
MOX–Report No. 50/2014

An explicit dynamics GPU structural solver for thin
shell finite elements

Bartezzaghi, A.; Cremonesi, M.; Parolini, N.;
Perego, U.

MOX, Dipartimento di Matematica “F. Brioschi”
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox@mate.polimi.it http://mox.polimi.it





An explicit dynamics GPU structural solver for thin shell finite elements

A. Bartezzaghia, M. Cremonesib,∗, N. Parolinic, U. Peregob

aCMCS, MATHICSE, École Polytechnique Fédérale de Lausanne, Switzerland
bDepartment of Civil and Enviromental Engineering, Politecnico di Milano, Milano, Italy

cMOX, Politecnico di Milano, Milano, Italy

Abstract

With the availability of user oriented software tools, dedicated architectures, such as NVIDIA CUDA (Com-

pute Unified Device Architecture), and of improved, highly performing GPU boards, GPGPU (General

Purpose programming on GPU) is attracting increasing interest in the engineering community, for the de-

velopment of analysis tools suitable to be used in validation/verification and virtual reality applications.

For their inherent explicit and decoupled structure, explicit dynamics finite element formulations appear to

be particularly attractive for implementations on hybrid CPU/GPU or pure GPU architectures. The issue

of an optimized, double-precision finite element GPU implementation of an explicit dynamics finite element

solver for elastic shell problems in small strains and large displacements and rotation, using unstructured

meshes, is here addressed. The conceptual difference between a GPU implementation directly adapted from

a standard CPU approach and a new optimized formulation, specifically conceived for GPUs, is discussed

and comparatively assessed. It is shown that a speedup factor of about 5 can be achieved by an optimized

algorithm reformulation and careful memory management. A speedup of more than 40 is achieved with

respect of state-of-the art commercial codes running on CPU, obtaining real-time simulations in some cases,

on commodity hardware. When a last generation GPU board is used, it is shown that a problem with more

than 16 millions degrees of freedom can be solved in just few hours of computing time, opening the way to

virtualization approaches for real large scale engineering problems.

Keywords: GPU, explicit dynamics, double-precision, shell finite elements.

1. Introduction

In many fields of engineering there is a growing interest for the finite element simulation of large scale

problems, involving a great number of unknowns (millions in general), as a replacement for expensive physical

testing or prototyping. Even though high-end modern personal computers have multi-core architectures

∗Corresponding author. Department of Civil and Enviromental Engineering, Politecnico di Milano, piazza Leonardo da
Vinci 32, 20133, Milano, Italy

Email addresses: andrea.bartezzaghi@epfl.ch (A. Bartezzaghi), massimiliano.cremonesi@polimi.it (M. Cremonesi),
nicola.parolini@polimi.it (N. Parolini), umberto.perego@polimi.it (U. Perego)

Preprint submitted to Computers& Structures November 10, 2014



equipped with powerful CPUs, they remain still unable to perform these type of simulations so that the use

of supercomputers or clusters is in general necessary.

Graphics Processing Units (GPUs) were originally designed for graphics applications, in particular for

video games. The programmable rendering pipeline allowed the highly parallelized execution of small por-

tions of code, but remained relatively difficult to exploit for general purpose computations. Recently, thanks

to the introduction of dedicated programming languages and unified architectures, General Purpose program-

ming on GPUs (GPGPU) has become an increasingly valid computing resource in engineering simulations.

Built with thousands of cores, GPUs can drastically increase the computing capacity of the computational

nodes at a relatively low cost, even on commodity hardware, opening new scenarios for the development of

innovative numerical simulation approaches. In view of this evolution, since several years GPUs have started

to be extensively used to speedup calculations in many engineering applications.

A recent review of applications in FEM (Finite Element Method)-based structural mechanics can be

found in [1], but GPUs are being used also in a variety of other contexts. In [2], the authors apply high-

order Discontinuos Galerkin (DG) method to the solution of Maxwell’s equations. In DG methods most

operators are defined locally at element level. This, combined with the high arithmetic workload and small

memory footprint typical of high-order approximations, results in a very favorable environment for GPU

implementations. Lattice-Boltzmann methods are also very suited to fine parallelizations and very high

speedups can be reached in GPU implementations: see for example [3, 4]. There are also excellent results in

molecular dynamics simulations [5], in contact detection for DEM simulations [6] and in boundary element

applications [7].

As examples of recent contributions in the FEM context, one can cite the work in [8], concerning the

implementation of a domain-decomposition method. With the increasing power of GPUs for general purpose

programming, multi-node, multi-core clusters with one (or more) GPU per node have seen a rapid diffusion.

The approach presented in [8] shows a hybrid (i.e. based on combined use of CPU and GPU) implementation

of the FETI method for implicit finite element structural mechanics problems. The proposed dynamic load

balancing algorithm allows for the efficient use of both CPUs and GPUs, minimizing the idle time and

exploiting the capabilities of the heterogeneous hardware. An explicit nonlinear finite element solver (which

uses linear hexahedra and tetrahedra) for surgical simulations is presented in [9], showing a speedup of more

than 20 times compared with a CPU implementation. Always considering surgical applications, [10] proposes

GPU-based implementation of the FEM using implicit time integration for dynamic nonlinear deformation

analysis. In [11], an explicit dynamics formulation for the simulation of sheet forming problems, based on

the use of shell elements of the Belytschko-Tsay type, is discussed. In [12], a new method for the assembling

of the stiffness matrix in case of isogeometric analysis is proposed. Hybrid implementations of multiscale

finite element approaches, whereby constitutive material computations at Gauss point level are carried out

on the GPU, are discussed in [13] and [14]

2



In most of the above-mentioned applications, results are limited to single-precision arithmetic (e.g. [2,

9, 14, 10]). It is important to recall, as suggested in [8], that, concerning NVIDIA GPUs, in all the

implementations before CUDA (Compute Unified Device Architecture) compute capability 1.3, only single-

precision floating point operations are supported directly by the hardware. Furthermore, double-precision

variables consume twice as much of the limited amount of GPU registers and block shared memory, and

in view of the possible decay of performances implied by the use of device global memory, this has often

been considered as a strong indication towards the use of single-precision arithmetic. In addition, the use

of single-precision has been a source of misinterpretations in speedup comparisons between CPU and GPU

implementations of the same algorithms. GPUs have always been very optimized for high-density single-

precision floating point computations (being primarily designed for graphics acceleration); therefore, they

can carry out a very large number of Floating Point Operations per Second (FLOPS), if compared to CPUs.

However, in most engineering applications double-precision arithmetic is mandatory. Therefore, a certain

performance drop when using double-precision instead of single-precision in GPUs has to be accepted as

unavoidable (even though on newer GPUs this gap is being reduced, on older ones double-precision could

only be emulated and thus performances were very poor).

As pointed out in [1], most structural FEM applications using GPUs are based on implicit algorithms,

where GPUs are mainly used for the solution of linear systems of equations. Emphasis is therefore placed

on optimizations of the linear solver on GPU. This is the case, for instance, of most general purpose

commercial FEM software products (see e.g. [15]). In [1], an accurate comparison of different implicit FEM-

based GPU solvers is presented. All the steps of the solution scheme are discussed (pre-processing, solution

and post-processing) and the relative speedups are shown. Only implicit schemes are considered as system

solving strategy, with performance comparison of various linear system solvers (both direct and iterative).

