics driven by the geometry and trans-
verse components. The latter are generally of secondary importance so
to be described by few degrees of freedom of a spectral approximation in-
troduced at the top of a finite element discretization of the mainstream.
Thus, the 3D nature of the problem is broken into a basically 1D descrip-
tion added by transverse details. The versatility of this approach is that
the accuracy of the method can be adaptively refined when needed, by judi-
ciously selecting the number of transverse modes - as opposed to purely 1D
models popular in computational hemodynamics and gasdynamics. After
having investigated the basic features of the method in slab-like domains
- where the Cartesian tensor product framework facilitates the practical
implementation, in this paper we consider cylindrical pipes with polar co-
ordinates. The selection of a different coordinate system rises several issues
in particular for the most appropriate selection of the modal basis func-
tions. Having computational hemodynamics as reference application, we
address here the HiMod approximation of Advection-Diffusion-Reaction as
well as Incompressible Navier-Stokes equations in axisymmetric domains.
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1 Introduction and Background

Hierarchical Model (HiMod) Reduction is a method proposed in [1] for the effi-
cient solution of Partial Differential Equations defined in domains with a geo-
metrically dominant direction, like slabs or pipes. In the spirit of a separation
of variables, the HiMod solution is regarded as the combination of mainstream
dynamics driven by the geometry and transverse components. The latter are
generally of secondary importance so to be described by few degrees of freedom
of a spectral approximation introduced along the transverse direction in combi-
nation with a finite element discretization of the mainstream. Thus, the original
3D problem commutes into a system of coupled one-dimensional problems. The
power of this technique lies in its hierarchical nature, so that a numerical 1D
solution can be easily expanded towards the three-dimensional original domain
thanks to the modal basis. If the size of the modal basis is chosen in a proper way
along the mainstream (see [2]), the transverse dynamics can be reliably approxi-
mated. Transverse dynamics would be otherwise dropped by purely 1D models,
like the ones used in computational hemodynamics or gasdynamics [3, 4].

HiMod reduction has been employed to solve Advection-Diffusion-Reaction
(ADR) problems in two-dimensional domains (see, e.g., [1, 2, 5, 6]) and paral-
lelepipeds [7]. Three dimensional problems are also considered in [8] for patient-
specific geometries. In this work the domain is discretized through pipe-like
finite elements, which are subsequently mapped to a reference square geometry
where the Cartesian framework is exploited for the construction of the modal
basis by tensor product. Here, we propose a formulation purposely devised for
cylinder-like geometries, by polar coordinates. These coordinates are, in princi-
ple, the most suited to an effective HiMod discretization in cylindrical domains.
However, the choice of the modal basis requires specific investigations, that are
precisely the subject of the present paper. This work is intended to move a
first step forward to real medical applications, in the perspective of a further
extension of the HiMod approach to the modeling of the entire cardiovascular
network (see, for example, [9, 8]).

In order to highlight the main features of HiMod reduction in cylindrical do-
mains, in Section 2 we address the issue of the choice of a modal basis tailored to
a transverse circular section. The performance of different functions is validated
through suitable numerical assessments. In Section 3 we apply the method to
a three-dimensional ADR problem in a cylindrical domain with circular section.
On this basis, in Section 4 we move to vector problems coming from internal in-
compressible fluid dynamics. The generalized Stokes problem is briefly recalled
and solved with a HiMod approach. In view of possible medical applications,
in Section 5 we consider elementary models for arterial stenoses and aneurysms.
At this stage, we work only on axisymmetric geometries. We refer to future
work for an extension of HiMod to the more general non-axisymmetric case [10].
Evolution in time does not bring significant changes and it is introduced directly
when presenting the numerical results. We compare the results presented here
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with [8] to point out the expected better properties of cylindrical coordinates in
comparison with the Cartesian ones.

2 HiMod in Cylindrical Domains

2.1 The geometric setting

Let us consider a cylindrical domain with rectilinear axis and circular section
with variable radius R (see Figure 1). We assume that the domain can be
represented as a three-dimensional fiber bundle Ω =

⋃
x∈Ω1D

{x} × γx, where

Ω1D is a one-dimensional domain, and γx ⊂ R2 represents the two-dimensional
fiber associated with the generic point x ∈ Ω1D (see Figure 1). In particular,
the supporting fiber is the axis, while γx is the transverse section centered at x.
The leading dynamics are aligned with Ω1D, whereas the transverse dynamics
are parallel to fibers γx. For the sake of simplicity, we assume a rectilinear axis
Ω1D =]x0, x1[, but the more general case of a curved supporting fiber can be
considered as well [11, 12]. For each x ∈ Ω1D, we introduce the mapping

ψx : γx → γ̂, (1)

between the physical fiber γx and a reference fiber γ̂. We set ẑ = (x̂, ŷ) =
ψ̂(x,y) = (x, ψx(y)) as the image of the physical point z = (x,y) ∈ Ω through
the global map ψ̂ : Ω → Ω̂, where Ω̂ is the reference cylinder described by
the coordinates (x, ŷ), with ŷ = ψx(y) = (r̂, ϑ̂) ∈ [0, 1) × [0, 2π], so that the
transverse reference fiber γ̂ coincides with the unit circle (see Figure 1). We
assume ψx to be a C1-diffeomorphism for all x ∈ Ω1D and ψ̂ to be differentiable
with respect to z.

This is not the only possible approach for representing a cylindrical domain.
For instance, in [8] each elementary pipe element is mapped to a reference hex-
aedron. This allows using a Cartesian framework in the reference space and
constructing the basis functions by tensor product. In this case, the geomet-
ric map lacks of regularity at the vertices of the hexahedron. In principle, this
is not necessarily troublesome, and, in general, the Cartesian framework guar-
antees easiness of implementation. However, the choice of a cylindrical basis
is intrinsically more tailored to the geometry of a pipe. We argue that this
choice, even though more involved in practice, may lead to better accuracy and
efficiency. We numerically investigate this statement in the sequel.

2.2 The reference basis set

The fiber structure featured by the domain Ω has a key role in setting the
HiMod reduction. We resort to different function spaces along Ω1D and on
the transverse fibers. The standard notation for the Sobolev spaces as well as
for the spaces of functions bounded a.e. in Ω is adopted [13]. With reference to
standard scalar ADR problems, we introduce the function space V1D ⊆ H1(Ω1D)
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Figure 1: Sketch of the map between the physical and the reference domain.

on Ω1D, such that the related functions vanish on Dirichlet boundaries. On the
transverse reference fiber we set a modal basis {ϕ̂k}k∈N+ ⊂ H1(γ̂). In particular,
we select functions orthonormal with respect to a weighted scalar product in
L2(γ̂). Clearly, boundary conditions on Γlat have to be taken into account by
the modal basis. Then, the discrete transverse function space is defined as
Vγ̂ = span{ϕ̂k}. For a certain m ∈ N+, the combination of spaces V1D and Vγ̂
yields the reduced space

Vm =

{
vm(x,y) =

m∑
k=1

ṽk(x)ϕ̂k(ψx(y)), with ṽk ∈ V1D, ϕ̂k ∈ Vγ̂ , x ∈ Ω1D, y ∈ γx

}
,

(2)

with

ṽk(x) =

∫
γ̂

vm(x, ψ−1
x (ŷ))ϕ̂k(ŷ)dγ̂ k ∈ {1, . . . ,m}, (3)

thanks to the orthonormality of the basis. There are several possibilities for
constructing a modal basis in polar coordinates. In a “Top-Down” approach,
the basis function set for the coordinate system ŷ = (r̂, ϑ̂) descends from the
solution to an eigenvalue/eigenfunction procedure - as opposed to a “Bottom-
Up” approach, where the basis is assembled for coordinates r̂ and ϑ̂, separately.
We discuss these two options hereafter.
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BC type Condition Functor

Dirichlet ϕ̂k = 0 Jn(
√
λ̂j)

Neumann µ∇ϕ̂k · n = 0

√
λ̂j

R
J ′n(
√
λ̂j)

Robin µ∇ϕ̂k · n + χϕ̂k = 0

√
λ̂j

R
J ′n(
√
λ̂j) +

χ

µ
Jn(
√
λ̂j) (µ, χ > 0)

Table 1: Functors associated with different types of boundary conditions.

