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1. Abstract

Simulating the flow of two fluid phases in porous media is a challenging
task, especially when fractures are included in the simulation. Fractures may
have highly heterogeneous properties compared to the surrounding rock matrix,
significantly affecting fluid flow, and at the same time hydraulic aperture that
are much smaller than any other characteristic sizes in the domain. Generally,
flow simulators face difficulties with counter-current flow, generated by grav-
ity and pressure gradients, which hinders the convergence of non-linear solvers
(Newton).

In this work, we model the fracture geometry with a mixed-dimensional dis-
crete fracture network, thus lightening the computational burden associated to
an equi-dimensional representation. We address the issue of counter-current
flows with appropriate spatial discretization of the advective fluid fluxes, with
the aim of improving the convergence speed of the non-linear solver. In particu-
lar, the extension of the hybrid upwinding to the mixed-dimensional framework,
with the use of a phase potential upstreaming at the interfaces of subdomains.

We test the method across several cases with different flow regimes and
fracture network geometry. Results show robustness of the chosen discretization
and a consistent improvements, in terms of Newton iterations, compared to use
the phase potential upstreaming everywhere.
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2. Introduction

Fluid flow and multiphase transport in fractured porous media is of critical
importance for subsurface engineering: fractures may form major pathways for
fluid flow, indeed, as fractures can have significantly higher permeability than
the surrounding host rock, they may constitute the main pathways for fluid flow.
Rapid flow through fracture networks can be a desired effect, for instance in the
production of geothermal energy from hard rocks, but it may be detrimental for
the storage of carbon dioxide and nuclear waste [43, 70]. Moreover, for energy
storage and production, fluid exchange between fractures and the host rock is
important, while transport in fracture network also play an important part in
natural subsurface flows, including thermal convection, e.g., [54, 27].

Numerical simulations are valuable tools to study and understand flow in
fractured porous media, however, construction of adequate simulation models
is challenging. The contrast in permeability between fractures and the host
rock, together with the lack of scale separation in fracture length [16], imply
that traditional upscaling is difficult for fluid flow, and even more so for trans-
port processes. To classify the many models that have been developed to meet
this challenge, it is useful to consider whether the fractures are represented ex-
plicitly or by equivalent continua [13]. In equivalent continuum models, the
fractures and host rock are represented by one or multiple overlapping domains,
with fluid flow taking place both within and possibly between the domains.
Such continuum models can preserve the heterogeneity in flow properties be-
tween fractures and the host rock, however, estimating the transfer coefficients
between the media may be challenging [45, 36, 34]. Nevertheless, compared
to alternative methods, continuum models have a relatively low computational
cost, and variants thereof have been applied to large-scale simulations. In so-
called embedded discrete fracture matrix models (EDFM), fractures are explic-
itly represented at the continuous level, but not in the computational grid, see
for instance [51, 29, 67]. This results in simulation models that, in a sense, are
very similar to that of continuum models, however, the explicit representation
of fractures eases the calculation of the flow exchange between fractures and
host rock. EDFM models have been developed to a high level of sophistication,
see for instance [53].

Our main interest herein is in so-called discrete fracture matrix (DFM) mod-
els, which represent fractures explicitly in the computational grid. DFM models
usually represent the fractures as lower-dimensional objects embedded in the
host domain, resulting in a mixed-dimensional geometry [55, 56, 44, 30, 5, 20,
21, 4, 22, 17]. In these models, equations and constitutive laws can be repre-
sented in the host rock, in fractures, and on the rock-fracture interface. The
explicit representation of fractures can complicate grid construction and require
a high number of grid cells, and thereby limit the domain size and number of
fractures that can be included. Nevertheless, the detailed representation of the
fracture network geometry makes DFM models ideally suited to study the in-
teraction between physical processes such as flow and transport [31, 32, 12, 11],
and also mechanical deformation of fractures [33, 66, 61]. Particularly relevant
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to this work is the discretization of multiphase flow, which has been reported
in, for instance, [30, 20, 35, 22].

Multiphase flow in porous media can be described by a pressure equation
which, in the assumption of negligible capillary pressure, has an elliptic charac-
ter, combined with a set of transport equations that are essentially hyperbolic in
nature [68]. For practical simulations, the equations are usually discretized by
finite volume methods [62]. In particular, to avoid unphysical oscillation at the
discrete level, phase mobilities have traditionally been discretized by upwinding
each phase individually, using the so called phase potential upstreaming (PPU)
[19]. PPU is monotone and first order convergent, and often produces results
that are reasonably accurate. However, for flow governed by a mixture of vis-
cous and gravitational forces, the upstream direction assigned to each individual
grid face in the discrete model is prone to flipping during Newton iterations,
leading to convergence issues for the non-linear solver, e.g. [52].

To overcome these convergence problems, several improvements of nonlinear
solvers can be used, including trust-region [71, 57] and reordering methods [48,
58]. Of interest to us herein is an approach that replaces the PPU treatment of
mobilities with a discretization which is in a sense smoother, and thus less prone
to changes in the upstream direction. Among the possible techniques to achieve
such regulatization, we focus our attention on the method known as hybrid
upwinding (HU), which was developed in a series of papers [50, 41, 39, 6, 18].
At the core of the HU approach is the representation of the viscous flow by a
total velocity field, with transport of individual phases taken as gravitational
deviations from the total velocity. The total velocity is discretized with weighted
averages of mobilities. Compared to PPU, HU posseses enhanced smoothness
which leads to significant improvements of the performance of the Newton solver,
to the price of somewhat increased numerical diffusion.

In this work, we consider two phase flow for fractured porous media, and
extend the HU approach to mixed-dimensional DFM models with explicit rep-
resentation of fractures in the computational grid. Noting that HU applied to
fracture networks in a capillary dominated regime has already been reported [6],
we limit ourselves to the case of negligible capillary forces, and focus on the im-
pact of viscous and gravitational effects. Compared to standard porous media,
the presence of fracture networks introduces some additional difficulties, mainly
the coupling among domains of different dimensions and the strong contrast
in permeability, resulting in faster dynamics in the fracture network. Through
a series of numerical experiments in two- and three-dimensional domains, we
show that the extension of HU consistently outperforms PPU in terms of per-
formance of a Newton solver. The computational gains increase with simulation
complexity, indicating that our extension can be a key ingredient in enabling
two-phase 3D DFM simulations in regimes where gravitational effects play an
important part.