Other extensive studies on the performances of different linear solvers have been carried on for example

in [16, 17, 18, 19]. On the other hand, only few GPU implementations of FEM in explicit dynamics are

available in the literature. Examples can be found in [9, 11].

In this work, we present a double-precision, explicit dynamics non-linear finite element shell solver on

unstructured grids, designed specifically to carry out the whole computation on a GPU. An innovative algo-

rithm implementation of the central difference scheme is proposed in order to fully exploit the computational

power of GPUs. Thanks to the original and highly optimized algorithm formulation and careful memory

management, the GPU-only implementation is able to reach very high performances with limited memory

consumption, even on single-GPU configurations on commodity hardware. For some problems, simulation

can also be run at real-time speed.

This paper is structured as follows: in section 2 the finite element structural solver is introduced, with a

brief description of the mathematical model and time integration scheme; the GPU implementation, together

with the adopted strategies and optimizations, is described in section 3; numerical results for three test cases

3



are reported in section 4, the third case consisting of a performance analysis on larger meshes; finally, in

section 5 limitations of the presented work are discussed, highlighting possible future improvements.

2. Shell structural solver

The main objective of this work is to develop a highly efficient explicit finite element structural solver

for the simulation of the dynamical behavior of thin-walled structures.

The nonlinear structural problem is discretized by means of MITC4 shell elements [20, 21], where the

typical constraints of Reissner-Mindlin shell kinematics are enforced. More specifically, MITC4 elements

have 4 nodes and 5 Degrees Of Freedom (DOFs) per node, specifically the three displacements and the

two rotations around the axes tangent to the element middle plane. The drilling rotation is neglected. In

order to avoid shear locking phenomena, a mixed interpolation of the shear stress component is used [22].

The adopted formulation lies within the context of isotropic elasticity, with large displacements and small

strains.

2.1. Time integration

Let us consider the semi-discretized equation of motion (for the variational formulation in explicit dy-

namics leading to the discretized form, see e.g. [23], chapt. 6):

MÜ+CU̇+ FI (U) = FE , (2.1)

where U, U̇ and Ü are vectors containing nodal displacements, velocities and accelerations respectively, FI

represents the internal equivalent elastic forces and FE the external loads. M is the lumped mass matrix

and C is the damping matrix. The explicit half-station central difference approach [24, 23] is employed to

integrate the system of non-linear second order differential equations (2.1). The damping matrix is assumed

to be diagonal and proportional to the mass matrix, i.e. C = αM with α ≥ 0. Together with mass lumping,

this choice allows to transform the problem into an uncoupled system of algebraic equations in which each

solution component may be computed independently, without assembling any global matrix. Therefore, it

is possible to rewrite (2.1) in terms of the individual i-th DOF:

miai + civi + fI,i = fE,i (2.2)

where ai, vi and ui represent the acceleration, velocity and displacement of the i-th DOF respectively.

Let us consider a discrete number of time stations tn ∈ [0, T ], T being the total analysis duration. Let

tn+
1

2 = 1
2 (t

n+1 + tn) define the half-stations between two subsequent time stations. Time steps and half-

station time steps are defined as

∆tn+
1

2 = tn+1
− tn; ∆tn = tn+

1

2 − tn−
1

2 (2.3)

4



The following sequence of operations describes the application of the standard central difference time inte-

gration algorithm (see [23] for further details):

1. Initialization: set u0
i , v

0
i equal to assigned initial conditions, and compute a0i from the initial values of

the external forces.

2. Time update:

tn+1 = tn +∆tn+
1

2 , tn+
1

2 =
1

2
(tn+1 + tn). (2.4)

3. First half-step: update values of free DOFs:

v
n+ 1

2

i = vni + (tn+
1

2 − tn) ani , (2.5)

un+1
i = un

i +∆tn+
1

2 vn+
1

2 . (2.6)

and of constrained DOFs. This calculation is carried out independently for each DOF.

4. Loop over all elements:

• Compute element nodal contributions to internal and external forces: fn+1
I,i , fn+1

E,i .

• Transform nodal contributions from element local basis to global basis.

5. Second half-step: accelerations and velocities are updated using the new internal and external forces:

an+1
i =

fn+1
E,i − fn+1

I,i − ci v
n+ 1

2

i

mi + (tn+1 − tn+
1

2 )ci
, (2.7)

vn+1
i = v

n+ 1

2

i + (tn+1
− tn+

1

2 ) an+1
i . (2.8)

The computation of internal and external forces (step 4) is the most expensive step. While steps 3

and 5 are executed independently on each DOF, step 4 involves a loop over the elements and stress and

strain tensor calculations require a considerable computational effort. Moreover, after the internal forces

are evaluated, they need to be accumulated in per-DOF arrays, since each node receives force contributions

from all the elements that share it.

The main disadvantage of explicit time integration schemes consists of their conditional stability. A

simple criterion to determine a stable time step for simulation on an assigned mesh is given by ([23]):

∆t = γ∆tcrit; ∆tcrit =
2

ωmax

≤ min
e

le
√

E
ρ(1−ν2)

, (2.9)

where ωmax is the highest frequency of the assembled linearized system, le is element e characteristic length, ρ

the density, E the Young modulus, ν the Poisson ratio and γ is a reduction factor accounting for the problem

nonlinearity. This limitation usually leads to very small time steps, which makes the method particularly

suited to high strain rate dynamics problems. Nevertheless, explicit schemes are often conveniently used

also in relatively slow dynamical applications as long as the problem is highly nonlinear, since they do not

require iterations to reach convergence within a time step.

5



3. GPU Implementation

The explicit algorithm presented in the previous section has been developed for execution on NVIDIA

GPUs using CUDA, which was chosen among the available GPGPU frameworks for its stability and maturity.

For a description of CUDA and NVIDIA GPUs’ architecture see [25]. However, the majority of the concepts

described in the following sections are general and can be exploited on other platforms, with some minor

changes. The implementation presented here is meant for GPUs with CUDA compute capability 2.0, with the

developed code optimized for that architecture: older devices are not supported and some features of newer

GPUs may not be exploited. In addition, the solver currently runs on a single-GPU machine, even though

extending the current implementation to a multi-GPU environment is straightforward. A basic graphical

representation of the different elements of the GPU architecture, together with the relevant terminology

used in GPU programming, is provided in figure 1.

Usually, a generic single-GPU implementation of an application running on a single host machine is

structured in the following four essential macro-steps:

• initialization and organization of permanent data and constants in GPU memory;

• transfer of input values from the host machine to the device (GPU);

• execution of one or more GPU kernels on this data;

• transfer of output values and results from the device (GPU) to the host machine.