2.2.1 The Top-Down approach

As advocated in [7], a possible strategy to build the modal basis is to solve an
auxiliary Sturm-Liouville eigenvalue problem (see, for example, [14, 15, 16]) on
the transverse section, {

Lϕ̂k = λ̂kwϕ̂k in γ̂

BC on ∂γ̂,
(4)

so to include in an essential way the boundary conditions (of any type) in the
basis, where L is a suitable differential operator, (λ̂k, ϕ̂k) denotes a correspond-
ing eigenpair, and w is a positive continuous weight function. If the bilinear
form associated with the weak formulation of (4) satisfies the hypotheses of the
Spectral Theorem [15], the eigenfunctions associated with the operator L are
orthogonal with respect to the L2

w-weighted scalar product and form a com-
plete set in the same space. Since functions ϕ̂k automatically include the lateral
boundary conditions, the set {ϕ̂k} has been called “educated” basis [7].

Scalar problems Let L in (4) be the Laplace operator on the reference unit
circle in polar coordinates. With this operator, we associate the set of eigen-
functions

ϕ̂j,n

(
r̂, ϑ̂
)

=
1√

2π‖Jn‖L2
w(0,1)

(
sin(nϑ̂) + cos(nϑ̂)

)
Jn

(√
λ̂j r̂

)
, (5)

where Jn is the Bessel function of first type of order n ∈ N+ [14, 17, 18, 19]. In

particular, the frequency
√
λ̂j is the j-th root of Jn. More in general, for each

type of constraint (Dirichlet/Neumann/Robin), λ̂j is obtained as the (squared)
j-th root of a specific functor (see Table 1). As a result, the ordering of the basis
functions {ϕ̂k} depends on the two indices j and n, i.e., k = k(j, n) (for more
details, see [20]).

Vector problems In view of hemodynamic applications, hereafter we con-
struct a modal basis by solving problem (4) completed with homogeneous Dirich-
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let boundary conditions. Moreover, the operator L is chosen as the Stokes oper-
ator on the unit disk. Following the procedure adopted for scalar problems, the
corresponding eigenfunctions for the pressure and for the velocity are computed
as in [21]. Thus, for n 6= 0, they read as

pn(r̂) = c1r̂
n,

uj,n(r̂, ϑ̂) = c1 exp(inϑ̂)



n

λ̂j
r̂n−1 −

nJn

(√
λ̂j r̂

)
r̂λ̂Jn

(√
λ̂j

)

in

 r̂n−1

λ̂j
−
Jn−1

(√
λ̂j r̂

)
− Jn+1

(√
λ̂j r̂

)
2n
√
λ̂jJn

(√
λ̂j

)



,

(6)

respectively, where
√
λ̂j runs through all the roots of Jn+1, and the coefficient

c1 is determined via the unitary norm constraint. Although from a theoretical
viewpoint functions pn and uj,n are tailored to the problem we aim to solve,
from a practical perspective there are some drawbacks. Specifically, we need
here to drop the complex part, with a relevant loss of details. More in general
(for both scalar and vector problems), Bessel functions are extremely sensitive
to numerical errors [22, 19, 23, 24, 25, 16] and this may limit their use.

2.2.2 The Bottom-Up approach

As an alternative to the Top-Down approach, a two-step procedure is proposed
in [24]. A classic Fourier expansion for the angular variable is first adopted
and, subsequently, a radial basis {ξn(r̂)}∞n=0 is introduced to reproduce the r̂-
dependent Fourier coefficients. Thus, the expansion of an arbitrary function
f ∈ L2

w ([0, 1]× [0, 2π)) reads

f(r̂, ϑ̂) =

∞∑
j=0

∞∑
n=0

[
fjnξn(r̂) cos(jϑ̂) + gjnξn(r̂) sin(jϑ̂)

]
, (7)

with fjn, gjn ∈ R for any j, n ∈ N+. This means solving two uncoupled 1D
Sturm-Liouville eigenvalue problems, one for the angular and one for the radial
component, respectively. Then, the 2D basis is given by

ϕ̂sin,cos
j,n (r̂, ϑ̂) = ξn(r̂)

{
cos(jϑ̂)

sin(jϑ̂),
(8)

where the superscript sin/cos specifies the type of trigonometric function consid-
ered and n = n(j), with j, n ∈ N+. As in the previous case, the ordering of the
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basis functions {ϕ̂k} depends on the two indices j and n, i.e., k = k(j, n) [20].
It is important to point out that, depending on the selected radial basis {ξn},
some suitable manipulations may be required to enforce Dirichlet boundary con-
ditions in an essential way, since the basis (8) is not “educated”. Furthermore,
this technique leads to some complications for the hierarchical ordering of the
spectrum. Since no 2D eigenvalue problem is defined, there does not exist any
hierarchy between the r-eigenvalues and the ϑ-eigenvalues, and the correspond-
ing eigenfunctions. Hence, the selection of the number of radial modes and of
trigonometric functions is somehow arbitrary. Two criteria are proposed in [24],
namely rectangular and triangular truncations. The former employs the same
number of radial functions for each angular wave number j. The latter decreases
the number of radial basis functions as j increases, until the highest wave number
has a single radial basis function. This criterion is usually employed for spherical
harmonics because it guarantees the property of “equiareal resolution”. Never-
theless, such property is not guaranteed in a cylindrical setting. Therefore, in
the following we adopt a rectangular truncation, which is beneficial in terms of
implementation. Smoothness properties are guaranteed by the Parity Theorem,
that rules the combination of radial and trigonometric components in the con-
struction of a polar modal basis. We provide the corresponding statement for
completeness [24].

Theorem (Coordinates: Parity in Radius). Let f be a function analytic in
r = 0, expanded by a Fourier series in ϑ as

f(r, ϑ) =
∞∑
j=0

[fj(r) cos(jϑ) + gj(r) sin(jϑ)] .

Continuity of function f and of its derivatives requires fj(r) and gj(r) to have
j-th order zeros at r = 0. In addition, if j is even, then fj(r) and gj(r) are both
symmetric about r = 0 and the corresponding power series contain only even
powers of r. If j is odd, then fj(r) and gj(r) are both antisymmetric about r = 0
and the associated power series contain only odd powers of r.

It follows that, to ensure the regularity of series (7), it suffices that odd pow-
ers of r are paired only with cos(jϑ) and sin(jϑ) where j is odd, and conversely.
Different possible choices for radial basis sets from [24, 26] are shown in Table
2 and discussed below. Figure 2 (left) shows the performance of different basis
sets in approximating the function f(r̂) = cos(π2 r̂) on the interval [0, 1]. The
relative error is defined as e = ‖f −fapprox‖L2

w(Ω)/‖f‖L2
w(Ω), where w(r̂) = r̂ and

fapprox denotes the approximation of f via the truncation of (7). For the sake
of completeness, we discuss several possible choices of basis functions.

Bessel functions: Jn(λj r̂). The modal coefficients of Bessel series asymptot-
ically behave like 1/j3 [25, 22]. For this reason Bessel functions are expected to
be a bad choice for function approximation. For instance, Figure 2 (left) shows
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Family ξn(r̂), n = n(j) parameters

Bessel Jn(λj r̂) λj : the j-th root of Jn(r̂)

Robert r̂jTn(r̂) Tn: Chebyshev polynomial of degree n

Chebyshev-
linear shift

Tn(2r̂ − 1) Tn: Chebyshev polynomial of degree n

Chebyshev-
quadratic shift

Tn(2r̂2 − 1) Tn: Chebyshev polynomial of degree n

Jacobi r̂jP 0,j
n−j
2

(2r̂2 − 1)
P 0,j
h : Jacobi polynomial of degree h

and order (0, j)

Table 2: Main families of eigenfunctions ξn for a 1D Sturm-Liouville eigenvalue
problem in the radial coordinate. Note that the ordering of such basis may
depend on the ordering of the angular basis.

that even a large number of modes is unable to guarantee a desired accuracy on
the relative error. Moreover, this basis is highly sensitive to numerical precision.
The plot in Figure 2 (right) shows that the basis functions lose orthonormality
as the accuracy of the roots λj decreases. The orthonormality error associated
with the basis functions Jn(λj r̂), for n = 0, 1, . . . , 4, j = 1, 2, . . . , 8, is mea-
sured via the Frobenius norm of the matrix Mn − I, where Mn is the mass
matrix associated with the normalized Bessel functions of order n, with com-

ponents [Mn]jl = ‖Jn(λj r̂)‖−1
L2
w(0,1)

‖Jn(λlr̂)‖−1
L2
w(0,1)

1∫
0

Jn(λj r̂)Jn(λlr̂)r̂dr̂, and I is

the identity matrix.

