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Abstract

Mesh adaptation on surfaces demands particular care due to the important

role played by the fitting of the surface. We propose an adaptive procedure

based on a new error analysis which combines a rigorous anisotropic estima-

tor for the L1-norm of the interpolation error with an anisotropic and more

heuristic control of the geometric error. We resort to a metric-based adaptive

algorithm which employs local operations to modify the initial mesh accord-

ing to the information provided by the error analysis. An extensive numerical

validation corroborates the robustness of the error analysis as well as of the

adaptive procedure.

1 Introduction and motivations

Mesh adaptation on surfaces is a topic of great interest in the scientific panorama

due to its potential strong impact with a view to practical applications (see, e.g., [41,

45] among the most recent papers) and, more in general, to the approximation of

partial differential equations on manifolds. Despite the relevance of this research

field, there exists still a limited number of works dealing with surface mesh adap-

tive techniques based on a rigorous error analysis, and it turns out to be essentially

confined to an isotropic context [2, 14, 17, 33, 39].

∗Current affiliation:Weierstrass Institute for Applied Analysis and Stochastics, Berlin.
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In this paper we focus on implicitly defined surfaces Γ ⊂ R
3 and we derive an

anisotropic a-priori error estimator to control the error associated with the approx-

imation of a generic function f ∈ H1(Γ) via a piecewise linear quasi-interpolant

operator. The triangular surface grid used to define the interpolant is also employed

to approximate surface Γ. This choice leads us to include in the error analysis a

contribution due to the geometric approximation in addition to the interpolation er-

ror term. In this respect, we are consistent with the decomposition of the error pro-

vided in [14] in terms of a contribution related to the finite element approximation

of f , a term associated with the geometric approximation of Γ and a contribution

taking into account data approximation. In particular, since we deal with an inter-

polation error analysis, we are allowed to neglect the data error while we identify

the discretization with the interpolation error.

The interest for an anisotropic setting is mainly justified by the several possible

applicative fields of interest in Scientific Computing (e.g., in a biomedical, geolog-

ical or aerodynamic context), where phenomena may exhibit large variations along

a certain direction with less significant changes along the other ones. In such cases,

a standard isotropic adaptive algorithm may generate a very large number of ele-

ments to ensure a certain accuracy or, vice versa, may provide a limited accuracy

for a fixed number of elements. This is a well-established issue in the standard

planar case (see, e.g., [6, 7, 37, 42, 47]) and it is expected to work analogously

on surfaces, where the directionalities of the domain may be taken into account as

well, via a proper sizing, shaping and orientation of the mesh elements.

The idea pursued in this work is to properly merge the interpolation analysis

developed in [14] with the anisotropic setting proposed in [22] for a 2D planar

setting, and then successfully extended to a 3D volumetric framework in [19, 20].

In particular, the derivation of an anisotropic counterpart for the Poincaré inequal-

ity represents the crucial result with a view to the desired anisotropic control of

the interpolation error. Concerning the anisotropic bound for the geometric error,

we move essentially from heuristic considerations, numerically checked in the last

section of the paper.

The information provided by the global (interpolation plus geometric) error estima-

tor is successively converted into a practical procedure to adapt the mesh. For this

purpose, we resort to a metric-based approach with the aim of reducing the number

of mesh elements to guarantee a certain accuracy on the solution while equidis-

tributing the error. To combine the interpolation with the geometric information,

we propose different strategies and we compare them in the last section of the pa-

per to identify, possibly, the most suited approach with a view to an anisotropic

mesh adaptivity. We use standard local mesh operations (edge swapping, splitting

and collapsing, and node smoothing) to change the initial (isotropic) mesh into the

final adapted mesh matching the directional features of the function and of the sur-

face at hand. The employment of local operations is a novelty in the context of the

anisotropic approach proposed in [22, 23], where a metric-based remeshing of the

initial grid is essentially performed.

Finally, we remark that the proposed approach based on an implicit representa-
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tion of the surface relieves us from too specific requirements on possible surfaces

of interest as done, for instance, in [2, 39].

The paper is organized as follows. In § 2 we settle the reference geometric

setting and we introduce the basic ideas of the anisotropic framework. Section 3

represents the theoretical core of the paper since it collects the derivation of the

anisotropic estimator for the interpolation error and the proposal of the anisotropic

control for the geometric error. In § 4 we tackle the crucial issue of merging the

interpolation analysis with the geometric information by exploring different possi-

bilites. Section 5 provides an exhaustive numerical investigation, first by setting the

adaptive procedure and then by validating it on both a closed and an open surface.

The last section is meant to draw some conclusions starting from the numerical

assessment.

2 The geometric setting

Let us consider a connected C2-compact and orientable two-dimensional surface

Γ embedded in R
3. In particular, we adopt an implicit representation for Γ, i.e.,

we assume that Γ coincides with the zero level set of a signed distance function

d : U0 ⊂ R
3 → R, such that d(x) = dist(x,Γ) for any x = (x1, x2, x3)

′ ∈ U0,

and with U0 an open subset of R
3. In particular, if Γ is a closed surface, we assume

d < 0 inside the volume enclosed by Γ whereas d > 0 outside, while, if Γ is an

open surface, we assume ∂Γ to be piecewise curvilinear in a sense that will be

specified below.

Now, following [14], we assume that there exists a shell of width δ > 0 around

Γ given by Uδ = {x ∈ R
3 : |dist(x)| < δ} ⊂ U0 (see Figure 1). In particular, the

thickness δ of the shell is sufficiently small to guarantee the global uniqueness of

the decomposition

x = a(x) + d(x)n(x) ∀x ∈ Uδ, (1)

with a : Uδ → Γ the orthogonal projection operator onto Γ and n(x) = ∇d(x) the

outward unit normal to Γ at x. More details about the choice of δ can be found,

e.g., in [14, 29]. The projection a is instrumental in extending the definition of a

function f assigned on Γ to the whole shell Uδ, thanks to the following relation

fE(x) = f(a(x)) ∀x ∈ Uδ. (2)

Essentially, the extended function fE can be identified with the extension along

wires of the function f (see Figure 1). Via fE , we may define the tangential gradi-

ent ∇Γf on Γ of the function f : Γ → R as

∇Γf = ∇fE − (n · ∇fE)n, (3)

with ∇ the standard gradient operator in R
3. Notice that, thanks to (2), the tan-

gential gradient ∇Γf depends only on the values of f on Γ despite definition (3)

involves the whole shell Uδ.
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Figure 1: Schematic representation of the shell Uδ and of the extended function fE

in (2).

Now, in view of practical computations, we replace surface Γ with a polyhedral

surface Γh ⊂ Uδ consisting of a set Th = {T} of triangular faces T of diameter

hT , such that Γh ≡ ∪T∈Th
T . We denote by V the set of the vertices of Γh and

we demand V ⊂ Γ. Let nh be the piecewise constant unit outer normal to Γh. We

assume n · nh > 0 everywhere on Γh. Moreover, since Γh ⊂ Uδ, we can employ

the orthogonal projection defined in (1) to relate Γh with Γ as well, by demanding

a : Γh → Γ to be bijective. The Jacobian associated with such a bijection is

denoted by µh, i.e., we have that

µh(x)dΓh(x) = dΓ(a(x)) ∀x ∈ Γh. (4)

Finally, if Γ is an open surface, we require ∂Γ ≡ a(∂Γh). This implies to assume

∂Γ piecewise linear, i.e., we are completely relieved from any error due to the

approximation of the boundary of Γ.

Analogously, any function f is replaced by a discrete counterpart fh. For this

purpose, we introduce the space Xh of the continuous functions which are affine

on each face T of Γh [17] and we approximate f with a function fh ∈ Xh to be

properly defined. We denote by ϕzi
∈ Xh the standard basis function associated

with the vertex zi ∈ V , such that ϕzi
(zj) = δij , for any zi, zj ∈ V , with δij the

Kronecker symbol.

An anisotropic estimate for the difference between f and fh will drive the

adaptive procedure presented in the next sections. In particular, fh will be identi-

fied with an interpolant of f .

2.1 Source of the anisotropic information

To deal with anisotropic grids, we need more information about the mesh elements

with respect to the isotropic case. Indeed, the goal is to uniquely define not only

the size, according to an isotropic approach, but also the shape and the orientation

of each face T of the mesh. For this purpose, we extend the approach proposed

in [22] for a 2D planar setting to a non-planar framework.
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Figure 2: Geometric interpretation of the map FT and of the main anisotropic

quantities.

We choose as source for the anisotropic information the invertible affine map

FT from a reference planar triangle T̂ ⊂ R
2 to the general (non degenerate) tri-

angle T ∈ Th embedded in R
3 (see Figure 2). The map FT : T̂ → T is defined

by

x = (x1, x2, x3)
′ = FT (x̂) = MT x̂ + bT ∈ T, (5)

with x̂ = (x̂1, x̂2)
′ ∈ T̂ , MT ∈ R

3×2 and bT ∈ R
3. In particular, we select

as reference element T̂ the triangle with vertices (0, 0), (1, 0), (0, 1), i.e., the unit

right triangle. For this choice, we have

MT =




v2
1 − v1

1 v3
1 − v1

1

v2
2 − v1

2 v3
2 − v1

2

v2
3 − v1

3 v3
3 − v1

3



 , bT =




v1
1

v1
2

v1
3



 ,

where vj = (vj
1, v

j
2, v

j
3)

′, for j = 1, 2, 3, denotes the j-th vertex of the triangle T .