For simple problems, porting to GPU an existing algorithm developed for a CPU can be straightforward,

reflecting the actual CPU implementation. However, for more complex tasks, to achieve good performances

and take full advantage of the GPU computational power, the design of algorithms should reflect the actual

structure of the GPU. More specifically, particular care must be taken in organizing memory and managing

data transfers. GPUs are in fact designed to be very efficient at performing floating point arithmetic, but

are not optimized to cope with branches and execution divergences, or random device memory accesses.

When writing GPU code, the difference in performance obtained accessing device memory aligned and with

specific patterns rather than with random access is substantial. In addition, because of the limited PCI-

Express bandwidth, host-to-device and device-to-host memory transfers can easily become the bottleneck

of an algorithm. Therefore, constant data should be kept on GPU memory and moved from/to the device

only when necessary. In this work, we assume all data (computational mesh and other required data) to

fit within the available GPU memory. While this can be seen as a restriction, it is worth noticing that the

actual memory consumption of the presented implementation is very low, allowing for simulation of realistic

engineering problems with a large amount of degrees of freedom even on a single GPU board.

In the next sections, two different GPU implementations of the algorithm described in section 2.1 are

presented and critically discussed. The first one consists in a straightforward implementation of the CPU

6



algorithm, slightly adapted to take advantage of the GPU parallel characteristics. In the second case, the

algorithm is reconsidered from scratch, to achieve an optimized GPU-only implementation.

Σεριαλ 

Χοδε

Κερνελ 

1

Σεριαλ 

Χοδε

Κερνελ 

2

Γριδ 1

Βλοχκ

(0,0)

Βλοχκ

(0,1)

Βλοχκ

(1,0)

Βλοχκ

(2,0)

Βλοχκ

(1,1)

Βλοχκ

(2,1)

Γριδ 2

Τηρεαδ

(0,0)

Τηρεαδ

(1,0)

Τηρεαδ

(2,0)

Τηρεαδ

(3,0)

Τηρεαδ

(4,0)

Τηρεαδ

(0,1)

Τηρεαδ

(1,1)

Τηρεαδ

(2,1)

Τηρεαδ

(3,1)

Τηρεαδ

(4,1)

Τηρεαδ

(0,2)

Τηρεαδ

(1,2)

Τηρεαδ

(2,2)

Τηρεαδ

(3,2)

Τηρεαδ

(4,2)

Βλοχκ (1,1)

ΧΠΥ ΓΠΥ

Figure 1: Schematic illustration of GPU architecture and programming elements.

3.1. First GPU implementation

The first GPU implementation considered is adapted directly from the serial CPU algorithm. The various

steps of the time advancing scheme described in section in 2.1 are implemented in different kernels (figure

1): those concerning the two integration half-steps (steps 3 and 5) are executed with one (or more) DOF

associated to each thread, while in the internal and external force calculation step (step 4) one element

per thread is considered. While the code concerning each DOF and node is executed independently in

steps 3 and 5, the assembly of elemental forces in step 4 requires the accumulation of values in the nodes,

which is essentially a reduction process. Communication and synchronization between threads belonging to

different blocks (and therefore using non-shared memory, see figure 1) in GPU is a difficult task, since CUDA

supports native thread synchronization only at thread-block level. To avoid race conditions during forces

accumulation, a coloring technique is employed: elements are divided into subsets such that all elements

in a specific subset do not share any node. Nodal assembly of forces can thus be performed on one subset

at a time, with different consecutive calls to the CUDA kernel, and threads are free to write their results

without worrying about other threads accessing the same memory locations. This implementation already

7



shows good performances with respect to the serial CPU implementation; but it is not fully exploiting the

power of the GPU. The algorithm in the form presented in section 2.1 is not designed to be run on GPU

and this limits the actual achievable speedup.

3.2. Optimized GPU implementation

In the time integration scheme presented in section 2.1, the steps of the algorithm are basically loops,

operating on different types of entities (DOFs, nodes, elements); this structure is exploited in the first GPU

implementation described above, executing each step in separate CUDA kernels. The first objective of the

optimized implementation is to express the whole algorithm as a loop over a single type of entity. In this

way, a single CUDA kernel is sufficient to perform all calculations concerning an entire time step, avoiding

multiple kernel calls, with the relative overhead, and minimizing memory accesses.

Using DOFs as main entity would be convenient only in the two integration half-steps, while the other

steps would be too difficult to be formulated on a per-DOF basis. A better approach is obtained looping

over nodes, since at each node only the DOFs pertinent to that node are integrated at each time step.

However, computation of internal and external forces, the most computationally expensive step, is hard to

be performed on a per-node basis, since it requires integration over the elements. Each node should know

which elements it belongs to, their properties and materials, and then force contribution coming from all

those elements should be computed. This would cause intensive memory access, with wasted time to perform

the same calculations more than once (considering also the lack of easy synchronization and communication

between thread blocks).

All these problems can be solved by looping over the elements. Every element keeps all the information

about its nodes in a local copy, not shared with other elements (see figure 2). Consequently, each element

performs time integration on its own nodes, and then it can proceed to forces calculation. All steps can thus

be carried out in one single, long and articulated CUDA kernel.

D Χ

Β
Α

0

1
2

3 4

5

6

7
8

D
6

7

5

8

Χ

2

Β

0
1

3

Α
4

3

2

1
0

3

0

1

2 3

1

2

1

23

0

0

Figure 2: Example of mesh with four elements. Global nodes are numbered in black. Each element has its own copy of local

nodes, which are locally numbered in red.

Performing element by element computations, some operations need to be repeated several times: each

element keeps its own copy of the local nodes and therefore has to build and integrate nodal quantities

8



even if they are in common with other elements. Nevertheless, in this way only the force assembly step,

where forces coming from neighboring elements are gathered, requires a communication between different

elements. This approach is effective only in GPU implementations, where repeating the same calculation

can be convenient if it means performing fewer memory accesses, since GPUs are much more powerful

at executing floating point operations rather than accessing memory. Moreover, the amount of memory

required to implement the GPU optimized central difference scheme is limited, thus some memory can be

wasted by duplicating necessary information, if this leads to simplifications in the kernel structure or better

memory access patterns. Finally, since computation of nodal forces is the most computationally intensive

step, possible repetitions should concern other less demanding steps.

Another advantage of the proposed element-wise algorithmic structure is that when an element is con-

sidered, the only mesh connectivity information necessary to the CUDA kernel for each one of the element

local nodes concerns the indexes of neighboring elements which share it and the corresponding local node

index inside those elements. The algorithm is also independent of the element type: it could be applied,

for example, to triangular elements (or other types of elements) without changing the code structure. The

proposed GPU formulation can naturally cope with unstructured meshes. This is in contrast with many

FEM solvers implemented in GPU, which usually require structured grids.