The paper is structured as follows: The governing equations are presented in
Section 4, while in Section 5, we present the discretization methods with empha-
sis on the different approaches to upstreaming. Numerical tests are presented
in Section 6, while Section 7 contains concluding remarks.

3



3. Domain representation

Due to the complexity of the mixed-dimensional representation, we devote
this section to introduce and describe such framework. Starting from Sec-
tion 3.1, we introduce some basic notations when the domain does not contain
fractures. We extend the concepts in Section 3.2 when fractures are presents
and in Section 3.3 we discuss the strategy adopted for the coupling between
objects of different dimensions.

3.1. Fracture-less domain

Let Ω ⊂ Rd, with d = 2 or 3, to be a Lipschitz continuous domain repre-
senting the porous media when fractures are not present, with boundary ∂Ω
and outer unit normal υout. Being the problem time dependent, we consider
the time interval (0, T ], with T > 0 the final time in [s], and introduce the
space-time domain ΩT = Ω× (0, T ].

3.2. Fractured domain

We consider here the approach described in [13], where fractures are explic-
itly represented. Even for larger fractures, their thickness or aperture is orders
of magnitude smaller than their typical lateral extensions. We thus approxi-
mate fractures with lower dimensional objects immersed in the rock domain.
For simplicity, we assume that fractures are planar objects and we indicate with
ε their thickness, in [m], assumed to be constant for each fracture.

The modelling of the fractures leads to subdividing the whole domain Ω ⊂
Rd into subdomains of different physical dimensions Ωi, i = 1, . . . , I, with I
the total number of subdomains, such that Ω = ∪iΩi and Ωi ∩ Ωj = ∅ for
i ̸= j. Each domain might represent the porous media, a fracture or a fracture
intersection. For example, if d = 3, the subdomains representing the rock matrix
have dimension 3, each reduced fracture has dimension 2, fracture intersections
have dimension 1, and the possible intersection of intersections dimension 0. If
d = 2, then all the aforementioned dimensions should be scaled by 1. See Fig.1
for an example of a mixed-dimensional domain.

3.3. Interface coupling

Flow in the subdomains Ωi is interconnected through flux exchanges across
the interface between domains with codimension equal to 1. We remark that
there is no direct interaction between subdomains with codimension greater
than 1, such as a 3D matrix rock and 1D intersection of fractures. We call
these fluid fluxes mortar fluxes and can be interpreted as Lagrange multipliers
that enforce the correct mass balance between subdomains [17, 59]. In our
formulation, we indicate the interface between domains, which we call mortar
interfaces (or simply mortars) explicitly as Γj , j = 1, . . . , J , with J the total
number of mortars. This will be useful for the discretization approach presented
in Section 5. See Fig. 1(a) for an illustration of a 2D matrix domain with one
line fracture and a mortar domain interfacing the former domains.
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(a) 2D and 1D domain. (b) Y-shape intersection of 1D
domains.

Figure 1: Mixed-dimensional domain. (a) Domains Ω1 and Ω2 are connected through the
mortar interface Γj . (b) Example of three branches, in 3D fracture intersections and in 2D
fractures, that intersect to a point Ω4.

On each subdomains Ωi and mortar Γj the variables and data are marked by
the subscript i or j, respectively. We indicate the mapping from the j-th mortar
Γj to the boundary of the related i-th subdomain Ωi by Ξi

j . We also introduce

a map from a j-th mortar Γj to a neighbouring Ωi, denoted by the symbol Πi
j ,

see Fig. 1. These maps are relevant for the discrete problem, in particular when
the meshes are non-conforming across subdomains and mortars, see Section 5.

For a subdomain Ωi, the set of neighbouring mortars is split into mortars,
denoted by Ŝi, that connect Ωi to subdomains of higher dimension, and mortars
that connect Ωi to subdomains of lower dimensions, represented by the set
Ši. Conversely, we denote by R̂j the set of subdomains facing mortar Γj with
dim(Ωi) > dim(Γj), and with Řj the set of subdomains facing the mortar Γj

with dim(Ωi) < dim(Γj). In the following, we use the abbreviation l to denote
the indices of domains Ωi ∈ Řj , and, analogously, h to denote the indices of

domains Ωi ∈ R̂j . Thus, for example, Πh
j and Πl

j are the maps from, respectively,

Ωi ∈ R̂j and Ωi ∈ Řj towards the mortar Γj .
The normal at the boundaries is υi, whereas υout,j is the unit vector at the

boundary of the higher dimensional domain, pointing outwards towards Γj . Nj

is a map from Ω to Γj such that, given u : Ω → R, we have Nj(u) : Ω →
Γj . Its relevance will become apparent when we deal with the discretization
procedure, where we give a more precise definition. With ∂jΩi we indicate the
boundary of Ωi in contact with the mortar domain Γj . We denote the subdomain
codimension extension with εai

i , where ai = d − dim(Ωi). For example, the
codimension extension (thickness) of a planar fracture immersed in a 3D rock,
would be ε3−2 = ε, while the codimension extension (area) of the intersection of
two planar fractures would be ε3−1 = ε2. Similarly, we define bj = d−dim(Γj).

4. Mathematical model

In this part we introduce the mathematical model considered for the two-
phase flow. First, in Section 4.1 we present the model for a continuous medium
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without fractures. Subsequently, in Section 4.2 we discuss a dimensional anal-
ysis and obtain dimensionless groups, useful to set up the simulations in the
examples. Finally, in Section 4.3 we present the mixed-dimensional model, an
approach to approximate the fractures in according to their features.

4.1. Continuous model

We assume no fractures and that in the void spaces of the porous media
coexists two phases that fulfil the following assumptions: they are immiscible,
isothermal, and non-reactive, with null capillary pressure. For their description,
we consider the classical two-phase flow model in porous media, see [10, 24, 42,
60] for more details. In the sequel, we will indicate with a subscript 0 and 1
data and variables associated to each phase.

The primary variables we are considering in our model are the saturations
Sℓ : Ω

T → [0, 1], that are dimensionless, for each phase ℓ = 0, 1, and the pressure
p : ΩT → R, in [Pa], equal for the two phases because of the assumption of
null capillary pressure. The porous medium is characterized by the following
properties: the porosity ϕ, that is dimensionless, and the intrinsic permeability
of the rock K, in [m2]. Each fluid phase is characterized by: the density ρℓ, in
[kgm−3], the dimensionless relative permeability kr,ℓ : [0, 1] → [0, 1], dependent
on the phase saturation Sℓ, the dynamic viscosity µℓ, assumed to be constant, in
[Pa · s]. To simplify the notation, we introduce the phase mobility λℓ = kr,ℓ/µℓ,
in [Pa−1 s−1]. We set g to be the gravity field constant assumed to be equal to
9.81[m s−2], and we consider the vertical coordinate z pointing upwards, so the
gravity vector is −g∇z. Finally, fℓ is a source or sink term associated to each
phase ℓ, in [kgm−3 s−1].