The anisotropic information of each triangle T is derived moving from the

spectral properties of the matrix MT . In particular, we resort to the singular value

decomposition (SVD) of MT given by MT = UT ΣT V ′
T , where UT ∈ R

3×3 and

VT ∈ R
2×2 are unitary matrices, while ΣT = diag(s1,T, s2,T) ∈ R

3×2 is a rect-

angular diagonal matrix with non-negative real entries representing the singular

values of MT [31]. The columns of the matrices UT = [r1,T , r2,T ,nh] and VT

collect the left- and right-singular vectors of MT , respectively. The SVD of MT

allows us to completely characterize the triangle T ∈ Th. In particular, the singular

values of MT measure the lengths of the semi-axes of the ellipse circumscribing

T and lying on the plane identified by T , while the singular vectors r1,T and r2,T

provide the directions of these semi-axes (see Figure 2). Without loss of general-

ity, henceforth we assume s1,T ≥ s2,T . Moreover, we introduce the definition of

aspect ratio σT = s1,T /s2,T , which quantifies the deformation of the element T .

In particular, the aspect ratio is always greater than or equal to one, with σT = 1
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when T coincides with an equilateral triangular face. Notice that the vector bT in

(5) is simply associated with a shift and does not play any role in identifying the

shape of T .

Now, in view of a mesh adaptation procedure, we define a suitable interpolation

operator. Here and throughout the paper, we adopt a standard notation for both the

Lebesgue and Sobolev spaces of functions defined on surfaces as well as for the

associated norms (see, e.g., [16, 17]). Following [14], given a function f : Γ → R

such that f ∈ L1(Γ), we first introduce the averaged nodal values

fE
z =

1∫
ωz

ϕz dωz

∫

ωz

ϕzf
E dωz ∀z ∈ V, (6)

where ωz is the patch of the faces in Γh sharing vertex z, fE is the extension of

the function f to Uδ according to (2) and ϕz is the basis function associated with

vertex z. Thus, the interpolant we are interested in is given by

IhfE(x) =
∑

z∈V

fE
z ϕz(x) ∀f ∈ L1(Γ). (7)

Actually, Ih is a quasi-interpolant operator, similarly to the well-known Clément or

Scott-Zhang interpolants ([9, 46]; see, e.g., also [2, 21, 22]). Moreover, we remark

that, since functions {ϕz}z∈V constitute a partition of unity, the L1(Γh)-norm of

the interpolation error is identically equal to zero, i.e., we have

∫

Γh

(
fE − IhfE

)
dΓh =

∑

z∈V

∫

ωz

(
fE − fE

z

)
ϕz dωz = 0,

being supp(ϕz) = ωz. In the sequel, we identify the approximation fh ∈ Xh for

the generic function f defined on Γ with the interpolant in (7). In particular, an

anisotropic control for the L1(Γ)-norm of the error f − fh (i.e., f − IhfE) will

drive the mesh adaptive procedure presented in this paper.

3 Anisotropic error estimates

The results in this section provide the theoretical tool at the basis of the proposed

adaptive procedure. We exploit the standard decomposition of the error into a con-

tribution related to the finite element approximation and a contribution associated

with the geometric approximation of the surface Γ via Γh [14]. In particular, since

we deal with an interpolation error analysis, we neglect any error associated with

the data approximation, as well as we identify the discretization with the interpo-

lation error. The idea pursued in the following is to provide an anisotropic control

for both the interpolation and the geometric errors.
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3.1 The interpolation error

To derive an anisotropic bound for the interpolation error f − IhfE associated

with the operator (7), we preliminarly prove the following result which generalizes

Lemma 2.2 in [14] to an anisotropic context.

Lemma 1 (anisotropic Poincaré inequality) Let f ∈ H1(Γ). Then, for each

node z ∈ V , there exists a constant C such that

||fE − fE
z ||L2(ωz) ≤ C

[ ∑

T∈ωz

( 2∑

i=1

s2
i,T r′i,T GT (fE)ri,T

)]1/2
, (8)

with fE : Uδ → R the extension of f to Uδ according to (2), fE
z defined as in (6),

and where GT is the symmetric positive semi-definite matrix given by

GT (fE) =





∫

T

(
g1

)2
dT

∫

T
g1g2 dT

∫

T
g1g3 dT

∫

T
g1g2 dT

∫

T

(
g2

)2
dT

∫

T
g2g3 dT

∫

T
g1g3 dT

∫

T
g2g3 dT

∫

T

(
g3

)2
dT




, (9)

where gi =
(
∇Γh

fE
)
i
, for i = 1, 2, 3, denotes the i-th component of the tangential

gradient ∇Γh
fE = ∇fE − (nh · ∇fE)nh with respect to the standard Cartesian

coordinate system in R
3.

Proof The first part of this proof exactly follows proof of Lemma 2.2 in [14].

Thanks to definition (6) and the Cauchy-Schwarz inequality, we first get

||fE
z ||L2(ωz) = |ωz|1/2|fE

z | ≤ |ωz|1/2
||ϕz||L2(ωz)

||ϕz||L1(ωz)
||fE ||L2(ωz), (10)

with |̟| the measure of a generic set ̟ ⊂ R
d, for d = 1, 2, 3. Now, by exploiting

the map FT in (5), for each T ∈ ωz, we consider the piecewise affine map Fz :
ω̂z → ωz, where ω̂z coincides with the union of the inverse image F−1

T (T ) of

all the triangles T constituting the patch ωz. Analogoulsly, we denote by û the

inverse image of a generic function u ∈ H1(Γh) via the map FT . The L2(ωz)- and

the L1(ωz)-norms in (10) can be easily computed coming back to the reference

framework as

‖ϕz‖p
Lp(ωz)

=
∑

T∈ωz

∫

T

(
ϕz

)p
dT =

∑

T∈ωz

|T |
|T̂ |

∫

bT

(
ϕ̂z

)p
dT̂ =

∣∣ωz

∣∣
∫

bT

(
ϕ̂z

)p
dT̂

|T̂ |
,

(11)

where ‖ϕ̂z‖L1( bT )
= 1/6, ‖ϕ̂z‖L2( bT )

= 1/
√

12, and |T̂ | = 1/2. By substituting

(11) in (10), we get

||fE
z ||L2(ωz) ≤

√
3

2
||fE ||L2(ωz).
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In a similar way, for a constant K ∈ R and thanks to definition (6) and to the

Cauchy-Schwarz inequality, we have

‖fE
z − K‖L2(ωz) = |ωz|1/2|fE

z − K| =
|ωz|1/2

∣∣∣
∫
ωz

ϕz dωz

∣∣∣

∣∣∣
∫

ωz

(
fE − K

)
ϕz dωz

∣∣∣

≤ |ωz|1/2

‖ϕz‖L1(ωz)
‖fE − K‖L2(ωz)‖ϕz‖L2(ωz) ≤

√
3

2
‖fE − K‖L2(ωz).

The triangle inequality immediately yields

||fE − fE
z ||L2(ωz) ≤

(
1 +

√
3

2

)
||fE − K||L2(ωz). (12)

Now, the idea is to properly select the constant K and to exploit the spectral de-

composition introduced for MT to obtain an anisotropic bound for the right-hand

side in (12). We choose K = |T̂ |−1

∫

bT
η(x̂) dT̂ , where η is a function defined

on T̂ such that η(x̂) = fE(FT (x̂)), for any x̂ ∈ T̂ . Thus, thanks to the standard

Poincaré inequality, we have

‖fE − fE
z ‖2

L2(ωz)
≤ C

∑

T∈ωz

|T |
|T̂ |

∫

bT

(
η − K

)2
dT̂ ≤ C

∑

T∈ωz

|T |
|T̂ |

∫

bT

(
∇̂η

)2
dT̂ ,

with ∇̂ the gradient operator associated with the coordinate system (x̂1, x̂2) in the

reference setting, and where C does include the constant value in (12) and the

Poincaré constant as well. We remark that ∇̂η = M ′
T∇Γh

fE . This yields, coming

back to Γh, that

‖fE − fE
z ‖2

L2(ωz)
≤ C

∑

T∈ωz

∫

T

∣∣M ′
T∇Γh

fE
∣∣2 dT.