3.2.1. Central difference method on GPU

In the standard time stepping algorithm with central difference method, the force calculation step is

the only one that needs explicit communications: after the nodal forces are computed for each element

separately, they need to be exchanged between neighboring elements, in order to compute the right nodal

force contributions. A slight modification to the standard central difference scheme sketched in section 2.1

is introduced to avoid communications inside the same CUDA kernel. Following the algorithm of section

2.1 the acceleration update is conceptually considered the last operation of the time step. In the proposed

approach, it becomes the first operation of the next time step, while the computation of nodal forces becomes

the last one; i.e. for each element the following sequence of operations is carried out at each time step:

9



ani =
fn
E,i − fn

I,i − ci v
n− 1

2

i

mi + ci (tn − tn−
1

2 )
, (3.1)

vni = v
n− 1

2

i + (tn − tn−
1

2 ) ani (computed only if required for energy check), (3.2)

v
n+ 1

2

i = v
n− 1

2

i + (tn+
1

2 − tn−
1

2 ) ani , (3.3)

un+1
i = un

i +∆tn+
1

2 vn+
1

2 , (3.4)

Fn+1
I = internalForces

(

Un+1
)

, (3.5)

Fn+1
E = externalForces

(

Un+1
)

. (3.6)

In this case it is obviously necessary to perform an initialization step where initial forces, DOF values

and half-step velocities are computed.

With this new solution scheme (3.1 - 3.6 ), there are two main advantages. Firstly, the accelerations ani

are calculated only in the step where they are used and do not need to be stored. Therefore, the only used

global buffers are related to DOF values (nodal displacements and rotations), half-step velocities and forces.

Furthermore, this procedure does not need synchronizations inside a time step. In the force calculation step

each element computes only its contributions to the forces on the local nodes. Placing this step at the end

of the kernel execution, we exploit the implicit synchronization occurring between successive kernel calls to

ensure that, at the next time step, when the kernel is invoked again, each element can freely gather all the

previous step force contributions to its local nodes coming from the neighboring elements, without worrying

about data integrity and race conditions. The whole time step advancing procedure is thus contained in a

single big CUDA kernel, with a schematic flow chart sketched in figure 3.

3.2.2. Memory management and optimization

Thanks to the structure described in the previous sections, the entire simulation data resides in GPU

memory and transfers to or from host memory are not necessary (they are performed only to retrieve

simulation results when needed or change boundary conditions or external loads). However, in order to

maintain good performances, particular care must be taken in the organization and management of the

data structures in device memory, such that non-optimal memory access patterns are minimized, in view

of the relatively high cost of each individual memory access. Memory access optimization is achieved when

memory access patterns suitable for coalescence are realized. Device memory is accessed using aligned

memory transactions of 32, 64 or 128 bytes. When threads access the global memory it results in a certain

amount of memory transactions, depending on the location and size accessed by each thread (figure 4);

therefore, optimal throughput is achieved when memory accesses by the single threads can be coalesced into

10



Ρεαδ νεχεσσαρψ θυαντιτιεσ φροm δεϖιχε 

mεmορψ ανδ χονσταντ mεmορψ 

Γατηερ χοντριβυτιον το λοχαλ νοδαλ φορχεσ 

φροm νειγηβουρινγ ελεmεντσ 

Τιmε ιντεγρατιον στεπ 

Χαλχυλατε ιντερναλ ανδ εξτερναλ φορχεσ 

Τηρεαδ σταρτ 

Τηρεαδ ενδ 

Wριτε αλλ υπδατεδ ϖαλυεσ το δεϖιχε mεmορψ 

ΧΥDΑ κερνελ 

Λοοπ οϖερ ελεmεντσ: εϖερψ ελεmεντ ισ ασσιγνεδ το ονε τηρεαδ 

Figure 3: Steps of time integration kernel.

the smallest amount of transactions necessary to cover them. Devices supporting compute capability 2.x and

higher are also able to cache memory transactions. Specifications about the inner handling of device memory

accesses, together with the optimal access patterns and other considerations are thoroughly addressed in

[25].

Static data that do not change during a time step can be stored in constant memory, which ensures good

access performance. Constant memory has however limited size, thus data concerning mesh structure have

to be stored together with nodal DOF values in the much slower device memory. To preserve efficiency, they

have therefore to be organized in optimal layouts to allow for coalesced access. Generally, depending on the

single situation, data of this kind can be organized in array-of-structures (AoS) or structure-of-arrays (SoA),

each with its own advantages and disadvantages, to fully exploit the memory access coalescence and the

memory cache. In some specific situations, even an hybrid approach can be effective (structure-of-arrays-of-

structures, SoAoS). Without going into further details, in the presented implementation different approaches

have been tested, but the best performances have been achieved organizing data in a SoA layout, which

11



greatly helps in keeping memory read/write operations coalesced. Therefore, full coalescence is guaranteed

in the whole kernel for all memory operations, with the only exception of internal force exchange: each

element needs to gather all contributions to the internal forces from the neighboring elements, reading them

according to the local connectivity arrays, thus without a good pattern of access. This problem can be slightly

alleviated in the case of structured meshes by renumbering the nodes, but in general, with unstructured

meshes, the accesses cannot be coalesced. A possible solution to this problem can be found exploiting the

shared memory: threads in a block can read all the values needed by the entire block of threads into shared

memory in a coalesced way and then from there each thread can access the values it needs. Nevertheless,

for the present solver the performance impact of these non-coalesced read operations is generally negligible

if compared to the computational time of one whole time step and the increased code complexity does not

make it worth to be implemented.

σινγλε mεmορψ 

τρανσαχτιον

mεmορψ

τηρεαδσ

(a) Memory accesses coalesced into one single transaction.

mυλτιπλε σεριαλιζεδ 

mεmορψ τρανσαχτιονσ

mεmορψ

τηρεαδσ

(b) Non fully coalesced memory accesses: two transactions

are required.

Figure 4: Example of coalescence of memory accesses.

To avoid read-and-write conflicts, a double-buffering approach is introduced for the storage of the element

local forces. Following the solution scheme introduced in section 3.2.1, at the beginning of the kernel internal

and external forces of the previous step are read for each element and at the end the new ones are computed

and stored. To avoid synchronization, input and output forces are respectively read and written using

different buffers, which are then swapped when executing the following time step.

As described above, with the proposed algorithm calculations are performed on a per-element basis, with

all elements keeping their copy of the local nodes separated. If compared to a standard implementation,

this means that some nodal quantities are duplicated. It is possible to estimate the memory consumption

of this algorithm in order to prove that wasting memory on duplicating these information is not an issue.

As far as GPU memory is concerned (usually GPU boards are equipped with less memory than the amount

of available RAM, thus the bottleneck is GPU memory size), the following buffers are allocated:

• Read/write buffers:

– DOF displacement and rotation values: 20 x (number of elements) reals;

– DOF half-step velocities: 20 x (number of elements) reals;

12



– nodal directors: 4 x (number of elements) x (3 components) reals;

– nodal basis: 2 x 4 x (number of elements) x (3 components) reals;

– element local forces: 20 x (number of elements) x 2 (because of the double-buffering) reals.

• Read-only buffers:

– initial nodal directors: 4 x (number of elements) x (3 components) reals;

– mass on the DOFs: 20 x (number of elements) reals;

– element material properties and external pressures: 4 x (number of elements) reals;

– external nodal forces: 4 x (number of elements) x (3 components) reals;

– initial node coordinates: 4 x (number of elements) x (3 components) reals;

– neighbors array: 2 x 4 x (max. number of neighbors) x (number of elements) integers.