The problem is to find (S0, S1, p) such that for ℓ = 0, 1 we have

∂tϕ(ρℓSℓ) +∇ ·Qℓ = fℓ

Qℓ = −ρℓλiK (∇p+ ρℓg∇z)
in ΩT , (1a)

where Qℓ, in [kgm−2 s−1], is the mass flux of each phase, which is proportional
to the gradient of the phase potential,

Φℓ = p+ ρℓgz. (1b)

Associated to the previous equations, in our numerical experiments we consider
the following initial and boundary conditions

Sℓ(t = 0, x) = Sℓ(x) in Ω,

p(t = 0, x) = p(x) in Ω,

Qℓ · υout = 0 on ∂Ω× (0, T ],

(1c)

where Sℓ ∈ [0, 1], in [·], and p, in [Pa], are given functions representing the initial
values for the two phase saturation and pressure, respectively. We assume the
following constraint for the saturations

S0 + S1 = 1 in ΩT . (1d)
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We remark that we need to obey compatibility conditions between the data
defining the problem. In particular the initial value of the saturation has to
respect the contraint S0 + S1 = 1, and, for the given boundary conditions,
steady state can only be reached when the source terms, fℓ, have zero average.

To close the system, we consider a constitutive equation to relate the phase
density, assumed to be a liquid and thus nearly incompressible, with the pres-
sure, and a model for the relative permeability, namely

ρℓ(p) = ρ̂ℓe
cℓ(p−p̂)

kr,ℓ(Sℓ) = S2
ℓ

in ΩT , (1e)

where ρ̂ℓ is a reference value for the density, in [kgm−3], cℓ a phase specific
compressibility, in [Pa−1], and p̂ a reference pressure value, in [Pa].

By using (1d), the problem (1) can be recast in an equivalent form in terms
only of one saturation, here S0, and pressure. Furthermore, we assume the
porosity to be time independent and we replace one mass balance with the sum
of the two mass balances. Thus, we replace (1a) and (1d) with

ϕ∂t[ρ0S0 + ρ1(1− S0)] +∇ ·QT = fT

ϕ∂t(ρ0S0) +∇ ·Q0 = f0
in ΩT , (2a)

where fT = f0 + f1, and QT is the total flux, defined as

QT = −
∑
ℓ=0,1

ρℓλℓK (∇p+ ρℓg∇z) in ΩT , (2b)

where λ1 is now written as a function of S0 instead of S1. This formulation is
useful to highlight the different nature of the variables, p and S0, with conse-
quent advantages in the discretization scheme, see Section 5. Indeed, problem
(2) shows the so-called mixed parabolic-hyperbolic behaviour if the compress-
ibility is taken into account, an elliptic-hyperbolic behaviour otherwise. As a
consequence, the pressure varies smoothly while the saturation may be discon-
tinuous in Ω [68, 69].

4.2. Dimensional analysis

To describe the flow regime and compare the results of different simulations,
we can scale the equations, initial and boundary conditions, and consequently
obtain dimensionless groups. We denote by xref a reference value for the generic
quantity x, the corresponding dimensionless variable is x̃ = x/xref . At each
physical variable or data we associate a reference value, some of them might
depends on each other as a consequence of the Pi theorem [23]. Neglecting the
source term for simplicity, the mass balance becomes

∂t(ϕ̃ρ̃ℓSℓ) +
trefKref

ϕrefLrefµref
∇̃ ·
[
λ̃ℓK̃

(
pref
Lref

∇̃p̃+ ρrefgref ρ̃ℓg̃∇̃z̃
)]

= 0. (3)
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It governs the fluid motion in Ω̃T = Ω̃× (0, T/tref ], where Ω̃ is given by scaling
each dimension of Ω by Lref , with analogous initial and boundary condition of
(1c). We set tref = ϕrefLref/uref and retrieve a reference velocity from a finite
Darcy-type equation uref = Krefpref/(µrefLref), thus we set a reference pressure
from viscous quantities pref = µ2

ref/(Krefρref). Replacing them into (3), we
obtain

∂t(ϕ̃ρ̃ℓS̃ℓ) + ∇̃ ·
[
λ̃ℓK̃

(
∇̃p̃+ EAρ̃ℓg∇̃z̃

)]
= 0, (4)

where EA = ϕrefρ
2
refgrefLrefKref/µ

2
ref is a dimensionless group that indicates

the ratio of the effects of the gravity forces and the viscous forces. It can be
seen as an Archimedes’ number specific to two-phase flow problem driven by
the gravity, or an adaptation of the gravity number [63, 28, 50] to scenarios
where the reference velocity is ambiguous, such as the case of countercurrent
flow driven by gravity.

4.3. A mixed-dimensional model

As mentioned before, when fractures are present we rely on dimensionally
reduced models to approximate fractures with lower dimensional objects im-
mersed in the rock domain. Consequently, we need to devise a new set of
partial differential equation, derived from mass balance and Darcy law, that
describe the flow in the fractures and the interaction with the rock matrix. The
dimensional reduction by itself is well-established, and we refer to [55, 7, 26]
for single phase flow and in [44, 30, 20, 4, 22] for two-phase flow. When this
technique is combined with the representation of the geometry introduced in
Section 3, we arrive at the following governing equations.