To introduce the anisotropic information, we resort to the SVD of MT = UT ΣT V ′
T ,

to have

‖fE − fE
z ‖2

L2(ωz)
≤ C

∑

T∈ωz

∫

T

[(
∇Γh

fE
)′

UT ΣT Σ′
T U ′

T

(
∇Γh

fE
)]

dT, (13)

where matrix VT does not provide any contribution since V ′
T VT = I . Now, the

product UT ΣT Σ′
T U ′

T in (13) can be easily expressed in terms of the anisotropic

lengths si,T and directions ri,T as

UT ΣT Σ′
T U ′

T =
2∑

i=1

s2
i,T ri,T ⊗ ri,T ,
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⊗ denoting the standard outer product between vectors. This leads to rewrite (13)

as

‖fE − fE
z ‖2

L2(ωz)
≤ C

∑

T∈ωz

[ 2∑

i=1

s2
i,T

∫

T

(
∇Γh

fE
)′
ri,T ⊗ ri,T

(
∇Γh

fE
)
dT

]
.

Straightforward algebraic manipulations show that
(
∇Γh

fE
)′
ri,T ⊗ ri,T

(
∇Γh

fE
)

= r′i,T∇Γh
fE ⊗∇Γh

fEri,T = r′i,T GT (fE)ri,T ,

with GT defined as in (9). This completes the proof.

�

Remark 3.1 The quantity C in (8) actually coincides with a constant value since

it does not depend on any geometric feature nor on the regularity of the function f .

Moreover, the introduction of the shell Uδ containing the surface of interest allows

us to manage the tangential gradient as a standard three-dimensional entity. This

device justifies that the matrix in (9) has a rank at most equal to two.

As expected, the anisotropic estimate (8) provides as a particular case the cor-

responding isotropic estimate, i.e., inequality (2.2.29) in [14]. Estimate (8) exhibits

a more complex structure with respect to the isotropic result but it provides more

information about the element T . In particular, the diameter hz of the patch char-

acterizing the isotropic estimate is replaced in (8) by the anisotropic lengths si,T ,

with i = 1, 2. Likewise, the first order derivatives involved in the L2(ωz)-norm

of ∇Γh
fE in the isotropic case are now projected along the anisotropic directions

ri,T , with i = 1, 2, via the products r′i,T GT (fE)ri,T . This richness of information

will allow us to fix, in a predictive way, the size (usually tuned by the diameter) to-

gether with the shape and the orientation of the generic element T ∈ Th by setting

the quantities si,T and ri,T , respectively. The intrinsic potentiality of estimate (8)

becomes more evident by rewriting it in terms of the aspect ratio σT as

‖fE−fE
z ‖L2(ωz) ≤ C

[ ∑

T∈ωz

|T |
(
σT r′1,T GT (fE)r1,T +

1

σT
r′2,T GT (fE)r2,T

)]1/2
,

(14)

where we have exploited the relation |T | = |T̂ |s1,T s2,T by including the constant

area |T̂ | = 1/2 into C. Thus, |T | provides the information associated with the size

of T , the shape of T is identified by the aspect ratio σT , whereas the orientation of

T is fixed by the directions r1,T and r2,T .

Next result represents the main theoretical statement of this paper and it will

play a crucial role in setting the anisotropic mesh adaptive procedure.

Proposition 2 Let f ∈ H1(Γ) and let fE : Uδ → R be the extension of f to Uδ

according to (2). Then, there exists a constant C such that

‖f − IhfE‖L1(Γ) ≤ C
∑

T∈Th

|T |1/2αT νT (σT , r1,T , fE), (15)

9



where αT =
∑

z∈T

‖ϕzµh‖L2(ωz), with µh defined as in (4) and ϕz the basis function

associated with vertex z, while

νT (σT , r1,T , fE) =
(
σT r′1,T GT (fE)r1,T +

1

σT
r′2,T GT (fE)r2,T

)1/2
,

with GT the matrix in (9).

Proof By employing the Jacobian µh in (4), the definition (7) of the interpolant

operator and the partition of unity property characterizing the set {ϕz}z∈V , we get

‖f − IhfE‖L1(Γ) =

∫

Γ

∣∣f(x) − IhfE(x)
∣∣ dΓ

=

∫

Γh

∣∣fE(x) − IhfE(x)
∣∣ ∣∣µh(x)

∣∣ dΓh

=

∫

Γh

∣∣∣fE(x) −
∑

z∈V

fE
z ϕz(x)

∣∣∣
∣∣µh(x)

∣∣ dΓh

=

∫

Γh

∣∣∣
∑

z∈V

(
fE(x) − fE

z

)
ϕz(x)

∣∣∣
∣∣µh(x)

∣∣ dΓh

≤
∑

z∈V

∫

ωz

∣∣fE(x) − fE
z

∣∣ ∣∣ϕz(x)µh(x)
∣∣ dωz,

where the localization of the integral on Γh to ωz is due to the local support of ϕz

coinciding with ωz. Via Cauchy-Schwarz inequality and thanks to estimate (14),

we derive

‖f − IhfE‖L1(Γ) ≤
∑

z∈V

‖fE − fE
z ‖L2(ωz)‖ϕzµh‖L2(ωz)

≤ C
∑

z∈V

‖ϕzµh‖L2(ωz)

[ ∑

T∈ωz

|T |
(
σT r′1,T GT (fE)r1,T +

1

σT
r′2,T GT (fE)r2,T

)]1/2
.

A reordering of the terms leads to the final result.

�

Remark 3.2 The dependence of νT on r2,T is implicit, due to the orthonormality

of the singular vectors r1,T and r2,T . Moreover, the constant involved in (15) is an

actual number which does not imply any peculiar dependence, exactly as for the

constant C in (8).

Remark 3.3 The choice of the L1(Γ)-norm to estimate the interpolation error is

likely not the most standard one in the literature, where the L2(Γ)- and the H1(Γ)-
norms are usually employed, both in an isotropic and in an anisotropic context

(see, e.g., [8, 48, 1, 22, 28, 13, 17]). Nevertheless, as it is evident from the proof

of estimate (15), the L1(Γ)-norm allows us to exploit the anisotropic Poincaré

inequality in a straightforward way to bound the interpolation error.
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3.2 The geometric error

After deriving a theoretical tool to control the interpolation error in an anisotropic

framework, we are now interested in controlling the error due to the fitting of the

surface Γ via the polyhedral approximation Γh. Nevertheless, while estimate (15)

is the result of a rigorous analysis, the estimate we propose for the geometric con-

tribution is essentially heuristic. In more details, to quantify the mismatch between

Γ and Γh, we resort to the signed distance function d whose zero level set coin-

cides with Γ. In particular, the employment of the orthogonal projection a(·) in

(1) to relate Γ and Γh via a bijection suggests us to identify the geometric error

with the quantity ‖d − Ihd‖L1(Γ), after assuming sufficient regularity on function

d. In some sense, we are supposing that the discrete surface Γh coincides with the

zero level set of the function Ihd. In § 5.2.1, we provide a numerical justification

to support this ansatz. Such an identification immediately leads us to provide an

anisotropic estimate for the geometric error, simply by particularizing Proposition

2 to the distance function d.

Proposition 3 Let d : U0 → R be the signed distance function associated with

the implicit representation of the surface Γ and let us assume d ∈ H1(U0). Then,

there exists a constant C such that

‖d − Ihd‖L1(Γ) ≤ C
∑

T∈Th

|T |1/2αT νT (σT , r1,T , d), (16)

with αT and νT (σT , r1,T , d) defined according to Proposition 2.

�

By comparing estimates (15) and (16), we remark that the distance function

d does not require any extension via the projection operator a(·), since d is de-

fined directly on the whole shell Uδ. Moreover, the regularity demanded on d is

automatically guaranteed for smooth surfaces as the ones considered in § 5.2.

Other examples of geometric error control are available in the literature (see,

e.g., [14, 12, 13, 25]). For instance, in [14] this control is a byproduct of the a

posteriori residual-based error analysis developed for the problem of interest. In

this case, an asymptotic analysis shows that the geometric error is a higher order

term with respect to the discretization contribution.

Moving from Propositions 2 and 3, we define the a priori anisotropic error

estimators

ηI =
∑

T∈Th

ηI,T with ηI,T = |T |1/2αT νT (σT , r1,T , fE)

and

ηG =
∑

T∈Th

ηG,T with ηG,T = |T |1/2αT νT (σT , r1,T , d),

11



to control the interpolation and the geometric error, respectively. The two estima-

tors share the same structure and both depend on the anisotropic geometric quan-

tities. In § 5.2, we will numerically investigate the convergence rate of the two

estimators ηI and ηG.

The next effort consists in conveniently combining the information associated

with the function f and the surface Γ to drive the mesh adaptive procedure.

4 Merging the interpolation with the geometric error

The goal of this section is twofold. First, we propose a method suited to com-

mute, separately, estimators ηI and ηG into an operative procedure to anisotropi-

cally adapt the mesh Th. Successively, we consider different techniques to merge

the information provided by the two estimators. Actually, the global estimator

ηIG = ηI + ηG will be employed only to estimate the global error. To generate the

adapted mesh, we will resort to a more intrinsic way via the concept of metric [27].