Let us assume that 6 is the maximum number of elements sharing the same node. Summing up all con-

tributions, it results that each element requires 176 reals and 48 integers. Considering double-precision

arithmetic, so that reals are 8 bytes long, and 32-bit integers, each element requires 1600 bytes of storage. A

low-range gaming GPU nowadays has often at least 1 GB of video RAM. NVIDIA Tesla computing boards

are equipped usually with several GBs of memory. For each GB, theoretically 671088 elements can be stored.

This consideration ensures that duplicating entities at element level is not an issue in the present approach,

since that with few GBs of memory real-life engineering problems can be solved. Furthermore, if the mem-

ory is not enough to contain the data of a very large discretization, the structure of the presented solver

allows the mesh to be partitioned and asynchronously streamed to GPU memory while executing, without

substantial changes in the code (just some specialized management of elements at sub-domain interfaces).

Finally, additional optimizations are implemented. For example, the code needs to know whether a DOF

is constrained or not. Instead of storing this information in a separate buffer, it is contained in the sign

of the mass: if it is negative, it means that the corresponding DOF is constrained. Even if it introduces

a branch in the code, this little optimization is fundamental to avoid an additional memory operation and

results in an actual decrease of computational time.

From earlier tests with CUDA profiling tools, it emerged that in the presented CUDA kernel the biggest

cause of performance drop is caused by register spilling: there were too many local variables to fit the

available registers, thus some of them were being stored in local memory (which has the same latency

as global memory) causing a significant drop in performance. This problem was alleviated in two steps.

In order to avoid storing values in temporary variables for the whole time step process, read and write

operations were moved before and after the actual code using them, and not at beginning or end of the

kernel as it is usually done. Furthermore, in order to help the CUDA optimizer, a meticulous process

13



of local variable scope tuning (enforced dividing manually the source code in blocks using curly brackets)

was performed, forcing variable reuse whenever possible, with good results in terms of performance gain

(around 20%). Nevertheless, it is important to highlight that, although alleviated, register spilling remains

a main concern. This is however related to the choice of using a single long CUDA kernel: tests have

shown that this single-kernel structure remains the best approach, when compared to implementations that

split calculations over different kernels, even if it reaches a sub-optimal level of occupancy. In addition, the

proposed implementation supports different thread block sizes. At the beginning of a simulation, a simple

and quick auto-tuning step is performed: different block sizes are tried and the best one is kept for the entire

simulation. This ensures also a level of automatic adaptivity to different hardware.

4. Numerical examples

In order to check the solver accuracy and to compare performances, in this section three different test

problems are presented. The performances achieved by the proposed GPU solver in the first two test cases

are analyzed and compared against the serial CPU implementation of Abaqus, in order to have a comparison

with a widely known commercial software. Abaqus simulations are executed on a single core of an AMD

Phenom X4 9950 Black Edition CPU at 2.6 GHz. GPU simulations run on the same machine, equipped with

a NVIDIA GeForce GTX 470 board, provided with 448 CUDA cores (14 SM, 32 cores/SM). All simulations

are performed within a Linux environment, without graphical user interface (to not interfere in any way

with GPU computations). Considering the third test case, the GPU solver is executed with increasingly

refined meshes, until the GPU memory is almost completely filled. For this problem, a more powerful GPU

board is used: a Tesla K20 board, equipped with 2496 CUDA cores and 4800 MB of memory, on a computer

running Microsoft Windows (the solver is operating system independent).

4.1. Uniformly loaded circular plate

A circular plate of an isotropic homogeneous material is analyzed under constant external pressure and

simply supported edge conditions, i.e. out-of-plane displacements at the plate edge are constrained, while

free rotations and in-plane displacements are allowed. The material is characterized by a Young modulus E

of 206000 MPa and a Poisson ratio ν of 0.3. The plate radius and thickness measure 10 mm and 0.1 mm,

respectively. The external applied pressure is of 0.0001 MPa. Considering a static analysis of the problem,

under small displacements assumption and Reissner-Mindlin shell theory, the nodal displacements can be

computed analytically for verification purposes [26]. Figure 5 shows an example of the deformed mesh.

The performance study is conducted simulating the large displacement deformation characteristic of the

given problem with different meshes. All meshes have been created in Abaqus. Specifically, they are made

of S4 elements, without reduced integration. For each mesh, the computational time taken to perform a

14



Figure 5: Circular plate. Deformed mesh after 100 seconds (3023 elements). Displacements amplified by scaling factor 1000.

complete simulation of 120 seconds by Abaqus and by the presented solver is recorded. These times do not

include any pre-processing or post-processing time, but only the actual computational time. It is important

to highlight that the duration of pre-processing operations needed by the GPU solver is negligible (they

substantially consist in building connectivity arrays, necessary to handle the unstructured mesh, and the

kernel thread block size auto-tuning process, which is optional).

Results obtained in terms of computational times with double-precision and single-precision floating

point arithmetic, using seven meshes of increasing finesse, are summarized in tables 1 and 2. Abaqus is

equipped with a time step size estimation algorithm that adapts it during the simulation, trying to keep it

as large as possible, while preserving stability. For the sake of comparison, the presented GPU solver uses

the smallest (to guarantee stability) time step size calculated by Abaqus throughout the simulation and

keeps it fixed. The columns marked as Abaqus adaptive show timings of Abaqus with time step adaptation

turned on, while columns marked as Abaqus fixed present timings with fixed time step size equal to the one

used by the GPU solver. The same computational times are also plotted in Figure 6.

Considering the mesh with the largest number of elements, in double-precision, the GPU solver performs

the same simulation more than 33 times faster than Abaqus, when time step adaptation is turned on.

If a comparison is made fixing the time step for both solvers, the gained speedup is even higher, over

43x. While it is not always fair or meaningful to do this kind of comparisons, it is indeed useful in order

to have an estimation of the performance obtainable relatively to a common and widely known software.

Moreover, it is important to highlight that these simulations are performed using a common GPU board

suited for video-gaming and not specifically conceived for scientific computing. Despite the good results

shown using double-precision arithmetic, these kind of video boards are much more suited for 3D graphics

15



Elem.

500

1125

2000

3125

4500

8000

12500

Abaqus adapt. Abaqus fixed GPU impl.

24.86 32.13 2.46

88.02 118.54 5.29

216.56 291.86 9.38

435.28 576.10 15.24

769.04 1023.15 24.46

1884.61 2472.49 59.76

3753.52 4845.03 111.51

Table 1: Circular plate. Computational time in sec-

onds. Double-precision arithmetic.

Abaqus adapt. Abaqus fixed GPU impl.

13.57 18.32 1.18

46.82 63.77 2.37

115.92 158.13 4.05

231.33 312.44 6.36

408.17 541.74 9.73

988.34 1318.71 24.12

1973.87 2606.35 42.43

Table 2: Circular plate. Computational time in sec-

onds. Single-precision arithmetic.

