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Abstract

Hydrated soft tissues, such as articular cartilage, are often modelled as bipha-

sic systems with individually incompressible solid and fluid phases, and biphasic

models are employed to fit experimental data in order to determine the mechanical

and hydraulic properties of the tissues. Two of the most common experimental se-

tups are confined and unconfined compression. Analytical solutions exist for the

unconfined case with the linear, isotropic, homogeneous model of articular carti-

lage, and for the confined case with the non-linear, isotropic, homogeneous model.

The aim of this contribution is to provide an easily implementable numerical tool

to determine a solution to the governing differential equations of (homogeneous

and isotropic) unconfined and (inhomogeneous and isotropic) confined compres-

sion under large deformations. The large-deformation governing equations are re-

duced to equivalent diffusive equations, which are then solved by means of Finite

Difference methods. The solution strategy proposed here could be used to gener-

ate benchmark tests for validating complex user-defined material models within

Finite Element implementations, and for determining the tissue’s mechanical and

hydraulic properties from experimental data.

1 Introduction

Since its introduction, the biphasic model of articular cartilage [1–3] has been the

standard manner to study also other hydrated soft tissues. In this model, cartilage is

represented as the mixture of an incompressible solid, representing structural macro-

molecules such as collagen fibres and proteoglycans, and an incompressible fluid, repre-

senting the interstitial water, along with the various chemical species dissolved in it. In

order to fully characterise the behaviour of cartilage according to the biphasic model, it

is necessary to experimentally evaluate its elastic properties and its permeability (which

is the parameter accounting for the solid-fluid interaction). The most common tests are

confined and unconfined compression. In the former, a cartilage sample is placed in

an impermeable, rigid chamber and compressed by a porous, rigid piston, so that the

fluid can escape from the sample through the piston. In the latter, cartilage is squeezed

between two impermeable, rigid plates, so that it can freely expand laterally and fluid

can freely escape through the lateral boundary.

Aside from many studies based on Finite Element Analysis, confined and uncon-

fined compression have been also modelled analytically in some particular cases. Based

on the linear biphasic model of articular cartilage [1–3], Armstrong et al. [4] derived

an analytical solution for the unconfined compression test under small deformations, in

terms of series expansions. Holmes and Mow [5] proposed an isotropic homogeneous

model of articular cartilage, with non-linear elasticity and deformation-dependent per-

meability, and studied the case of confined compression analytically. Moreover, in a

previous work [6], unconfined compression has been solved numerically under small
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deformations for a linear, isotropic, inhomogeneous model. However, these specific

cases cannot be used to describe many experimental set-up conditions.

In this work, based on the large-strain governing equations of a biphasic mixture

(e.g., [7–9]), we propose a solution to the differential equations of both unconfined and

confined compression problems under large deformations, with isotropic non-linear

elasticity and deformation-dependent permeability [5]. The case of unconfined com-

pression is studied under the hypothesis of homogeneity, whereas in that of confined

compression the elastic properties and permeability are inhomogeneous, as obtained

from published experimental works [10,11], and similarly to what has been done in [6]

for the small-deformation case.

Once the hyperelastic constitutive equations are set, the governing equations con-

sist of a system of 4 differential equations in 4 unknowns: three components of the

configuration map (treated in terms of their derivatives, i.e., the components of the

deformation gradient tensor), and the fluid pressure. For the cases of homogeneous un-

confined compression and inhomogeneous confined compression, the material gradient

of the pressure is eliminated, yielding a single scalar equation in the volume ratio of

the diffusion-advection type, which simplifies remarkably the mathematical problem.

The solution that we propose is obtained numerically via a direct application of Finite

Difference schemes, and can be used as a rapid, yet effective, comparison solution to

verify the robustness and accuracy of complex user-defined material models within Fi-

nite Element methods. Furthermore, the proposed implementation is easily manageable

and makes the code potentially useful in the determination of mechanical parameters,

directly fitting experimental curves.

2 Balance Laws

Here, the description of articular cartilage is limited to the macro-scale, which is inter-

preted as the laboratory scale at which constitutive information on the overall mechani-

cal behaviour of a given sample of tissue is extracted by means of experiments. At this

scale, the tissue is modelled as a biphasic mixture comprising a solid and a fluid phase.

The solid phase is the macro-scale representation of a deformable porous medium,

which, in fact, is itself a mixture composed mainly of proteoglycans and collagen fi-

bres. The fluid phase represents the interstitial fluid, which occupies the voids of the

porous medium and consists mainly of water, ions and various types of chemical com-

pounds, such as nutrients for the cells and byproducts of the cellular metabolism [12].

In the following, the subscripts ‘s’ and ‘f’ shall specify whether a given physical

quantity is associated with the solid or with the fluid phase. When there is no danger of

confusion, the terms “phase” and “constituent” shall be used interchangeably. The mass

distribution of the αth phase of the mixture (α = f, s), can be expressed either per unit

volume occupied by the αth phase itself, or per unit volume of the mixture as a whole.

In the first case, one speaks of the “true”, or intrinsic, mass density ρα of the αth phase.

