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Abstract

INTERNODES is a general purpose method to deal with non-conforming dis-
cretizations of partial differential equations on regions partitioned into two or sev-
eral disjoint subdomains. It exploits two intergrid interpolation operators, one for
transfering the Dirichlet trace across the interfaces, the others for the Neumann
trace. In this paper, in every subdomain the original problem is discretized by
either the finite element method (FEM) or the spectral element method (SEM or
hp-fem), using a priori non-matching grids and piece-wise polynomials of different
degree. Other discretization methods however can be used. INTERNODES can
also be applied to heterogeneous or multiphysics problems, that is problems that
feature different differential operators inside adjacent subdomains. For instance, in
this paper we apply the INTERNODES method to a Stokes-Darcy coupled prob-
lem that models the filtration of fluids in porous media. Our results highlight the
flexibility of the method as well as its optimal rate of convergence with respect to
the grid size and the polynomial degree.
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1 Introduction

The INTERNODES method represents a numerical strategy to treat boundary value
problems that are set on domains split in two (or several) subdomains with non-
conforming discretizations. By that we mean that the grids used in each subdomain
might not be the same at the interface separating the subdomains, or that finite di-
mensional approximation subspaces used in the different subdomains may not be the
same.

INTERNODES was introduced in [5] for elliptic boundary value problems. Its
theoretical analysis is carried out in [11]. The method uses two interpolation operators
at the interface, one to transfer Dirichlet data from one domain to the adjacent domain,
the other to transfer Neumann data in the opposite direction. Its numerical realization
is very simple, it only involves rectangular matrices whose entries depend only on the
node locations, plus two interface mass matrices that are defined independently from
each side, without any cross coupling of the shape functions belonging to different
subdomains.

In this paper we will review the INTERNODES method and discuss several issues
concerning its practical implementation, the mathematical setting for the case of mul-
tiple subdomains sharing common cross-points, the efficient solution of the associated
linear algebraic system, in the context of an elliptic boundary value-problems and of
the coupled Stokes-Darcy problem. Several numerical tests are carried out in order to
provide clear evidence to the theoretical properties of INTERNODES.
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INTERNODES is an alternative to projection-based methods like mortar [2], or
other interpolation-based method like GFEM/XFEM [15]. Differently than in mortar
methods, no cross-mass matrix involving basis functions living on different grids of
the interface are required by INTERNODES to build the intergrid operators. Instead,
two separate interface mass matrices (separately on either interface) are used. The
substantial difference between GFEM/XFEM methods and INTERNODES consists in
the fact that the former ones use a partition of unity to enrich the finite element space,
while the latter does not add any shape function to those of the local finite element
subspaces.

Its great generality and flexibility makes INTERNODES suitable also to address
heterogeneous (multiphysics) problems, that is the coupling between different kind of
partial differential equations set on the different subdomains.

As an abstract instance of heterogeneous problem we consider the following one (we
assume for the sake of exposition that Ω is split into only two subdomains): given a
function f defined in Ω, we look for u1 in Ω1 and u2 in Ω2 such that

Lk(uk) = f in Ωk, k = 1, 2, (1)
Φ2(u2) = Φ1(u1) on Γ (Dirichlet-like condition), (2)
Ψ1(u1) + Ψ2(u2) = 0 on Γ (Neumann-like condition), (3)
boundary conditions on ∂Ω, (4)

where L1 and L2 are two differential operators while, for k = 1, 2, Φk and Ψk are suitable
boundary operators restricted to the interface Γ, that depend upon the nature of the
differential operators L1 and L2. More specifically, Neumann conditions refer here
to natural conditions that are enforced weakly, whereas Dirichlet conditions identify
those essential conditions that are enforced directly in the solution subspaces, via a
suitable choice of trial functions (see, e.g., [21]). Typically for second order differential
operators there is one Dirichlet-like condition and one Neumann-like condition, however
more general situations are admissible.

In this regard, an application of INTERNODES to fluid-structure interaction prob-
lems is addressed in [10] and [7], whereas in [12] the method is applied to the numerical
solution of a Stokes-Darcy problem for the coupling of surface and subsurface flow
fields.

2 INTERNODES for Elliptic Problems

Let Ω ⊂ Rd, with d = 2, 3, be an open domain with Lipschitz boundary ∂Ω. ∂ΩN

and ∂ΩD are suitable disjoint subsets of ∂Ω such that ∂ΩD ∪ ∂ΩN = ∂Ω. We make the
following assumptions.

Given the functions f defined in Ω, gD defined on ΓD and gN on ΓN , we look for
the solution u of the second order elliptic problem


Lu = f in Ω,
u = gD on ∂ΩD,
∂Lu = gN on ∂ΩN ,

(5)
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where ∂Lu is the conormal derivative associated with the differential operator L on ∂Ω.
After setting

V = H1
∂ΩD

(Ω) = {v ∈ H1(Ω) : v = 0 on ∂ΩD}, (6)

the weak form of problem (5) reads: find u ∈ H1(Ω) with u = gD on ∂ΩD such that

a(u, v) = F(v) ∀v ∈ V, (7)

where a : V × V → R is the bilinear form associated with the differential operator L,
F : V → R is the linear functional

F(v) = (f, v)L2(Ω) + 〈gN , v〉∂ΩN ,

while (·, ·)L2(Ω) and 〈·, ·〉∂ΩN denote the inner product in L2(Ω) and the duality pairing

between H1/2(∂ΩN ) and H−1/2(∂ΩN ), respectively.
For instance, if

Lu = −∇ · (α∇u) + γu, (8)

with α and γ two suitable functions defined in Ω, then

a(u, v) =

∫
Ω

(α∇u · ∇v + γuv)dΩ, ∀u, v ∈ H1(Ω). (9)

Provided that the bilinear form a is continuous and coercive in V and that the data
are sufficiently regular so that F is continuous on V , there exists a unique solution of
(7) that is stable w.r.t. f , gD and gN (see, e.g., [22]).

We partition Ω into two non-overlapping subdomains Ω1 and Ω2 with Lipschitz
boundary and such that Ω = Ω1 ∪ Ω2. Γ(= Γ) = ∂Ω1 ∩ ∂Ω2 is the common interface
and, for k = 1, 2, we set ∂ΩD,k = ∂ΩD ∩ ∂Ωk and ∂ΩN,k = ∂ΩN ∩ ∂Ωk.

For k = 1, 2 let us introduce the local spaces

Vk = {v ∈ H1(Ωk) | v = 0 on ∂ΩD,k}, V 0
k = {v ∈ Vk | v = 0 on Γ}, (10)

let ak and Fk denote the restriction of the bilinear form a and of the linear functional
F to Ωk, respectively, and let Λ be the space of traces of the elements of V on the
interface Γ:

Λ = {λ ∈ H1/2(Γ) : ∃v ∈ V : v|Γ = λ}. (11)

For k = 1, 2, let uk be the restriction of the solution u of (7) to Ωk, then u1 and u2

are the solution of the transmission problem (see [4, Ch. VII, Sect. 4])
Luk = f in Ωk, k = 1, 2,
u1 = u2, on Γ,
∂L1u1 + ∂L2u2 = 0 on Γ,
uk = gD on ∂ΩD,k,
∂Lkuk = gN on ∂ΩN,k,

(12)
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Figure 1: The computational domain Ω (at left) and its decomposition into two sub-
domains Ω1 and Ω2 with sharp interface Γ

where ∂Lkuk denotes the conormal derivative associated with the differential operator
L in Ωk. For instance, when L is as in (8), the conormal derivative is

∂Lkuk = αk
∂uk
∂nk

where αk = α|Ωk and nk is the outward unit normal vector to ∂Ωk (in particular on Γ,
we have n1 = −n2 and we denote by nΓk the restriction of nk to Γ,1 see Fig. 1).

The weak form of the transmission problem (12) reads (see [23, Lemma 1.2.1]): for
k = 1, 2 find uk ∈ H1(Ωk) with uk|∂ΩD,k = gD such that

ak(uk, v
0
k) = Fk(v0

k) ∀v0
k ∈ V 0

k , k = 1, 2
u2 = u1 on Γ,∑
k=1,2

ak(uk,Rkη) =
∑
k=1,2

Fk(Rkη) ∀η ∈ Λ,
(13)

where
Rk : Λ→ Vk, s.t. (Rkη)|Γ = η ∀η ∈ Λ (14)

denotes any possible linear and continuous lifting operator from Γ to Ωk.

Remark 1. Let 〈·, ·〉Γ denote the duality between Λ and its dual Λ′. If homoge-
neous boundary conditions (of either Dirichlet and Neumann type) are given on ∂Ω, by
counter-integration by parts, the interface equation (13)3 is equivalent to

〈∂L1u1 + ∂L2u2, η〉Γ = 0 ∀η ∈ Λ, (15)

and therefore to the transmission condition (12)3.

Remark 2. In the next Sections we present INTERNODES applied to the transmission
problem (12) or, equivalently, to the weak form (13) provided that the bilinear form a

1We assume that Γ is sufficiently regular to allow the conormal derivative of u to be well defined.
This is certainly the case if Γ is of class C1,1 (see [14, Def. 1.2.1.2]).
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is continuous and coercive in V and the linear functional F is continuous in V . Nev-
ertheless, we point out that INTERNODES can be applied to many other transmission
problems arising, e.g., from Advection-Diffusion-Reaction equations, Linear Elasticity
equations, Stokes equations, etc.

Before introducing INTERNODES, we briefly recall the discretization of the two-
domains problem (13) by conforming methods.

2.1 Recall on conforming discretization in a domain decomposition
framework

Let us consider a partition Th = ∪mTm of the global domain Ω in either simplices
(triangles if d = 2 or tetrahedra if d = 3) or quads (i.e. quadrilaterals if d = 2 or
hexahedra if d = 3) depending on a positive parameter (the grid size) h > 0.

Following standard assumptions, if Tm are simplices, we require Th to be affine,
regular, and quasi-uniform (see [22, Ch. 3]), while if Tm are quads, we require that any
Tm is the image through a C1 diffeomorfism FTm of the reference quad T̂ = [−1, 1]d

(see, e.g., [22]). Moreover, for any Tm ∈ Th, we assume that ∂Tm ∩ ∂Ω fully belongs to
either ∂ΩD or ∂ΩN .

Let p be a positive integer. We shall denote by Pp the usual space of algebraic
polynomials of total degree less than or equal to p, and by Qp the usual space of
algebraic polynomials of degree less than or equal to p with respect to each variable.