0

500

1000

1500

2000

2500

3000

0 2000 4000 6000 8000 10000 12000 14000

Τ
ιm

ε
 [
σ
]

Νυmβερ οφ ελεmεντσ

σινγλε πρεχισιον

Αβαθυσ (ϖαριαβλε τιmεστεπ)
Αβαθυσ (φιξεδ τιmεστεπ)
ΓΠΥ Σολϖερ

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2000 4000 6000 8000 10000 12000 14000

Τ
ιm

ε
 [
σ
]

Νυmβερ οφ ελεmεντσ

δουβλε πρεχισιον

Αβαθυσ (ϖαριαβλε τιmεστεπ)
Αβαθυσ (φιξεδ τιmεστεπ)
ΓΠΥ Σολϖερ

Figure 6: Circular plate. Computational time for single-precision and double-precision arithmetic.

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000 12000 14000

Σ
π
ε
ε
δ
υ
π

Νυmβερ οφ ελεmεντσ

σινγλε πρεχισιον

ΓΠΥ Σολϖερ ϖσ Αβαθυσ(ϖαριαβλε τιmεστεπ)
ΓΠΥ Σολϖερ ϖσ Αβαθυσ (φιξεδ τιmεστεπ)

ΓΠΥ Σολϖερ ϖσ ΧΠΥ Σολϖερ
0

10

20

30

40

50

0 2000 4000 6000 8000 10000 12000 14000

Σ
π
ε
ε
δ
υ
π

Νυmβερ οφ ελεmεντσ

δουβλε πρεχισιον

ΓΠΥ Σολϖερ ϖσ Αβαθυσ (ϖαριαβλε τιmεστεπ)
ΓΠΥ Σολϖερ ϖσ Αβαθυσ (φιξεδ τιmεστεπ)

ΓΠΥ Σολϖερ ϖσ ΧΠΥ Σολϖερ

Figure 7: Circular plate. Speedup for single-precision and double-precision arithmetic.

and single-precision. In fact, running the simulations with single-precision arithmetic, speedups of 46x

and 61x are obtained considering Abaqus adaptive and fixed time step configurations respectively. Using

computationally-oriented GPU boards even better performances are achievable and the speedup curve would

16



saturate at a higher value. The same problem has also been tested using the first GPU implementation (see

section 3.1) obtaining a computing time at least 5 times larger with respect to the results of tables 1-2.

It is also interesting to notice that, even with the finest considered mesh, the GPU implementation is

able to compute a simulation of 120 seconds in less than 112 seconds of computational time. This means

that the problem can be simulated completely in real-time, using the full MITC4 shell elements and without

requiring reduced order approaches.

4.2. Clamped rectangular plate

A rectangular plate is fixed at one edge and subjected to a tip load. The load (0.00156 MPa) is applied

at time t = 0 and then kept constant during the whole simulation. The plate is 100 mm long, 20 mm

wide and 0.2 mm thick. It is made of a flexible material characterized by Young modulus E equal to

1768 MPa, Poisson ratio ν equal to 0.3 and a density ρ of 3000 kg/m3. A dynamic analysis of the plate

is carried out for 0.35 seconds of simulation. This mesh is a good test for the solver for two reasons: it

involves large displacements, so the accuracy of the small strains – large displacements formulation is tested,

and the geometry can be discretized in a structured way: this is well suited for the GPU implementation

because the regularity of the grid helps the internal forces intercommunication process (even if it is meant

for unstructured grids). In figure 8 the deformed mesh at different time instants is shown.

In order to compare performances of the GPU implementation against Abaqus, different mesh refinements

are tested. Total computational times taken by Abaqus (with both adaptive and fixed time steps) and

the GPU implementation are summarized in tables 3 and 4 for double and single-precision arithmetic

respectively. Thanks to the time step adaptation process, Abaqus calculates and uses during the whole

simulation only two different time step sizes: a first smaller one, used only for the first time increment, and

a second one used in the rest of the simulation. In this situation, however, these two time step sizes are

not so different, causing an unusual consequence: Abaqus runs faster using a fixed time step (the smaller

one) with no time step adaptivity. This means that, in this case, the time step size calculation process takes

more time than what it manages to save using bigger time increments. For the sake of comparison, the GPU

solver uses, as always, the smallest time step size calculated by Abaqus. It is important to underline that,

with respect to the previous test case, this problem requires a much smaller time step to describe the large

displacements of the structure. Considering the finest mesh, for this example the time step is of the order of

10−7, while for the previous one it was of the order of 10−3; therefore the simulation cannot be performed

in real-time with the employed GPU board.

In this simulation, the efficiency achieved by the GPU implementation is even higher than the one ob-

tained in the uniformly loaded circular plate test case: speedup is over 46x in double-precision and increases

to 63x in single-precision. This is probably due to the fact that the regular geometry and discretization

permit to take advantage of the whole potential of the GPU implementation, exploiting the performance

17



(a) t = 0 s (b) t = 0.0525 s (c) t = 0.105 s

(d) t = 0.1575 s (e) t = 0.21 s (f) t = 0.2975 s

Figure 8: Deformations of the cantilever at different times (no displacement scaling factor used).

Elem.

80

160

320

640

1280

2560

5120

10240

Abaqus adapt. Abaqus fixed GPU impl.

57.79 57.99 16.61

180.64 179.10 29.87

374.93 369.28 38.61

1294.34 1277.35 77.44

2898.43 2858.18 113.54

10214.82 10094.71 272.56

22891.90 22517.00 499.73

81117.21 79891.72 1755.99

Table 3: Clamped rectangular plate. Computa-

tional time in seconds. Double-precision arithmetic.

Abaqus adapt. Abaqus fixed GPU impl.

38.65 39.23 6.80

110.58 108.14 12.26

216.55 217.19 18.13

709.78 708.25 37.64

1541.46 1553.88 47.34

5541.72 5504.04 112.27

12297.11 12316.41 194.08

43813.10 43300.00 685.66

Table 4: Clamped rectangular plate. Computa-

tional time in seconds. Single-precision arithmetic.

of the parallelized algorithm. This is clear also by looking at the speedup graphs in figure 9: the software

seems to reach a saturation point, where capabilities of the GPU are used at their maximum and the speedup

cannot increase any further. Obviously, these saturation curves depend heavily on the GPU hardware: with

computationally-oriented GPU boards they are expected to reach higher peak values.

18



0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000 12000

Σ
π
ε
ε
δ
υ
π

Νυmβερ οφ ελεmεντσ

σινγλε πρεχισιον

ΓΠΥ Σολϖερ ϖσ Αβαθυσ(ϖαριαβλε τιmεστεπ)
ΓΠΥ Σολϖερ ϖσ Αβαθυσ (φιξεδ τιmεστεπ)

0

10

20

30

40

50

0 2000 4000 6000 8000 10000 12000

Σ
π
ε
ε
δ
υ
π

Νυmβερ οφ ελεmεντσ

δουβλε πρεχισιον

ΓΠΥ Σολϖερ ϖσ Αβαθυσ (ϖαριαβλε τιmεστεπ)
ΓΠΥ Σολϖερ ϖσ Αβαθυσ (φιξεδ τιmεστεπ)

Figure 9: Clamped rectangular plate. Speedup for single-precision and double-precision arithmetic.