4.1 From the estimator to the metric

A metric associated with the surface Γ ⊂ R
3 is a simmetric positive semi-definite

tensor MΓ : Γ → R
3×3 identified, for each point x ∈ Γ, by two strictly positive

scalar functions ρ1 = ρ1(x) and ρ2 = ρ2(x) and by three vector functions u1 =
u1(x), u2 = u2(x), u3 = u3(x) ∈ R

3 of unitary norm, such that ui(x)·uj(x) = 0
for any x ∈ Γ and for i 6= j, with i, j = 1, 2, 3. Thus, for each point x ∈ Γ,

MΓ(x) = U(x)′R−2(x)U(x)

=
[
u1(x) u2(x) u3(x)

]



1/ρ2

1(x) 0 0
0 1/ρ2

2(x) 0
0 0 0








u′

1(x)
u′

2(x)
u′

3(x)



 .

(17)

We remark that, since the diagonal matrix has rank at most equal to two, we can

identify u3 with any vector function, for instance with the outward unit normal n

to Γ at x, coherently with the fact that the metric MΓ(x) is defined on the plane

tangent to Γ at x.

Definition (17) may be particularized to a polyhedral surface Γh ⊂ R
3, thus

identifying the metric MΓh
. In this context, it is rather standard to approximate

MΓh
via a piecewise fuction, constant on each element T of Γh.

The actual goal now is, in some respect, the opposite one, i.e., the surface mesh

Γh becomes the unknown. In particular, evaluating the estimators ηI , ηG on a back-

ground mesh, T B
h , we predict a metric M, piecewise constant on T B

h , to generate

a new adapted mesh, T A
h , which follows the directionalities of the function f and

of the actual surface Γ with a desired accuracy. In more details, we define M such

that M
∣∣
T

= U ′
TR−2

T UT where, for any T ∈ T B
h , UT =

[
u∗

1,T u∗
2,T 0

]′ ∈ R
3×3

and RT = diag
(
ρ∗1,T, ρ∗2,T, 0

)
∈ R

3×3. Then, starting from the predicted metric

M, we employ a metric-based adaptive procedure to build the mesh T A
h . Notice

12



that we have exploited the arbitrariness in the choice of u∗
3,T , by identifying it with

the vector identically equal to zero.

In the following, we detail the approach followed to derive the piecewise con-

stant tensor M, by extending the strategy proposed in [23] for the planar case to the

context of a surface. In more details, we aim at minimizing the number of elements

to be employed for guaranteeing a given solution accuracy by properly selecting

the size, the shape and the orientation of each element. In addition, we demand

that each element provides the same error by invoking a standard equidistribution

criterion. To define M, we refer to the generic anisotropic error estimator

η =
∑

T∈Th

ηT with ηT = |T |3/2 αT νT (σT , r1,T , g), (18)

where

νT (σT , r1,T , g) =
(
σT r′1,T GT (g)r1,T +

1

σT
r′2,T GT (g)r2,T

)1/2
,

with g a generic H1(Γ)-function, αT = αT /|T |1/2 and GT = GT /|T | the dimen-

sionless counterpart of αT and of the matrix GT , respectively. In view of practical

computations, estimator η will coincide with ηI (g = fE) or ηG (g = d) or with a

combination of them as detailed in the next section. Notice that, since both αT and

ΦT are dimensionless, the information related to the area of T in (18) is essentially

lumped in the factor |T |3/2 (at least asymptotically).

Let TOL be the accuracy to be guaranteed via the generation of the adapted

mesh T A
h . We demand that the local estimator ηT in (18) is such that

|T |3/2 αT νT (σT , r1,T , g) =
TOL

#T B
h

, (19)

where #T B
h denotes the cardinality of the background grid. According to a predic-

tive approach, we compute the quantities αT , |T | = |T̂ |s1,T s2,T , GT (g) and #T B
h

on the background grid, while σT and r1,T become the actual unknowns. Thus,

since on the right-hand side of (19) we have a constant value, the minimization of

the number of mesh elements coincides with the maximization of the element area,

i.e., with the minimization of the function νT (σT , r1,T , g) with respect to σT and

r1,T . As a consequence, for each element T ∈ T B
h , we solve the local constrained

minimization problem:

{
find σ∗

T , r∗1,T s.t. νT (σ∗
T , r∗1,T , g) be minimized,

with σ∗
T ≥ 1 and r∗i,T · r∗j,T = δij for i, j = 1, 2.

(20)

The optimal value r∗2,T for r2,T is implicitly identified by the orthonormality re-

lation between r1,T and r2,T . The minimization problem (20) can be explicitly

13



solved with straightforward computations, without demanding an extra computa-

tional burden. Indeed, following [38], we obtain

r∗1,T = w2,T , r∗2,T = w1,T , σ∗
T =

(µ1,T )1/2

(µ2,T )1/2
, (21)

where
(
µi,T ,wi,T

)
, with i = 1, 2, are the eigenvalue-eigenvector pairs of the ma-

trix GT (g), with µ1,T ≥ µ2,T . This provides the optimal value 21/2
(
µ1,T µ2,T

)1/4

for ν(σ∗
T , r∗1,T , g) which does not depend anymore on the aspect ratio. The equidis-

tribution constraint in (19) leads us to find separately the two optimal anisotropic

lengths s∗1,T and s∗2,T whose ratio coincides with σ∗
T in (21). In more details, solv-

ing the equations

|T̂ |3/2
(
s∗1,T s∗2,T

)3/2
αT 21/2

(
µ1,T µ2,T

)1/4
=

TOL

#T B
h

,
s∗1,T

s∗2,T

=
µ

1/2
1,T

µ
1/2
2,T

,

we get

s∗1,T =

(
1

21/2

(
µ1,T

µ2
2,T

)1/2
TOL

#T B
h αT |T̂ |3/2

)1/3

, (22)

s∗2,T =

(
1

21/2

(
µ2,T

µ2
1,T

)1/2
TOL

#T B
h αT |T̂ |3/2

)1/3

. (23)

Thus, the optimal metric M turns out to be defined via the elemental matrices

M
∣∣
T

= U ′
TR−2

T UT , with

UT =
[
u∗

1,T u∗
2,T 0

]′
, RT = diag

(
ρ∗1,T, ρ∗2,T, 0

)
, (24)

where u∗
i,T = r∗i,T , ρ∗i,T = s∗i,T , for i = 1, 2, according to definition (21) and (22)-

(23), respectively. Finally, the metric M is employed to generate the new adapted

mesh T A
h via the procedure detailed in § 5.1.

Remark 4.1 As an alternative to the minimization of the number of mesh elements

for a fixed solution accuracy, we might fix the cardinality of the mesh while max-

imizing the accuracy of the approximation. Similar computations lead to identify

the optimal metric M also in this case. Essentially, the tolerance TOL involved in

the computation of the optimal values u∗
i,T , ρ∗i,T has to be modified.

4.2 Combination of metrics

Before detailing the adaptation procedure, we consider the issue of dealing, a pri-

ori, with two different metrics MI and MG associated with estimator ηI and ηG,

respectively. Both these metrics are computed starting from the same background

grid T B
h , i.e., for each element T ∈ T B

h , we have two predictions for the opti-

mal size, shape and orientation provided by the matrices UI
T =

[
u

I,∗
1,T u

I,∗
2,T 0

]′
,
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RI
T = diag

(
ρI,∗
1,T, ρI,∗

2,T, 0
)

and UG
T =

[
u

G,∗
1,T u

G,∗
2,T 0

]′
, RG

T = diag
(
ρG,∗
1,T , ρG,∗

2,T , 0
)

yielded by the minimization problem (20) for g = fE and g = d, respectively

when combined with the equidistribution of the error.

The role played by MI and MG is completely different: MI is instrumental to

control the error related to the function f , while MG is meant to limit the error due

to the approximation of Γ via Γh. Ideally, we aim at controlling both these error

sources. The idea is to combine metrics MI and MG to get both benefits. For this

purpose, we investigate three different techniques, according to which the metric

MIG driving the adaptive procedure coincides with:

a) the metric intersection M∩
IG ≡ MI ∩ MG, based on the simultaneous re-

duction of the metrics MI and MG (we refer to Chapt. 10 in [27] for the

technical details). This approach represents the most straightforward way

to merge the discretization with the geometric error control even though, in

some circumstances, the results tend to be overly conservative since the inter-

section of two anisotropic metrics does not necessarily yield an anisotropic

metric M∩
IG (see Figure 3 for an example);

b) the maximum metric Mmax
IG , such that Mmax

IG

∣∣
T

is the metric associated with

the maximum local estimator between ηI,T and ηG,T , for any T ∈ T B
h ;

c) a convex combination of the two metrics MI and MG. In particular, we start

from the convex combination γηI,T + (1 − γ)ηG,T of the local estimators

with γ ∈ [0, 1]. Then, following Proposition 5.4 in [37], we advantageously

exploit the common structure shared by ηI,T and ηG,T to combine them into

the single estimator

ηγ
IG,T = |T |3/2 αT ν γ

T (σT , r1,T , fE , d), (25)

where

ν γ
T (σT , r1,T , fE , d) =

(
σT r′1,T G

γ
T (fE , d)r1,T +

1

σT
r′2,T G

γ
T (fE , d)r2,T

)1/2

with G
γ
T (fE , d) = γ2 GT (fE) + (1 − γ)2 GT (d). At this point, by mim-

icking the procedure employed to convert estimator (18) into the optimal

metric identified by (24), we get the metric Mγ
IG, automatically blending

the interpolation with the geometric information.