Polar Robert functions: r̂jTn(r̂). As addressed in [24, 26], this basis is
extremely ill-conditioned. Indeed, in proximity of r̂ = 1, the linear independence
of the low-degree basis functions is compromised, since the variation of these
functions in this region is so slow that they are asymptotically equivalent [26].
These features make the polar Robert functions a basis unsuitable in most cases.

Shifted-Chebyshev polynomials with linear argument: Tn(2r̂−1). The
grid {r̂i}Ni=0 constituted by the roots of the Shifted-Chebyshev polynomial of
order (N + 1) has points clustered near both r̂ = 0 and r̂ = 1. this property
makes this grid ideal to solve large gradients near the origin, but less suited to
a generic dependence of the function at hand on the radial coordinate.

Shifted-Chebyshev polynomials with quadratic argument: Tn(2r̂2 − 1).
In order to satisfy the Parity Theorem, the 2D basis functions are chosen so that
the radial part is ξn(r̂) = Tn(2r̂2 − 1) if the angular index j is even, ξn(r̂) =
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Figure 2: Left: Relative error for the approximation of the function f(r̂) =
cos
(
π
2 r̂
)

with Chebyshev polynomials with linear ( ) and quadratic (�) shift,
Robert (�) and Bessel (×) functions. An exponential decay is shown by the
dashed line. Right: Orthonormality error associated with the basis functions
Jn(λj r̂), for n = 0, 1, . . . , 4, j = 1, 2, . . . , 8, as a function of the numerical preci-
sion expressed in number of digits.

r̂ Tn(2r̂2 − 1) otherwise. As shown in [24], the convergence rate associated with
this basis is higher with respect to the convergence guaranteed by the linear-
shifted polynomials.

One-sided Jacobi basis: r̂jP 0,j
n−j
2

(2r̂2− 1). The basis set consisting of Jacobi

polynomials is very similar to the one associated with Robert functions. Indeed,
it is represented by Jacobi polynomials, scaled by the factor r̂j (see Table 2).
Unlike Robert functions, thanks to the orthogonality constraint, these polyno-
mials oscillate mostly near r̂ = 1 and consequently the roots move closer and
closer to the outer boundary for a fixed degree and by increasing j.

Based on the above discussion on the distinguishing features of each family
of functions, the shifted Chebyshev polynomials with quadratic argument are
selected as the modal basis for the numerical assessment. Indeed, they feature
good conditioning properties, and they guarantee an accurate representation of
the approximated function and a fast convergence of the corresponding modal
expansion.
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3 HiMod in Cylindrical Domains for Scalar Advection-
Diffusion-Reaction Problems

As a first benchmark, we apply the HiMod technique to the following linear
ADR problem: 

−∇ · (µ∇u) + b · ∇u+ σu = f in Ω

u = uin on Γin

µ∇u · n = 0 on Γout

u = 0 on Γlat,

(9)

where Ω is a cylinder of length Lx and radius R, and the boundary is defined
as in Figure 1. Let µ, σ ∈ L∞(Ω), with µ ≥ µ0 > 0 a.e. in Ω, be the diffusivity
and the reaction coefficient, respectively, and b = (bx, br, bϑ)T ∈ [L∞(Ω)]3 the
convective field. We assume ∇ · b ∈ L∞(Ω) such that −1

2∇ · b + σ ≥ 0 a.e. in
Ω, and f ∈ L2(Ω) so to guarantee the well-posedness of the weak form of the
problem.

We set the problem on the space Vm defined in (2). Hypotheses of conformity
and spectral approximability are required to guarantee the well-posedness of the
reduced problem and the convergence to the full problem [1].

We introduce a (uniform) partition Th of Ω1D and the corresponding finite
element space V h

1D ⊂ V1D, with dim(V h
1D) = Nh and basis {ζl}Nhl=1, such that a

standard density hypothesis of V h
1D in V1D is guaranteed. The discrete counter-

part of (2) reads as

V hm =

{
vhm(x,y) =

m∑
k=1

ṽhk (x)ϕ̂k(ψx(y)), with ṽhk ∈ V h1D, ϕ̂k ∈ Vγ̂ , x ∈ Ω1D, y ∈ γx

}
.

(10)

Then, the HiMod approximation uhm ∈ V h
m for (9) and the corresponding test

function vhm ∈ V h
m read as uhm(x,y) =

∑m
k=1

∑Nh
i=1 uk,iζi(x)ϕ̂k(ψx(y)) and vhm(x,y) =

ζl(x)ϕ̂j(ψx(y)), respectively, for any l = 1, . . . , Nh and any j = 1, . . . ,m. Thus,
the discrete HiMod formulation becomes:

For k = 1, . . . ,m and i = 1, . . . , Nh, find uk,i ∈ R such that, for any j =
1, . . . ,m, l = 1, . . . , Nh

m∑
k=1

Nh∑
i=1

∫
Ω̂1D

{
dkj ζ

′
iζ
′
l + ckj ζ

′
iζl + bkj ζiζ

′
l + akj ζiζl

}
uk,idx̂ =

∫
Ω̂1D

fjζldx̂, (11)

where coefficients {a, b, c, d}kj , {f}j collect the contribution of the dynamics

transverse to Ω̂1D (we refer to Appendix A for an explicit expression of such
coefficients). Problem (11) represents a linear system of m coupled 1D problems,
characterized by an mNh ×mNh block matrix A (with a hierarchical structure
that we point out in Section 4). The indices j and k, associated with the modes,
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identify the macro-structure of A (they run on the block rows and block columns,
respectively), whereas l and i, related to the finite element basis, identify the rows
and the columns of each block, respectively. Each Nh ×Nh block Ajk preserves
the sparsity pattern peculiar of the adopted 1D finite element approximation.

The rationale of HiMod is that a small modal index m is expected to be
enough to reliably approximate the transverse dynamics, so that solving (11)
requires dealing with a small number of coupled 1D problems. As for a back-
of-the-envelope calculation, for a three-dimensional problem set on a cylindrical
domain discretized with a structured grid via P1-FE, the degrees of freedom
are NxNrNϑ, being Nx, Nr and Nϑ the number of degrees of freedom in the
x, r and ϑ dimension, respectively. With a HiMod reduction the number of
unknowns is mNx. Then, if m � NrNϑ, the resulting matrix is much smaller
compared to the one associated with the full problem. More accuracy is attained
by properly adjusting m. So HiMod can be regarded at the baseline as a versatile
1D approximation that can be properly (and locally) enhanced.

3.1 Numerical Assessment

In order to validate the method, we test HiMod on the basis functions (5) ob-
tained with the Top-Down approach for different types of boundary conditions.1

Functions (8) will be tested in the sequel. We consider a case where the ana-
lytical solution is known to investigate the error behavior, and a more realistic
test whose analytical solution is not available. In the latter case, the ground
truth solution is provided by the standard P1-Finite Element method (FEM)
associated with a very fine grid.