In the second case, instead, one introduces the “apparent” mass density φαρα, with

φα being the volumetric fraction of the αth phase, i.e., the ratio between the size of the
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volume occupied by αth phase and the size of a representative volume for the mixture as

a whole. Note that the mixture is subjected to the saturation constraint φs+φf = 1. All

the balance laws referred to the macro-scale description of the mixture’s constituents

are formulated by employing the apparent mass densities of the phases.

In the absence of sources and sinks of mass, the spatial, local form of the mass

balance laws associated with the fluid and the solid phase can be written as

∂t(φ fρf) + div(φfρfvvvs) + div (ρfwww) = 0 , (1a)

∂t(φsρs) + div(φsρsvvvs) = 0 , (1b)

where vvvs and vvvf are the velocities of the solid and fluid phase, respectively, and www =
φf(vvvf − vvvs) is the filtration velocity. For more details on the kinematics of biphasic

mixtures, see, for instance, [13]. From here on, the mass densities ρf and ρs are assumed

to be given constants, which means that both the fluid and the solid phases are regarded

as intrinsically incompressible materials. By definition, this means that the substantial

derivatives Dαρα := ∂tρα + (gradρα)vvvα are zero for α = f, s.
Under the assumption of negligible inertial effects, in the absence of body forces

external to the considered mixture, and accepting the validity of Darcy’s law, the spatial,

local balance laws of momentum associated with the mixture as a whole and the fluid

phase can be written as

000 = div(σσσf + σσσs) , (2)

www = −kkk grad p , (3)

where σσσf and σσσs are the Cauchy stress tensors of the fluid and solid phase, respectively,

and kkk is the spatial permeability tensor. The mixture is assumed to be closed with

respect to momentum.

If the fluid phase is modelled as an incompressible and macroscopically inviscid

Stokes fluid, the stress tensors for the fluid, the solid and the whole tissue admit the

expressions

σσσf = − φf pggg
−1 , (4a)

σσσs = − φs pggg
−1 + σσσc , (4b)

σσσ = σσσf + σσσs = −pggg−1 + σσσc , (4c)

where σσσc is referred to as the constitutive part of σσσs, p is the hydrostatic pressure, and

ggg−1, with components gab, is the inverse of the spatial metric tensor ggg and serves here

as the “contravariant” identity tensor.

The deformation of the solid phase is denoted by χ, the deformation gradient by FFF
(with components F a

A = χa
,A), and the volume ratio by J = detFFF . By performing

a backward Piola Transformation of (1a) and (1b), which is done by multiplying both

equations by J , one obtains

φ̇fR +Div(WWW ) = 0 , (5a)

φ̇sR = 0 . (5b)
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In (5a) and (5b), the superimposed dot stands for time differentiation, Div is the material

divergence operator, and

φsR = Jφs , (6a)

φfR = Jφf = J − φsR , (6b)

WWW = JFFF−1www = −KKKGrad p , (6c)

withKKK = JFFF−1kkkFFF−T being the material permeability tensor, are the Piola transforms

of φf , φs and www. In particular, (6a) can be used to express φs as a function of the

volume ratio of the solid phase, i.e., φs = J−1φsR. This result, which stems from the

incompressibility of the solid phase, permits to rephrase the inequalities 0 ≤ φs(x, t) ≤
1 (with the upper bound condition φs(x, t) = 1 implying that the limit of compaction

is reached) as 0 ≤ φsR(X) ≤ J(X, t), and thus it places on J the unilateral constraint

J(X, t) ≥ φsR(X) [8]. In particular, when the condition J = φsR is met at a given

point X of the reference configuration BR, all fluid has been expelled from the point,

which thereby remains composed of solid alone, which is incompressible by hypothesis.

It is worth to recall that, for a biphasic mixture, the requirement that both phases are

intrinsically incompressible, does not lead to the restriction J = 1 of isochoric motion,

due to the presence of the volumetric fraction φs in (1b). Indeed, the assumption of

incompressibility, which is translated into Dsρs = 0, transforms (1b) into an equation

for φs, whose variations are compensated for by the change of volume of the solid

phase. In the material formalism, this fact is reflected by (6a), which allows to express

φs as a function of J . An extensive discussion about this issue and, in particular, on the

consequences of compaction, is given in [8].

Finally, by adding together (5a) and (5b), using (6c), and performing a Piola trans-

formation of (2), with σσσf and σσσs given by (4b) and (4a), the material form of the mass

and momentum balance laws becomes

J̇ = Div (KKK Grad p) , (7a)

DivPPP c = J ggg−1FFF−TGrad p , (7b)

where PPP c = J σσσcFFF
−T is the constitutive part of the first Piola-Kirchhoff stress tensor

of the solid phase. Furthermore, the first Piola-Kirchhoff stress for the whole tissue is

obtained by Piola-transforming (4c), which yields PPP = −J pggg−1FFF−T +PPP c.