We remark that approach c) allows us to skip the computation of the two distinct

optimal metrics MI and MG. A single optimal metric is derived after defining the

new error estimator ηγ
IG =

∑

T∈T B
h

ηγ
IG,T with ηγ

IG,T as in (25).

Independently of the approach followed to get metric MIG, we eventually deal

with an elemental predicted metric MIG

∣∣
T

, for each element of the background

grid T B
h . This elementwise anisotropic information will drive the adaptive proce-

dure.
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Figure 3: Examples of mesh intersection MI ∩MG.

In § 5.2 we numerically investigate the different approaches a)-c) by comparing the

corresponding performances.

5 Numerical assessment

This section illustrates the algorithmic and computational kernel of the paper. After

setting the adaptive procedure to commute MIG into practical operations yielding

the adapted mesh T A
h , we consider two test cases to investigate the robusteness of

the proposed adaptive tool.

5.1 The adaptive procedure

To generate the mesh T A
h , we adopt a metric-based adaptive procedure, a standard

approach in an anisotropic framework (see, e.g., [25, 23, 10, 43, 4]), since, as

detailed in the previous section, a metric exactly collects all the information needed

to uniquely identify size, shape and orientation of a generic triangle T . The optimal

goal is to obtain a mesh T A
h such that each element T ∈ T A

h coincides with a

unitary equilateral triangle with respect to the metric MIG, i.e, ‖e‖MIG
= 1, for

any e ∈ T and for any T ∈ T A
h , with ‖e‖MIG

=
√

e′MIG e. Clearly, this target

is not exactly reachable in a general case. We devise an optimization procedure

to minimize the distance of the adapted grid to the optimal one, in a sense that is

described in the following.

We resort to the following multi-choice criterion: for any edge e of the skeleton

EB of the background grid T B
h ,

i) if ‖e‖MIG
≃ 1, the edge e already has the optimal length with respect to the

predicted metric and can be directly identified with an edge of the adapted

mesh T A
h ;

ii) if ‖e‖MIG
≫ 1, the edge e is too long according to the predicted metric;

iii) if ‖e‖MIG
≪ 1, the edge e is too short according to the predicted metric.
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Figure 4: Swapping of the edge ab (left); instance of unswappable edge ab (right).

In both the cases ii) and iii), the edge e cannot be assumed as definitive but it has

to be properly modified before being included in T A
h . For this purpose, we employ

an iterative procedure based on local operations. The meshes playing the role of

background and adapted grid clearly update during the iterative process.

To compute the length ‖e‖MIG
starting from the elemental metrics MIG

∣∣
T

,

we first assign a metric Mz
IG to each node z of the current mesh, by computing

the mean of the metrics associated with the triangles of the patch ωz. Then, let a

and b be the endpoints of the edge e and let Ma
IG and Mb

IG be the corresponding

metrics. We compute

‖e‖MIG
= max

(
‖e‖Ma

IG
, ‖e‖

Mb

IG

)
,

where ‖e‖Mz

IG
=

√
e′Mz

IGe for z = a,b.

The section is organized as follows. Section 5.1.1 itemizes the local operations

used to ensure criterion i) for each edge of the final adapted mesh, while in § 5.1.2

we fix a precise sequence of local operations to set the adaptive procedure. This

represents a first attempt to combine the anisotropic error analysis based on the the-

ory in [22, 23] with an adaptive procedure exploiting local operations. Moreover,

we remark that, since we have a unique metric merging the information related

to function f and to the surface fitting, we are relieved from distinguishing in the

adaptive algorithm two distinct phases to control the different errors.

5.1.1 Local operations

We use four different operations.

A. Edge swapping Edge swapping turns out to be among the most efficient and

effective local operations to anisotropically modify a generic triangular mesh [24,

5]. Edge swapping works on pairs of adjacent triangles sharing a common edge,

e.g., triangles ∆abc, ∆bad in Figure 4, left which share the edge ab. The effect

of such an operation is to replace these two triangles with the new ones ∆acd and

∆cdb, simply by considering the edge cd instead of the original one ab. In the 2D

planar case this ensures that the area portion occupied by the original elements is

preserved after the swapping.
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It is not always possible to apply an edge swapping even in a planar framework.

With reference to Figure 4, we can swap the edge ab if the following conditions

are verified:

R1) the edge cd does exist in the mesh (the meaning of this condition is clarified

in the next section);

R2) there does not exist an obtuse angle adjacent to the edge ab. Figure 4, right

furnishes an example of unswappable edge. The new edge cd leads to oc-

cupy a portion of the domain area before not included in ∆abc ∪ ∆bad.

Moreover, the conformity of the mesh is compromised.

The edge swapping becomes a more complex operation when dealing with a trian-

gular surface mesh, due to the intrinsic curvature of the surface. This is particularly

troublesome where the mesh exhibits ridges. As exemplified in Figure 5, left an

edge swapping may lead to an incorrect approximation of the surface, by violating

the corresponding curvature. To overcome this issue, an additional condition is

checked besides the two previous ones:

R3) the angle θ between the normals to the faces ∆abc and ∆bad is smaller

than a minimum threshold θmin (in the numerical validation below, we set

θmin = 15◦).

After stating the geometric and topological consistency of the edge swapping

operation, we fix the following criterion in view of the mesh adaptation: we swap

the edge ab if ∣∣∣ ||cd||MIG
− 1

∣∣∣ <
∣∣∣ ||ab||MIG

− 1
∣∣∣, (26)

i.e., if the length predicted by the metric MIG for the edge cd is closer to one

compared with the length of ab.

Due to the important role played by the edge swapping in view of an anisotropic

mesh adaptation, we have settled a new edge swapping routine starting from the

well-known Lawson flip algorithm for the construction of a two-dimensional planar

Figure 5: Example of a not allowed edge swapping, yielding a distorted approxi-

mation of the original ridge (left); splitting of the edge ab (right).
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Delaunay triangulation [36]. In particular, we modify the original algorithm to deal

with surface meshes and to include the metric-based check (26).

To start the edge swapping algorithm we need two stacks, S and S1. At the

beginning, the stack S contains all the edges to be checked, while S1 is an empty

stack which gradually collects the currently non swappable edges. The algorithm

may be applied globally, i.e., to all the edges of the current grid, or just locally,

namely to a subset of elements. For the sake of simplicity, we refer to the config-

uration in Figure 4, left by assuming that, at the beginning, S cointains only the

edge ab.

Thus, the variant we proposed for the Lawson flip algorithm reads as:

Edge swapping algorithm

EdgeSwap(S, S1)

1: while (S is non-empty) do

2: count = 0;

3: while (S is non-empty) do

4: pop ab from S;

5: if (cd does meet conditions R1) and (26)) then

6: if (ab does meet conditions R2) and R3)) then

7: flip ab into cd;

8: for (xy ∈ {ac, cb,bd,da}) do

9: push xy into S;
10: end for

11: count = count + 1;
12: else

13: push ab into S1;

14: end if

15: end if

16: end while

17: if (S1 is non-empty and count > 0) then

18: swap S and S1;

19: end if

20: end while

Essentially, we may distinguish an inner (lines 3-16) and and external (lines 17-

19) loop. In the inner loop, as it is standard according to the Lawson procedure, the

check for the swapping propagates from the edges contained from the beginning

in S and which are recognized as swappable to the corresponding neighbouring

edges. The three topological criteria R1)-R3) and the metric check (26) have to

be satisfied to consider an edge as swappable. In particular, if the edge ab does

not meet criteria R2) and R3) even though the edge cd satisfies conditions R1) and

(26), the edge ab is automatically moved to stack S1. The EdgeSwap algorithm

is such that, once an edge has been swapped, it will never be re-generated. Nev-

ertheless, before closing the procedure, the external loop performs an additional
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Figure 6: Splitting of the edge ab via the addition of the point v and projection of

v on the surface Γ via point d.

check on the edges previously discarded since identifying a non valid topological

configuration even though leading to an improvement in terms of metric.

Numerical experiments show that algorithm EdgeSwap is very efficient. As

detailed in the next section, we employ this algorithm in a combined way, i.e., each

time we locally modify the mesh, we push the edges involved by this operation into

the stack S and we employ function EdgeSwap. Successively, the edge swapping

is applied to the whole mesh to make the MIG-lenght of each edge as close as

possible to the unitary value.

B. Edge splitting This operation plays an important role in view of a local refine-

ment of the mesh. The idea is to increase the mesh resolution where the solution

exhibits strong variations, by locally reducing the size of the mesh and by stretch-

ing the elements according to the directional features of the solution.

First, we identify the edges to be split, i.e., the edges whose length predicted via the

metric MIG is greater than one. Then, we halve each of these edges by inserting a

new vertex at the corresponding midpoint. With reference to Figure 5, right, if the

edge ab is classified as a too long edge, we replace the two faces ∆abc and ∆bad

with the four faces ∆avc, ∆vcb, ∆vbd, ∆vda by adding the new vertex v at the

midpoint of ab.