3.1.1 Convergence analysis

Let us consider problem (9) with Lx = 5, R = 1, µ = 1, bx = 5, br = 0, bϑ = 0,
σ = 10. The forcing term and the boundary conditions on Γin are adjusted to
have three different analytical solutions, i.e.,

uR2(x, r, ϑ) = (R2 − r2)(Lx − x)2, (12a)

uR3(x, r, ϑ) = −1

4
r2 +

1

6
r3 +

1

12
, (12b)

uR4(x, r, ϑ) = (R2 − r2)2(Lx − x)2. (12c)

Dirichlet BC Figure 3 (left) shows the trend of the L2(Ω)−norm of the HiMod
error, uR2−uhm, for different values of h and m for the exact solution (12a). The
global error takes into account both the 1D finite element discretization and the
modal error. For a fixed value of h and for m large enough, the error stagnates,

1All the experiments in this work have been performed using a C++ solver on a Dell
Inspiron 15R SE 7520 equipped with a 2.10GHz Intel Core i7 processor and 8GB of RAM.
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since the FEM error dominates the total error. Conversely, for small values of h,
the error is dominated by the modal component. The convergence rate is linear
with respect to the reciprocal of the number of modes. This is consistent with
the results in [7] on slabs. HiMod is sensibly competitive with respect to the
standard FEM in terms of accuracy. For a given number of degrees of freedom
(DOF), the HiMod error is about one order of magnitude lower than the FEM
error (see Figure 3 (right)). Note that for P1-FEM the number of DOF coincides
with the number of vertices of the mesh, whereas for HiMod it is given by the
number of FE nodes along Ω1D multiplied by the number of modes. Conversely,
the number of DOF to obtain a desired tolerance is consistently smaller for the
HiMod method than for FEM.
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Figure 3: ADR with Dirichlet BC: L2(Ω)-norm of the HiMod error as a function
of h and m (left); Comparison between HiMod and FEM error for different exact
solutions (right).

Neumann and Robin BC Consider problem (9) completed with the ho-
mogeneous Robin data µ∇u · n + χu = 0 on Γlat. For µ = 1, χ = 1 the
analytical solution is (12c). Figure 4 (right) shows that the HiMod error decays
as O(N−1.5), being N the number of DOF. The same happens for χ = 0, when
the Robin boundary condition reduces to a Neumann constraint, and the exact
solution is (12b) (see Figure 4 (left)). Indeed, as noted in [7] for a slab, in the
particular case of Neumann boundary data, an infinitely regular function whose
odd derivatives vanish at the boundary is approximated by Fourier truncated
series with spectral accuracy. This justifies the superconvergent trend. As for
Dirichlet BC, HiMod is more accurate of approximately one order of magnitude
compared with FEM.
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Figure 4: ADR with Neumann (left) and Robin (right) BC: L2(Ω)-norm of the
HiMod error as a function of the number of DOF.

3.1.2 Drug release modeling

We aim at modeling a drug-eluting stent deployed in a blood vessel. Stents are
medical devices that are used in the surgical treatment of constricted arteries.
They are inserted into the vessel in order to expand the lumen to prevent or
alleviate an obstruction. In particular, drug-eluting stents slowly release a drug
to inhibit cell proliferation, so to avoid a vascular remodeling [27].

This test case describes the effects of an advective field on a local source
term. Consider problem (9) on the same domain as in the previous test, with
uin = R2 − r2 and a homogeneous Neumann condition on Γout. The physical
parameters are set to µ = 1, σ = 0, bx = 5, br = 0, bϑ = 0, while the forcing term
is designed to model the presence of a high concentration c of drug in proximity
of the wall, i.e.,

f(x, r, ϑ) = c1[Lx
7 ,

Lx
3

](x) ·1[ 7
10R,R

](r), (13)

where 1[a,b] denotes the characteristic function associated with the generic inter-
val [a, b] (see Figure 5). The mesh size along Ω1D and the number of modes is
set to h = 0.05 and m = 40, respectively. Since this test case has no analytical
solution, we refer to a FE approximation computed on a fine mesh (of approxi-
mately 97K nodes). A qualitative comparison between the two panels in Figure
6 shows the reliability of the HiMod procedure from a qualitative viewpoint.
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Figure 5: Forcing term modeling a drug-eluting stent: longitudinal view (left)
and transverse section along the yz-plane (right).

Figure 6: Drug-release modeling: FEM (top) and HiMod (bottom) solution;
Contour surfaces (left) and longitudinal section (right) along the xy-plane.

4 HiMod in Cylindrical Domains for the Generalized
Stokes equations

We extend the HiMod procedure to the generalized Stokes problem

−∇ ·
(
2νD(u)

)
+ αu +∇p = f in Ω

∇ · u = 0 in Ω

u = 0 on Γlat

u = u0 on Γin

(2νD− pI)n · n = 0 on Γout,

(14)

where α ≥ 0 and the kynematic viscosity ν > 0 in Ω are given constants,
f : Ω → R3 is a given force per unit mass, u : Ω → R3 and p : Ω → R
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are the velocity field and the kinetic pressure, respectively, D(u) is the strain
velocity tensor and I is the identity tensor. The generalized Stokes problem is
solved at each time step with α = O(∆t−1), being ∆t the time step of a finite
difference discretization of the unsteady Stokes problem. For α = 0 we recover
the classical Stokes problem. We consider homogeneous Dirichlet conditions on
the lateral boundary Γlat, and Dirichlet and Neumann conditions on Γin and
Γout, respectively. We will denote by Γdir the whole portion of the boundary
where Dirichlet conditions are enforced.

4.1 The HiMod formulation

We formulate the weak form of problem (14) in the Sobolev spaces V = [H1
Γdir

(Ω)]3,

Q = L2(Ω), where H1
Γdir

(Ω) denotes the set of the functions in H1(Ω) that fulfil
Dirichlet conditions on Γdir. The spaces V and Q are endowed with a modal
basis {ϕ̂u,k}k∈N+ ⊂ [H1

0 (γ̂)]3 and {ϕ̂p,k}k∈N+ ⊂ L2(γ̂) for the velocity and for
the pressure, respectively. We introduce the HiMod reduced spaces

Vmu =

{
vmu(x,y) =

mu∑
k=1

ṽk(x)ϕ̂u,k(ψx(y)), with ṽk ∈ V1D,u, ϕ̂u,k ∈ Vγ̂,u, x ∈ Ω1D, y ∈ γx

}
,

Qmp =

{
qmp(x,y) =

mp∑
s=1

q̃s(x)ϕ̂p,s(ψx(y)), with q̃s ∈ V1D,p, ϕ̂p,s ∈ Vγ̂,p, x ∈ Ω1D, y ∈ γx

}
,

where mu and mp denote the number of modes related to the velocity and the
pressure, respectively, V1D,u ⊆ [H1

Γdir
(Ω1D)]3 and V1D,p ⊆ L2(Ω1D) are the 1D

spaces associated with the supporting fiber Ω1D for the velocity and the pressure,
respectively, and with Vγ̂,u = span{ϕ̂u,k}, Vγ̂,p = span{ϕ̂p,s}.

We introduce a uniform 1D grid Th on Ω1D and we associate with this
partition the FE spaces V h

1D,u, with dim(V h
1D,u) = Nh,u and basis {ζu,l =

[ζx,l, ζr,l, ζϑ,l]
T }Nh,ul=1 , and V h

1D,p, with dim(V h
1D,p) = Nh,p and basis {ζp,l}

Nh,p
l=1 .

Concerning the choice of the modal basis, it is a priori possible to use a
different number of modes, mx, mr, mϑ, mp, for the three components of the
velocity and for the pressure, with corresponding bases {ϕ̂x,k}, {ϕ̂r,k}, {ϕ̂ϑ,k},
{ϕ̂p,k}. For the sake of simplicity, we assume mx = mr = mϑ = mu and
ϕ̂x,k = ϕ̂r,k = ϕ̂ϑ,k = ϕ̂k. Analogously, we set ζx,l = ζr,l = ζϑ,l = ζu,l. Thus, the
HiMod velocity and pressure are expanded as

uhmu(x,y) =

mu∑
k=1

Nh,u∑
i=1

ux,k,iur,k,i
uϑ,k,i

ϕk(ψx(y))ζu,i(x),

phmp(x,y) =

mp∑
w=1

Nh,p∑
s=1

pw,sζp,s(x)ϕ̂p,w(ψx(y)),

(15)

while the test functions are defined as vhmu = [ζu,bϕ̂c, ζu,bϕ̂c, ζu,bϕ̂c]
T for b =

1, . . . , Nh,u and c = 1, . . . ,mu, qhmp = ζp,lϕ̂p,j for l = 1, . . . , Nh,p and j =
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1, . . . ,mp. We refer to Appendix B for the explicit HiMod formulation of prob-
lem (14).