The finite (or spectral) element approximation space associated with Th is

Xp
h = {v ∈ C0(Ω) : v|Tm ∈ Qp, ∀Tm ∈ Th} (16)

where Qp = Pp in the simplicial case and Qp = Qp ◦ F−1
Tm

for quads.
Then we define the finite dimensional space

Vh = {v ∈ Xp
h : v = 0 on ∂ΩD} (17)

and let gD,h be a suitable approximation of the boundary datum gD (for example the
interpolation of gD on the space formed by the trace functions on ∂ΩD of the functions
in Xp

h).
The Galerkin finite element approximation of the monodomain weak problem (7)

reads: find uh ∈ Xp
h with uh = gD,h such that

a(uh, vh) = F(vh) ∀vh ∈ Vh. (18)

Now, let us consider the decomposition of Ω into the subdomains Ω1 and Ω2 as
described above and assume that the triangulations Th are such that Γ does not cut
any element Tm ∈ Th. The triangulations T1,h and T2,h induced by Th on Ω1 and Ω2

are therefore compatible on Γ, that is they share the same edges (if d = 2) or faces (if
d = 3). See Fig. 2, right.

In each Ωk (k = 1, 2) we introduce the finite element approximation space

Xk,h = {v ∈ C0(Ωk) : v|Tm ∈ Qp, ∀Tm ∈ Tk,h}, (19)
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Figure 2: At left, the triangulation Th in Ω. At right, the triangulations T1,h (blue) in
Ω1 and T2,h (green) in Ω2 induced by Th. Notice that they are compatible on Γ

and the finite dimensional subspaces of Vk and V 0
k

Vk,h = Xk,h ∩ Vk, V 0
k,h = Xk,h ∩ V 0

k . (20)

Moreover, we consider the space of finite dimensional traces on Γ

Yh = {λ = v|Γ, v ∈ X1,h ∪X2,h}, Λh = {λ = v|Γ, v ∈ V1,h ∪ V2,h} ⊂ Λ. (21)

Remark 3. Notice that Xk,h, Vk,h, V 0
k,h, Yh and Λh depend also on the local polynomial

degree p, nevertheless this dependence is understood.

For k = 1, 2 we define the linear and continuous discrete lifting operators

Rk,h : Λh → Vk,h, s.t. (Rk,hηh)|Γ = ηh, ∀ηh ∈ Λh. (22)

In practical implementation, Rk,hkηh can be chosen as the finite element interpolant
that matches the values of ηh at the finite element nodes on Γ and the zero values at
any other finite element node of Tk,h \ Γ.

The discrete weak form of the transmission problem (18) reads: for k = 1, 2 find
uk,h ∈ Xk,h such that uk,h = gD,h on ∂ΩD,k such that

ak(uk,h, v
0
k,h) = Fk(v0

k,h) ∀v0
k,h ∈ V 0

k,h, k = 1, 2

u2,h = u1,h on Γ,∑
k=1,2

ak(uk,h,Rk,hηh) =
∑
k=1,2

Fk(Rk,hηh) ∀ηh ∈ Λh.

(23)

Problem (23) is actually equivalent to (18), in the sense that uk,h = uh|Ωk , for
k = 1, 2 (see [23, Sect. 2.1]).

Defining the discrete residual functionals rk,h by the relations

〈rk,h, ηh〉Γ = ak(uk,h,Rk,hηh)−Fk(Rk,hηh) for any ηh ∈ Λh, (24)

the interface equation (23)3 is equivalent to

〈r1,h + r2,h, ηh〉Γ = 0 for any ηh ∈ Λh. (25)

The finite dimensional functionals rk,h represent the approximations of the distri-
butional derivatives ∂Lkuk on Γ. Then (25) can be regarded as the discrete counterpart
of (15).
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2.2 Non-conforming discretization

Now we consider two a-priori independent families of triangulations T1,h1 in Ω1 and T2,h2

in Ω2, respectively. This means that the meshes in Ω1 and in Ω2 can be non-conforming
on Γ and characterized by different mesh-sizes h1 and h2. Moreover, different polyno-
mial degrees p1 and p2 can be used to define the finite element spaces. Inside each
subdomain Ωk we assume that the triangulations Tk,hk are affine, regular and quasi-
uniform if Tm are simplices, while we require that any Tm is the image through a C1

diffeomorfism FTm of the reference quad T̂ = [−1, 1]d if Tm are quads (see, e.g., [22]).
From now on, the finite element approximation spaces are (for k = 1, 2):

Xk,hk = {v ∈ C0(Ωk) : v|Tm ∈ Qpk , ∀Tm ∈ Tk,hk},

Vk,hk = Xk,hk ∩ Vk, V 0
k,hk

= {v ∈ Vk,hk , v|Γ = 0},
(26)

(where Qpk = Ppk if the Tm are simplices and Qpk = Qpk ◦F
−1
Tm

if the Tm are quads)
while the spaces of traces on Γ are

Yk,hk = {λ = v|Γ, v ∈ Xk,hk} and Λk,hk = {λ = v|Γ, v ∈ Vk,hk}. (27)

We set Nk = dim(Xk,hk), Nk = dim(Vk,hk), N0
k = dim(V 0

k,hk
), nk = dim(Yk,hk), and

nk = dim(Λk,hk).
The space Λk,hk takes into account the essential boundary conditions, while Yk,hk

does not. Thus, if ∂Ω∩ ∂Γ ⊂ ∂ΩN , then Λk,hk = Yk,hk and nk = nk, otherwise nk < nk
because the degrees of freedom associated with the nodes in ∂ΩD ∩ ∂Γ are eliminated.

The Lagrange basis functions of Vk,hk (for k = 1, 2) associated with the nodes x
(k)
i

of the mesh Tk,hk are denoted by {ϕ(k)
i } for i = 1, . . . , Nk.

We denote by Γ1 and Γ2 the internal boundaries of Ω1 and Ω2, respectively, induced
by the triangulations T1,h1 and T2,h2 . If Γ is a straight segment, then Γ1 = Γ2 = Γ,
otherwise Γ1 and Γ2 can be different (see Fig. 4).

For k = 1, 2, let {x(Γk)
1 , . . . ,x

(Γk)
nk
} ∈ Γk(= Γk) be the nodes induced by the mesh

Tk,hk .

The Lagrange basis functions of Yk,hk are denoted by {µ(k)
i } for i = 1, . . . , nk.

Figure 3: The triangulations T1,h (blue) and T2,h (green) are non-conforming on Γ. At
left, FEM-FEM coupling. At right, FEM-SEM coupling
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Figure 4: Γ1 and Γ2 induced by the triangulations T1,h1 and T2,h2

In formulating the INTERNODES method we will make use of the interface mass
matrices MΓk :

(MΓk)ij = (µ
(k)
j , µ

(k)
i )L2(Γk), i, j = 1, . . . , nk, k = 1, 2. (28)

We will also need the canonical dual basis {Φ(k)
i }

nk
i=1 of Y ′k,hk (the dual space of Yk,hk)

defined by

〈Φ(k)
i , µ

(k)
j 〉 = (Φ

(k)
i , µ

(k)
j )L2(Γk) = δij , i, j = 1, . . . , nk. (29)

It holds that (see, e.g., [3])

Φ
(k)
i =

nk∑
j=1

(M−1
Γk

)jiµ
(k)
j , i = 1, . . . , nk, (30)

meaning that Y ′k,hk and Yk,hk are in fact the same (finite dimensional) linear space.
By expanding any element rk,hk ∈ Y ′k,hk with respect to the dual basis

rk,hk(x) =

nk∑
i=1

r
(k)
i Φ

(k)
i (x) ∀x ∈ Γk,

we note that, thanks to (30),

rk,hk(x) =

nk∑
j=1

(
nk∑
i=1

(M−1
Γk

)jir
(k)
i

)
︸ ︷︷ ︸

z
(k)
j

µ
(k)
j (x) =

nk∑
j=1

z
(k)
j µ

(k)
j (x) ∀x ∈ Γk, (31)

hence, (31) provides the expansion of rk,hk with respect to the Lagrange basis {µ(k)
i }.

Denoting by zΓk
, rΓk

∈ Rnk the vectors whose entries are the values z
(k)
j and r

(k)
i ,

respectively, it holds
zΓk

= M−1
Γk

rΓk
. (32)

The interface mass matrix MΓk and its inverse play the role of transfer matrices
from the Lagrange basis to the dual one and viceversa, respectively.
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1 2

µ1,h1 ∈ P1
Π21

−→
µ2,h2 ∈ P4

Γ1 Γ2

Figure 5: The interpolation from Γ1 to Γ2

2.2.1 Interpolation and intergrid operators

We introduce two independent operators that exchange information between the two
independent grids on the interface Γ:

Π12 : Y2,h2 → Y1,h1 , and Π21 : Y1,h1 → Y2,h2 .

When Γ1 and Γ2 coincide (e.g. this is the case of straigth interface Γ as in Fig. 4,
left), then Π12 and Π21 are the classical Lagrange interpolation operators defined by
the relations (see Fig. 5):

(Π12µ2,h2)(x
(Γ1)
i ) = µ2,h2(x

(Γ1)
i ), i = 1, . . . , n1, ∀µ2,h2 ∈ Y2,h2 , (33)

(Π21µ1,h1)(x
(Γ2)
i ) = µ1,h1(x

(Γ2)
i ), i = 1, . . . , n2, ∀µ1,h1 ∈ Y1,h1 . (34)

The (rectangular) matrices associated with Π12 and Π21 are, respectively, R12 ∈
Rn1×n2 and R21 ∈ Rn2×n1 and they are defined by

(R12)ij = (Π12µ
(2)
j )(x

(Γ1)
i ) i = 1, . . . , n1, j = 1, . . . , n2,

(R21)ij = (Π21µ
(1)
j )(x

(Γ2)
i ) i = 1, . . . , n2, j = 1, . . . , n1,

(35)

where {µ(k)
i } are the Lagrange basis functions of Yk,hk , for k = 1, 2 and i = 1, . . . , nk.

Obviously, in the conforming case for which Γ1 = Γ2, h1 = h2 and p1 = p2, the
interpolation operators Π12 and Π21 are the identity operator and R12 = R21 = I (the
identity matrix of size n1 = n2).

10



Figure 6: An example of locally supported C2−Wendland radial basis function φ̃
(k)
i (x)

2.2.2 Interpolation for non-conforming interfaces

When Γ1 and Γ2 are geometrical non-conforming (as in the right picture of Fig. 4),
we define Π12 and Π21 as the Rescaled Localized Radial Basis Function (RL-RBF)
interpolation operators introduced in formula (3.1) of [6].

More precisely, for i = 1, . . . , nk let

φ̃
(k)
i (x) = φ(‖x− x

(Γk)
i ‖, r) = max

0,

(
1−
‖x− x

(Γk)
i ‖

r

)4

(

1 + 4
‖x− x

(Γk)
i ‖

r

)

be the locally supported C2− Wendland radial basis function [25] centered at x
(Γk)
i

with radius r > 0 (see Fig. 6).
For any continuous function f defined in Ω, the Radial Basis Function (RBF) in-

terpolant of f at the nodes x
(Γk)
i (for i = 1, . . . , nk and for any k = 1, 2) reads

(Π
(k)
RBF f)(x) =

nk∑
i=1

(γ
(k)
f )iφ̃

(k)
i (x),

where the real values (γ
(k)
f )i are the solutions of the linear system

(Π
(k)
RBF f)(x

(Γk)
j ) =

nk∑
i=1

(γ
(k)
f )iφ̃

(k)
i (x

(Γk)
j ) = f(x

(Γk)
j ), j = 1, . . . , nk.