An extra care has to be taken since we are dealing with a polyhedral surface. As

depicted in Figure 6, center the addition of the new vertex v does not necessarily

lead to an improvement in fitting Γ via the discrete surface Γh. As a consequence,

after the addition of the new vertex, we project v on the surface Γ by resorting to

the algorithm proposed in [32]. This simple device necessarily yields an effective

improvement in the approximation of Γ as shown in Figure 6, right.

C. Edge collapsing Mesh coarsening pursues the opposite goal with respect to

mesh refinement, namely the mesh elements are properly enlarged where the so-

lution exhibits a smooth behaviour. The most significative operation in view of a

mesh coarsening is the edge collapsing which represents, in some sense, the inverse

operation to the edge splitting. In more details, to perform the edge collapsing, we

resort to an edge contraction technique ([34, 35, 44]), after identifying a too short
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Figure 7: Contraction of the edge e into the vertex v (left); example of invalid

topological configuration yielded by the contraction of the edge e (right).

edge, namely an edge e with ‖e‖MIG
≪ 1. With reference to Figure 7, left we

contract the edge e by progressively moving vertex a towards vertex b until they

both coincide with vertex v. The faces ∆bax and ∆bay are removed by the con-

traction, thus reducing the cardinality of the patch ∆e while preserving the covered

area and the conformity of the mesh.

Different choices are possibile to fix the position of the vertex v. We usu-

ally select the midpoint of the edge to be contracted unless this choice does lead

to invalid topological configurations, e.g., to inverted triangles characterized by a

negative area. Figure 7, right exemplifies such a possibility. Following [18], to

overcome this issue we make an additional check on the vertices connected to the

endpoints of the edge e, i.e., on the sets of vertices connected to a and b, respec-

tively. In particular, if the intersection between these two sets includes any point

different from the vertices of the faces ∆bax and ∆bay, the contraction of the edge

ab into the vertex v leads to an inverted triangle. In the specific case of Figure 7,

right, the presence of the point c justifies the failure of the contraction algorithm.

Of course, other techniques may be exploited to avoid these incorrect configu-

rations as well as to select the vertex v (see, e.g., [26, 15, 11]). Exactly as for the

edge splitting, after any edge contraction we have to project the new position of the

vertex v on the surface Γ to actually guarantee the fitting of the surface at hand.

D. Node smoothing Node smoothing is a standard method to improve the qual-

ity of a mesh. In contrast to the previous ones, this operation simply moves the

nodes of the mesh in new positions without modifying the mesh topology. We may

provide a physical interpretation of this operation, by identifying the patch ∆v of

elements associated with the vertex v with a system of springs (see Figure 8, left).

In particular, the smoothing procedure aims at locating the vertex v in the position

that minimizes the elastic energy of the whole system. In an isotropic context, the

smoothing moves v to the barycenter of ∆v. On the contrary, when dealing with an

anisotropic mesh adaptation, we have to properly include the effect of the metric,

for instance by varying the stiffness coefficient of the different springs.

Exactly as for the edge collapsing, the new position for the point v may lead

to invalid configurations as dipicted in Figure 8, right where inverted elements
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Figure 8: Node smoothing: example of valid (left) and of not valid (right) config-

uration.

are generated by the smoothing of v. As a consequence, a careful check on the

predicted new configuration is performed before applying any smoothing.

5.1.2 The adaptation sequence

The iterative procedure that leads to the generation of the optimal mesh with ||e||MIG
≈

1, might be strongly affected by the selected sequence of local operations to be ap-

plied to the initial mesh.

We resort to the following strategy. Essentially, the edge splitting and the edge

collapsing operations, in combination with a local edge swapping and followed by

a global edge swapping, are iteratively repeated together with a cycle of runs of

node smoothing.

The iterative procedure is controlled by three different checks, involving the toler-

ance TOL assigned by the user on the approximation accuracy, a maximum allowed

number maxIter of adaptive iterations, and a check on the cardinality of the

mesh. In practice, these controls are carried out by introducing three flag variables,

i.e.,

FL1) errCheck : if the global error evaluated on the new adapted mesh via

the quantity ηIG = ηI + ηG is greater than TOL, errCheck is set true,

otherwise it is false;

FL2) iterCheck : the value of this flag is true until the number of iterations

is lower than maxIter;

FL3) meshCheck : we compute the value

#Tdiff =
|#Told − #Tnew|

#Told

,

where #Told and #Tnew denotes the cardinality of the mesh before and after

the adaptation, respectively. Then, if #Tdiff > 0.05, meshCheck is set

true, otherwise it is false.

The check based on the last flag is essentially meant to stop the adaptive procedure

when the number of elements involved by the local operations becomes too small

(less than 5% of the cardinality of the current mesh) to significantly improve the
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quality of the approximate solution fh = IhfE as well as of the surface fitting

provided by Ihd.

Thus, the whole adaptive algorithm reads as follows:

Mesh adaptation algorithm

MeshAdaptation(TOL, maxIter)

1: set errCheck=true, iterCheck=true, meshCheck=true;

2: count=1;

3: while (errCheck && iterCheck && meshCheck) do

4: compute the metricMIG associated with tolerance

TOL;

5: split the edges s.t. ||e||MIG
> 1.5; local edge

swapping;

6: global edge swapping;

7: collapse the edges s.t. ||e||MIG
< 0.5; local edge

swapping;

8: global edge swapping;

9: for k ∈ {1, ..., 5} do

10: smooth all the vertices; local edge swapping;

11: global edge swapping;

12: end for

13: count=count+1;

14: update errCheck, iterCheck, meshCheck;

15: end while

The adaptive procedure stops when one of the three flags FL1)-FL3) assumes

the value false. We highlight the intensive employment of the function EdgeSwap,

both at a local (lines 5, 7, 10) and at a global (lines 6, 8, 11) level, in accor-

dance with the aim of generating an anisotropic mesh. Finally, the number of node

smoothing iterations is heuristically set via a simple trial-and-error procedure.

The meaning of request R1) should be clear in the light of the whole adaptive

procedure. Since the swapping quickly propagates to the edges of the mesh, an

edge marked as swappable might be previously involved by other operations before

swappig actually takes place.

5.2 Test cases

In this section we investigate the robustness of the error analysis as well as of

the adaptive procedure set in the previous sections on both an open and a closed

surface. Starting from the same initial grid, we compare the adapted meshes gen-

erated via four different choices of the metric, namely, the three metrics M∩
IG,

Mmax
IG , Mγ

IG defined in § 4.2 together with the metric MI taking into account

the interpolation error only. A more quantitative investigation of the anisotropic

analysis is also provided.
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5.2.1 Test case 1: an open surface

We consider the sinusoidal surface Γ1 defined by the signed distance function d1 :
[0, 1] × [0, 1] × [−0.2, 0.2] → R such that

d1(x) = d1(x1, x2, x3) = 0.2 cos (πx1) cos (πx2) − x3,

and the function f1 : Γ1 → R with

f1(x) = f1(x1, x2, x3) = 4x2(1 − x1)(1 − x2)(1 − e−1000x1).

Figure 9 depicts the colorplot of function f1 on Γ1. The solution exhibits a bound-

ary layer along the edge {(0, x2), 0 ≤ x2 ≤ 1}, where it reaches its maximum

value (see the highlighted area in the figure).

We run the adaptive procedure by making different choices for the metric

MIG. In particular, in algorithm MeshAdaptation, we set TOL = 6.e-05,

maxIter= 10 while we choose the value 2/3 for the parameter γ combining

the interpolation and the geometric metrics.

Comparison among metrics Figure 10 compares a detail of the adapted grids

associated with the metric M∩
IG, Mmax

IG , Mγ
IG and MI , respectively which are

constitued by a similar number (about 8700) of elements. In particular, we fo-

cus on the boundary layer, i.e., on a critical region to be described. The layer is

correctly detected by all the metrics and the elements are properly stretched. Nev-

ertheless, the anisotropic features of the mesh are significantly less evident when

the metric intersection drives the adaptive procedure (compare, e.g., Figure 10 (a)

with Figure 10 (b)). This is confirmed by the maximum value σmax = max
T∈T A

h

σT of

Figure 9: Test case 1: function f1 on the surface Γ1 (highlighted the boundary

layer).
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(a) (b)

(c) (d)

Figure 10: Test case 1: detail in correspondence with the boundary layer of the

adapted mesh T A
h generated via the metric (a) M∩

IG, (b) Mmax
IG , (c) Mγ

IG and (d)

MI .

the corresponding aspect ratios, which is collected in the second column of Table 1.

Notice that also the mesh in Figure 10 (d) obtained by exploiting the information

associated only with the interpolation error exhibits elements correctly stretched,

with a maximum aspect ratio comparable with the one associated with Mmax
IG .