3 Constitutive Laws and Final Model Equations

The non-linear isotropic model proposed by Holmes and Mow [5] is adopted in this

work. The solid phase is regarded as hyperelastic, with potential

Ŵ (CCC) = α0 (exp[ϕ(CCC)]− 1) , (8a)

ϕ(CCC) = α1

[

I1(CCC)− 3
]

+ α2

[

I2(CCC)− 3
]

− β ln [I3(CCC)] , (8b)
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where α0, α1, α2, and β are material parameters, and I1(CCC) = tr(CCC), I2(CCC) = 1
2
[(tr(CCC))2−

tr(CCC2)], and I3(CCC) = det(CCC) are the invariants of the right Cauchy-Green deformation

tensor CCC = FFFT.FFF . Thus, PPP c is given by

PPP c = P̂PP c(FFF ) = FFF

(

2
∂Ŵ

∂CCC
(CCC)

)

. (9)

The permeability is assumed to be related to J via the Holmes-Mow law [5]

k = k̂(J) = k0

(

J − φsR

1− φsR

)γ

exp
(

M
2
(J2 − 1)

)

, (10)

where γ and M are material parameters, k̂(J) = k denotes the constitutive function

associated with the scalar permeability k, and k0 = k̂(1) is the value of the permeabil-

ity in the undeformed configuration (J = 1). In order to satisfy (7a), k̂ must vanish

at compaction, i.e., at J = φsR, so that J̇ vanishes too, and the incompressibility con-

straint is respected. As an isotropic tensor-valued function, the permeability is assumed

to be spherical [14], so that the spatial and material permeability tensors are given by

kkk = k ggg−1 = k̂(J)ggg−1, (11a)

KKK = K̂KK(CCC) = J k̂(J)CCC−1. (11b)

In (10), k̂ vanishes for J = φsR, and therefore kkk vanishes too. For an inhomogeneous

material, Ŵ and K̂KK depend explicitly on the material point X, through the parameters

α0, α1, α2, β and k0, γ,M , and possibly through φsR as well. Hereafter, cartilage is re-

garded as homogeneous for the case of unconfined compression and as inhomogeneous

for the case of confined compression.

Equations (7a) and (7b) are suitable for computations based on the Finite Element

Method (FEM), cf., e.g., [12]. Here, however, a different approach is followed, since

the aim of this work is to provide a valid alternative to Finite Element implementa-

tions for the considered problems. The reason for undertaking this task is to supply

fast estimates about the hydraulic and mechanical properties of cartilage (in the limit

case of isotropy), that can be used as reference for testing the reliability of complex,

FEM-based numerical strategies, which might be necessary for highly non-linear, cou-

pled, anisotropic and inhomogeneous problems. The first step is the decoupling of (7a)

from (7b), which is achieved by substituting Grad p, obtained from (7b), into (7a). By

accounting for (11b), this yields

J̇ = Div
[

k̂(J)FFF−1Div
(

P̂PP c(FFF )
)]

, (12a)

Grad p = J−1FFFTgggDiv
(

P̂PP c(FFF )
)

. (12b)

Equations (12a) and (12b) have some relevant differences with respect to the origi-

nal Equations (7a) and (7b). Firstly, p can be computed a posteriori by solving (12b),
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once (12a) is solved for χ. Secondly, (12b) involves only the first-order space deriva-

tives of p, whereas the Poisson-like equation (7a) also involves the second-order space

derivatives of p. Finally, the permeability does not directly affect the pressure. Rather,

it influences the solution of (12a), which involves the third-order space derivatives of χ
as well as its mixed derivatives (i.e., with respect to both time and space), as prescribed

by the computation of J̇ .

4 Axisymmetric Unconfined Compression

The subject of this section is the study of the unconfined compression test of a cylin-

drical specimen of cartilage. In this test, the specimen is assumed to be homogeneous

and isotropic. Therefore, its permeability and hyperelastic potential are independent of

material points, and related to deformation only through the invariants of CCC. Moreover,

φsR is a model constant.

The cylindrical specimen is inserted between two rigid and impermeable plates that

remain parallel to each other for the whole duration of the experiment. The lower plate

is kept fixed, while the upper one moves downward according to a prescribed loading

protocol. In this work, only a displacement-control test is considered. The lateral wall

of the specimen is traction-free and permeable. The lower and upper surfaces of the

specimen are allowed to glide on the lower and upper plate, respectively, in an axisym-

metric way. Moreover, no friction is considered, so that the specimen preserves its

original cylindrical shape throughout the experiment.

The geometry of the specimen, its material symmetries (homogeneity and isotropy)

and the experimental protocol make it convenient to employ cylindrical coordinates

{R,Θ, Z} and {r, θ, z} for both the reference (undeformed) and deformed configura-

tion, respectively. Below, the boundary conditions for χ and p, which have to hold at

all times, are specified for all portions of the boundary.

At the lower boundary, (R,Θ, Z) ∈ [0, Rext]× [0, 2π[×{0},

χz = 0 , [no displacement] (13a)

(−KKKGrad p) .(−EEEZ) = 0 , [no flux] (13b)

where χz is the axial component of the deformation χ, and EEEZ is the unit vector point-

ing upward and aligned along the axial direction.

At the upper boundary, (R,Θ, Z) ∈ [0, Rext]× [0, 2π[×{H},

χz = λZH , (14a)

λZ(t) = 1−
uT
H

[1− exp(−t/tu)] , [prescribed stretch] (14b)

(−KKKGrad p) .EEEZ = 0 , [no flux] (14c)

where H is the initial height of the specimen, and λZ is the imposed time-dependent

stretch, with target displacement uT and time constant tu.
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At the lateral boundary, (R,Θ, Z) ∈ {Rext} × [0, 2π[×[0,H],

− p = 0 , [atmospheric pressure] (15a)

PPP .EEER = 000 , [traction-free boundary] (15b)

where EEER is the referential radial unit vector, pointing outward and aligned along the

radial direction. Finally, the axial symmetry of the problem places the further restriction

that the radial deformation and the radial fluid flux must vanish at the origin of each

cross section of the specimen. Since the reference configuration is assumed to coincide

with the stress-free, undeformed one, the initial conditions p(X, 0) = 0 and χ(X, 0) =
X apply at all inner points X of the computational domain.