After setting g(x) ≡ 1, the RL-RBF interpolant of f at the nodes x
(Γk)
i reads ([6]):

(Π
(k)
RL−RBF f)(x) =

(Π
(k)
RBF f)(x)

(Π
(k)
RBF g)(x)

=

∑nk
i=1(γ

(k)
f )iφ̃

(k)
i (x)∑nk

i=1(γ
(k)
g )iφ̃

(k)
i (x)

. (36)

Then we define the interpolation operators Π12 : Y2,h2 → Y1,h1 and Π21 : Y1,h1 →
Y2,h2 such that for any µ2,h2 ∈ Y2,h2 and µ1,h1 ∈ Y1,h1 ,

(Π12µ2,h2)(x
(Γ1)
j ) = (Π

(2)
RL−RBFµ2,h2)(x

(Γ1)
j ) j = 1, . . . , n1,

(Π21µ1,h1)(x
(Γ2)
j ) = (Π

(1)
RL−RBFµ1,h1)(x

(Γ2)
j ) j = 1, . . . , n2.

(37)
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The (rectangular) matrices associated with the RL-RBF interpolation operators
(37) are defined as in (35). More precisely, if we set

(Φk`)ij = φ̃
(`)
j (x

(Γk)
i ) for k, ` ∈ {1, 2}, i = 1, . . . , nk, j = 1, . . . , n`,

we have

(R21)ij = (Π21µ
(1)
j )(x

(Γ2)
i ) =

(Φ21Φ−1
11 )ij

(Φ21Φ−1
11 1)i

, i = 1, . . . , n2, j = 1, . . . , n1,

(R12)ij = (Π12µ
(2)
j )(x

(Γ1)
i ) =

(Φ12Φ−1
22 )ij

(Φ12Φ−1
22 1)i

, i = 1, . . . , n1, j = 1, . . . , n2,

(38)

where 1 is the column array with all the entries equal to 1 and {µ(k)
i } are the Lagrange

basis functions of Yk,hk .

Remark 4. We notice that only information associated with the interface nodes (more
precisely, the nodes coordinates) are needed to assemble both the interface mass matrices
and the interpolation matrices for both the Lagrange and the RL-RBF interpolation
approaches.

Remark 5. Using only one intergrid interpolation operator would not guarantee an
accurate non-conforming method; this would yield the so-called pointwise matching
discussed, e.g., in [2, 1], where both trial and test functions satisfy the relation v|Γ2

=
Π21v|Γ1

. In our approach, the second operator (Π12 that maps Y2,h2 on Y1,h1) matches,
in a suitable way, the fluxes across the interface.

2.3 Formulation of INTERNODES

For k = 1, 2 we define two discrete linear and continuous lifting operators

Rk = Rk,hk : Yk,hk → Xk,hk , s.t. (Rkλk,hk)|Γk = λk,hk , (39)

such that, when restricted to Λk,hk , Rk coincides with the lifting Rk,hk introduced in
(22).

In practical implementation, we can define Rkλk,hk as the finite element interpolant
that extends any λk,hk ∈ Yk,hk by setting to zero the values of Rkλk,hk at all nodes

of Tk,hk not belonging to Γk. In particular, if λk,hk = µ
(k)
j (the jth Lagrange basis

function on Γk), then Rkµ
(k)
j is the Lagrange basis function of Xk,hk whose restriction

on Γk coincides with µ
(k)
j .

To start, let us consider the case when ∂Γ∩ ∂ΩD = ∅ (as, e.g., the situation of Fig.
1).

For any uk,hk ∈ Xk,hk and for any k = 1, 2 we define the scalar quantities:

(r(k)
u )i = ak(uk,hk ,Rkµ

(k)
i )−Fk(Rkµ

(k)
i ) i = 1, . . . , nk, (40)

(z(k)
u )j =

nk∑
i=1

(M−1
Γk

)ji(r
(k)
u )i, j = 1, . . . , nk, (41)

12



and the functions

(ru)k,hk =

nk∑
j=1

(z(k)
u )jµ

(k)
j (42)

belonging to Yk,hk . (The subscript u highlights the dependence of r on u.)
Let gD,h1 and gD,h2 be two suitable approximations of the boundary datum gD on

∂ΩD,1 and ∂ΩD,2, respectively.

The weak form of INTERNODES applied to (5) reads: find u1,h1 ∈ X1,h1 with
u1,h1 = gD,h1 on ∂ΩD,1 and u2,h2 ∈ X2,h2 with u2,h2 = gD,h2 on ∂ΩD,2, such that

ak(uk,hk , vk,hk) = Fk(vk,hk) ∀vk,hk ∈ V 0
k,hk

, k = 1, 2

u2,h2 = Π21u1,h1 on Γ2,

(ru)1,h1 + Π12(ru)2,h2 = 0 on Γ1.

(43)

(Notice that both the interpolations are made up to the boundary of the interfaces
and not only at the internal nodes.)

For k = 1, 2, (ru)k,hk ∈ Yk,hk are the so-called residuals at the interface Γk and in fact
they are the discrete fluxes across the interface, i.e. they represent the approximations
of the conormal derivative ∂Lkuk on Γk.

As a matter of fact, by counter integrating by parts (40) we have, for any i =
1, . . . , nk,

(r
(k)
u )i = ak(uk,hk ,Rkµ

(k)
i )−Fk(Rkµ

(k)
i )

= ak(uk,hk ,Rkµ
(k)
i )− (f,Rkµ

(k)
i )L2(Ωk) − 〈gN ,Rkµ

(k)
i 〉∂ΩN,k

= (Luk,hk ,Rkµ
(k)
i )L2(Ωk) − (f,Rkµ

(k)
i )L2(Ωk) − 〈gN ,Rkµ

(k)
i 〉∂ΩN,k

+

∫
Γk

∂Lkuk,hk µ
(k)
i +

∫
∂ΩD,k

∂Lkuk,hk Rkµ
(k)
i +

∫
∂ΩN,k

∂Lkuk,hk Rkµ
(k)
i

=

∫
Γk

∂Lkuk,hk µ
(k)
i +

∫
∂ΩD,k

∂Lkuk,hk Rkµ
(k)
i .

(44)

If, as usual in finite element context, Rkµ
(k)
i is taken as the finite element interpolant

that extends µ
(k)
i to Xk,hk and we assume that neither ∂ΩN,k nor ∂ΩD,k cut the edges

of the elements in Tk,h, then Rkµ
(k)
i |∂ΩD,k is null for any i = 1, . . . , nk (see Fig. 7, left,

recalling that we are assuming ∂Γ ∩ ∂ΩD = ∅) and it holds

(r(k)
u )i =

∫
Γk

∂Lkuk,hk µ
(k)
i , for any i = 1, . . . , nk, (45)

then (ru)k,hk is an approximation of the distributional derivative ∂Lkuk on Γk.

When instead ∂Γ∩ ∂ΩD 6= ∅ (see Fig. 7, right), the lifting Rkµ
(k)
i may be non-null

on ∂ΩD,k (in particular it happens for the indices i associated with the nodes belonging

13



Ω2

Ω1

Γ

Rµ(2)
i

∂ΩN

∂ΩD

Ω2

Ω1

Γ

Rµ(2)
i

∂ΩD

∂ΩN

Figure 7: The liftings Rkµ
(k)
i . At left, Rkµ

(2)
i |∂ΩD,2 = 0. At right Rkµ

(2)
i |∂ΩD,2 6= 0

to Γk ∩ ∂ΩD,k) and, in order to guarantee that (45) is satisfied, the definition (40) of

(r
(k)
u )i should be modified as follows (for any i s.t. x

(Γk)
i ∈ Γk ∩ ∂ΩD,k):

(r(k)
u )i = ak(uk,hk ,Rkµ

(k)
i )−Fk(Rkµ

(k)
i )−

∫
∂ΩD,k

∂Lkuk,hk Rkµ
(k)
i . (46)

We notice that, when we consider conforming decompositions, the correction pro-
vided in (46) is not needed, thanks to the fact that the continuity of the fluxes is
imposed only at the nodes internal to Γ, without invoking any interpolation process.

On the contrary, in the non-conforming case, it is mandatory to define correctly
the residuals (ru)k,hk up to the boundary of Γk, since during the interpolation process
(precisely through the operator Π12) we act on all the degrees of freedom of Γ2, included
those on ∂Γ2.

In conclusion, INTERNODES is defined by:

(43) with (40), (41), (42) if ∂Γ ∩ ∂ΩD = ∅,

(43) with (46), (41), (42) if ∂Γ ∩ ∂ΩD 6= ∅.

We refer to Remark 9 for the implementation of the correction (46).

Remark 6. The values (r
(k)
u )i are not the coefficients of (ru)k,hk w.r.t. the Lagrange

basis {µ(k)
i } (on which we can apply the interpolation). Rather, they are the coefficients

of (ru)k,hk w.r.t. the dual basis {Φ(k)
i }

nk
i=1 of Y ′k,hk defined in (30). More precisely, it

holds

(ru)k,hk =

nk∑
i=1

(ru)
(k)
i Φ

(k)
i .

Remark 7. The domains Ω1 and Ω2 play differently in (43), more precisely the Dirich-
let trace on Γ1 is first interpolated and then transferred to Γ2 (for this reason, mimicking
the mortar notation, Ω1 is named master subdomain and Ω2 slave subdomain).

On the contrary, the Neumann trace on Γ2, i.e. the residual, is first interpolated
and then transferred to Γ1.
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Remark 8. As previously pointed out, if the discretizations in Ω1 and Ω2 are con-
forming on Γ, then Π21 and Π12 are the identity operators, then problem (43) coincides
with (23); (43) can therefore be regarded as the extension of (23) to the non-conforming
case.

2.4 Algebraic form of INTERNODES

Let us denote by {ϕ(k)
i }, for i = 1, . . . , Nk, the Lagrange basis functions of Xp

k,h asso-
ciated with the nodes xi of the mesh Tk,h and we define the following sets of indices:

IΩk
= {1, . . . , Nk},

Ik = {i ∈ IΩk
: xi ∈ Ωk \ (∂ΩD,k ∪ Γ̊k)},

IDk = {i ∈ IΩk
: xi ∈ ∂ΩD,k},

IΓk
= {i ∈ IΩk

: xi ∈ Γk},
IΓk = {i ∈ IΩk

: xi ∈ Γk \ ∂ΩD,k},
IΓDk

= {i ∈ IΩk
: xi ∈ Γk ∩ ∂ΩD,k}.

(47)

Clearly, if ∂Γ ∩ ∂ΩD = ∅, then IΓk
= IΓk and IΓDk

= ∅.

As usual in finite element context, Rkµ
(k)
i is taken as the finite element interpolant

that extends µ
(k)
i to Xk,hk , thus there exists a unique j = j(i) ∈ IΩk

such that Rkµ
(k)
i =

ϕ
(k)
j .

For k = 1, 2, we define in a standard way the local stiffness matrices (see, e.g.,
[24, 23]), i.e.