The flow problem is: find (S0,i, pi) in each ΩT
i = Ωi× (0, T ], i = 1, . . . , I and

ζℓ,j on each ΓT
j = Γj × (0, T ], j = 1, . . . , J , for both phases ℓ = 0, 1, such that

εai
i ϕi∂t[ρ0,iS0,i + ρ1,i(1− S0,i)] + εai

i ∇ ·QT,i +
∑
ℓ

∑
Γj∈Ŝi

Ξi
jNj(ρℓλℓ)ζℓ,j = fT,i,

(5a)

εai
i ϕi∂t(ρ0,iS0i) + εai

i ∇ ·Q0,i +
∑

Γj∈Ŝi

Ξi
jNj(ρ0λ0)ζ0,j = f0,i, (5b)

with the following constitutive law for the mortar fluxes, ζℓ,j ,

ζℓ,j − ε
bj−1
l k⊥,j

{
2

εl
[Πh

j tr(ph)−Πl
jpl]−Nj(ρℓ)g∇z · υout,j

}
= 0, (5c)

and the following boundary conditions at all times to close the previous system:

Qℓ|∂jΩi
· υout,j − Ξh

jNj(ρℓλℓ)ζℓ,j = 0, ∀j ∈ Ši

Qℓ · υ|∂Ωi
= 0, on ∂Ωi \ ∂jΩi

(5d)

Finally, appropriate initial conditions for the primary variables S0,i, pi and ζj
have to be provided for all the domains Ωi and mortars Γj
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The divergence and gradient in (5a) and (5b) are meant as being tangential
to the manifold associated to the considered domain. Since we only consider flat
subdomains, these operators can be easily written in local intrinsic orthogonal,
and fixed, coordinates.

The additional terms in (5a) and (5b) compared to (2) are linked to the
mortar fluxes and describe the interactions between domains of different dimen-
sions.

where we recall that with the indeces l and h we denote εl = εi,Ωi ∈ Řj ,

ph = pi, Ωi ∈ R̂j , and pl = pi, Ωi ∈ Řj , tr is a trace operator, k⊥,j the
normal permeability. Equation (5c) derives from the flux described in (1a)
along the orthogonal direction of the mortar Γj , where the pressure gradient is
approximated by a finite difference across the subdomains. In (5c), ζℓ can be
seen as a volumetric flux or velocity divided by the mobility, it is used also to
compute the interface upwind direction as described below.

We call the formulation of the problem (5) dual-mortar formulation, where
we name (5a) pressure equation and (5b) mass balance.

4.4. Manipulation of the model for discretization

The mass fluxes, Qℓ,i and QT,i = Q0,i + Q1,i, can be expressed differently,
leading to different discretizaton methods, as we show in Section 5. The first
straightforward option is to write Qℓ,i = ρℓ,iqℓ,i. Consequently,

QT,i = ρ0,iq0,i + ρ1,iq1,i, (6)

where qℓ,i is the volumetric flux given by the Darcy law:

qℓ,i = −Kiλℓ,i(∇pi + ρℓ,ig∇z), ℓ = 0, 1 (7)

This formulation is adopted in the phase-potential upwind (PPU) discretiza-
tion, detailed in Section 5.2. Note that the physical properties of a fracture
subdomain are now described by two quantities, the normal permeability, k⊥,j

and the in-plane permeability Ki, that govern, respectively, the flow across and
along the subdomain.

The second option separates the physical contribution of the fluxes, high-
lighting the one due to the pressure gradient, called viscous flux, and the one
due to gravity. In this case, the total flux in the pressure equation (5a) is still
written as the sum of the phases contribution, as in (6), while the flux Q0 in
the mass balance equation (5b) is further subdivided as

Q0,i = V0,i +G0,i, (8)

being V0,i the viscous mass flux and G0,i is the flux in mass due to gravity, as
a result of the different densities of the fluids.

V0,i = ρ0,i
λ0,i
λT,i

(q0,i + q1,i) (9)

G0,i = ρ0,iKi
λ0,iλ1,i
λT,i

(ρ1,i − ρ0,i)g∇z (10)
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with λT,i = λ0,i + λ1,i the total mobility, in [Pa s−1]. This second formulation
is adopted in the hybrid upwind (HU) discretization, detailed in Section 5.3.

At the discrete level, we need that the operator Nj that maps variables from
domains Ωi to an adjacent the mortar domain Γj has an upwinding nature,
to avoid the appearance of spurious oscillations. To this purpose, we use the
following formulation:

Nj(uℓ) =

{
Πi

juℓ,i if ζℓ,j < 0,

Πi
jtr(uℓ,i) if ζℓ,j ≥ 0,

(11)

where uℓ,i is defined in Ωi ∈ Řj in the first case, and uℓ,i is defined in Ωi ∈ R̂j in
the second case. Because of the absence of internal fluxes, zero-dimensional do-
mains should be treated carefully. For each zero-dimensional Ωi, for k = 1, . . . , I
and for both phases ℓ = 0, 1, the mass balances reduce to finding (S0,i, pi) such
that

εaiϕi∂t[ρ0,iS0,i + ρ1,i(1− S0,i)] +
∑
ℓ

∑
Γj∈Ŝi

Ξi
jNj(ρℓλℓ)ζℓ,j = fT,i,

εaiϕi∂t(ρ0,iS0,i) +
∑

Γj∈Ŝi

Ξi
jNj(ρ0λ0)ζ0,j = f0,i.

(12)

See Fig. 1(b) for an example of three branches intersecting.
We model the fluid mobility with a quadratic dependence on the saturation:

λℓ = S2
ℓ . (13)

5. Discretization

In this section, we present the considered approach to solve system (5) nu-
merically. The main numerical challenge is how to approximate the non-linear
advective part appropriately since it is composed by multiple terms that might
act quite differently. This has an impact also on the convergence of the Newton
method chosen to solve the resulting non-linear problem.

After a brief introduction to the discretization tools in Section 5.1, we will
present the first discretization method in Section 5.2, which will be referred as
PPU. The second discretization method, which is one of the original contribution
of this work, is an extension to the mixed-dimensional framework of the hybrid
upwind scheme and its application to the case of fractured media [50, 37, 41, 39,
40, 38, 18]. It is presented in Section 5.3 and it is referred as HU. The aim of this
method is address the countercurrent flow problem more effectively, reducing
the number of Newton iteration required to solve the non-linear system at each
timestep.
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5.1. Common setup

The subdomains Ωi and mortars Γj are approximated with grids composed
by simplex or hexahedron cells c of characteristic size hc and Lebesgue mea-
sure |c|. The faces of a cell c are denoted by f. Each face between two cells
cm and cn is associated with a unit normal υ̂mn. We denote by adj(cm) the
neighbouring cells of cm. The formulation with mortar fluxes let us easily deal
with non-conforming meshes across the interfaces between domains of different
dimensions, as depicted in Fig. 2.

We solve (5) by discretizing the equations with a cell centred finite volume
method [15, 9].