Remark As well known, the choice of finite dimensional spaces for velocity
and pressure must fulfill the inf-sup condition [28, 29]. While the issue is largely
investigated for finite element and spectral methods [30, 31, 32, 16], we are
not aware of any theoretical result for hybrid methods that involve both the
techniques. We follow here an empirical approach, inspired by the finite element
and the spectral theory. So we use piecewise quadratic velocity/linear pressure
for the axial dependence (FE) and set mu = mp + 2 for the transverse one
(spectral method). Other choices have been pursued in [8], with mu = 2mp − 2.

After the HiMod discretization of the generalized Stokes problem, the re-
sulting matrix has a block structure with the following partitioning of degrees
of freedom: muNh,u DOFs are associated with each component ux, ur and uϑ of
the velocity, whereas the remaining mpNh,p degrees of freedom are related to the
pressure. The outer block-structure couples the components of the velocity and
the pressure, as it is standard for the Stokes problem. Then, each macro-block
shares the typical block-wise pattern of the HiMod reduction applied to a scalar
problem (see Figure 7).

In the implementation here adopted, the innermost loop assembles the FE
component. Another choice stems from swapping the order of assembly. Al-
though the two strategies of assembly are equivalent from a numerical view-
point, the efficiency of the solver may vary, especially with a view to a parallel
implementation of the method. This is an issue that is still under investigation
[33].

Figure 7: Block structure of the HiMod matrix associated with the generalized
Stokes problem. The indices x, r, ϑ, p in each block highlight the coupling of the
three components of the velocity with the pressure.
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4.2 Steady case: Poiseuille flow

We compare the performance of the top-down basis (5), solution to a 2D Sturm-
Liouville eigenvalue problem, as opposed to the family of bottom-up basis func-
tions of type (8). In particular, in view of the discussion carried out in Section
2.2.2, we select Chebyshev polynomials with quadratic shift to describe the ra-
dial component of the modal basis. For the sake of the comparison, we enforce
homogeneous Dirichlet boundary conditions on Γlat.

Let Ω be a cylindrical domain with radius R = 0.5 and length Lx = 6.
We solve the generalized Stokes equations (14) completed with the following
boundary conditions: 

u = 0 on Γlat

ux =
5

Lx

(R2 − r2)

4µ
on Γin

ur = uϑ = 0 on Γin

(2νD− pI)n · n = 0 on Γout

ur = uϑ = 0 on Γout.

(16)

For α = 0 (steady flow) we have the classical Poiseuille flow (see, e.g., [34]). The
HiMod discretization here employed selects mu = 10, mp = 8 and a uniform
mesh along Ω1D of size h = 0.125.

4.2.1 Top-down basis

As shown in Figure 8 (top-left) the peak reached by the axial component of
the HiMod velocity does not match the analytical profile and this mismatch
increases moving towards the outflow. The pressure gradient, although constant
as expected, is underestimated (see Figure 8 (bottom-left)). Nevertheless, the
accuracy of the approximation can be enhanced by increasing the number of
modes. Figure 9 (top) shows the trend of the L2(Ω)-norm of the relative error
associated with the HiMod velocity and the pressure as a function of the modal
index, for different values of h. Notice that, in such a case, a refinement of the
mesh does not provide any improvement in the accuracy of the HiMod solution
since both the velocity and the pressure belong to the discrete space associated
with Ω1D. Hence, the global error is dominated by the modal error, which
drops as the number of modal functions increases sufficiently. Therefore, Bessel
functions are inefficient in the spirit of a HiMod reduction, where few transverse
modes are expected to improve the accuracy of the approximation. Finally, it
is worth noting that the number of degrees of freedom necessary to guarantee
a fixed level of accuracy is consistently smaller for HiMod than for FEM or,
equivalently, for a fixed size of the problem HiMod provides a more accurate
solution than FEM (see Figure 9 (bottom)).
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Figure 8: Poiseuille flow: Exact (dotted line) and HiMod (solid line) axial ve-
locity at x = Lx/3 (top) and pressure drop (bottom) computed via a top-down
(left) and a bottom-up (right) basis.
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k odd
cos(0ϑ) ξE1 (r) (1) ξE2 (r) (3) ξE3 (r) (7) ξE4 (r) (13)

cos(1ϑ) ξO1 (r) (5) ξO2 (r) (9) ξO3 (r) (15) . . .

cos(2ϑ) ξE1 (r) (11) ξE2 (r) (17) . . .

cos(3ϑ) ξO1 (r) (19) . . .

k even
sin(1ϑ) ξO1 (r) (2) ξO2 (r) (4) ξO3 (r) (8) ξO4 (r) (14)

sin(2ϑ) ξE1 (r) (6) ξE2 (r) (10) ξE3 (r) (16) . . .

sin(3ϑ) ξO1 (r) (12) ξO2 (r) (18) . . .

sin(4ϑ) ξE1 (r) (20) . . .

Table 3: Ordering of the bottom-up basis functions {ϕ̂k}. The numbering refers
to a triangular truncation, whereas a rectangular truncation employs the same
number of radial basis functions for each angular frequency.

4.2.2 Bottom-up basis

The radial basis polynomials obtained with the bottom-up approach (see Ta-
ble 2) do not vanish at the boundary. Therefore, they need to be artificially
“educated” to match the boundary data, so that the resulting modal basis is
consistent with the Parity Theorem. A basis that fulfils such a requirement is
proposed in [35]. For all j, n = 1, 2, . . ., we have{

ξEn (r) = Tn(2r2 − 1)− 1 if j is even

ξOn (r) = rTn(2r2 − 1)− r if j is odd.
(17)

We order functions (17) as in Table 3 (see [35]), and we use a rectangular trunca-
tion. Concerning the reduction of the pressure, standard Chebyshev polynomials
with quadratic shift are used, as no boundary condition is enforced on p.

As a consistency check, we notice that the quadratic solution for the axial
component of the velocity belongs to the reduced space, and the Chebyshev
polynomials compute it with a global relative error of the order of 10−7 (see
Figure 8 (top-right)). This error is not improved by increasing the number of
modes or reducing the FE mesh size. The same holds for the linear pressure, as
shown in Figure 8 (bottom-right).

4.3 Unsteady case: Womersley flow

HiMod can be generalized to unsteady problems with no particular technical
issues. The generalized Stokes problem needs to be solved at each time step as
the result of a standard time discretization. In particular, we solve the problem

20



on the Womersley test case, the well known counterpart of Poiseuille profile
with a time-periodic pressure drop between inlet and outlet [36]. More precisely,
the pressure drop is given by ALxe

iωt, with constant amplitude A, frequency
ω = 2π

T and period T (the heart beat). The interplay between the oscillatory
flow frequency ω and the effects of the kinematic viscosity ν is described by
the Womersley number Wo = R

√
ω/ν. We reproduce here the test proposed in

[8]. The amplitude and the period are set to A = 1 and T = 1 (i.e., ω = 2π),
respectively, while the length of the pipe and the radius are set to Lx = 2 and
R = 0.2, respectively. We simulate the flow associated with different Womersley
numbers, Wo ∈ {3, 5, 10, 20}, by varying the viscosity of the fluid. We simulate
a complete period by choosing ∆t = T

1000 , and we assign Neumann conditions to
enforce the pressure drop along the axial direction, homogeneous conditions for
the transverse components of the velocity at the inlet/outlet and no-slip lateral
conditions. The mesh size along the axis Ω1D is h = 0.125, and the number
of modes for the velocity is mu ∈ {5, 9, 13}. The HiMod solution is compared
to the analytical solution in Figure 10 at different times and for the different
values of Wo. For low Womersley numbers, characterized by an oscillating profile
very close to the Poiseuille parabolic solution, HiMod is accurate even with very
few modes. As the Womersley number increases, the wave front flattens in
the center of the pipe and only a higher number of transverse modes is able
to guarantee accuracy. This is confirmed by the errors in Table 4. Indeed,
the L2(Ω)-norm of the error is approximately constant independently of the
number of modes for Wo ∈ {3, 5}, whereas it drops as mu increases, for Wo ∈
{10, 20}. Accordingly, the accuracy of the HiMod approximation is preserved
for each value of the Womersley number only for a sufficiently large number of
modes (mu = 13). Furthermore, since the initial HiMod solution coincides with
the exact solution, the error at t = 0 reduces to the HiMod truncation error.
Figure 11 highlights the phase-lag between the (normalized) axial velocity and
the oscillating (normalized) pressure on the centerline at the inlet for Wo = 3
and mu = 5, in accordance with [36, 37]. It is evident that the HiMod solution
tightly matches the analytical profile.