A
(k)
ij = ak(ϕ

(k)
j , ϕ

(k)
i ), i, j ∈ IΩk

,

then let
Akk = A(k)(Ik, Ik)

be the submatrix of A(k) obtained by taking both rows and columns of A(k) whose
indices belong to Ik. Similarly we define the submatrices AΓk,Γk = A(k)(IΓk , IΓk),
AΓk,Γk

= A(k)(IΓk
, IΓk

), Ak,Γk = A(k)(Ik, IΓk) and so on.
Moreover we define the arrays

f (k) = [Fk(ϕ
(k)
i )]i∈IΩk

, u(k) = [uk,hk(x
(k)
i )]i∈IΩk

and, by exploiting the same indexing notation as before, the subarrays

fk = f (k)(Ik), fΓk
= f (k)(IΓk

), fΓk = f (k)(IΓk),

uk = u(k)(Ik), uΓk
= u(k)(IΓk

), uΓk = u(k)(IΓk).

Finally, we set

rΓk = [(r
(k)
u )i]i∈IΓk , rΓk

= [(r
(k)
u )i]i∈IΓk

,

gDk = [gD(x
(k)
i )]i∈IDk , gΓDk

= [gD(x
(k)
i )]i∈I

ΓD
k

.
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In the case that T1,h1 and T2,h2 are conforming on Γ (in which case h1 = h2 and
n1 = n2), the algebraic counterpart of the conforming 2-domains problem (23) reads A1,1 A1,Γ1 0

AΓ1,1 AΓ1,Γ1 +AΓ2,Γ2 AΓ2,2

0 A2,Γ2 A2,2


 u1

uΓ1

u2

 =

 f1 −A1,D1gD1∑
k=1,2(fΓk −AΓk,DkgDk)

f2 −A2,D2gD2

 . (48)

Notice that we have eliminated the trace uΓ2 , since it coincides with uΓ1 .
Thanks to definition (40), the residual vectors rΓk satisfy

rΓk = AΓk,kuk +AΓk,ΓkuΓk +AΓk,DkgDk − fΓk , k = 1, 2; (49)

hence the second row of (48) can be equivalently written as

rΓ1 + rΓ2 = 0,

and it is the algebraic realization of (25).

We write now the algebraic form of the non-conforming problem (43).
To begin with, we analyze how to take into account the corrected definition (46) of

the residuals, when ∂Γ ∩ ∂ΩD 6= ∅.

Remark 9. When ∂Γ ∩ ∂ΩD 6= ∅, we define a new (very sparse) matrix C(k) whose
non-null entries are

C
(k)
ij = −

∫
∂ΩD,k

∂Lkϕ
(k)
j ϕ

(k)
i , i ∈ IΓDk

, j ∈ IΩk
(50)

and we adopt the same notations used above to indicate its submatrices.
Then, in order to implement (46), precisely to take into account the last integral of

(46), we update the submatrices AΓk,X
= A(k)(IΓk

, IX) (with X ∈ {Dk, Γk, Γk, k})
by adding the contributions of C(k), i.e.

AΓk,X
= AΓk,X

+ CΓk,X
. (51)

From now on, when ∂Γ ∩ ∂ΩD 6= ∅, AΓk,X
will stand for (51).

We define two intergrid matrices

Q21 = R21, Q12 = MΓ1R12M
−1
Γ2
. (52)

The algebraic counterpart of (43)2 reads

uΓ2
= Q21uΓ1

. (53)

The intergrid interpolation operator Π12 in (43)3 applies on the Lagrange expansion
(42) of (ru)2,h2 , i.e.,

n1∑
i=1

z
(1)
i µ

(1)
i (x) + Π12

 n2∑
j=1

z
(2)
j µ

(2)
j (x)

 = 0, ∀x ∈ Γ1 (54)
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and, thanks to (32) and (35), the algebraic form of (43)3 reads

zΓ1
+R12zΓ2

= 0 or, equivalently, rΓ1
+Q12rΓ2

= 0, (55)

that can be interpreted as follows:

rΓ1︸︷︷︸
dual d.o.f.

+MΓ1 R12M
−1
Γ2

rΓ2︸︷︷︸
dual d.o.f.︸ ︷︷ ︸

Lagrange d.o.f︸ ︷︷ ︸
interpolation︸ ︷︷ ︸

dual d.o.f.

= 0.

By introducing the following submatrices: Q0
21 = Q21(IΓ2

, IΓ1), QD21 = Q21(IΓ2 , IΓD1
),

Q0
12 = Q12(IΓ1 , IΓ2

), and by using (53), the algebraic form of (43) reads A1,1 A1,Γ1 0

AΓ1,1 AΓ1,Γ1 +Q0
12AΓ2,Γ2

Q0
21 Q0

12AΓ2,2

0 A2,Γ2
Q0

21 A2,2


︸ ︷︷ ︸

A

u1

uΓ1

u2

 =

 f1

fΓ1 +Q0
12fΓ2

f2

−G, (56)

where the array

G =

 G1

GΓ1

G2

 =

 A1,D1gD1

AΓ1,D1gD1 +Q0
12(AΓ2,D2

gD2 +AΓ2,Γ2
QD21gΓD1

)

A2,D2gD2 +A2,Γ2Q
D
21gΓD1

 (57)

is non null only when non-homogeneous Dirichlet conditions are given on ∂ΩD and
implements the lifting of the Dirichlet datum.

The term AΓ2,Γ2
QD21gΓD1

in the last two rows of (57) is justified by the fact that the
trace of u2,h2 on the interface Γ2 is the interpolation through Π21 of the trace u1,h1 on
Γ1.

System (56) represents the algebraic form of INTERNODES implemented in prac-
tice. By taking Q12 = Q21 = I we recover the algebraic system (48) of the conforming
case.

Notice that, even though the residuals are defined up to the boundary of Γk, the
algebraic counterpart of condition (43)3 is imposed only on the internal nodes of Γ1.
In this way the number of equations and the number of unknowns in (56) do coincide.

In the case of homogeneous Dirichlet conditions, a compact algebraic form of IN-
TERNODES for problem (12) reads:

A11u1 = f1 −A1,Γ1uΓ1

A22u2 = f2 −A2,Γ2uΓ2

uΓ2
= Q21uΓ1

rΓ1 +Q0
12rΓ2

= 0,
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with rΓ1 = AΓ1,1u1 +AΓ1,Γ1uΓ1 − fΓ1 and rΓ2
= AΓ2,2

u2 +AΓ2,Γ2
uΓ2
− fΓ1

.
The instructions to build the stiffness, mass and interpolation matrices are collected

in Algorithm 1, while those to assemble the matrix and the r.h.s. of system (56) and
to solve it are in Algorithm 2.

Algorithm 1 Initialization of the INTERNODES matrices for 2 subdomains

for all k = 1, 2 do
build the local stiffness matrices A(k);
if ∂Γ ∩ ∂ΩD 6= ∅ then

build the matrices C(k) and update AΓk,X
with X ∈ {Dk, Γk, Γk, k} as in

(51);
end if
build the arrays f (k), gDk , gΓDk

;

build the local interface mass matrices MΓk (formula (28));
end for
build the interpolation matrices R21 and R12 (formulas (35));
build Q21 and Q12 (formula (52));

Algorithm 2 INTERNODES for 2 subdomains: direct solver

build the matrix A and the r.h.s of (56);
solve the system (56) by a direct method;

2.4.1 An efficient iterative algorithm for system (56)

An alternative way to solve system (56) consists in eliminating the variables u1 and u2

from it and in solving the Schur complement system

SuΓ1 = b, (58)

where

S = SΓ1 +Q0
12SΓ2

Q0
21, b = bΓ1 +Q0

12bΓ2
−GΓ1 , (59)

SΓ1 = AΓ1,Γ1 −AΓ1,1A
−1
1,1A1,Γ1 , SΓ2

= AΓ2,Γ2
−AΓ2,2

A−1
2,2A2,Γ2

(60)

bΓ1 = fΓ1 −AΓ1,1A
−1
1,1(f1 −G1), bΓ2

= fΓ2
−AΓ2,2

A−1
2,2(f2 −G2). (61)

SΓ1 and SΓ2
are the local Schur complement matrices, while bΓ1 and bΓ2

are the
local right hand sides.

System (58) can be solved, e.g., by a preconditioned Krylov method, with S1 as
preconditioner. (Notice that matrix Q0

12SΓ2
Q0

21 is not a good candidate to play the
role of preconditioner since it may be singular.)

Once uΓ1 is known, the variables u1 and u2 are recovered by solving the local
subsystems

A11u1 = f1 −G1 −A1,Γ1uΓ1 ,

A22u2 = f2 −G2 −A2,Γ2
Q0

21uΓ1 .
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Finally, uΓ1
is recovered by assembling uΓ1 and gΓD1

and then the numerical solution

on Γ2 is reconstructed by the interpolation formula uΓ2
= Q21uΓ1

.
The solution of system (58) can be accomplished in different ways, either by as-

sembling explicitely the matrix S (in this case the system (58) can be solved either by
direct or iterative methods), or, as usual, without assembling the Schur complement
matrices SΓ1 , SΓ2

and S. In the latter case, it is sufficient to compute and store a
suitable factorization of the matrices Ak,k and dispose of a function that implements
the action of S on a given array λ.

The sketch of the algorithm to solve the Schur complement (58) by an iterative
method without assembling S is reported in Algorithm 3 and Algorithm 4.

Algorithm 3 INTERNODES algorithm for 2 subdomains, iterative solution of the
Schur complement SuΓ1 = b

Build stiffness, matrix and interpolation matrices as in Algorithm 1
% Solution step
build the lifting λ1,h1 ∈ Y1,h1 of gD|Γ1∩∂ΩD,1 and define the array λΓ1

of the degrees
of fredom of λ1,h1 on Γ1 (up to its boundary), as well as the subarray λΓ1 of λΓ1

restrictred to the nodes internal to Γ1;
compute λΓ2

= Q21λΓ1
and set λΓ2 the restriction of λΓ2

to the nodes internal to
Γ2;
for all k = 1, 2 do

solve Akkuk = fk −Ak,DkgDk −Ak,ΓkλΓk ;
compute the residuals rΓk

= AΓk,k
uk +AΓk,Dk

gDk +AΓk,Γk
λΓk − fΓk

;
end for
compute b = −(rΓ1 +Q0

12rΓ2
);

solve SuΓ1 = b by an iterative matrix-free method, (see Algorithm 4 for the compu-
tation of v = SpΓ1 , for a given pΓ1);
recover uΓ1

by assembling uΓ1 and gΓD1
;

compute uΓ2
= Q21uΓ1

;
for all k = 1, 2 do

solve Akkuk = fk −Ak,DkgDk −Ak,ΓkuΓk ;
end for

Algorithm 4 Evaluation of v = SpΓ1 , where pΓ1 is the array of the dof of a discrete
function that is null on ∂Γ1

compute pΓ2
= Q0

21pΓ1 ;
for all k = 1, 2 do

solve Akkuk = −Ak,ΓkpΓk ;
compute the residuals rΓk

= AΓk,k
uk +AΓk,Γk

pΓk ;
end for
compute v = rΓ1 +Q0

12rΓ2
;
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2.5 Accuracy of INTERNODES

Under the assumptions that problem (5) is well posed (see, e.g., [22, 11]) the follow-
ing convergence theorem, establishing the optimal error bound for the INTERNODES
method with respect to the mesh sizes h1 and h2, is proved in [11], in the case of homo-
geneous boundary data, straight interfaces, when the intergrid operators Π12 and Π21

are the classical Lagrange interpolation operators and when ∂Γ ∩ ∂ΩD = ∅.