It should be remarked that (15b) involves the overall first Piola-Kirchhoff stress ten-

sor of the mixture as a whole. Since it holds thatPPP = −J pggg−1FFF−T+PPP c, and pressure

has to vanish on the lateral boundary of the specimen, (15b) can also be rephrased in

terms of the constitutive part of PPP , i.e. PPP c.EEER = 000.

4.1 Specific Form of the Deformation

Due to the symmetries of the problem, χ acquires the form

r = χr(R,Θ, Z, t) ≡ f(R, t) , (16a)

ϑ = χϑ(R,Θ, Z, t) = Θ , (16b)

z = χz(R,Θ, Z, t) = λZ(t)Z . (16c)

In (16a), χr is re-defined as a function f of R and t alone, and λZ(t) is the uniform axial

stretch, as defined in (14b). The latter is a function known from the boundary conditions

on the displacement in the axial direction for the case of a displacement-controlled test.

The stretches in the radial and circumferential direction are given by

λR(R, t) =
∂f

∂R
(R, t) ≡ f ′(R, t), (17a)

λΘ(R, t) =
f(R, t)

R
. (17b)

Thus, the matrix representation ofFFF , which is diagonal, and the volume ratio J become

[F a
A](R, t) = diag[λR(R, t), λΘ(R, t), λZ(t)] , (18a)

J(R, t) = f ′(R, t)
f(R, t)

R
λZ(t) . (18b)

4.2 Stress and Balance Equations

Because of the deformation specified by (16a)–(16c), the matrix representation of PPP c

is diagonal. Moreover, the equation of the balance of mass (12a), and the only non-
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trivially satisfied component of the equation of balance of momentum (12b) read

J̇ =

(

∂

∂R
+

1

R

)

[

k̂(J)

λR

(

∂P rR
c

∂R
+

P rR
c − P ϑΘ

c

R

)

]

, (19a)

∂p

∂R
=
λR

J

(

∂P rR
c

∂R
+

P rR
c − P ϑΘ

c

R

)

. (19b)

Since P rR
c and P ϑΘ

c are constitutive functions of λR, λΘ and λZ , and since λR and λΘ

involve the radial deformation f , while λZ is known from the outset, the right-hand-

side of (19a) can be recast as a combination of terms in the unknown f and its radial

derivatives up the third-order. Thus, after substituting the constitutive laws, an equation

for f can be obtained.

Since (19b) is decoupled from (19a), it suffices to determine f by solving (19a) and

then compute p through (19b).

4.3 “Diffusive Equation”

Solving (19a) may be cumbersome, since it is a highly non-linear partial differential

equation of the third-order in the radial derivatives of f , and it involves the mixed

derivatives of f with respect to time and the radial coordinate. The scope of this section

is to show that (19a) can be transformed into a pseudo-diffusion-reaction equation in J .

To achieve this goal, the first step consists of the change of variables

f ′(R, t) = λR(R, t) =
RJ(R, t)

f(R, t)λZ(t)
. (20)

Accordingly, λR can be viewed as a function of J , f , λZ and R, where the dependence

on λZ(t), which is known from the outset, can be rephrased as an explicit dependence

on time. Similarly, λΘ can be regarded as a function of f and R. Hence, the stresses

P rR
c and P ϑΘ

c can be reformulated as follows:

P rR
c = P̃ rR

c (J(R, t), f(R, t), λZ (t), R) , (21a)

P ϑΘ
c = P̃ ϑΘ

c (J(R, t), f(R, t), λZ (t), R) . (21b)

By substituting the right-hand-sides of (21a) and (21b) into (19a), and performing some

algebraic manipulations that account for the new definitions of stress (21a) and (21b),

it is possible to define the quantities

D :=
k

λR

∂P̃ rR
c

∂J
, (22a)

−AJ :=
k

λR

{

∂P̃ rR
c

∂f
λR +

∂P̃ rR
c

∂R

∣

∣

∣

∣

exp

+
P̃ rR
c − P̃ ϑΘ

c

R

}

, (22b)

where [∂( · )/∂R]
∣

∣

exp
represents the explicit derivative along the radial direction. Con-

sequently, (19a) takes the form of a diffusion-advection equation in the variable J (the
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transported field), i.e.,

J̇ =

(

∂

∂R
+

1

R

)[

D
∂J

∂R
−AJ

]

, (23)

with D and A playing the role of the diffusion coefficient and advection velocity, re-

spectively. The physical units of D and A, which are given by [D] = length2/time
and [A] = length/time, show that these identifications are physically sound.

It is worth to mention that D stems from the combination of very important phys-

ical entities. These are the permeability, which encapsulates all information about the

hydraulic response of the system, and the derivative of P̃ rR
c with respect to J , which is

related to the acoustic tensor of the solid phase. Analogous considerations hold true for

the drift velocity A. In this case, however, also the term (P̃ rR
c − P̃ ϑΘ

c )/R contributes

to advection.