Note that the Womersley flow is an analytical solution not only to the un-
steady Stokes problem, but also to the unsteady Navier-Stokes equations, since
the nonlinear term vanishes for this choice of profile. The results presented here
are obtained as the solution to problem (14). Nevertheless, the same tests were
run by adding the nonlinear term, but no significant difference is detected and
the error is essentially preserved. This allows us to compare the HiMod with the
TEPEM numerical performance. In particular, we will refer to Table I in [8].
The level of accuracy obtained with mu HiMod transverse modes is guaranteed
with approximately m2

u TEPEM modes, and with a time step four times larger
than the one used in [8]. This is likely a consequence of the strict correspon-
dence between the geometry and the HiMod basis, in contrast to the Cartesian
map used in TEPEM. Indeed, this is easy to implement, but introduces a local
lack of regularity that affects the convergence rate. A more systematic inves-
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t [s]
0 0.10 0.25 0.40

mu=5 6.17e-7 7.12e-5 1.57e-4 1.40e-4
Wo = 3 mu=9 6.17e-7 7.12e-5 1.57e-4 1.40e-4

mu=13 6.18e-7 7.12e-5 1.57e-4 1.40e-4

mu=5 5.19e-7 6.63e-5 2.13e-4 2.93e-4
Wo = 5 mu=9 4.22e-7 6.65e-5 2.14e-4 2.94e-4

mu=13 4.22e-7 6.65e-5 2.14e-4 2.94e-4

mu=5 1.20e-4 2.02e-4 2.85e-4 4.09e-4
Wo = 10 mu=9 2.98e-7 5.94e-5 2.35e-4 3.80e-4

mu=13 2.98e-7 5.94e-5 2.35e-4 3.80e-4

mu=5 1.59e-3 8.31e-4 1.75e-3 3.13e-3
Wo = 20 mu=9 2.21e-6 5.59e-5 2.44e-4 4.16e-4

mu=13 2.09e-7 5.47e-5 2.45e-4 4.19e-4

Table 4: Womersley flow: L2(Ω)-norm of the error associated with the Hi-
Mod velocity for different Wo numbers and at different times.

tigation of this point will be carried in the follow up of this work, focused on
non-axisymmetric Navier-Stokes problems [10].

5 Numerical Tests in Nontrivial Domains

We present some further numerical tests inspired by computational hemody-
namics. The ultimate goal of HiMod in this field is to provide an efficient way
for simulating blood flow in arteries with computational costs comparable to
1D models, yet preserving local accuracy in the transverse components. A first
contribution in this direction is given in [8]. We demonstrate here that using the
cylindrical coordinate framework on nontrivial axisymmetric geometries is effi-
cient, even though non-trivial from the implementation standpoint. Moreover,
the HiMod solution to the Stokes problem outperforms the standard FEM in
terms of computational costs, as already remarked in [8].

5.1 Vascular models

We consider three types of non-trivial geometries that model the natural tapering
of blood vessels, and the most common cardio-vascular diseases (stenoses and
aneurysms).

Tapered pipes It has been noted by several authors that arteries feature
tapering along their axis and that this has a significant impact on hemodynamics
(and, consequently, on the design of grafts and prosthesis [38, 39, 40]). In a
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tapered pipe, the radius can be modeled as [41]

R(x) = −(tan Ψ)x+Rin,

where Ψ = (Rout−Rin)
Lx

is the tapering angle, and with Rin and Rout the radius
at the inflow and at the outflow section, respectively (see Figure 12 (top)).

Aneurysmatic and stenotic vessels An aneurysm is a balloon-like dilation
in an arterial vessel (see Figure 12 (center) for a sketch). The growth and
rupture of the bulge is related to hemodynamics factors, such as blood velocity,
wall shear stress, pressure, particle residence time and flow impingement [42].

Arterial stenoses are local restrictions of the artery caused by localized plaques
(see Figure 12 (bottom)). We model the radius for both the diseases as a
quadratic exponential function of the axial variable, i.e., as

R(x) = R0 + κe−(x−Lx2 )
2

, (18)

where R0 is the radius of the inflow and of the outflow sections, while κ, with κ ∈
[−1, 1], takes into account the entity of the occlusion or dilation. In particular,
the parameter κ is positive in the case of an aneurysm, negative for a stenosis.

In what follows we simulate the unsteady Stokes problem in a tapered pipe
and in an aneurysmatic vessel (κ = 0.5). The case κ < 0 is omitted for the sake
of brevity, the HiMod performances being comparable to the results shown here.
A complete description of the results can be found in [20]. We enforce the same
boundary conditions as for the Womersley test case, and we set the number of
modes for the velocity and the mesh size along Ω1D to mu = 10 and h = 0.125,
respectively.

5.2 HiMod approximation

Tapered pipes The flow is driven by a space-dependent oscillating pressure
gradient, such that the amplitude of the pressure oscillation dicreases along the
x-axis (see Figure 13 (left)). Conversely, the oscillation of the Womersley velocity
profile at the center of the inlet section of the pipe is magnified along the x-axis,
so that the maximal oscillation is reached at the outlet section (see Figure 13
(right)). On each transverse section and at each time step, the x-component of
the velocity reproduces the Womersley profile associated with the radius of the
corresponding section γx, as shown in Figure 14 (top). Notice that the tapering
of the domain triggers some transverse dynamics, in contrast to the Womersley
flow in a cylindrical pipe with constant radius. Thus, the velocity is not purely
axial, as for the case of constant radius. The presence of a radial component is
correctly detected by the HiMod solution (see Figure 14 (center)). In particular,
the planar components point inward as long as the peak of the axial velocity
is positive. They turn outward as soon as the flow reverses. Finally, Figure 14
(bottom) shows the 3D HiMod approximation for four different times on the
whole domain.
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Aneurysmatic vessels At each time the pressure is linear along the x-axis
in the inflow and outflow cylindrical segments, with an inflection point inside
the aneurysm. In particular, it increases where the vessel enlarges, and it re-
duces where the regular lumen of the vessel is restored (see Figure 15 (left)).
Conversely, the axial velocity on the centerline drops inside the bulge, due to
the conservation of energy (see Figure 15 (right)). We refer to [20] for a de-
tailed analysis of the effect of the size κ of the aneurysm on the pressure and
velocity profiles. The axial component of the velocity on each transverse section
features the profile typical of the Womersley flow in a cylindrical pipe, as shown
in Figure 16 (top). However, note that the flow develops a parabolic profile in
the cylindrical segments (see, e.g., sections at x = 0, and x = Lx/3), whereas
it flattens around r = 0 within the aneurysm (section at x = Lx/2). Moreover,
differently from the proximal and distal profiles, no flow inversion takes place in
the bulge, in the proximity of the wall (see Figure 16 (top-right)). The trans-
verse components of the velocity are directed outward until the flow reverses at
t = 0.40s (see Figure 16 (center)). Finally, the 3D velocity profiles on different
sections are shown in Figure 16 (bottom).