In the following, we indicate with xmn the evaluation of a generic variable,
x, on the face f between cells cm and cn. Moreover, we denote the jump of a
variable x between two cells cm and cn as ∆xmn = xm − xn. Before continuing,
we define the discrete upwind operator M between cm and cn with respect to
an upstream direction vmn and the oriented segment mn that connects the cell
centers from cm to cn:

M(xm, xn; vmn) =

{
xm if vmn ·mn ≥ 0,

xn if vmn ·mn < 0.

Similarly, the component of a variable x projected on a cell cp of the mortar
Γj with the interface upwind defined in (11), according to the upstream direction
vp defined on the mortar cell cp, is computed as:

[Nj(x; vp)]p =

{
Πi

j,pkxk if vp < 0, xk ∈ Ωi ∈ Řj ,

Πi
j,pnxn if vp ≥ 0, xn ∈ Ωi ∈ R̂j , n ∈ Sc

j ,

where Sc
j is the set of indices n denoting the cells of Ωi at the boundaries facing

Γj . To ease notation, form now on we denote [Nj(x; vp)]p as xvp.
A remark should be made for the discrete maps, Π and Ξ, in particular when

a non-matching discretization is used between objects of different dimensions.
To achieve maximum accuracy, in the case of cell-wise constant variables as
are applied herein, the map for intensive variables (e.g. the pressure) should
apply area-weighted averaging, while extensive quantities (e.g. fluxes) should
be summed.

Let us consider a cell cp ∈ Γj , a cell ck ∈ Ωi ∈ Řj and a boundary face

fm of cell cm ∈ R̂j , see Fig. 2. Let lmp and lkp be the overlap surface between
boundary face fm and cell cp, and cell ck and cell cp, respectively. For the

intensive variable we have: Πh,ave
j,mp = lmp/|cp| and Πl,ave

j,kp = lkp/|cp|, while for an

extensive variable: Πh,sum
j,mp = lmp/|fm| and Πl,sum

j,kp = lkp/|ck|. Similarly for Ξ.
To ease the notation, we will not specify the type of map, it should be clear
from the context. As mentioned before, it is worth noting that the faces and
cells facing mortars are, in general, non-conforming, as depicted in Fig.2.

11



Figure 2: Grid elements of a 1D domain, Ω1 facing a 2D domain, Ω2, and mortar, Γ. Any
cell is denoted by c, while the faces, i.e., the boundary of c are f.

5.2. Standard upwinding

Let Sf
i be the set of indexes for faces f on the boundary towards Γj and let

◦ be the element-wise (Hadamard) product. The discrete primary variables, i.e.
the degree of freedom (d.o.f.) associated to the cell centers, are the components
of the vectors p

i
, S0,i for the subdomains Ωi and ζ0,j , ζ1,j at the mortars Γj .

The discretization in space of (5) with fluxes from (6) and (7), reads for ℓ = 0, 1

εai
i ∂t(u0,i + u1,i) + εai

i DQPPU

T,i
+ ψp

i
= 0, in Ωi,

εai
i ∂tu0,i + εai

i DQPPU

0
+ ψs

i
= 0, in Ωi,

ζ
ℓ,j

− ε
bj−1
l k⊥,j |cj | ◦

[
1

ε/2
(Πh

j
tr(p

h
)−Πl

j
p
l
)− ρζℓ,j

ℓ
g∇z · υout,j

]
= 0, in Γj .

(14)

The discrete boundary conditions, for each vector element k, are given by:

QPPU
ℓ,i,k − Ξi

j,kmρ
ζℓ,j
ℓ,mλ

ζℓ,j
ℓ,mζℓ,j,m = 0, k ∈ Sf

i ,

QPPU
ℓ,i,k = 0, otherwise.

To ease the notation, in what follows, we drop the subscript denoting sub-
domain and interfaces and let relations hold for each subdomain Ωi or mortar
Γj .

The terms of the accumulation variables are u0,m = ϕmρ0,mS0,m, and u1,m =
ϕmρ1,m(1− S0,m). The elements of discrete divergence operator D are defined
as:

Dmn =
1

|cm|


1 if cn ∈ adj(cm) and υ̂mn points inwards cm,

−1 if cn ∈ adj(cm) and υ̂mn points outwards cm,

0 if cn /∈ adj(cm).

The integrated-normal mass flux QPPU
ℓ,mn = ρPPU

ℓ,mnq
PPU
ℓ,mn is discretized adopting

an upwind scheme whose upstream direction is linked to the phase potential,
Φℓ, (1b). In particular, we have: ρPPU

ℓ,mn = M(ρℓ,m, ρℓ,n; q̃ℓ,mn), where q̃ℓ,mn rep-
resents the phase potential multiplied by the transmissibilities. It is computed
as

q̃
ℓ
= T p+ T ggρ

ℓ
◦ z,
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where T and T g are the transmissibilities, that depend on the permeability Ka

and the grid element geometry. Note that the elements of q̃
ℓ
are q̃ℓ,mn, i.e.,

quantities evaluated at the faces. In the present work, T is computed with the
multi-point flux approximation (MPFA) [1, 3], although other methods could
be used, such as the two point flux approximation (TPFA) [1, 2]. T g is the
consistent trasmissibility for the gravity term, its determination is explained in
[65]. The integrated volumetric flux is: qPPU

ℓ,mn = λPPU
ℓ,mn q̃ℓ,mn, where λ

PPU
ℓ,mn are

phase mobility defined as λPPU
ℓ,mn = M(λℓ,m, λℓ,n; q̃ℓ,mn). The elements of the

source term, ψp in the pressure equation and ψs in the mass balance for the
phase 0 are respectively given by

ψp
m =

∑
ℓ

∑
Γj∈Š

Ξj,mn(ρ
ζℓ,j
ℓ,n λ

ζℓ,j
ℓ,n ζℓ,j,n)− fℓ,m,

ψs
m =

∑
Γj∈Š

Ξj,mn(ρ
ζ0,j
0,n λ

ζ0,j
0,n ζ0,j,n)− f0,m.

Regarding the constitutive law associated with the mortar fluxes, we highlight
that it is not a partial differential equation but an algebraic expression, so no
spatial discretization scheme is required.