Theorem 1. Assume that the solution u of problem (7) belongs to Hs(Ω), for some
s > 3/2, that λ = u|Γ ∈ Hσ(Γ) for some σ > 1 and that r2 = ∂L2u2 ∈ Hν(Γ) for some
ν > 0. Then there exist q ∈ [1/2, 1[, z ∈ [3/2, 2[, and a constant c > 0 independent of
both h1 and h2 s.t.

‖u− uh‖∗ ≤ c
{(

h
%1−1/2
1 (1 + (h2/h1)q) + h

%2−1/2
2

)
‖λ‖Hσ(Γ)

+
∑
k=1,2

h`k−1
k (‖uk‖Hs(Ωk) + ‖λ‖Hs−1/2(Γ) + ‖f‖Hs−2(Ωk))

+
[
αh

ζ1+1/2
1 + (1 + (h1/h2)z)h

ζ2+1/2
2

]
‖∂L2u2‖Hν(Γ)

}
,

(62)

where `k = min(s, pk + 1) for k = 1, 2, %k = min(σ, pk + 1), ζk = min(ν, pk + 1), α = 1
if ν > 1 and α = 0 otherwise.

We notice that, when h1, h2 → 0, if the ratio h2/h1 is uniformly bounded from
above and below, then INTERNODES exhibits optimal accuracy, i.e. the accuracy of
the primal finite element spaces Xk,hk used to discretize the local subproblems.

The convergence analysis w.r.t. the local polynomial degrees p1 and p2 is an open
problem, nevertheless numerical results (see the next sections) show that INTERN-
ODES exhibits optimal accuracy also w.r.t. to p1 and p2.

Remark 10. Numerical results (see the next Section) show that the error bound (62)
is respected also when ∂Γ ∩ ∂ΩD 6= ∅.

Even if the Lagrange interpolation is employed heavily to prove Theorem 1, IN-
TERNOES can achieve the optimal order of convergence also when supported by other
types of interpolation, provided that they are accurate enough w.r.t. the discretization
subspaces Vk,hk . The numerical results of Sect. 2.6.2 show the effectiveness of RL-RBF
interpolation in the case of a curved interface and polynomial degrees p ≤ 5.

2.6 Numerical results for 2 subdomains

We provide numerical evidence to the error estimate reported above in (62). We con-
sider two test cases, one in 2D and one in 3D. In each case we consider the case of a
fully Finite Element discretization (FEM/FEM) and that of a fully Spectral Element
discretization (SEM/SEM). In the 2D case we consider also an hybrid case FEM/SEM
showing the robustness of INTERNODES.
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2.6.1 Test case #1

Let us consider the differential problem (5) in Ω = (0, 2) × (0, 1) with Lu = −∆u + u
and f , gD and gN such that the exact solution is

u(x, y) = arctan(4(x− 3/2)) cos((y − x/2)π) + 1,

then we impose Neumann boundary condition on ∂ΩN = (0, 2) × {1} and Dirichlet
conditions on ∂ΩD = ∂Ω \ ∂ΩN .

The computational domain Ω is split in Ω1 = (0, 1)2 and Ω2 = (0, 1)× (1, 2) and

uh =

{
u1,h1 in Ω1

u2,h2 in Ω2
(63)

denotes the numerical solution computed with INTERNODES.
In Fig. 8 we show the numerical solutions obtained in the case of FEM-FEM (left)

and SEM-SEM (right) coupling. The solution drawn in the left picture is obtained with
FEM−P1 discretization in each subdomain with mesh sizes h1 = 1/10 and h2 = 1/19,
while that drawn in the right picture has been computed with SEM of degree p1 = 4
and mesh-size h1 = 1/3 in Ω1 and SEM with degree p2 = 6 and mesh-size h2 = 1/5 in
Ω2.

In Fig. 9 we show the broken-norm errors between the INTERNODES solution uh
and the exact one u:

‖uh − u‖∗ =

∑
k=1,2

‖uh − u‖2H1(Ωk)

1/2

. (64)

The INTERNODES solutions producing the errors plotted in the left picture of
Fig. 9 are computed with h2 ∼ h1/2 and the same polynomial degree p = p1 = p2.
FEM−P1 are considered when p = 1 and SEM−Qp otherwise.

The INTERNODES solutions providing the errors plotted in Fig. 9 are computed
with three different configurations that are described in the caption of the figure itself.

When the mesh sizes h1 and h2 tend to zero, the errors plotted in the left picture of
Fig. 9 dacay obeying to the convergence estimate (62). In such a case the ratio h1/h2

is uniformly bounded and the errors are governed by the term (hp1
1 + hp2

2 ) (notice that
the solution is infinitely differentiable).

In the right picture of Fig. 9 we show the errors w.r.t. the local polynomial degrees.
In this case, the convergence rate w.r.t. the polynomial degree is more than algebraic,
as a matter of fact it is of exponential type, as typical in SEM. The proof of this result
is an open problem.

2.6.2 Test case #2

With this example we aim at showing the robustness of INTERNODES when the dis-
cretization from one side of the interface is very coarse with respect to the discretization
on the other side, as well as the effectiveness of RL-RBF interpolation.
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Figure 9: Test case #1. At left, the broken-norm errors (64) versus h1, with h2 ∼ h1/2
and p1 = p2 = p. When p = 1, FEM-P1 are used inside each subdomain, while when
p > 1 SEM are used inside each subdomain. At right, the broken-norm errors (64)
versus the polynomial degree p1 in Ω1 for SEM-SEM discretization with: p2 = p1 + 2,
h1 = 1/4, h2 = 1/7 (case 1), p2 = p1 − 1, h1 = 1/5, h2 = 1/8 (case 2), and p2 = p1,
h1 = 1/5, h2 = 1/3 (case 3)
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Figure 10: The hybrid FEM-SEM (at left) and SEM-SEM (at right) meshes used in
the Test case #2

We approximate the solution of problem (5) with Lu = −∆u in the domain Ω
drawn in Fig. 1, right. More precisely, denoting by C0 the circle centered in (0,0) and
with radius r0 = 0.3, we set Ω = ((−1, 1) × (0, 1)) \ C0. The functions f , gD and gN
are defined so that the exact solution is

u(x, y) = sin(1.5/
√
x2 + y2)(x− y),

then Neumann conditions are imposed on the horizontal sides of Ω and Dirichlet con-
ditions on ∂Ω \ ∂ΩN .

We define the circle C1 centered in (0,0) with radius r1 = 0.7, then we split Ω into
two subdomains Ω1 = Ω \ C1 and Ω2 = Ω ∩ C1.

Since the interface Γ is curved, the RL-RBF interpolation matrices (38) are em-
ployed.

First, we consider a hybrid coupling with FEM-P1 (with h1 = 1/10) in Ω1 and
SEM-Q10 in Ω2 (with 16 elements) as shown in Fig. 10, left.

The INTERNODES solution computed with h1 = 1/10 in Ω1 and local polynomial
degree equal to p2 = 10 in Ω2 is shown in Fig. 11, left. The corresponding broken-error
norm is about 8.55 · 10−2.

In the right picture of Fig. 11 we show the broken-norm error as well as the
H1−norm errors inside each subdomains versus the P1 mesh size h1 in Ω1. It is evident
that the error is larger inside the FEM domain Ω1 where the discretization is coarser.
By refining the FEM mesh the broken-norm errors decay linearly w.r.t. h1 (as a matter
of fact they coincide with the H1−norm errors in Ω1), while the H1−norm errors in Ω2

decay slightly faster, thanks to the higher accuracy of SEM. We warn the reader that
the numerical solution u2,h2 in Ω2 does not exploits the optimal exponential accuracy
typical of SEM since u2,h2 depends on the less accurate solution u1,h1 computed in Ω1.

We consider now the SEM-SEM coupling in order to test the influence (if any) of
RL-RBF on the accuracy of INTERNODES. We decompose both Ω1 and Ω2 in four
quads with curved edges, corresponding to h1 = h2 = 1 and local polynomial degree
pk, then we refine each of them by dividing it in nek×nek quads, with ne1 6= ne2. The
meshes T1,h1 (red) and T2,h2 (orange), corresponding to ne1 = 2, ne2 = 3, p1 = 5 and
p2 = 6 are shown in Fig. 10, right.

To begin, we fix p1 = p2 and we compute the INTERNODES solution with ne1 =
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Figure 11: Test case #2. At left, the INTERNODES solution obtained with FEM-SEM
discretization, p1 = 1 and h1 = 1/10 in Ω1, p2 = 10 and 16 spectral elements in Ω2. At
right, the errors versus the mesh size h1 of the triangulation in Ω1. The broken-norm
error and the H1−norm error in Ω1 coincide

1, . . . , 10, ne2 = ne1 + 1. The broken-norm errors versus h1 = 1/ne1 are shown in Fig.
12, left, for p = 2, 3, 5, they behave almost as hp1.

Then, we fix ne1 = 2 and ne2 = 3 and we compute the INTERNODES solution
with p1 = 2, . . . , 8 and p2 = p1 + 1. The corresponding broken-norm errors are shown
in Fig. 12, right; they decay more than algebraically, but the convergence rate depends
on the radius r used to set-up the RL-RBF interpolation. The larger r the smaller the
error, but the error curves show a plateau for increasing p. (Notice that, when both
p and r are large, the condition number of the matrices Φkk that are involved in the
computation of R12 and R21 (38) can be very large.)
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Figure 12: Test case #2. At left, the broken-norm errors for SEM-SEM discretization
versus the mesh size h1 of the mesh in Ω1. At right, the broken-norm errors for SEM-
SEM discretization versus the polynomial degree p1 in Ω1. r is the radius of RL-RBF
used to set-up the iterpolation matrices of INTERNODES
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Figure 13: Test case #3. The broken-norm error w.r.t. the mesh-size h1 with p = p1 =
p2 fixed (left) and w.r.t. the local polynomial degree p = p1 = p2, with fixed mesh size
(right) h1 = 1/5 and h2 = 1/3.

2.6.3 Test case #3

We approximate the solution of problem (5) with α = 1 and γ = 0 in the 3D domain
Ω = (0, 2) × (0, 1) × (0, 1). Dirichlet boundary conditions are imposed on the whole
boundary ∂Ω and the data f and gD are set in such a way that the exact solution is
u(x, y, z) = (y2 − y)(z2 − z) sin(xyzπ).