The benifits led by the inclusion of the geometric information in the adaptive pro-

cedure become evident if we drastically diminish the number of the elements in

the adapted mesh (i.e., if we increase the value of TOL). As Figure 11 (d) shows,

the quality of the approximation provided by MI may become very poor in such a

case. The four adapted meshes are generated after fixing a tolerance TOL = 8e-04

and are characterized by a number of elements about equal to 2600. Metric MI

is not able to correctly describe surface Γ1 with an evident loss of accuracy, for

instance, in detecting the peak of Γ1 located at the corner (1, 1). On the contrary,

despite the limited number of elements, the geometric information integrated in the

metrics M∩
IG, Mmax

IG , Mγ
IG are enough to meet the main geometric characteristics

of the exact surface. The best approximation in terms of geometry fitting turns out

to be the one associated with Mmax
IG , as confirmed by the values in the third col-

umn of Table 1, where the quantity dmax = maxK∈T A
h
‖pK −bK‖2, measuring the

mismatch between Γ1 and T A
h is gathered for the four meshes in Figure 11, with

bK the barycenter of the triangle K and pK the corresponding projection on the

surface Γ1, ‖ · ‖2 denoting the standard Euclidean norm. As expected the largest

value of dmax is associated with the mesh predicted via MI .
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(a) (b)

(c) (d)

Figure 11: Test case 1: adapted mesh T A
h generated via the metric (a) M∩

IG, (b)

Mmax
IG , (c) Mγ

IG and (d) MI .

Anisotropy versus isotropy We check the computational advantages led by an

anisotropic mesh adaptation with respect to an isotropic procedure. This represents

a statement well-established in the literature (see, e.g., [6, 7, 37, 42, 47]). To make

this analysis quantitative, we introduce the following definitions

etot = ‖f − IhfE‖L1(Γ), emean =
etot

|T A
h | , emax = max

T∈T A
h

||f − IhfE ||∗L1(T ).

(27)

In particular, to compute etot, we employ the equality

‖f − IhfE‖L1(Γ) =

∫

Γh

∣∣fE(x) − IhfE(x)
∣∣ ∣∣µh(x)

∣∣ dΓh (28)

stated in the proof of Proposition 2, whereas

||f − IhfE ||∗L1(T ) =

∫

T

∣∣fE(x) − IhfE(x)
∣∣ ∣∣µh(x)

∣∣ dT

deriving by a localization of (28) to the mesh face T . First, we verify that anisotropy

provides an improvement in terms of accuracy when we fix the cardinality of the

adapted mesh. Table 2 exemplifies such a trend. We have excluded from this com-

parison the adaptive procedure based on the intersection of metrics due to the poor

performances of this approach in terms of anisotropy. While a not so striking dif-

ference on the maximum error is obtained, we appreciate a reduction of at least one

third or more on the total error as well as a gain of one order on the mean error.
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metric σmax dmax

M∩
IG 4.93 7.923e-03

Mmax
IG 28.05 7.785e-03

Mγ
IG 36.97 8.537e-03

MI 22.68 8.901e-02

Table 1: Test case 1: maximum aspect ratio and surface mismatch for different

metrics.

MI Mmax
IG Mγ

IG

isotropy anisotropy isotropy anisotropy isotropy anisotropy

elements 2664 2618 3483 3434 2952 2925

etot 3.654e-03 1.195e-03 3.648e-03 9.160e-04 4.334e-03 1.392e-03

emean 1.371e-06 4.568e-07 1.047e-06 2.667e-07 1.468e-06 4.762e-07

emax 6.431e-05 3.135e-05 6.566e-05 1.669e-05 1.027e-04 5.424e-05

Table 2: Test case 1: anisotropy versus isotropy for a fixed cardinality of the mesh.

Then, we perform in some sense the dual check, i.e., we fix the accuracy (TOL

in MeshAdaptation) and we assess the gain in terms of computational cost.

The results are collected in Table 3. The dimension of the linear system we are

led to solve in the anisotropic framework is remarkably lower. The maximum gain

is yielded by the approach based on the maximum metric (one ninth of elements!)

and, also in the worst case identified by metric MI , we reduce of one fifth the

number of degrees of freedom.

A cross comparison between Tables 2 and 3 seems to suggest that the most

strategical choice to exploit the computational advantages provided by an anisotropic

mesh adaptation is represented by metric Mmax
IG .

Convergence analysis We perform a twofold check in terms of convergence.

First, we perform an asymptotic analysis of both the interpolation and the geo-

metric error estimators. As shown in Figure 12, left the estimator ηI exhibits the

theoretical expected trend as a function of the mesh cardinality #T , namely the

rate of convergence turns out to be of the first order with respect to 1/#T . Con-

cerning the geometric error estimator, accordingly to [14], we expect a higher order

of convergence. This statement is confirmed by the trend of ηG characterized by

an order of about 1.5 with respect to 1/#T . The different order of convergence

of ηI and ηG justifies also in some respect the good performances of the adapta-

tion procedure driven solely by the interpolation information, for a sufficiently fine

mesh.

As a second check, we have verified how the selection of a specific metric to

drive the adaptive algorithm may influence the order of convergence of the global
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MI Mmax
IG Mγ

IG

isotropy anisotropy isotropy anisotropy isotropy anisotropy

elements 11479 2009 18201 2024 16548 2031

etot 3.168e-03 3.529e-03 3.159e-03 3.373e-03 3.049e-03 3.441e-03

emean 2.759e-07 1.756e-06 1.735e-07 1.666e-06 1.842e-07 1.694e-06

emax 6.557e-05 1.814e-04 6.619e-05 2.089e-04 7.004e-05 1.651e-04

Table 3: Test case 1: anisotropy versus isotropy for a fixed accuracy of the mesh.

Figure 12: Test case 1: convergence history for the estimators ηI (solid line) and ηG

(dashed line) in a loglog plot (left); convergence trend of the global error estimator

when the adaptive procedure is driven by diverse metrics in a loglog plot (right).

error estimator ηIG. The numerical validation shows that no significant difference

is detected by selecting a different metric and, for all the choices of M, the order

of convergence of the global error estimator is one. In Figure 12, right we provide

an enlarged view of such a comparison, which shows the slight difference among

the procedures associated with M∩
IG, Mmax

IG and Mγ
IG.

Robustness of the error estimators We investigate the robustness of the error

estimators ηI and ηG, by computing the associated effectivity index

E.I.I =
ηI

‖f − IhfE‖L1(Γ)
, E.I.G =

ηG

‖d − Ihd‖L1(Γ)
, (29)

respectively. Of course, the optimal value is 1 but, as usual, at least a stagnation

of the value of the effectivity index is desirable, when the number of the mesh

elements increases. Such a stagnation is mirrored by Table 4 for both the error

estimators ηI and ηG, whose effectivity index settles around the value 1.4 and 0.8,

respectively. Thus, while the interpolation error estimator slighly overestimates the

actual error, an underestimation of the geometric error is provided by ηG.
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elements E.I.I E.I.G
2920 1.6083 0.927002

6635 1.4692 0.888572

10573 1.4105 0.851926

14240 1.4798 0.874772

Table 4: Test case 1: effectivity index for the interpolation and the geometric errors.

Figure 13: Test case 1: particular of the function f1 on the surface Γ1 for γ = 0.1
(left), 0.5 (middle), 0.7 (right).

Sensitivity with respect to γ We analyze the sensitivity of the adapted mesh

yielded by the metric Mγ
IG with respect to the value of the parameter γ. To this

aim, we fix the tolerance TOL to 2.e-05 and we choose γ = 0.1, 0.5 and 0.7. This

choice leads to gradually increase the contribution of interpolation information in

the metric Mγ
IG. Notice that the selected TOL is sufficiently small to ensure a rather

accurate description of the surface independently of the value γ and in accordance

with what stated in the first paragraph of this section. We focus on the peak at

(1, 1) since, at a glance, the difference among the whole adapted meshes is not so

striking.

Figure 13 depicts the enlarged view of the adapted mesh for the three values of

γ, together with the contour lines of the solution. We appreciate that the gradual in-

clusion of the interpolation information provides smoother contour lines, together

with a slight increase of the mesh cardinality and of the aspect ratio of the elements

which are correctly stretched to follow the directionalities of the surface.

Mismatch between Γh and Ihd As last check we furnish a numerical support

to the assumption made in the statement of Proposition 3. To verify that the zero

level set of function Ihd may be assumed as a surrogate of the discrete surface Γh,

we compute the value of Ihd on the adapted mesh Γh and we check if such a value

approaches zero when the surface mesh is gradually adapted.

Figure 14 certifies the expected trend. We plot the interpolated distance func-

tion Ihd on three adapted meshes consisting of 1643, 3792 and 6051 triangular

faces (top-bottom), respectively. The values assumed by Ihd exhibit a more uni-

form distribution and are closer to zero as the mesh is progressively adapted. More-
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over, the maximum value reached by Ihd also on the coarsest grid is not so large

(about 8.e-03). This confirms that Ihd may be reasonably employed to represent

the discrete surface Γh.

5.2.2 Test case 2: a closed surface

Let Γ2 be the toroidal surface coinciding with the zero level set of the signed dis-

tance function d2 : [−1.5, 1.5] × [−1.5, 1.5] × [−0.5, 0.5] → R such that

d2(x) = d2(x1, x2, x3) =
(
0.5 −

√
x2

1 + x2
2

)2
+ x2

3 − 1.