We stress that the transverse dynamics properly described in these results
are out of reach for 1D models, while HiMod - that conceptually is a sort of 1D
enriched modeling - is able to capture the local components of these dynamics
by properly tuning the spectral discretization.

6 Conclusions

In this work we extended the Hierarchical Model Reduction to 3D cylindrical
domains and to differential problems actually involved in haemodynamic mod-
eling. While the application of HiMod to 2D or 3D slabs is straightforward
thanks to the Cartesian tensor product, the cylindrical setting requires a spe-
cific analysis. First, we considered a standard ADR problem. The comparison
between the HiMod solution and the corresponding 3D approximation highlights
the competitiveness of HiMod with respect to FEM, both in terms of computa-
tional effort and accuracy of the approximation. When the number of transverse
modes is sufficiently large, the HiMod approximation is fully comparable with
the FE one, yet obtained with a much smaller number of unknowns. Then,
we carried out the HiMod formulation for the generalized Stokes problem in
cylindrical coordinates. The choice of the basis set and of the corresponding ap-
proximation properties in this case required a deeper discussion. The promising
performances obtained with quadratic-shifted Chebyshev polynomials enabled
us to move towards geometries more challenging for medical applications. In
particular, we introduced elementary models for cardiovascular pathologies such
as aneurysms or stenoses. The HiMod solutions match the expected results very
well, for both steady and evolutionary models. In particular, the results on
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stenotic or aneurysmatic vessels confirm that a HiMod reduction is capable of
detecting local transverse dynamics that are totally dropped by standard 1D
models. This feature points out the role of the HiMod approach as a (cheap)
“psychologically” 1D model, capable of improving the local accuracy. A similar
coexistence of computational cost reduction and local accuracy is performed by
the Geometrical Multiscale approach (see [43, 3, 44]). Nevertheless, the advan-
tage of a HiMod reduction with respect to such a method is that the model is
not dimensionally heterogeneous. Thus, the local refinement is by far easier to
be obtained and managed in extended networks of pipes.

We plan to use this method for modeling networks of pipes [8], such as a
significant portion of the arterial tree. Indeed, if, on the one hand, it has been
shown that HiMod can introduce a significant computational saving compared to
full 3D modeling, on the other hand one of the ultimate goals of the methodology
is to provide an alternative to 1D Euler-based models. At this stage, we cannot
perform an extensive comparison with 1D Euler models, since the latter is specif-
ically designed for fluid-structure interaction, which is one of the follow-up of
the present work. We are currently working on extending the HiMod reduction
to the nonlinear Navier-Stokes equations in non-axisymmetric domains, which
translates into a dependence of the radius not only on the axial but also on the
angular coordinate [10]. Other open issues are the inf-sup condition for HiMod
solvers and the identification of linear algebra solvers for the HiMod system,
specifically designed for exploiting the sparsity pattern and the intrinsic nature
of the method, such as multilevel techniques.
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Appendices

A ADR HiMod coefficients

We denote the inverse transpose of the strain gradient tensor by

F̂−T =
∂ψ̂

∂z
◦ ψ̂−1

=


1 − r̂

R

∂R

∂x̂
0

0
1

R
0

0 − 1

R2

∂R

∂ϑ̂

1

R

 =

1 D̂r D̂ϑ

0 Ĵr D̂rϑ

0 D̂ϑr Ĵϑ

 , (19)

where the subscripts r and ϑ refer to the radial and angular component, respec-
tively, while r̂ and ϑ̂ denote the polar coordinates in the reference domain. Notice
that, if we assume the physical radius R to be constant, matrix (19) features a
diagonal pattern, being D̂r = D̂ϑ = D̂rϑ = D̂ϑr = 0 and Ĵr = Ĵϑ = R−1.

The coefficients of the HiMod formulation (11) for the ADR problem (9) with
viscosity µ, convective field b = [bx, br, bϑ]T , reaction coefficient σ and forcing
term f are given by

akj =

∫
γ̂

(
µ(D̂2

r + D̂2
ϑr + Ĵ2

r )
∂ϕ̂k
∂r̂

∂ϕ̂j
∂r̂

+ µ(D̂rD̂ϑ + ĴrD̂rϑ + D̂ϑrĴϑ)
1

r̂

∂ϕ̂k
∂r̂

∂ϕ̂j

∂ϑ̂

+ µ(D̂rD̂ϑ + D̂rϑĴr + ĴϑD̂ϑr)
1

r̂

∂ϕ̂k

∂ϑ̂

∂ϕ̂j
∂r̂

+ µ
(
D̂2
ϑ + D̂2

rϑ + Ĵ2
ϑ

) 1

r̂2

∂ϕ̂k

∂ϑ̂

∂ϕ̂j

∂ϑ̂

+ (bxD̂r + brĴr + bϑD̂ϑr)
∂ϕ̂k
∂r̂

ϕ̂j + (bxD̂ϑ + brD̂rϑ + bϑĴϑ)
1

r̂

∂ϕ̂k

∂ϑ̂
ϕ̂j

+ σϕ̂kϕ̂j

)
Ĵdγ̂,

bkj =

∫
γ̂

µ

(
D̂r

∂ϕ̂k
∂r̂

ϕ̂j +
D̂ϑ

r̂

∂ϕ̂k

∂ϑ̂
ϕ̂j

)
Ĵdγ̂, dkj =

∫
γ̂

µϕ̂kϕ̂j Ĵdγ̂,

ckj =

∫
γ̂

(
µD̂rϕ̂k

∂ϕ̂j
∂r̂

+ µ
D̂ϑ

r̂
ϕ̂k
∂ϕ̂j

∂ϑ̂
+ bxϕ̂kϕ̂j

)
Ĵdγ̂, fj =

∫
γ̂

f(ψ̂
−1

(ẑ))ϕ̂j Ĵdγ̂,

being Ĵ = |det(F̂−T )|, and with dγ̂ = r̂dr̂dϑ̂. The diagonal pattern of matrix
F̂−T for the cylindrical setting with a constant radius yields some simplifications,
so that

akj =

∫
γ̂

(
µ

R2

∂ϕ̂k
∂r̂

∂ϕ̂j
∂r̂

+
µ

R2r̂2

∂ϕ̂k

∂ϑ̂

∂ϕ̂j

∂ϑ̂
+
br
R

∂ϕ̂k
∂r̂

ϕ̂j +
bϑ
Rr̂

∂ϕ̂k

∂ϑ̂
ϕ̂j + σϕ̂kϕ̂j

)
Ĵdγ̂,

bkj = 0, ckj =

∫
γ̂

bxϕ̂kϕ̂j Ĵdγ̂, dkj =

∫
γ̂

µϕ̂kϕ̂j Ĵdγ̂, fj =

∫
γ̂

f(ψ̂
−1

(ẑ))ϕ̂j Ĵdγ̂.
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B Generalized Stokes HiMod coefficients

The HiMod formulation of the generalized Stokes problem reads as:
For all k = 1, . . . ,mu, w = 1, . . . ,mp, i = 1, . . . , Nh,u, q = 1, . . . , Nh,p,

find ux,k,i, ur,k,i, uϑ,k,i, pw,q such that, ∀b ∈ {x, r, ϑ, p}, ∀j = 1, . . . , {mu,mp},
∀l = 1, . . . , {Nh,u, Nh,p}1

∑
a∈{x,r,ϑ}

mu∑
k=1

mp∑
w=1

∫
Ω̂1D

{Nh,u∑
i=1

[
aab,kjζa,iζb,l + bab,kjζa,iζ

′
b,l+

cab,kjζ
′
a,iζb,l + dab,kjζ

′
a,iζ
′
b,l

]
ua,k,i+

Nh,p∑
q=1

[
apb,wjζp,qζb,l + bpb,wjζp,qζ

′
b,l

]
pw,q

}
dx̂

=

∫
Ω̂1D

∫
γ̂

f̂ ϕ̂b,jζb,lĴdγ̂dx̂,

(20)

where Ĵ = |det(F̂−T )|, dγ̂ = r̂dr̂dϑ̂, and the coefficients aab,kj , apb,wj , bab,kj ,
bpb,wj , cab,kj , dab,kj collect the contribution of the transverse dynamics.