Ω is decomposed into two subdomains Ω1 = (0, 1)3 and Ω2 = (1, 2)× (0, 1)× (0, 1)
and in each subdomain we consider either FEM−P1 (tetrahedral elements) or SEM-Qp

(hexahedral elements).
In each Ωk (for k = 1, 2) we consider a partition in 6(nek × nek × nek) tetrahedra

when p = 1, and in (nek×nek×nek) hexahedra when p > 1. Then the non-conformity
is established by setting ne2 = ne1 − 2 (with ne1 > 2). We define hk = 1/nek, for
k = 1, 2, thus h2 = h1/(1− 2h1).

In Fig. 13, the errors in broken-norm are shown, w.r.t. both the mesh size h1 of Ω1

and the local polynomial degree p = p1 = p2. We observe that they behave as in the
Test case #1, obeying to the convergence estimate (62) when h1, h2 → 0. Moreover,
the errors decay spectrally when p increases, as for 2D problems.

2.7 INTERNODES for decomposition with M > 2 subdomains

Let Ωk, k = 1, . . . ,M , denote a family of disjoint subdomains s.t. ∪kΩk = Ω. Let
us suppose that each Ωk is convex with Lipschitz boundary ∂Ωk (for k = 1, . . . ,M),
and that any angle between two consecutive edges is less than π. Let Γk = ∂Ωk \ ∂Ω
be the part of the boundary of Ωk internal to Ω, and Γk` = Γ`k = ∂Ωk ∩ ∂Ω` be the
interface between the two subdomains Ωk and Ω`. Finally, let Γ = ∪k,`Γk` be the
skeleton of the decomposition. Intersections reduced to a single point are considered
empty. (Two simple decompositions are shown in Fig. 14, while an example of a more
general decomposition is shown in Fig. 15, left.)
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The multidomain formulation of problem (5) reads:
Luk = f in Ωk, k = 1, . . . ,M
uk = u`, on Γk`,
∂Lkuk + ∂L`u` = 0 on Γk`,
uk = gD on ∂ΩD,k,
∂Lkuk = gN on ∂ΩN,k.

(65)

Let γ
(t)
k ⊂ Γk be the t−th edge of Γk (the sub-index k identifies the domain, while

t is the index of the edge of ∂Ωk among all edges of Γk).

We denote by γ
(t)
k and γ

(q)
` the two edges of Ωk and Ω` whose intersection is Γk` =

Γ`k 6= ∅.
In the example of Fig. 14, left, we have Γk` = γ

(t)
k = γ

(q)
` for any interface Γk` of the

decomposition, while in the example depicted in Fig. 14, right, we have Γ12 = γ
(2)
1 =

γ
(1)
2 , Γ23 = γ

(2)
2 ⊂ γ(1)

3 and Γ13 = γ
(1)
1 ⊂ γ(1)

3 .

Between γ
(t)
k and γ

(q)
` , one is tagged as master and the other as slave and we define

the skeleton
Γ(m) =

⋃
k, t :

γ
(t)
k is master

γ
(t)
k , (66)

that in the mortar community is named mortar interface.
A-priori there is no constraint in tagging an edge as either master or slave. In the

example of Fig. 14 right, we could tag as master the edge γ
(1)
3 (in which case γ

(1)
1 and

γ
(2)
2 will be slave), or other way around.

In each Ωk we consider a suitable triangulation and the corresponding finite di-
mensional spaces (as introduced in Section 2.2) that are totally independent of the
discretizations inside the adjacent subdomains.

In order to write the INTERNODES method, we need to generalize the definition

of the residual (46) on the edge γ
(t)
k (either slave or master) as follows.
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First of all, for each γ
(t)
k ⊂ Γk (either slave or master), we define the set G

(t)
k =

∂Ωk \ (̊γ
(t)
k ∪ ∂ΩN,k). For any i s.t. x

(γ
(t)
k )

i ∈ ∂γ(t)
k ∩G

(t)
k , we define the real numbers

(r
(k)
u )i = ak(uk,hk ,Rkµ

(k)
i )−Fk(Rkµ

(k)
i )−

∫
G

(t)
k

∂Lkuk,hk Rkµ
(k)
i , (67)

that generalize those defined in (46). Then, we define the coefficients (z
(k)
u )j and the

discrete residuals as in (41) and (42), respectively.
As for the 2-domains situation, the last term of (67) guarantees that the resid-

ual function (ru)k,hk is the discrete flux associated with the function uk,hk across the

interface γ
(t)
k .

The weak form of INTERNODES applied to (65) reads: for k = 1, . . . ,M find
uk,hk ∈ Xk,hk with uk,hk = gD,hk on ∂ΩD,k (gD,hk is a suitable approximation of gD)
such that

ak(uk,hk , vk,hk) = Fk(vk,hk) ∀vk,hk ∈ V 0
k,hk

, k = 1, . . . ,M,

u`,h` = Π`kuk,hk on any γ
(q)
` slave : γ

(q)
` ∩ γ

(t)
k 6= ∅,

(ru)k,hk + Πk`(ru)`,h` = 0 on any γ
(t)
k master : γ

(q)
` ∩ γ

(t)
k 6= ∅.

(68)

Remark 11. Notice that each cross-point (i.e. a vertex shared by more than two
subdomains) always belongs to the skeleton Γ(m) since it is the end-point of at least
one master edge (see Fig. 15). Cross-points shared by two (or several) master edges
(like the black circles in Figs. 15, left) hold a single degree of freedom (that is, the
finite element solution is continuous therein). Moreover, since a cross-point is always
an interpolation node (as it is the endpoint of almost two edges), the value of the trace
there is preserved when passing from the master edge to the slave one.

If γ
(t)
k and γ

(q)
` are the master and the slave sides, respectively, and their intersection

is Γk`, then R(`,q),(k,t) is the interpolation matrix that maps the master side to the slave
one (it plays the role of matrix R21 defined in (35)), while R(k,t),(`,q) is the interpolation
matrix from the slave to the master side (as R12 in (35)).
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Figure 15: A partition of Ω into 7 subdomains (left figure). The letters m and s denote
the choice made for the master and slave sides, the black circles denote the cross-points.
Description of interfaces and edges (right)
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Γ`k = γ
(t)
k

γ
(q)
`

Ω`

Ωk

µ(`)

Figure 16: The basis function µ(`) (in red) is associated with a node of γ
(q)
` that does

not belong to Γ`k = γ
(t)
k ∩ γ

(q)
` , nevertheless its support intersects the interface Γk` and

µ(`) must be taken into account in assembling the matrix R(k,t),(`,q)

When the measure of γ
(q)
` is larger than that of γ

(t)
k (as, e.g., γ

(1)
3 and γ

(2)
2 in Fig.

14, right), all the basis functions of γ
(q)
` whose support has non-empty intersection with

γ
(t)
k must be taken into account when building R(k,t),(`,q), included those basis functions

associated with the nodes that do not belong to Γk` (i.e. Γ23 in the case of Fig. 14,
right, see also Fig. 16). Alternatively, one can build the interface mass matrices and

the interpolation matrices on the larger edge (as γ
(1)
3 in the case of Fig. 14, right), by

assembling the contributions arising from the shorter edges of the opposite side of the

interface (as γ
(1)
1 and γ

(2)
2 in the case of Fig. 14, right).

The degrees of freedom of the global multidomain problem are the values of uh at
the nodes of Γ(m) jointly with the degrees of freedom internal to each Ωk and those on
the Neumann boundary. As done in Section 2.4.1, we eliminate the degrees of freedom
with index in Ik and solve the Schur complement system (analogous to (58))

SuΓ(m) = b (69)

by, e.g., a Krylov method. Notice that usually the matrix S is not assembled, but it is
sufficient to provide a function that computes the matrix-vector product v = Sp, for a
given p approximating uΓ(m) (see [11, Algorithm 2]).

2.8 Numerical results for M > 2 subdomains.

In this Section we apply INTERNODES to an infinitely differentiable test solution and
to the Kellogg’s test case with jumping coefficients, showing that also in the case of
decompositions with several subdomain INTERNODES attains optimal rate of conver-
gence (as stated by the error estimate (62)).

2.8.1 The “four and a half tatami” test case

Let us consider the differential problem (5) in Ω = (0, 3) × (0, 3) with Lu = −∆u + u
and f and gD such that the exact solution is

u(x, y) = cos((x+ y)π/2)(x− 2y).
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Then we impose Dirichlet boundary condition on ∂ΩD = ∂Ω.
The computational domain Ω is split into 5 subdomains as in a typical disposition

of “four and a half tatami” (see Fig. 17, left), and inside each subdomain we consider
either FEM or SEM discretization, one independent eachother. More precisely, Ω1 =
(0, 1)×(0, 2), Ω2 = (1, 3)×(0, 1), Ω3 = (2, 3)×(1, 3), Ω4 = (0, 2)×(2, 3) and Ω5 = (1, 2)2.

In Fig. 17, right, we show the numerical solution computed with a hybrid FEM-
SEM discretization, precisely SEM-Q4 in Ω1 and in Ω3, FEM-P1 in Ω2, in Ω4, and in
Ω5 (in each subdomain the mesh is taken uniform and regular).

In Fig. 18 the errors (64) are drawn for both full non-conforming FEM−P1 and full
non-conforming SEM−Qp discretizations, showing that INTERNODES attains optimal
order of convergence (as stated in (62)), also for decompositions with more than two
subdomains and internal cross-points.

The errors drawn in the left picture of Fig. 18 refer to the INTERNODES numerical
solution computed with h1 = 1/k with k ∈ {5, 10, 30, 40, 80, 100} and: h2 = 2/(3k− 1),
h3 = 1/(2k), h4 = 2/(3k+1), and h5 = 1/(k+5), so that the meshes are non-conforming
across all the interfaces. The maximum mesh-size hmax in the whole domain Ω coincides
with h1, while the minimum mesh-size hmin = h5. In the case of p = 1 we have plot
the errors versus either hmax (red curve) and hmin (green curve), as well as the error
obtained by a conforming discretization with the same h in the whole domain Ω (blue
curve).

These results highlight that, although INTERNODES is based on interpolation
operators rather than projections (as in the mortar methods), the best approximation
error of the finite element discretization is preserved and not downgraded.

The error curve drawn in the right picture of Fig. 18 refers to the INTERNODES
numerical solution computed with SEM−Qp, with: p1 in the range [2, 8] and p2 = p1+1,
p3 = p1 − 1, p4 = p1 + 1, p5 = p1 + 2; h1 = 1/4, h2 = 1/2, h3 = 1/7, h4 = 2/5 and
h5 = 1/2. As in the case of decomposition with only two subdomains, the error decays
with spectral accuracy when all the polynomials degree increase.