On this surface we assign the function f2 : Γ2 → R given by

f2(x) = f2(x1, x2, x3) = 100 tanh (40x1)

which essentially assumes the two constant values −100 and 100 separated by a

steep gradient located in correspondence with the two unitary circumferences in

the plane x2Ox3 and centered at (0, -1,0) and (0,1,0), respectively (see Figure 15

for the colorplot of the function).

On this new configuration we repeat some of the numerical controls performed

in the first test case.

For this purpose, we run the adaptive algorithm MeshAdaptation by setting

TOL = 5.e-03, maxIter= 10. Moreover, we fix γ = 2/3 for the parameter

mixing the interpolation with the geometric information in the definition of Mγ
IG.

Comparison among metrics We collect in Figure 16 the adapted meshes gener-

ated by exploiting the four metrics M∩
IG, Mmax

IG , Mγ
IG and MI , respectively. The

layer is sharply captured by the four metrics via thin elements correctly oriented

(see Figure 19). The coarsest grids are the ones predicted via M∩
IG (about 7600

triangles) and MI (about 5100 triangles), whereas the other two meshes are con-

stituted by a similar number of triangular faces, about equal to 9200.

Unlike test case 1, the limits of the adaptive procedure associated with the metric

MI are evident despite the many elements (i.e., the reduced tolerance). Indeed,

the shape of Γ2 is badly captured as highlighted by the very irregular areas on the

surface in Figure 16 (d) and by the largest value of dmax in Table 5.

The intersection metric locates the anisotropic elements essentially in correspon-

dence with the layer and correctly stretches them (see Figure 19 (a)). Nevertheless,

analogously to the previous test case, the anisotropic features of the corresponding

adapted mesh are less meaningful compared with the ones yielded by the other

metrics. This is confirmed by the details in Figure 19 (b)-(c) as well as by the

values of σmax in Table 5, which, in general, highligth that the problem at hand

is characterized by a more strongly anisotropic trend with respect to the case in

§ 5.2.1 (one order of magnitude distinguishes the values in Tables 5 and 1).

The details in Figure 17 and 18 on regions where f2 is constant, corroborate

on the one hand the fact that the absence of geometric information in MI leads to
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Figure 14: Test case 1: evaluation of the distance Ihd on the adapted mesh Γh for

an increasing number of mesh elements (top-bottom).

a very inaccurate approximation of Γ2 (in such areas the interpolation information

are not so meaningful while the geometric information is fully absent; see Fig-
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Figure 15: Function f2 on the surface Γ2.

metric σmax dmax

M∩
IG 9.967e+00 2.174e-02

Mmax
IG 3.105e+01 2.359e-02

Mγ
IG 2.601e+01 2.259e-02

MI 6.176e+01 1.168e-01

Table 5: Test case 2: maximum aspect ratio and surface mismatch for different

metrics.

ure 17 (d) and 18 (d) and also the detail in Figure 19 (d)); on the other hand, the

more isotropic nature of the mesh predicted by the metric M∩
IG is confirmed (see

Figure 17 (a) and 18 (a)).

Anisotropy versus isotropy We verify the benefits led by an anisotropic mesh

adaptation on an isotropic standard one via the values collected in Tables 6 and 7.

As for the first test case, we exclude from this check the adaptive procedure driven

by M∩
IG, while computing the errors etot, emean, emax in (27) for the other three

metrics.

In Table 6, the comparison between anisotropy and isotropy is performed after

fixing the number of elements. Both the total and the mean error reduce of a factor

about equal to one half and the accuracy of the approximation improves also in

terms of maximum error (this trend is not ensured in Table 2).

If viceversa, we fix the accuracy and we compare the two strategies in terms of

number of elements as in Table 7, we get the expected reduction in the anisotropic

case, with a factor of one third for MI and Mmax
IG and of one half for Mγ

IG.

A comparison across Tables 6 and 7 identifies MI and Mmax
IG as the best

choices from a computational viewpoint. Nevertheless, the remarks in the previous

paragraph suggest the metric Mmax
IG as the one to be chosen.
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(a) (b)

(c) (d)

Figure 16: Test case 2: adapted mesh T A
h generated via the metric (a) M∩

IG, (b)

Mmax
IG , (c) Mγ

IG and (d) MI .

Convergence analysis We analyze the asymptotic trend of both the estimators

ηI and ηG as a function of #Th. Figure 20 (left) shows the associated loglog plot.

The interpolation error estimator is characterized by an order of convergence equal

to one with respect to 1/(#Th), exactly as in Figure 12 (left). The geometric error

estimator converges faster than ηI , with an order very close to two (instead of the

order 1.5 in Figure 12 (left)).

Figure 20 (right) confirms the slight sensitivity of the rate of convergence of

the global estimator with respect to the metric driving the adaptive procedure, by

providing a zoom in, on the convergence history of ηIG. Indipendently of the

selected metric, we confirm a convergence of the first order.

Robustness of the error estimators We compute the effectivity indices in (29)

on four adapted meshes to check the robustness of the interpolation and the geo-

metric error estimators. The corresponding values are gathered in Table 8. A sort

of stagnation is detected for both the indices, we say around the values 1.7 and 0.6,

respectively. This means that an overestimation of ηI and an underestimation of
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(a) (b)

(c) (d)

Figure 17: Test case 2: detail on the constant part associated with the minimum

value of f2 for the mesh generated via the metric (a) M∩
IG, (b) Mmax

IG , (c) Mγ
IG

and (d) MI .

MI Mmax
IG Mγ

IG

isotropy anisotropy isotropy anisotropy isotropy anisotropy

elements 3376 3640 3672 3652 1548 1660

etot 1.901e-01 8.884e-02 1.864e-01 8.887e-02 5.820e-01 3.463e-01

emean 5.633e-05 2.440e-05 5.078e-05 2.429e-05 3.759e-04 2.086e-04

emax 2.237e-03 1.646e-03 1.848e-02 1.641e-03 1.648e-02 8.074e-03

Table 6: Test case 2: anisotropy versus isotropy for a fixed cardinality of the mesh.

ηG take place, with a more accentuated trend in both the directions with respect to

the first test case.

6 Conclusions and future developments

In this work we have proposed a new approach for an anisotropic control of the er-

ror related to the approximation of an H1(Γ)-function via a piecewise linear quasi-

interpolant operator on a surface Γ ⊂ R
3 defined implicitly. The proposed analysis

automatically takes into account the approximation of the function and the fitting

of the surface, thus leading to a unique adaptive procedure able to contemporary

match the directionalities of f and Γ.

The numerical validation in § 5.2 confirms the robustness of the adaptive tool.

Both the numerical tests seem to identify the maximum metric Mmax
IG as the best

performing one with a view to an anisotropic mesh adaptation. The expected ad-

vantages with respect to a standard isotropic mesh adaptation are verified on both
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(a) (b)

(c) (d)

Figure 18: Test case 2: detail on the constant part associated with the maximum

value of f2 for the mesh generated via the metric (a) M∩
IG, (b) Mmax

IG , (c) Mγ
IG

and (d) MI .

MI Mmax
IG Mγ

IG

isotropy anisotropy isotropy anisotropy isotropy anisotropy

elements 11030 4732 11030 4746 8162 4084

etot 6.327e-02 6.490e-02 6.327e-02 6.420e-02 8.656e-02 8.733e-02

emean 5.736e-06 1.371e-05 5.736e-06 1.352e-05 1.060e-05 2.138e-05

emax 4.212e-04 1.019e-03 4.212e-04 1.019e-03 7.884e-04 1.775e-03

Table 7: Test case 2: anisotropy versus isotropy for a fixed accuracy of the mesh.

open and closed surfaces.

The convergence analysis corroborates the results expected from the theory, i.e., an

order of convergence equal to one for the interpolation error and a higher order for

the geometric contribution, indipendently of the selected global metric.

Concerning the robustness of the separate error estimators, the values of the cor-

responding effectivity index highlight a slight overestimation trend characterizing

the interpolaton estimator whereas the geometric estimator underestimates the ac-

tual error.

Finally, a cross comparison between the two test cases shows that the anisotropic

features predicted by the mesh adaptation procedure become more evident in the

second and more challenging setting, while all the conclusions drawn above still

hold.

The promising results of this work suggest us as a next step the development of

a corresponding a-posteriori error analysis, possibly in a goal-oriented setting [3,

30, 40].
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(a) (b)

(c) (d)

Figure 19: Test case 2: detail in correspondence with the layer for the adapted

mesh T A
h generated via the metric (a) M∩

IG, (b) Mmax
IG , (c) Mγ

IG and (d) MI .

Figure 20: Test case 2: convergence history for the estimators ηI (solid line) and ηG

(dashed line) in a loglog plot (left); convergence trend of the global error estimator

when the adaptive procedure is driven by diverse metrics in a loglog plot (right).
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elements E.I.I E.I.G
4152 1.7695 0.6102

11818 1.8502 0.6348

15506 1.6897 0.6854

22144 1.694 0.6401

Table 8: Test case 2: effectivity index for the interpolation and the geometric errors.
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