For the sake of simplicity, the following notation is adopted:

Iαβ,γδab,cd (f1, f2, . . . ; η1, η2, . . .) =∫
γ̂

(
η1η2 . . . f1(Ĵr, D̂r, D̂ϑ)f2(Ĵr, D̂r, D̂ϑ) . . . ϕac

(α,β)(r̂, ϑ̂)ϕbd
(γ,δ)(r̂, ϑ̂)

)
Ĵdγ̂,

(21)
where {a, b} ∈ {x, r, ϑ; p} refer to the component of the modal function, and
{c, d} ∈ {1, . . . ,mu or mp} are the corresponding modal indices. The super-
scripts {α, β, γ, δ} ∈ {0, 1} take into account the differentiation applied to the
modal basis. In particular, when α or γ (β or δ) are set to 1, the corresponding
modal function is differentiated with respect to the radial (angular) variable.
Finally, fi is a function of x̂, r̂, ϑ̂ through Ĵr, D̂r, D̂ϑ, and ηi ∈ {α, ν, 2ν,±1} are
constant parameters. For instance,

aϑx,sj = I10,01
ϑx,sj

(
D̂r,

Ĵϑ
r̂

; ν

)
=

∫
γ̂

(
νD̂r

Ĵϑ
r̂
ϕϑs

(1,0)(r̂, ϑ̂)ϕxj
(0,1)(r̂, ϑ̂)

)
Ĵdγ̂.

The explicit expression for all the coefficients is provided below. Within each

1If b = p, the indices j and l run up to mp and Nh,p, respectively, and up to mu and Nh,u
otherwise.
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group, the coefficients are ordered by subscripts.

axx,kj = I10,10
xx,kj

(
D̂2
r ; 2ν

)
+ I00,00

xx,kj (1;α) + I01,01
xx,kj

(
Ĵ2
ϑ

r̂2
; ν

)
+ I10,10

xx,kj

(
Ĵ2
r ; ν
)

,

axr,kl = I10,10
xr,kl

(
D̂r, Ĵr; ν

)
, axϑ,kz = I01,10

xϑ,kz

(
D̂r,

Ĵϑ
r̂

; ν

)
,

arr,hl = I10,10
rr,hl

(
D̂2
r ; ν
)

+ I00,00
rr,hl (1;α) + I00,00

rr,hl

(
Ĵ2
ϑ

r̂2
; 2ν

)
+

I01,01
rr,hl

(
Ĵ2
ϑ

r̂2
; ν

)
+ I10,10

rr,hl

(
Ĵ2
r ; 2ν

)
,

arϑ,hz = I00,01
rϑ,hz

(
Ĵ2
ϑ

r̂2
; 2ν

)
+ I01,10

rϑ,hz

(
Ĵr,

Ĵϑ
r̂

; ν

)
+ I01,00

rϑ,hz

(
Ĵ2
ϑ

r̂2
;−ν

)
,

arx,hj = I10,10
rx,hj

(
Ĵr, D̂r; ν

)
, arp,hi = I00,00

rp,hi

(
− Ĵϑ
r̂

; 1

)
+ I10,00

rp,hi

(
−Ĵr; 1

)
,

aϑϑ,sz = I10,10
ϑϑ,sz

(
D̂2
r ; ν
)

+ I00,00
ϑϑ,sz (1;α) + I00,00

ϑϑ,sz

(
Ĵ2
ϑ

r̂2
; ν

)
+ I01,01

ϑϑ,sz

(
Ĵ2
ϑ

r̂2
; 2ν

)
+

I10,10
ϑϑ,sz

(
Ĵ2
r ; ν
)

+ I10,00
ϑϑ,sz

(
Ĵr,

Ĵϑ
r̂

;−ν

)
+ I00,10

ϑϑ,sz

(
Ĵr,

Ĵϑ
r̂

;−ν

)
,

aϑr,sl = I01,00
ϑr,sl

(
Ĵ2
ϑ

r̂2
; 2ν

)
+ I10,01

ϑr,sl

(
Ĵr,

Ĵϑ
r̂

; ν

)
+ I00,01

ϑr,sl

(
Ĵ2
ϑ

r̂2
;−ν

)
,

aϑx,sj = I10,01
ϑx,sj

(
D̂r,

Ĵϑ
r̂

; ν

)
, aϑp,si = I01,00

ϑp,si

(
Ĵϑ
r̂

;−1

)
,

apϑ,wz = I00,01
pϑ,wz

(
Ĵϑ
r̂

;−1

)
, axp,ki = I10,00

xp,ki

(
D̂r;−1

)
,

apx,wj = I00,10
px,wj

(
D̂r;−1

)
, apr,wl = I00,10

pr,wl

(
Ĵr;−1

)
+ I00,00

pr,wl

(
Ĵϑ
r̂

;−1

)
;

bxx,kj = I10,00
xx,kj

(
D̂r; 2ν

)
, bxr,kl = I10,00

xr,kl

(
Ĵr; ν

)
, bxϑ,kz = I01,00

xϑ,kz

(
Ĵϑ
r̂

; ν

)
,

bxp,ki = I00,00
xp,ki (1;−1) , brr,hl = I10,00

rr,hl

(
D̂r; ν

)
, bϑϑ,sz = I10,00

ϑϑ,sz

(
D̂r; ν

)
,

bpx,wj = I00,00
px,wj (1;−1) ;

cxx,kj = I00,10
xx,kj

(
D̂r; 2ν

)
, crr,rl = I00,10

rr,hl

(
D̂r; ν

)
,

cϑϑ,sz = I00,10
ϑϑ,sz

(
D̂r; ν

)
, crx,hj = I00,10

rx,hj

(
Ĵr; ν

)
, cϑx,sj = I00,01

ϑx,sj

(
Ĵϑ
r̂

; ν

)
,

drr,hl = I00,00
rr,hl (1; ν) , dϑϑ,sz = I00,00

ϑϑ,sz (1; ν) , dxx,kj = I00,00
xx,kj (1; 2ν) .
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Figure 10: Womersley flow in a cylindrical pipe: In each panel velocity (top)
and axial component (bottom) profile for the exact (left and dot-dashed line)
and the HiMod (right and dotted, dashed, solid lines) solution at x = Lx/2 at
different times for Wo = 3, 5, 10, 20 (top-bottom). The solid line corresponds to
mu = 5.
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Figure 11: Womersley flow in a cylindrical pipe: Normalized exact (solid line)
and HiMod (dotted line) pressure, normalized exact (dashed line) and HiMod
(×) axial velocity on the centerline at the inlet for Wo = 3, mu = 5.

Figure 12: Sketch of a tapered pipe (top), of an aneurysmatic (center) and of a
stenotic (bottom) vessel.
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Figure 13: Womersley-like flow in a tapered pipe: Oscillating pressure (left) and
centerline velocity (right) at x = 0 (dotted line), x = Lx/3 (dashed line), and
x = 2Lx/3 (solid line).
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Figure 14: Womersley-like flow in a tapered pipe: Axial velocity at x = 0 (dotted
line), x = Lx/2 (dashed line), and x = Lx (solid line) (top); Radial velocity at
x = Lx/3 (center) and 3D HiMod velocity profile (bottom) at different times.
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Figure 15: Womersley-like flow in an aneurysmatic pipe: Pressure (left) and
axial velocity on the centerline (right) along the x-axis at t = 0.10s (dotted
line), t = 0.15s (dashed line), and t = 0.20s (solid line).
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Figure 16: Womersley-like flow in an aneurysmatic vessel: Axial velocity at x = 0
(dotted line), x = Lx/3 (dashed line) and x = Lx/2 (solid line) sections (top);
Radial velocity at x = Lx/3 (center); 3D HiMod velocity profile at different
times (bottom).
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