The coefficients D and A can be expressed as functions of J , f , λZ and R. There-

fore, the diffusion-advection equation (23) is coupled with the radial deformation f ,

which can be determined by solving (20). In conclusion, the change of variables (20)

rephrases the mathematical structure of (19a) and (19b) into the following set of new

model equations:

f ′(R, t) =
RJ(R, t)

f(R, t)λZ(t)
, (24a)

J̇ =
1

R

∂

∂R

{

R

[

D
∂J

∂R
−AJ

]}

, (24b)

J

λR

∂p

∂R
=

λR

k̂(J)

[

D
∂J

∂R
−AJ

]

. (24c)

This set consists of three independent scalar equations in the three unknowns J , f and

p. Clearly, the boundary conditions must be rewritten accordingly:

f(0, t) = 0 [axial symmetry] , (25a)
(

D
∂J

∂R
−AJ

)

∣

∣

∣

R=0
= 0 [axial symmetry] , (25b)

p(Rext, t) = 0 [from (15a)] , (25c)

P̃ rR
c (J, f, λZ(t), R)

∣

∣

∣

R=Rext

= 0 [from (15b)] . (25d)

Note that (25a) is a homogeneous Dirichlet condition on f (only one boundary condi-

tion is needed for f , since (24a) is of the first order), (25b) and (25d) express, respec-

tively, a homogeneous Robin condition and a Dirichlet condition on J , while (25c) is a

Dirichlet condition on p. Finally, the initial conditions read f(R, 0) = R, J(R, 0) = 1,

and p(R, 0) = 0, for all R ∈ [0, Rext].

4.4 Discretisation and Results

Let [0, T ] be the interval of time over which the system is observed, and let 0 = t0 <
t1 < . . . < tN = T be a partition of [0, T ], where τn = tn − tn−1 is the amplitude of
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the subinterval [tn−1, tn] ⊂ [0, T ], for n = 1, . . . , N , and N is the total number of such

sub-intervals. Similarly, [0, Rext] is partitioned as 0 = R0 < R1 < . . . < RM = Rext,

with ∆m = Rm − Rm−1 being the amplitude of [Rm−1, Rm] ⊂ [0, Rext], for m =
1, . . . ,M . Given a generic function q of the radial coordinate and time, the notation

qm,n = q(Rm, tn) indicates that q is evaluated at the point (Rm, tn) of the space-time

grid constructed above.

Due to the high non-linearity of the system, especially in D and A, an explicit Euler

method in time is chosen for (24b). To avoid the occurrence of numerical instabilities,

the amplitudes ∆m and τn, which measure, respectively, the increments in space and

time, are required to satisfy the constraint ∆2
m/2τn ≤ Dref , for all m = 1, . . . ,M ,

and for all n = 1, . . . , N , where Dref is a constant, referential value of the diffusion

coefficient.

The discretised form of (24a)–(24c) is given by

fm,n − fm−1,n = ∆m
RmJm,n

fm,nλZ(tn)
, (26a)

Jm,n − Jm,n−1 = τn

[

Qm,n−1 −Qm−1,n−1

∆m
+

Qm,n−1

Rm

]

, (26b)

pm,n − pm−1,n

∆m
=

(λRm,n)
2

Jm,nkm,n
Qm,n , (26c)

with m = 1, . . . ,M and n = 1, . . . , N . For all p = 0, . . . ,M − 1, and for all q =
0, . . . , N , Qpq is defined as

Qp,q = Dp,q
Jp+1,q − Jp,q

∆p
−Ap,qJp,q . (27)

The equations have been implemented independently both in Fortran and in Matlab c©.

For the simulation of the homogeneous unconfined compression, the parameters

specifying the Holmes-Mow permeability defined in (10) are given by k0 = 2.519 ·
10−3 mm2MPa−1 s−1, M = 4.638, γ = 0.0848, and φsR = 0.2, while the con-

stants that characterise the Holmes-Mow hyperelastic potential (8) are taken as α0 =
0.11 MPa, α1 = 0.26, α2 = 0.25, and β = 0.76. With the exception of α1 and α2,

whose values were assumed, all these data were taken from the experiments on bovine

cartilage reported in [5]. The specimen is a cylinder of height H = 2 mm and radius

Rext = 3 mm. Finally, the parameters defining the imposed axial stretch are the target

axial displacement uT = 0.4 mm (corresponding to a final 20% nominal strain) and the

time constant tu = 10 s.
For the whole duration of the simulated experiment, and for the considered set of

parameters, only relatively small variations of the volume ratio J (less than the 10%)

are observed. Moreover, through most of the (normalised) radius, J remains practically

uniform and equal to the initial (undeformed) value of 1, while, close to the lateral

boundary, the fluid exudation causes a loss of fluid volume, which is reflected in a

decrease in J (Fig. 1). Also the radial component P rR
c of the constitutive part of the

first Piola-Kirchhoff stress tensor (normalised to the material parameter α0) remains

11



virtually uniform through most of the range of the (normalised) radial coordinate, and

then decreases to zero to satisfy the boundary condition of zero traction. As time goes

on, the stress relaxes because of the exudation of the fluid (Fig. 2).