5.3. Hybrid upwind

The semi-discrete in space counterpart of the problem (5), with fluxes from
(6), (7) for the pressure equation (5a) and (8) for the mass balance equation
(5b), is given by for ℓ = 0, 1

εai
i ∂t(u0,i + u1,i) + εai

i D Q
T,i

+ ψp

i
= 0, in Ωi,

εai
i ∂tu0,i + εai

i D
(
V 0,i +G0,i

)
+ ψs

i
= 0, in Ωi,

ζ
ℓ,j

− ε
bj−1
l k⊥,j

[
1

ε/2
(Πh

j
tr(p

h
)−Πl

j
p
l
)− ρζℓ,j

ℓ
g∇z · υout,j

]
= 0, in Γj .

(15)

Concerning the different nature of the pressure equation (5a) and mass balance
(5b), they are discretized adopting different strategies. The variables defining
Q

T
are discretized with a blended method that smoothly switches from a centred

scheme to an upwind scheme, according to the intensity of the jump of the phase
potential evaluated at each face. Conversely, the fluxes in the mass balance are
discretized with a pure upwind scheme as described below. In particular, by
dropping the domain index, we have

QT,mn =
∑
ℓ=0,1

ρℓ,mnq
WA
ℓ,mn, (16)

where the densities are averaged at the faces according to the saturation:

ρℓ,mn =
Sℓ,mρℓ,m + Sℓ,nρℓ,n

Sℓ,m + Sℓ,n
,
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and the discrete volumetric fluxes integrated along the faces, qWA
ℓ,mn, are com-

puted following [18]. For the reader convenience, we report here the main steps.
The discrete volumetric normal flux, qWA

ℓ,mn, incorporates the grid and rock prop-
erties, the fluid properties, and it is proportional to the phase potential:

qWA
ℓ,mn = λWA

mn Tmn∆Φℓ,mn, (17)

where, in the present work, the transmissibilities Tmn are computed with the
TPFA, although other methods could be used. The jump of the phase potential
is defined as

∆Φℓ,mn = ∆pℓ,mn + ρℓ,mng∆zmn.

The mobilities λWA
mn are the core of the blended centred-upwind scheme: they

are the weighted average (WA) dependent solution of the mobilities computed
at the cells:

λWA
ℓ,mn = βℓ,mnλℓ,m + (1− βℓ,mn)λℓ,n

where the weight βℓ,mn ∈ [0, 1] in an increasing function of the jump of the
phase potential ∆Φℓ,mn:

βℓ,mn = 0.5 +
1

π
arctan(cℓ,mn∆Φℓ,mn),

with cℓ,mn a coefficient that depends on the grid and fluid properties

cℓ,mn = min

(
(kr,ℓ(1))

−1 maxSℓ
|k′′r,ℓ(Sℓ)|

ρℓ,mn
, 106

)
.

We remind that kr,ℓ is the relative permeability of phase ℓ. Details about βℓ,mn

can be found in [18].
The fluxes in the mass balance are discretized with an upwind scheme to

honor the hyperbolicity of the equation. Since the motion of the fluid is forced
by two main physical driving forces, one related to the pressure gradient and
the other linked to the gravity field, these two quantities are treated differently
to upwind the variables. The discretization of the viscous flux is a one-sided
scheme that considers the total velocity as upwind direction:

V0,mn = ρV0,mn

λV0,mn

λVT,mn

qT,mn

where ρV0,mn = M(ρ0,m, ρ0,n; qT,mn) and similarly for λV0,mn and λVT,mn. The
total volumetric flux (or total velocity), qT,mn = q0,mn + q1,mn, is computed
from (17).

The gravity flux G0,mn is computed with a one-sided scheme with the upwind
direction dependent on the gravity effects. In particular, we have

G0,mn = ρG0,mnq
G
0,mn,
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where the upstream direction for the density is the volumetric flux due to the
gravity effects, ρG0,mn = M(ρ0,m, ρ0,m; qG0,mn). The volumetric flux, qG0,mn, is
computed as:

qG0,mn = Tmn

λG0,mnλ
G
1,mn

λGT,mn

(ρ0,mn − ρ1,mn)g∆zmn (18)

where λG0,mn = M(λ0,m, λ0,n;ω0,mn) and analogously for the other mobilities.
The function ωℓ,mn describes the gravity effects acting on fluids with different
densities:

ωℓ,mn = λgk,mn ((ρk,mn − ρℓ,mn)g∆zmn) ,

where the upwinded mobility is given by

λgk,mn =

{
λk,m if ρk,mn < ρℓ,mn,

λk,n if ρk,mn ≥ ρℓ,mn.

Further details can be found in [18].
The constitutive laws of the mortar fluxes, (5c), do not evidence the different

behaviour of the pressure and saturation variables. As in the PPU approach,
no particular discretization method are required. Future developments regard
the study of a pressure-mass formulation of the mortar fluxes constitutive laws
and a suitable discretization method.

The spatial order of convergence of the discretization of the fluxes QT , V0,
and G0 is at most one for smooth solutions [41]. The discretization of the
mortar fluxes is expected to be of order one since an error proportional to
hc is introduced with the approximation of Nj . This occurs because no trace
reconstruction is used to retrieve the value of x on ∂jΩi, instead, the value at
the cell center is used. Thus, we expect the spatial order of convergence of
the discretization scheme to be at most one for smooth solutions. A numerical
verification is performed in Section 6.1.

5.4. Time discretization and numerical details

For the time marching, we use the implicit Euler scheme for its well known
stability properties that allow us to use large timesteps. An implicit method
leads to a system of discrete non-linear equations to be solved at each time
step, which is solved with the Newton method. Note that the Newton method
requires the knowledge of the Jacobian, which changes, at each iteration.

Several methods can be adopted for the computation of the Jacobian or
its approximation, such as a finte difference, complex step [64, 49] or automatic
differentiation [14]. We adopt the latter, which is exact up to machine precision.

In case of convergence failure of Newton method, the time step is halved
and the iterative method is restarted to the previous step. The procedure is
repeated till convergence is reached or the time step becomes excessively small
for a practical application and it is thus stopped due to lack of convergence. We
set the threshold for the timestep to be 10−12.
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The discretization method needs to comply with the constraint on the sat-
uration, that is Sℓ ∈ [0, 1]. We force its enforcement by clipping the saturation
value after each Newton iteration.

We implement the discretization methods in PorePy, a simulation tool for
fractured and deformable porous media suited for the mixed-dimensional prob-
lem [47].

6. Numerical validation

We consider three test cases to evaluate the performance of the numeri-
cal methods described in the previous sections. The first one, presented in
Section 6.1, is a 2D domain with one single fracture. It is divided into three
sub-cases in which the fracture orientation and rock properties are modified.
The second case, reported in Section 6.2, involves a fracture network composed
of 10 fractures with different permeability, some of which intersecting. In the
last test case, shown in Section 6.3, we study a 3D geometry cut by 8 fractures
with multiple intersections.