4.3. Pinched cylinder

To assess the solver performance in a more severe application, one of the numerical tests discussed in [27]

is considered. A cylinder clamped to one end is analyzed under the load of two opposite forces. The setup

is the same as in [27]: the cylinder has radius equal to 1.016 m, length of 3.048 m and thickness of 0.03 m;

the material considered has Young modulus of 2.0685 · 107 MPa, Poisson coefficient of 0.3 and density of

103 Kg/m3. The two opposite concentrated loads have magnitude of 500 MPa. Figure 10 shows a snapshot

of the deformed structure.

Figure 10: Pinched cylinder. Deformed configuration (contour plot shows displacement magnitude).

With this kind of geometry it is simple to refine the mesh and thus analyze the solver performance with a

number of degrees of freedom regularly increasing. For all meshes, a time step size ∆ t = 1.276110−5 seconds

is considered, so that the simulation is always stable. For each mesh the simulation is run for 78363 time

steps, which correspond to about 1 second of physical time. With respect to the previous examples, this

19



0

2000

4000

6000

8000

10000

12000

14000

16000

1.5Μ2.6Μ 4.1Μ 6.4Μ 9.2Μ 12.6Μ 16.4Μ

Χ
ο
m

π
υ
τα

τι
ο
ν
α
λ 
τι
m

ε
 (

σ
)

Dεγρεεσ οφ φρεεδοm

Figure 11: Pinched cylinder: total computational time vs number of DOFs.

performance test is conducted using a more powerful GPU board: a NVIDIA Tesla K20 (2496 CUDA cores)

equipped with 4800 MB of memory. To make results easier to compare, the GPU thread-block size auto-

tuning feature is turned off: all blocks are fixed to 32×32 threads. Information about the considered meshes

together with the total computational times are summarized in table 5. The column Speed lists the number

Elements DOFs Memory Time Speed

294912 1478400 423 MB 1259.67 s 62.21

524288 2626560 752 MB 2242.23 s 34.95

819200 4102400 1175 MB 3505.95 s 22.35

1280000 6408000 1836 MB 5471.68 s 14.32

1843200 9225600 2644 MB 7879.08 s 9.95

2508800 12555200 3598 MB 10719.60 s 7.31

3276800 16396800 4700 MB 14277.20 s 5.49

Table 5: Pinched cylinder: performances of GPU implementation for different meshes.

of time steps processed per second, which multiplied by the time step size gives the physical time span

which can be simulated in one second of computation. The performance of the proposed implementation

can be analyzed in figure 11, where the computational time is reported over the total number of degrees

of freedom. The relation is almost perfectly linear: this means that the proposed implementation has not

reached a saturation point of the computational power, even using the finer mesh considered. Furthermore,

with this analysis we pushed the number of elements of the mesh to the limit given by the amount of device

memory on the GPU board. In table 5, in the column Memory, theoretical memory consumption estimates

are reported (they differ from actual consumption measures by few megabytes). Therefore, the trend shown

in Figure 11 is not affected even though the last mesh considered fills almost completely the available GPU

memory.

20



5. Conclusions and future developments

In this work a double-precision, explicit dynamics non-linear finite element shell solver on unstructured

grids, designed specifically to carry out the whole computation on a GPU has been introduced. To fully

exploit the computational power of GPUs, an innovative implementation of the central difference scheme is

proposed. Results show how these kinds of problems are well suited for GPU implementation and thanks

to the new algorithmic formulation and the careful memory management, the GPU-only implementation is

able to reach very high performances with limited memory consumption.

Explicit time integration requires a large amount of very small time steps to be performed, but on GPU

they can be executed extremely quickly and overall performances are satisfactory. It is also important to

emphasize that during these simulations the CPU is practically idle. This fact can be exploited in more

complex situations where different systems have to be simulated concurrently: keeping computation on GPU

frees the CPU to perform other demanding tasks.

The GPU solver has been built from scratch in order to be completely free from constraints of an

existing design and to be organized and prepared for execution on GPU hardware from the beginning of the

development. It is often possible to directly port a CPU application to GPU with some adjustments; but it

is only designing the algorithms from scratch, with the clear purpose of running on GPU in mind, that the

best performances can be achieved.

Last but not least, with GPUs high performance computing can be obtained with very low power

consumption. The GPU board should approximately need 225 W while dealing with real applications.

Obtaining the same performances on a CPU cluster would definitely require much more power.

This work constitutes a starting point for the future solution of more complex problems. First of all, the

GPU implementation should be tested on computationally-oriented GPU boards to assess the achievable

performances in more demanding real-life engineering case problems, possibly including various sources of

material nonlinearity. Another important topic of future developments will be the introduction of contact

algorithms in the GPU implementation and the possibility of simulating fracture propagations. With all

these ingredients, the code will be able to guarantee effective computing times (near real-time in some special

cases) for the simulation of engineering problems of real use.

6. Acknowledgements

The authors gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla

K20 GPU used for this research.

21



References

[1] S. Georgescu, P. Chow, H. Okuda, GPU Acceleration for FEM-based structural analysis, Archives of Computational

Methods in Engineering 20 (2) (2013) 111–121. doi:10.1007/s11831-013-9082-8.

URL http://dx.doi.org/10.1007/s11831-013-9082-8

[2] A. Kl ockner, T. Warburton, J. Bridge, J. S. Hesthaven, Nodal discontinuous Galerkin methods on graphics processors,

Journal of Computational Physics 228 (21) (2009) 7863–7882. doi:http://dx.doi.org/10.1016/j.jcp.2009.06.041.

URL http://www.sciencedirect.com/science/article/pii/S0021999109003647

[3] H. Zhou, G. Mo, F. Wu, J. Zhao, M. Rui, K. Cen, GPU implementation of lattice Boltzmann method for

flows with curved boundaries, Computer Methods in Applied Mechanics and Engineering 225–228 (2012) 65–73.

doi:http://dx.doi.org/10.1016/j.cma.2012.03.011.

URL http://www.sciencedirect.com/science/article/pii/S0045782512000874

[4] F. Kuznik, C. Obrecht, G. Rusaouen, J. J. Roux, LBM based flow simulation using GPU computing processor, Computers

& Mathematics with Applications 59 (7) (2010) 2380–2392. doi:http://dx.doi.org/10.1016/j.camwa.2009.08.052.

URL http://www.sciencedirect.com/science/article/pii/S0898122109006361

[5] A. Sunarso, T. Tsuji, S. Chono, GPU-accelerated molecular dynamics simulation for study of liquid crystalline flows,

Journal of Computational Physics 229 (15) (2010) 5486–5497. doi:http://dx.doi.org/10.1016/j.jcp.2010.03.047.

URL http://www.sciencedirect.com/science/article/pii/S002199911000166X

[6] J. Zheng, X. An, M. Huang, GPU-based parallel algorithm for particle contact detection and its appli-

cation in self-compacting concrete flow simulations, Computers & Structures 112113 (0) (2012) 193 – 204.

doi:http://dx.doi.org/10.1016/j.compstruc.2012.08.003.