0.0 0.2 0.4 0.6 0.8 1.0

0.92

0.94

0.96

0.98

1.00

R/Rext

J
t/tu = 0

t/tu = 10

Figure 1: Volume ratio J vs the normalised radial coordinate R/Rext. The curves are

plotted for values of the normalised time t/tu = 0, 1, ..., 10.

5 Axisymmetric Confined Compression

This section focuses on another experimental test that is largely used for characteris-

ing the hydraulic and mechanical behaviour of articular cartilage: the axisymmetric

confined compression test. A specimen of tissue is inserted into a cylindrical, imper-

meable, rigid chamber and compressed by a porous, rigid piston, so that the fluid can

escape through it when the specimen is compressed. In the following, confined com-

pression is simulated in displacement control.

12
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Figure 2: Radial component P rR
c of the constitutive part of the first Piola-Kirchhoff

stress tensor of the solid phase, normalised to the material parameter α0, vs the nor-

malised radial coordinate R/Rext. The curves are plotted for values of the normalised

time t/tu = 0, 1, ..., 10.

5.1 Specific Form of the Deformation

The solid phase of the tested biphasic medium is isotropic and “transversely homoge-

neous”, i.e., its material properties are allowed to vary only along the axial direction.

Furthermore, due to the impermeability of the lower plate and the lateral wall of the

chamber, the only non-vanishing component of the fluid velocity is along the symmetry

axis of the specimen. In the usual material and spatial cylindrical coordinates {R,Θ, Z}
and {r, θ, z}, the deformation is given by

r = χr(R,Θ, Z, t) = R , (28a)

ϑ = χϑ(R,Θ, Z, t) = Θ , (28b)

z = χz(R,Θ, Z, t) ≡ g(Z, t) , (28c)

13



where χz has been redefined as a function g of the axial coordinate Z and time alone.

The matrix representing FFF (from which that of CCC−1 can be obtained) is

[F a
A](Z, t) = diag[1, 1, λZ(Z, t)] , (29)

since the radial and axial stretches are λR = λΘ = 1, while the axial stretch λZ satisfies

J = λZ = g
′, at all points and all times, with the prime denoting partial differentiation

with respect to the axial coordinate Z .

5.2 Stress and Balance Equations

The form of the deformation specified in (28a)–(28c) implies that also the matrix rep-

resenting PPP c is diagonal, and its components can be written as

P rR
c (Z, t) = P̃ rR

c (J(Z, t), Z) , (30a)

P ϑΘ
c (Z, t) = P̃ ϑΘ

c (J(Z, t), Z) , (30b)

P zZ
c (Z, t) = P̃ zZ

c (J(Z, t), Z) , (30c)

where the explicit dependence of the constitutive laws on Z has been indicated. More-

over, since all derivatives in directions other than the axial one vanish identically, and

since P rR
c and P ϑΘ

c are equal to each other, the model equations (12a) and (12b) sim-

plify to

J̇ =
∂

∂Z

[

k

J

∂P zZ
c

∂Z

]

, (31a)

∂p

∂Z
=

∂P zZ
c

∂Z
, (31b)

where the permeability k is now assumed to depend explicitly on the axial coordinate.

In this formulation, the unknowns are the axial deformation g and the pressure p. If

the experiment is performed in displacement control, the following set of boundary and

initial conditions must be respected by the unknowns.

At the lower boundary (rigid, at rest, and impermeable),

g(0, t) = 0 , (32a)
(

∂p

∂Z
(0, t) = 0 ⇒

)

∂P zZ
c

∂Z
(0, t) = 0 . (32b)

At the upper boundary (rigid, moving downward, permeable),

g(H, t) = H − uT [1− exp(−t/tu)] , (33a)

p(H, t) = 0 . (33b)

Furthermore, the initial conditions are given by g(Z, 0) = Z and p(Z, 0) = 0, for all

Z ∈ [0,H].

14



5.3 “Diffusive Equation”

As done in Section 4.3 for the case of the unconfined compression test, (31a) can be

reformulated in the form of a pseudo-diffusion-advection equation for the volume ratio

J . Indeed, the constitutive definition of P zZ
c leads to the relation

∂P zZ
c

∂Z
=

∂P̃ zZ
c

∂J

∂J

∂Z
+

∂P̃ zZ
c

∂Z

∣

∣

∣

∣

exp

, (34)

where the second term on the right-hand-side of (34) denotes the explicit derivative of

P̃ zZ
c with respect to the axial coordinate. Thus, by introducing the notation

D :=
k

J

∂P̃ zZ
c

∂J
, (35a)

−AJ :=
k

J

∂P̃ zZ
c

∂Z

∣

∣

∣

∣

exp

, (35b)

and substituting the resulting expressions into (31a), one obtains

J̇ =
∂

∂Z

[

D
∂J

∂Z
−AJ

]

. (36)

As for (23), D and A play the role of the diffusion coefficient and advection velocity,

respectively. In this case too, the condition (32b), although written only for P zZ
c , stems

from a condition imposed on the overall axial stress P zZ = −p+ P zZ
c .