To keep the presentation simple, we apply the same fluid properties to the
two phases for all the test cases: the heavy phase, denoted by the subscript 0,
has a density ρ0 = 1 and dynamic viscosity µ0 = 1, the light phase is described
by ρ1 = 0.5 and µ1 = 1.

In all the cases, unless differently specified, we use the following convention
to define the dimensionless groups EA as in (4): the reference values are related
to the matrix domain where Lref is the vertical length and ρref is the difference
of the densities of the two phases.

The primary criteria to compare the discussed numerical schemes is the
number of Newton iterations done, being a proxy of the associated computa-
tional cost, and they accuracy to compute the numerical solution. Other specific
results are described case by case.

The iterative method is stopped when the error, err, defined as the norm of
the normalized ℓ2-norm of the increment, δx, is smaller than a given tolerance:

err =
∥δx∥2√
dim δx

< tol.

Unless differently specified, we set tolerance equal to tol = 10−6.

6.1. Case 1. Single fracture

The first test considers a simple 2D unit square domain, Fig. 3, and aims
to study the main characteristics of the discretization methods. We investigate
three sub-cases by varying the position of the fracture, its permeability, and the
grid elements shape (triangles or squares), see Fig. 3. In particular, Case 1.a
has an horizontal fracture touching both borders, Case 1.b has a vertical highly
permeable fracture that ends inside the matrix, the last one Case 1.c has an
oblique fracture.
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The dynamic is defined by the unstable initial condition with the heavy
phase on the top and the light one on the bottom, separated by a sharp front
and forced by the gravity, as depicted, for example, in Fig. 7.

60°

(a) Case 1.a (b) Case 1.b (c) Case 1.c

Figure 3: Case 1. Domains and grids for the example in Section 6.1. The fracture is located
in three different positions, (a) horizontally with tips touching the borders, (b) vertically with
one tip touching the border and the other immersed in the matrix, (c) with an angle and the
tips touching the borders. Different type of grids are used: (a) structured with quadrilateral
elements, (b) unstructured with triangular elements, (c) unstructured non-conforming at the
fracture interface with triangular elements.
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6.1.1. Case 1.a. Horizontal fracture

The parameters and properties used in this case are summarized in Tab. 1.
The flow motion is strongly dependent on the permeability of the fracture that
crosses the entire domain, since the two halves of the domain only interact
through the mortar fluxes.

The computational grid is made of quadrilateral elements, as depicted in
Fig. 3, with a limited number of elements, whose side size is 0.05.

Due to the simplicity of the test case here a minor advantage is provided
by the HU regarding the cumulative number of Newton iterations, Fig. 4. In
the same picture, we can see the time-cumulative number of wasted flips of
the upwind direction, summed over all the grid faces of the domain. Unless
differently specified, only the 2D domain is shown, since it is the one that
affects the Newton iteration the most. In particular, for the PPU the upwind
directions are linked to the volumetric fluxes, q0 and q1, that are more prone to
change during the Newton iterations. For the HU the directions are determined
by the total velocity, qT , and the gravity related function ω0, that is very stable
throughout the simulation. The middle panel of Fig. 4 shows the cumulative
number of timestep reductions, see Section 5.4. For this particular case, no
cuts are performed. Regarding the cumulative number of Newton iterations, we
notice a small gap between the two methods, which grows, and also the absolute
values does, alongside the refinement of the grid. In Fig.4 the cell size is reduced
to 0.025.

Note that the two methods behave differently in the presence of a sharp
saturation front. In particular, the HU method is more diffusive than the PPU,
as shown in Fig. 5(a) that represents the saturation profile along a vertical line
during the transient. A sharp jump in the saturation is visible at y = 0.5
because of the presence of the fracture. The behavior nearby the fracture is
similar for both PPU and HU since the fluxes at the interface boundaries are
computed with the same discretization scheme, see Section 5.

Matrix intrinsic permeability K2 = 1
Fracture intrinsic permeability K1 = 1
Fracture normal permeability k⊥,1 = 0.1
Fracture cross-sectional area ε1 = 0.01
Matrix porosity Φ2 = 0.25
Fracture porosity Φ1 = 0.25
Total simulation time tend = 20
Timestep max ∆tmax = 0.4
EA 0.0625

Table 1: Case 1. Horizontal. Parameters used for this problem.
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Figure 4: Case 1. Characteristics regarding the iterative method.19
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Figure 5: Case 1. Horizontal. Saturation profile along a vertical line. The left panel illustrates
S0 at time t = 6.8, during the countercurrent flow of the two phases. A more diffusive trend
is observable for the HU scheme than the PPU. In the right panel, showing the stationary
solution at t = 20, the lines nearly coincide. No visible differences in the numerical diffusion
are appreciable at the discontinuity since the interface fluxes are discretized with the same
scheme.

20



0.0 0.2 0.4 0.6 0.8 1.0
S0

0.0

0.3

0.5

1.0

y −0.04 −0.02 0.00 0.02 0.04

−0.04

−0.02

0.00

0.02

0.04

t = 0 t = 0.3 t = 2

Figure 6: Case 1. Vertical. Saturation at different timesteps along a vertical line at the center
of the 2D domain. At initial time, t = 0 a jump along y is prescribed to the saturation,
then the fluid is allowed to flow forced by the gravity. At t = 0.3 we see the impact of the
high permeable fracture, that drains the phase 0 from the top and releases it on the bottom
tip around y = 0.3. As the stationary condition is approached, t = 2, the two phases are
separated and they occupy half of the domain each.

6.1.2. Case 1.b. Vertical fracture

The parameters and properties defining in this case are summarized in
Tab. 2.

The flow in the high-permeability fracture is faster than that in the surround-
ing materials, so the fracture drains the heavy fluid from the top and releases it
at the bottom. Indeed, observing Fig. 6, showing the saturation along a vertical
line near, but not coincident with, the fracture in the 2D domain, we can see,
at time t = 0.3, a formation of a local minimum of the saturation located at
the top (absorption) and a local maximum at the inner tip of the fracture, at
y = 0.3 (release).

Results regarding the iterative methods, Fig. 4, are similar to the ones of
the previous case.