0 1 2 3

0

1

2

3

Figure 17: At left, the hybrid FEM-SEM mesh for the “four and a half tatami” test
case. At right, the corresponding numerical solution
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Figure 18: The errors (64) for the “four and a half tatami” test case. At left, the
broken-norm errors versus the mesh size h, for both FEM-FEM (non-conforming P1

in both subdomains) and SEM-SEM (non-conforming Qp with p = 2, 3 in both subdo-
mains); the error provided by conforming P1 is plotted for a comparison. At right, the
broken-norm errors versus the polynomial degree for SEM-SEM

2.8.2 The Kellogg’s test case

This is a very challenging problem whose solution features low regularity. The so-called
Kellogg’s function (see, e.g., [20]) is an exact weak solution of the elliptic problem{

−∇ · (α∇u) = 0 in Ω = (−1, 1)2

u = gD on ∂Ω,
(70)

with piece-wise constant coefficient α: α = R > 0 in the first and the third quadrants,
and α = 1 in the second and in the fourth ones. The solution u can be written in
terms of the polar coordinates r and θ as u(r, θ) = rγµ(θ), where γ ∈ (0, 2) is a given
parameter, while µ(θ) is a 2π−periodic continuous function (more regular only when
γ = 1) defined as follows:

µ(θ) =


cos((π/2− σ)γ) cos((θ − π/2 + ρ)γ) 0 ≤ θ ≤ π/2
cos(ργ) cos((θ − π + σ)γ) π/2 ≤ θ ≤ π
cos(σγ) cos((θ − π − ρ)γ) π ≤ θ ≤ 3π/2
cos((π/2− ρ)γ) cos((θ − 3π/2− σ)γ) 3π/2 ≤ θ ≤ 2π.

(71)

The parameters σ, ρ, γ and the coefficient R (that is involved in the definition of α)
must satisfy the following non-linear system:

R = − tan((π/2− σ)γ) cot(ργ)
1
R = − tan(ργ) cot(σγ)
R = − tan(σγ) cot((π/2− ρ)γ)
0 < γ < 2
max{0, πγ − π} < 2γρ < min{γπ, π}
max{0, π − γπ} < −2γσ < min{π, 2π − γπ}.

(72)

After choosing ρ = π/4, and γ ∈ {0.4, 0.6, 1.4, 1.6} and by solving the non-linear
system (72), we obtain the values of R and σ reported in Table 1.
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Table 1: The parameters for the Kellogg’s test case, when ρ = π/4

γ R σ

0.4 9.472135954999585 -3.141592653589793
0.6 3.851839996319182 -1.832595714594046
1.4 0.2596161836824997 -0.3365992128846207
1.6 0.1055728090000841 -0.1963495408493620

k + 5 k

k − 2

Ω1Ω2

Ω3 Ω4

α = α1 α = 1

k − 1

α = α1α = 1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 19: At left, the decomposition of Ω into four subdomains. In the middle, the
nonconforming P1 meshes for k = 10. At right, the Kellogg’s solution with γ = 0.4 and
R = 9.472135954999585 computed by INTERNODES and P1

The case γ = 1 is trivial since the solution is a plane. When γ 6= 1, u ∈ Hs(Ω),
with s = 1 + γ − ε for any ε > 0; the solution features low regularity at the origin and
its normal derivatives to the axis are discontinuous.

We solve problem (70) by applying INTERNODES to the 4-subdomains decompo-
sition induced by the discontinuity of α and by using either P1 or Q2 finite elements
in each subdomain (see the P1 mesh in Fig. 19). The meshes at the interfaces are
non-conforming as shown in Figure 19, more precisely given k ∈ N, the subdomains
mesh-sizes are: h1 = 1/(k − 1), h2 = 1/(k − 2), h3 = 1/(k + 5) and h4 = 1/k.

By refining the meshes (we cycle on k = 20, 40, 80, 160), we measure the con-
vergence order of INTERNODES on the Kellogg’s solution for different values of the
parameter γ. The results are shown in Table 2 and the convergence estimate provided
by Theorem 1 for two subdomains is here confirmed, although this test case involves
four subdomains instead of two.

3 Fluid filtration in porous media (the Stokes-Darcy cou-
pling)

Flow processes in a free-fluid region adjacent to a porous medium occur in many rel-
evant applications. At the microscopic scale the complete process can in principle
be modelled by the Navier-Stokes equations both in the free-fluid and in the porous
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Table 2: Convergence orders of INTERNODES for the Kellogg’s test solution. The case
γ = 0.4 is not covered by the convergence Theorem 1 since s < 3/2. The experimental
convergence orders are shown in the last two columns

γ s = 1 + γ − ε theoretical convergence P1 order Q2 order
s.t. u ∈ Hs(Ω) order (by (62)) (experimental) (experimental)

0.4 1.4− ε 0.4− ε 0.363 0.429
0.6 1.6− ε 0.6− ε 0.574 0.651
1.4 2.4− ε 1 for P1, 1.4− ε for Q2 0.955 1.394
1.6 2.6− ε 1 for P1, 1.6− ε for Q2 0.952 1.518

medium regions, however, it would require a detailed description of the porous medium
and its computational cost could be prohibitive. Under the (realistic) assumption that
the Reynolds number in the porous domain is small, the Navier-Stokes equations could
be therein up-scaled to a macroscopic level and replaced by the Darcy law.

Consider the case of a tangential flow of a fluid over a porous bed. This situation
is known in literature also as near parallel flows [18], i.e. flows for which the pressure
gradient is not normal to the interface and the Darcy velocity inside the porous domain
is much smaller than the velocity in the fluid domain. The most widely used approach
to couple the free fluid regime with the porous-medium one consists of:
- the introduction of an artificial sharp interface Γ between the Stokes (or fluid) domain
Ωs and the Darcy (or porous) domain Ωd;
- the imposition of the mass conservation, the balance of normal forces and the Beavers-
Joseph-Saffman (BJS) experimental law on Γ ([9]), see Fig. 20.

To write down the associated mathematical model, we introduce the following en-
tities:

- the outward unit normal vectors nk to ∂Ωk,
- the dynamic viscosity µ, the density ρ, the velocity us and the pressure ps of the

fluid in Ωs,
- the Cauchy stress tensor for the fluid σs = σs(us, ps) = −psI + µ(∇us + (∇us)

T ),
- the Darcy velocity ud and the intrinsic average pressure pd in the porous domain, the

intrinsic permeability κ = κ(x) (for any x ∈ Ωd) of the porous media,
- two given body forces fs and fd,
- the normal unit vector nΓ to Γ directed from Ωs to Ωd (then nΓ = ns = −nd on Γ)

and an orthonormal system of tangent vectors τj , with j = 1, . . . , d− 1 on Γ.

The coupled problem that we consider reads:

Stokes problem (fluid domain)
−∇ · σs = fs, ∇ · us = 0 in Ωs, (73)

Darcy problem (porous domain)

ud = −κ

µ
(∇pd − fd), ∇ · ud = 0 in Ωd, (74)

interface conditions (sharp interface)

32



Γ

Ωd

Ωs

solid wall

medium
porous

Figure 20: A typical setting of the Stokes-Darcy coupled problem for a fluid over a
porous bed

us · ns + ud · nd = 0 (mass conservation) on Γ, (75)

(σsns) · ns + pd = 0 (balance of normal forces) on Γ, (76)

(σsns) · τj +
αµ√
τjTκτj

us · τj = 0, j = 1, . . . , d− 1, (BJS condition) on Γ, (77)

where α is a suitable parameter depending on the porous media. Indeed, the BJS
condition is not a coupling condition, as it only involves quantities from one side. As
a matter of fact, it is always used to complete the set of the boundary conditions (on
the interface) for the Stokes problem in Ωs.

The system (73)–(77) is completed with suitable boundary conditions that read (as
usual, D stands for Dirichlet and N for Neumann):

us = gDs on ∂ΩD,s, σsns = 0 on ∂ΩN,s,
pd = 0 on ∂ΩD,d, ud · nd = gNd on ∂ΩN,d,

where we assume that ∂ΩN,k and ∂ΩD,k are non-intersecting subsets of ∂Ωk \ Γ such

that ∂ΩN,k ∪ ∂ΩD,k = ∂Ωk \ Γ.
The coupled system (73)–(77) can be recast in the form (1)–(4) by associating the

Stokes problem with L2(u2) and the Darcy problem with L1(u1).
When considering the weak (variational) formulation of the coupled problem (73)–

(77), the interface coupling conditions (75) and (76) can be treated in different ways
depending on the specific variational form used.

In the form used in Sect. 3.1, the balance of normal forces (76) plays the role of
a Φ-like condition (2), while the mass conservation condition (75) will be treated as a
Ψ-like condition (3).

In specific circumstances, however, for instance when the interface Γ is parallel to
one of the cartesian coordinates, condition (75) can be easily enforced as a Dirichlet
condition (thus under the form (2)) on the space of trial functions and condition (76)
as a Neumann (natural) condition, e.g., like (3).

3.1 INTERNODES applied to the Stokes-Darcy system

We define the functional spaces:

Vs = [H1(Ωs)]
d, VD

s = {v ∈ Vs : v = 0 on ∂ΩD,s}, (78)
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Vd = {v ∈ [L2(Ωd)]
d : ∇ · v ∈ L2(Ωd)}, VN

d = {v ∈ Vd : v · n = 0 on ∂ΩN,d},
Qs = L2(Ωs), Qd = L2(Ωd),

Λ = {λ ∈ H1/2(Γ) : ∃v ∈ H1(Ωd), v = 0 on ∂ΩD,d, s.t. v|Γ = λ}. (79)

Then we consider the following weak form of the Stokes-Darcy coupled problem
(73)–(77) ([17]): find us ∈ Vs, ps ∈ Qs, ud ∈ Vd, pd ∈ Qd, and λ ∈ Λ with us = gDs on
∂ΩD,s, ud · nd = gNd on ∂ΩN,d such that:

2µ

∫
Ωs

D(us) : D(vs) dΩ−
∫

Ωs

ps∇ · vs dΩ +

∫
Γ
λvs · ns dΓ

+
d−1∑
j=1

∫
Γ
αj(us · τj)(vs · τj) dΓ =

∫
Ωs

fs · vs dΩ ∀vs ∈ VD
s ,∫

Ωs

qs∇ · us dΩ = 0 ∀qs ∈ Qs,

(80)



µ

∫
Ωd

(κ−1ud) · vd dΩ−
∫

Ωd

pd∇ · vd dΩ +

∫
Γ
λvd · nd dΓ

=

∫
Ωd

fd · vd dΩ ∀vd ∈ VN
d ,∫

Ωd

qd∇ · ud dΩ = 0 ∀qd ∈ Qd,

(81)

∫
Γ

us · nsη +

∫
Γ

ud · ndη = 0 ∀η ∈ Λ, (82)

where D(v) = (∇v + (∇v)T )/2, while αj = αµ/
√
τTj κτj .

The Lagrange multiplier λ ∈ Λ is in fact λ = pd = −(σsns) · ns on Γ.
We discretize both Stokes problem (73) and Darcy problem (74) by inf-sup stable

(or stabilized) couples of finite elements (see, e.g., [8, 13, 19]).
Independent finite element space discretizations (as described in Sect. 2.2) are

considered in Ωs and Ωd; moreover they may induce two different discrete interfaces
Γs = Ts,hs ∩ Γ and Γd = Td,hd ∩ Γ in the case of a curved interface Γ, see e.g. Fig. 4,
right, for an example.