Consistently with (35a) and (35b), D and A can be expressed constitutively as func-

tions of J and Z . As for the unconfined compression test, the approach based on (36)

lowers by one the order of the spatial derivatives of g featuring in (31a), but treats J as

a free unknown of the model. Therefore, the final form of the model equations reads

∂g

∂Z
= J , (37a)

∂p

∂Z
=

∂P̃ zZ
c

∂Z
, (37b)

J̇ =
∂

∂Z

[

D
∂J

∂Z
−AJ

]

. (37c)

The set (37a)–(37c) comprises three independent scalar equations in the three unknowns

g, J and p and is, thus, closed. The boundary conditions must be rephrased compatibly

with the new formulation. In the case of a displacement-controlled confined compres-

sion test, the boundary conditions become

g(0, t) = 0 , (38a)
(

D
∂J

∂Z
−AJ

)
∣

∣

∣

∣

Z=0

= 0 , (38b)

∫ H

0

J(Z̄, t)dZ̄ = H − uT [1− exp(−t/tu)] . (38c)

p(H, t) = 0 , (38d)
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which have to hold at all times t ∈ [0, T ]. Equation (38b) is a homogeneous Robin

condition on J .

Since (37a) and (37b) are decoupled from (37c), they can be solved a posteriori,

once J is determined by means of (37c). In particular, it is possible to directly inte-

grate (37a) and (37b), i.e.,

g(Z, t) =

∫ Z

0

J(Z̄, t)dZ̄ , (39a)

p(Z, t) = P̃ zZ
c (J(Z, t), Z) − P̃ zZ

c (J(H, t),H) . (39b)

5.4 Discretisation and Results

The numerical solution to (37c) is determined by using central differences for the space

derivatives, and an ordinary differential equation (ODE) solver for the time deriva-

tives [12]. The computational domain [0,H] is partitioned as 0 = Z1 < . . . < ZM =
H , which determines M − 1 subintervals. In the procedure adopted in this work, all

subintervals have the same length ∆. Moreover, for the sake of a lighter notation, the

identification P zZ
c ≡ P is made. At the mth grid node, with m = 2, . . . , (M − 1), the

spatially discretised from of (37c) is given by

J̇m =
1

∆2

[

km+1

Jm+1

(Pm+1 − Pm)−
km
Jm

(Pm − Pm−1)

]

. (40)

Note that the nodes Zm, with m = 2, . . . ,M − 1, belong to the interior of the com-

putational domain. The values J1 and JM , which correspond to the boundary nodes,

must be determined in compliance with the conditions (38b) and (38c). Furthermore,

to maintain the second-order-accuracy of the discretisation scheme, a fictitious node

Z0 < Z1 is introduced, so that the partial derivative of J featuring in the Robin condi-

tion (38b) can be approximated by means of the central difference (J2−J0)/(2∆) [12].

The ODEs (40) are then solved in time by using a stable ODE solver, with initial condi-

tion Jm(0) = 1, for all m = 1, . . . ,M . All numerical simulations have been performed

both in Fortran and in Matlab c©.

For the confined compression test, P zZ
c is given by

P zZ
c = P̃ zZ

c (J,Z) = 1
2
A(Z) exp

[

(J2 − 1)β
] J2 − 1

J2β+1
, (41)

where A = 4α0 β = 4α0 (α1 + 2α2) [5] is the aggregate elastic modulus (i.e., the

stiffness in uni-axial deformation in the linear theory, given by the component LZZZZ

of the (material) linear elasticity tensor L), and α0, α1, α2, β are the material constants

in the Holmes-Mow hyperelastic potential (8).

For this numerical implementation, the undeformed permeability k0 is obtained by

extrapolating the experimental data taken from [10], and the material parameter α0 =
A/(4β) is obtained from the values of the aggregate modulus A from the experimental
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reported in [11]. Both are expressed by third-order polynomials in the normalised depth

Z/H , i.e.,

k0(Z) =
[

− 1.4485
(

Z
H

)3
+ 1.4813

(

Z
H

)2

+ 0.0193
(

Z
H

)

+ 0.1371
]

· 10−3mm2MPa−1s−1, (42)

α0(Z) =
[

− 1.4953
(

Z
H

)3
+ 3.3255

(

Z
H

)2

− 2.6711
(

Z
H

)

+ 0.8471
]

MPa , (43)

whereas all other parameters are the same as for the case of unconfined compression

(M = 4.638, γ = 0.0848, and φsR = 0.2 from [5], α1 = 0.26 and α2 = 0.25, whose

values are assumed, and β = α1+2α2 = 0.76 from [5]). In this case too, the specimen

is a cylinder of initial height H = 2 mm and radius Rext = 3 mm. The target value

and time constant of the imposed axial displacement are uT = 0.4 mm (corresponding

to a final 20% nominal strain) and tu = 10 s.
Because of the inhomogeneous material properties, the volume ratio J is inhomoge-

neous through the (normalised) depth of the sample also at stationary state; in particular,

the much lower stiffness α0 = A/(4β) in the superficial zone (close to Z = 1) makes

the volumetric compression extreme for the considered overall deformation, with val-

ues of J ≃ 0.30 (Fig. 3). Since the pressure p must be zero on the upper boundary,

the absolute value of the axial component P zZ
c of the constitutive part of the first Piola-

Kirchhoff stress (normalised to the value α0(0) that the material parameter α0 takes

at Z = 0) is largest at the upper boundary and equals the absolute value of the total

(normalised) stress P zZ ; at the end of the test, stationary state is practically achieved,

as p is zero and consequently P zZ
c is uniform throughout the tissue depth (Fig. 4).