URL http://www.sciencedirect.com/science/article/pii/S0045794912001915

[7] L. Iuspa, P. Fusco, E. Ruocco, An improved GPU-oriented algorithm for elastostatic analysis with boundary element

method, Computers & Structures 146 (0) (2015) 105 – 116. doi:http://dx.doi.org/10.1016/j.compstruc.2014.08.009.

URL http://www.sciencedirect.com/science/article/pii/S0045794914001916

[8] M. Papadrakakis, G. Stavroulakis, A. Karatarakis, A new era in scientific computing: Domain decomposition methods in

hybrid CPU–GPU architectures, Computer Methods in Applied Mechanics and Engineering 200 (13–16) (2011) 1490–1508.

[9] G. R. Joldes, A. Wittek, K. Miller, Real-time nonlinear finite element computations on GPU-Application

to neurosurgical simulation, Computer Methods in Applied Mechanics and Engineering 199 (2010) 3305–3314.

doi:10.1016/j.cma.2010.06.037.

[10] R. Mafi, S. Sirouspour, GPU-based acceleration of computations in nonlinear finite element deformation analysis, Inter-

national Journal for Numerical Methods in Biomedical Engineeringdoi:10.1002/cnm.2607.

URL http://dx.doi.org/10.1002/cnm.2607

[11] Y. Cai, G. Li, H. Wang, G. Zheng, S. Lin, Development of parallel explicit finite element sheet forming simulation system

based on GPU architecture, Advances in Engineering Software 45 (1) (2012) 370–379. doi:10.1016/j.advengsoft.2011.10.014.

[12] A. Karatarakis, P. Karakitsios, M. Papadrakakis, GPU accelerated computation of the isogeometric anal-

ysis stiffness matrix, Computer Methods in Applied Mechanics and Engineering 269 (2014) 334–355.

doi:http://dx.doi.org/10.1016/j.cma.2013.11.008.

URL http://www.sciencedirect.com/science/article/pii/S0045782513003034

[13] B. Mihaila, M. Knezevic, A. Cardenas, Three orders of magnitude improved efficiency with high-performance spectral

crystal plasticity on GPU platforms, Int. J. Numer. Meth. Engng (2014) n/adoi:10.1002/nme.4592.

[14] F. Fritzen, M. Hodapp, M. Leuschner, GPU accelerated computational homogenization based on a variational approach

in a reduced basis framework, Computer Methods in Applied Mechanics and Engineeringdoi:10.1016/j.cma.2014.05.006.

22



[15] R. Grimes, R. Lucas, G. Wagenbreth, Progress on GPU implementation for LS-DYNA implicit mechanics, in: 8th European

LS-DYNA Users Conference, Strasbourg, 2011.

[16] S. Tomov, J. Dongarra, M. Baboulin, Towards dense linear algebra for hybrid GPU accelerated manycore systems, Parallel

Computing 36 (5–6) (2010) 232–240. doi:http://dx.doi.org/10.1016/j.parco.2009.12.005.

URL http://www.sciencedirect.com/science/article/pii/S0167819109001276

[17] O. Schenk, M. Christen, H. Burkhart, Algorithmic performance studies on graphics processing units, Journal of Parallel

and Distributed Computing 68 (10) (2008) 1360–1369. doi:http://dx.doi.org/10.1016/j.jpdc.2008.05.008.

URL http://www.sciencedirect.com/science/article/pii/S0743731508000920

[18] A. Cevahir, A. Nukada, S. Matsuoka, High performance conjugate gradient solver on multi-GPU clusters using hypergraph

partitioning, Computer Science - Research and Development 25 (1–2) (2010) 83–91. doi:10.1007/s00450-010-0112-6.

URL http://dx.doi.org/10.1007/s00450-010-0112-6

[19] G. Sharma, A. Agarwala, B. Bhattacharya, A fast parallel Gauss Jordan algorithm for matrix inversion using CUDA,

Computers & Structures 128 (0) (2013) 31 – 37. doi:http://dx.doi.org/10.1016/j.compstruc.2013.06.015.

URL http://www.sciencedirect.com/science/article/pii/S0045794913002095

[20] D. Chapelle, K. J. Bathe, The finite element analysis of shells - Foundamentals, Springer, 2003.

[21] K. J. Bathe, Finite element procedures, Prentice-Hall, 1996.

[22] K. J. Bathe, E. Dvorkin, A formulation of general shell elements - the use of mixed interpolation of tensorial components,

International Journal for Numerical Methods in Engineering 22 (1986) 697–722.

[23] T. Belytschko, W. K. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures, Wiley, 2000.

[24] T. Belytschko, J. I. Lin, C. S. Tsay, Explicit algorithms for the nonlinear dynamics of shells, Computer Methods in Applied

Mechanics and Engineering 42 (2) (1984) 225–251.

[25] NVIDIA, Corporation, CUDA programming guide (2013).

URL https://developer.nvidia.com/cuda-zone

[26] S. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells, Vol. 2, McGraw-hill New York, 1959.

[27] A. Ibrahimbegovic, B. Brank, P. Courtois, Stress resultant geometrically exact form of classical shell model and

vector-like parameterization of constrained finite rotations, Int. J. Numer. Meth. Engng. 52 (11) (2001) 1235–1252.

doi:10.1002/nme.247.

URL http://dx.doi.org/10.1002/nme.247

23



MOX Technical Reports, last issues
Dipartimento di Matematica “F. Brioschi”,

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

50/2014 Bartezzaghi, A.; Cremonesi, M.; Parolini, N.; Perego, U.

An explicit dynamics GPU structural solver for thin shell finite ele-

ments

49/2014 D. Bonomi, C. Vergara, E. Faggiano, M. Stevanella, C.

Conti, A. Redaelli, G. Puppini et al

Influence of the aortic valve leaflets on the fluid-dynamics in aorta in

presence of a normally functioning bicuspid valve

48/2014 Penta, R; Ambrosi, D; Shipley, R.

Effective governing equations for poroelastic growing media

47/2014 Penta, R; Ambrosi, D; Quarteroni, A.

Multiscale homogenization for fluid and drug transport in vascularized

malignant tissues

46/2014 Penta, R; Ambrosi, D.

The role of the microvascular tortuosity in tumor transport phenomena

45/2014 Pezzuto, S.; Ambrosi,D.; Quarteroni, A.

An orthotropic active-strain model for the myocardium mechanics and

its numerical approximation

44/2014 Pezzuto, S.; Ambrosi,D.

Active contraction of the cardiac ventricle and distortion of the mi-

crostructural architecture

43/2014 Brugiapaglia, S.; Micheletti, S.; Perotto, S.

Compressed solving: a numerical approximation technique for PDEs

based on compressed sensing

42/2014 Canale, A.; Vantini, S.

Constrained Functional Time Series: an Application to Demand and

Supply Curves in the Italian Natural Gas Balancing Platform

41/2014 Esfandiar, B.; Porta, G.; Perotto, S.; Guadagnini, A.

Impact of space-time mesh adaptation on solute transport modeling in

porous media