Then we use the subindices hk (for k = s, d) to characterize the subspaces of the
functional spaces (78) as well as the discrete counterpart of each variable appearing in
the system (80)–(82). Then, for k = s, d, we consider the trace spaces Yk,hk and Λk,hk
defined as in Sect. 2.2.

In order to apply the INTERNODES method to the discrete counterpart of (80)–
(82), we define the scalar quantities:

(r(k)
u )i =

∫
Γk

(uk,hk · nk)µ
(k)
i , i = 1, . . . , nk, k = s, d, (83)

(where we recall that {µ(k)
i }

nk
i=1 are the Lagrange basis functions of Yk,hk) and

(z(k)
u )j =

nk∑
i=1

(M−1
Γk

)ji(r
(k)
u )i j = 1, . . . , nk, k = s, d, (84)
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(as in Sect. 2.2, MΓk denotes the mass matrix on the interface Γk) and the discrete
functions (belonging to Yk,hk)

(ru)k,hk =

nk∑
j=1

(z(k)
u )jµ

(k)
j (85)

that represent an approximation of the functionals uk · nk on Γk.
Moreover we consider two different discretization of the Lagrange multiplier λ: λs,hs

for the Stokes problem and λd,hd for the Darcy one.
The INTERNODES form of problem (80)–(82) reads: find

us,hs ∈ Vs,hs , ps,hs ∈ Qs,hs , λs,hs ∈ Λs,hs ,
ud,hd ∈ Vd,hd , pd,hd ∈ Qd,hd , λd,hd ∈ Λd,hd ,

(satisfying the given boundary conditions) such that:

2µ

∫
Ωs

D(us,hs) : D(vs,hs) dΩ−
∫

Ωs

ps,hs∇ · vs,hs dΩ +

∫
Γs

λs,hsvs,hs · ns dΓ

+
d−1∑
j=1

∫
Γs

αj(us,hs · τj)(vs,hs · τj) dΓ =

∫
Ωs

fs · vs,hs dΩ ∀vs,hs ∈ VD
s,hs ,∫

Ωs

qs,hs∇ · us,hs dΩ = 0 ∀qs,hs ∈ Qs,hs ,

(86)



µ

∫
Ωd

(κ−1ud,hd) · vd,hd dΩ−
∫

Ωd

pd,hd∇ · vd,hd dΩ

+

∫
Γd

λd,hdvd,hd · nd dΓ =

∫
Ωd

fd · vd,hd dΩ ∀vd,hd ∈ VN
d,hd

,∫
Ωd

qd,hd∇ · ud,hd dΩ = 0 ∀qd,hd ∈ Qd,hd ,

(87)

(ru)d,hd + Πds(ru)s,hs = 0 on Γd,

λs,hs = Πsdλd,hd on Γs.
(88)

The conditions (88) are the INTERNODES counterpart of the interface condition
(75)–(76), obtained by applying the intergrid (interpolation) operators Π12 and Π21

defined in Sect. 2.2.
More precisely, if we make the associations d ↔ 1 and s ↔ 2, the operator Πsd(=

Π21) is used to interpolate on Γs the discrete trace of pd,hd that is known on Γd, in
order to provide the normal component of the Cauchy stress for the Stokes problem on
the interface Γs. On the contrary, Πds(= Π12) is used to interpolate on Γd the weak
counterpart of us,hs ·ns that is known on Γs, in order to provide the normal component
of the Darcy velocity on the interface Γd.

The algebraic form of the INTERNODES conditions (88) is very similar to that
written for the elliptic problem in Sect. 2.4, i.e. formulas (53) and (55). More precisely,
let us denote by Rds (Rsd, resp.) the matrix associated with the interpolation operator

Πds (Πsd, resp.), by rΓk
the array whose entries are the real values (r

(k)
u )i for i =
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1, . . . , nk defined in (83) and by λΓk
the array whose entries are the nodal values of

λk,hk at the nodes x
(Γk)
i for i = 1, . . . , nk.

The algebraic form of the INTERNODES conditions (88) reads:

rΓd
+QdsrΓs

= 0,

λΓs
= QsdλΓd

(89)

with Qds = MΓdRdsM
−1
Γs

and Qsd = Rsd. In the following we consider also the matrices
Q0
ds = Qds(IΓd , IΓs

) and Q0
sd = Qsd(IΓd , IΓs) (see (47)).

To compute the INTERNODES solution of system (86)–(88) we can follow Algo-
rithm 5, by which we solve the Schur complement system

SλΓd = b

obtained by eliminating the degrees of freedom of uk,hk and pk,hk from system (86)–(88)
as we done in Sect. 2.4.1 for elliptic problems. Notice that, when non-homogeneous
boundary conditions are assigned for pd on ∂ΩD,d, Algorithms 5 and 6 must take into
account the lifting of the boundary datum, as done for the elliptic problem in Sec.
2.4.1.

Algorithm 5 INTERNODES algorithm for Stokes-Darcy coupling

Build the intergrid matrices Qsd and Qds;
set λd,hd = 0, λs,hs = 0;
solve problems (86) and (87);
for all k = s, d do

compute the residuals (r
(k)
u )i for i = 1, . . . , nk (see (83)) and store them in rΓk

;
end for
compute b = −(rΓd +Q0

dsrΓs
);

solve SλΓd = b by an iterative matrix-free method, (see Algorithm 6 for the compu-
tation of v = StΓd , for a given tΓd);
compute λΓs = Q0

sdλΓd ;
set up λd,hd and λs,hs starting from λΓd and λΓs ;
solve problems (86) and (87);

3.2 Numerical results for the Stokes-Darcy coupling

We test the accuracy of INTERNODES by solving problem (73)–(77) with: Ωs =
(0, 1) × (1, 2), Ωd = (0, 1) × (0, 1), µ = 1, κ = 10−2, κ = κI. The boundary data and
the right hand side fs = fd are such that the exact solution is

us = κ

[
− sin(π2x) cos(π2 y)− y + 1,
cos(π2x) sin(π2 y)− 1 + x

]
, ps = 1− x,

ud = κ

[
sin(π2x) cos(π2 y) + y,
cos(π2x) sin(π2 y)− 1 + x

]
, pd = 2

π cos(π2x) sin(π2 y)− y(x− 1).
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Algorithm 6 Evaluation of v = StΓd , for a given tΓd whose entries are the dof of a
discrete function that is null on ∂Γd. Stokes-Darcy coupling

Input: tΓd ∈ Rnd
Output: v ∈ Rnd s.t. v = StΓd

compute tΓs = Q0
sdtΓd ;

set up the functions td,hd null at ∂Γd and ts,hs null at ∂Γs starting from tΓd and tΓs ;
solve problem (86) with λd,hd = td,hd , fd = 0 and null boundary conditions;
solve problem (87) with λs,hs = ts,hs , fs = 0 and null boundary conditions;
for all k = s, d do

compute the residuals (r
(k)
u )i for i = 1, . . . , nk (see (83)) and store them in rΓk

;
end for
compute v = −(rΓd +Q0

dsrΓs
);
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Figure 21: The errors versus the polynomial degree for the Stokes-Darcy problem (73)–
(77) solved on non-conforming meshes by the INTERNODES method, with mesh-sizes
hs = 1/5, hd = 1/3, and polynomial degrees pd = ps + 1

In both the subdomains we consider stabilized SEM (see [13] for the Stokes problem
and [19, 8] for the Darcy one).

The errors

es =
‖us − us,hs‖H1(Ωs)

‖us‖H1(Ωs)
+
‖ps − ps,hs‖L2(Ωs)

‖ps‖L2(Ωs)
,

ed =
‖ud − ud,hd‖L2(Ωd)

‖ud‖L2(Ωd)
+
‖pd − pd,hd‖H1(Ωd)

‖pd‖H1(Ωd)

are shown in Figures 21 and 22. The local polynomial degrees of the hp-fem discretiza-
tions are denoted by ps and pd.

We observe that the errors decay exponentially w.r.t. the polynomial degrees (Fig.
21), and with order q = ps = pd w.r.t. the mesh sizes (Fig. 22), as for the approximation
of elliptic problems.
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Figure 22: The errors versus the mesh size hs for the Stokes-Darcy problem (73)–
(77) solved on non-conforming meshes by the INTERNODES method. The following
couples for the mesh sizes are considered: hs = 1/8 and hd = 1/5, hs = 1/10 and
hd = 1/8, hs = 1/15 and hd = 1/10, hs = 1/20 and hd = 1/16. The polynomial degrees
are ps = pd = 2 (at left) and ps = pd = 4 (at right)

3.3 The cross-flow membrane filtration test case

In Fig. 24 we show the INTERNODES solution computed for the cross-flow membrane
filtration test case with non-flat interface Γ. The data for this test case are inspired
from [16] (see also [8]). The domain is Ω = (0, 0.015) × (−0.0075, 0) (in meters). The
coordinates (x, z) are used. The domain Ωs represents a part of channel closed on
the top side where the fluid can flow through the vertical sides, while Ωd represents
a vertical filter. The fluid is water, the porous medium will be characterized by its
isotropic intrinsic permeability κ = κI. The interface Γ is a piece-wise linear function
(see Fig. 23, left).

We suppose that the fluid is subject to the gravitational force, thus f1 = f2 =
(0,−ρg)t [kg/(m2 s2)], where ρ is the density of the water and g the gravity acceleration.
The fluid enters into the domain Ωs through the vertical left-hand boundary, where we
impose a parabolic inflow us = gs = (−16 · 103z(z + 0.005), 0)t , on the top side of the
domain Ωs we set the no-slip boundary conditions us = 0, while the fluid may leave
the domain through the vertical right-hand boundary σs · ns = 9.8ρzns. Concerning
the boundary conditions for the porous domain, we impose ud · nd = 0 on the vertical
sides to mimic the presence of an impervious material outside the domain, while we set
pd = −ρgz on the bottom horizontal side to account for the presence of a stationary
fluid below the porous domain. The amount of flux filtering through the interface
depends on the permeability of the porous media and on the boundary data imposed
on the bottom horizontal side on the pressure.

As in the previous test case, stabilized SEM have been used for the discretization
in either Ωs and Ωd. In Fig. 23, right, we plot the non-conforming meshes used in the
simulation, corresponding to 48 quads with ps = 6 in Ωs and 24 quads with pd = 3 in
Ωd.

In Fig. 24 we show the INTERNODES solution corresponding to the permeability
κ = 10−7: at left the velocity field, at right the hydrodynamic pressure, i.e. the function
phyd such that phyd|Ωk = pk + ρgz for k = s, d.
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Figure 23: The geometry and the mesh used in the cross-flow membrane filtration test
case
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Figure 24: INTERNODES solution of the Stokes-Darcy coupling for the cross-flow
membrane filtration test case, with κ = 10−7. At left, the velocity field, at right the
hydrodynamic pressure

Numerical results show that INTERNODES maintaines the optimal accuracy of
the local discretizations and that it is a versatile method to deal with non-conforming
interfaces.
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