6 Discussion

In this work, following the lines of Armstrong et al. [4], who studied unconfined com-

pression of isotropic homogenous cartilage under small deformations, and of Holmes

and Mow [5], who studied confined compression of homogenous isotropic cartilage

under large deformations, we addressed the unconfined case in the large-deformation

setting, and the confined case by removing the hypothesis of homogeneity, thereby

allowing some of the material properties to vary along the axis of compression. In

both the cases of unconfined and confined compression, we reduced the problem to

a diffusion-advection equation in J , which was regarded as the relevant kinematical

variable. A result similar to the diffusion-advection equation (36) of the confined case

was obtained in [12]. There are, however, two major differences between the two ap-

proaches. Firstly, the model analysed in [12] was homogeneous and, consequently,

could not obtain the advection “velocity” A. This “velocity”, indeed, arises because of

the inhomogeneity of the constitutive law of the axial stress. Secondly, in [12], tissue

remodelling (an anelastic process) was considered, and the hydraulic and mechanical

behaviour of the specimen was studied in the elastic range subsequent remodelling.

Although more precise descriptions of articular cartilage have been given [9,15,16],

where the inhomogeneity and anisotropy of the tissue induced by the presence of the
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Figure 3: Volume ratio J vs the normalised axial coordinate Z/H . The curves are

plotted for values of the normalised time t/tu = 0, 1, ..., 10.

collagen fibres have been considered, and more general constitutive models can be con-

ceived to include effects such as growth and remodelling (cf., e.g., [17, 18]), the math-

ematical formulation presented in this work is based on the non-linear biphasic (solid-

fluid) model. Since we are working with an established theory, and the only “arbitrary”

choice is that on the constitutive equations, we believe that, by fitting parameters, the

vast majority of experimental confined or unconfined tests could validate our numerical

simulations. However, it is clear that homogeneous and isotropic cartilage does not exist

and therefore the unconfined case would certainly be a rather artificial fitting of material

parameters. Moreover, to the best of our knowledge, there is no confined compression

test in which both the elastic properties and the permeability have been evaluated. In-

deed, the permeability measurements performed by Maroudas and Bullough [10] do

not involve any compression test and, conversely, the compression tests performed by

Schinagl et al. [11] do not involve any permeability measurement. Specifically, the in-

homogeneous permeability measurements performed by Maroudas and Bullough [10]

are the only ones we are aware of. Therefore, we cannot infer that our results can have

direct experimental validation. As far as a comparison with other computational models
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Figure 4: Axial component P zZ
c of the constitutive part of the first Piola-Kirchhoff

stress tensor of the solid phase, normalised to the value α0(0) of the material parameter

α0 at Z = 0, vs the normalised axial coordinate Z/H . The curves are plotted for values

of the normalised time t/tu = 0, 1, ..., 10.

is concerned, the theoretical derivation of our model has been obtained by simplifying

the theory of biphasic mixtures comprising an inviscid fluid and a hyperelastic solid

material under the assumption that both phases are incompressible. In this respect, our

theoretical results are expected to be consistent with those obtained by the inhomoge-

neous and anisotropic theory, if the appropriate model reductions are made.

One of the limitations of the method presented here is the isotropy of the material

properties. Indeed, mostly due the presence of the collagen fibres, articular cartilage

exhibits anisotropic behaviour in both its elastic properties (see, e.g., [9, 16, 19]) and

permeability (see, e.g., [8, 9, 15, 16, 20]). However, the anisotropy of the tissue was

not taken into account here, since the purpose of this work is to show how much in-

formation about the mechanical and hydraulic behaviour of the tissue can be extracted

also from much simpler models, which do not require elaborated numerical procedures

such as the Finite Element Method. Note that neither the fluid inside the cells, nor the

intrafibrillar fluid [21, 22] are explicitly accounted for in the presented model. Con-
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sidering these fluids, along with the ions dissolved in them, and their interaction with

all the other constituents of the tissue would call for a full electro-chemo-mechanical

approach, whose solution would require the employment of sophisticated numerical

procedures, especially when large deformations occur. Such a detailed level of mod-

elling is out of the scopes of this paper. The proposed approach is valid also in more

complex cases, as long as the further complication is in the non-linearity of the con-

stitutive laws, but ceases to be applicable when the added complication breaks one or

more symmetries of the problem. In this case, Finite Element methods often become

indispensable.

In our opinion, the advantage of using Finite Differences against Finite Element

methods for the problems at hand lies in the fact that the problem reduction shown

in the manuscript makes it sufficient to employ one-dimensional grids for solving the

model equations in a sufficiently stable, efficient and accurate way, while keeping the

computational costs at an acceptable level. This is due to the fact that each of the

considered problems is reduced to a set of partial differential equations in which the

space dependence appears solely in the partial derivatives with respect to the radial

coordinate (in the unconfined compression) or to the axial coordinate (in the confined

compression).

The importance of this work is, in fact, in the possibility of testing a given material

behaviour (or, more precisely, the isotropic version of a material behaviour) in a non-

trivial, biphasic, large deformation setting. This means that the result of the Finite

Element implementation of a user-defined material can be tested against the proposed

method, which gives full control on all physical quantities, since it is based directly on

the governing differential equations.
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