Matrix intrinsic permeability K2 = 1
Fracture intrinsic permeability K1 = 10
Fracture normal permeability k⊥,1 = 0.1
Fracture cross-sectional area ε1 = 0.01
Matrix porosity Φ2 = 0.25
Fracture porosity Φ1 = 0.25
Total simulation time tend = 5
Timestep max ∆tmax = 0.1
EA 0.0625

Table 2: Case 1. Vertical. Parameters used for this problem.
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6.1.3. Case 1.c. Slanted fracture, non-conforming grid

The parameters and properties defining in this case are summarized in
Tab. 3.

The normal permeability k⊥ of the fracture is low so it creates an obstacle
to the flow through it. Indeed, in Fig. 7 we can see that the phases tend to
slide along the fracture before reaching the stationary condition where the two
phases have swapped position with respect to the initial condition.

We discretized the domain with a simplex non-conforming grid a the inter-
face, as visible in Fig. 8. The grid is derived by deforming a conforming grid
using a technique that relies on radial basis functions, detailed in [8]. This setup
is numerically more challenging the the previous, so a greater gap in the perfor-
mance is visible in Fig. 4. For this case, we show also the number of wasted flips
of the upwind direction for each subdomain and mortar, bottom panel of Fig. 4.
The 2D and 1D domains exhibit similar trends, with the HU method showing
fewer changes in direction. The behavior of the upwind across domains, which
is the same for both PPU and HU, varies according to the upwind discretization
method used in the neighboring domains and there is not a evident improve-
ment in the HU case. This suggests that a hybrid upwind between domains
could lead to advantages. By comparing these graphs with those showing the
cumulative number of Newton iterations, we notice that the Newton iterations
are predominantly influenced by the flips in the 2D domain.

Furthermore, increasing the permeability contrast in the 1D and 2D domains
does not significantly affect the characteristics of the iterative method. The
results are shown in Fig. 4 Case 1.c and Case 1.c hc (high contrast) where the
permeabilities of the fracture are k1 = 10−6 and K⊥ = 10−8. For Case 1.c, the
bottom panel of Fig. 4 displays the cumulative number of upwind direction flips
for both 2D and 1D domains, as well as for the mortar.

We perform a spatial convergence analysis of the HU method, comparing
the solution obtained with a reference conforming grid, Fig. 9. The analysis
is performed by calculating a single time step from a smooth solution in the
primary variables and then calculating the L2-norm of the spatial error with
respect to a reference solution computed with the HU on a very fine grid.

The nonconforming grid allows to exploits the full capabilities of the dual-
mortar formulation, demonstrating that there are no significant differences on
the error using a conforming grid, thus with identity maps, Π and Ξ, or a
nonconforming grid.

Thanks to the finite volume method, conservative by construction, the mass
of the two phases remains perfectly conserved throughout the entire simulation,
as illustrated in Fig. 10. Equivalent results are obtained for all the other tests,
so they will not be shown.

6.2. Case 2. Complex fracture network

The geometry of this test case is taken from [25]. The presence of many
fractures, with intersection of X-type or L-type (fracture 5 and 6) as shown in
Fig. 11, and the resulting formation of 0D domains, adds a significant challenge
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Figure 7: Case 1. Slanted fracture. Three time instances, on the left we have the initial
condition in which the heavy phase (denoted with subscript 0) occupies the upper half of the
domain and the light phase occupies the lower part. A non perfectly straight interface is due
to the irregularity of the mesh. The middle panel shows the saturation distribution at a later
time. We can clearly see the effects of the low-permeable fracture that generates a jump in
the saturation value. On the right is the stationary condition, where the phases have swapped
positions.

Figure 8: Case 1. Slanted fracture. Zoom on the simplex grid of the 2D domain. The orange
elements highlight the lack of conformity at the fracture interface.
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Matrix intrinsic permeability K2 = 1
Fracture intrinsic permeability K1 = 1
Fracture normal permeability k⊥,1 = 0.01
Fracture cross-sectional area ε1 = 0.01
Matrix porosity Φ2 = 0.25
Fracture porosity Φ1 = 0.25
Total simulation time tend = 10
Timestep max ∆tmax = 0.1
EA 0.0625

Table 3: Case 1. Slanted fracture. Parameters used in this problem.
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Figure 9: Case 1. Slanted. Spatial convergence on a conforming grid and non-conforming
gird.

to this test. Fractures number 4 and 5 have low permeability, while the other
fractures are highly permeable. The permeability of the intersections are set
equal to the harmonic average of the intersecting fractures. The parameters
and properties defining in this case are summarized in Tab. 4.

The low-permeable fractures in addition to creating a barrier, retain the
fluid by allowing a slow displacement inside them, as depicted in Fig. 11. While
in the permeable fractures the saturation values is similar to the one of the
surrounding matrix, in the impermeable fractures the saturation distribution is
similar to the distribution at the initial time.

The cumulative number of flips of the upwind direction, the number of
timestep reductions and cumulative Newton iteration, Fig. 12, show the bet-
ter performance of HU compared to PPU, in particular, the latter requires a
number of timesteps cuts up to 4 per time step, causing a large amount of wasted
iteration. Indeed, the end of the simulation, the number of iterations required
by HU is approximately three times lower. The simulation thus showed that
HU significantly outperforms PPU also for more complex geometries.

6.3. Case 3. Network with small features

The geometry and the domain are replicated from [12]. We list in Tab. 5
the main properties. For this case, we set the Newton tolerance tol = 2 ×
10−5. The fracture network is high permeable whereas the surrounding matrix
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Figure 10: Case 1. Slanted. Variation of the total mass of phase 0 versus time. The variation
is referred to the initial mass, so at initial time the variation is 0 and it does not fit the axis
range. The initial mass is 0.127. Thanks to the finite volume method, the mass is conserved
at each timestep.

Matrix intrinsic permeability K11 = 100
Fracture i ̸= 4, 5 intrinsic permeability Ki = 100
Fracture 4 intrinsic permeability K4 = 0.01
Fracture 5 intrinsic permeability K5 = 0.01
Fracture i ̸= 4, 5 normal permeability k⊥,i = 100
Fracture 4 normal permeability k⊥,4 = 0.01
Fracture 5 normal permeability k⊥,5 = 0.01
Intersection normal permeability k⊥,i =

1
1/k⊥,j+1/k⊥,q

Fracture cross-sectional area εi = 0.01
Intersection cross-sectional area εi = 0.01
Matrix porosity Φ11 = 0.25
Fracture porosity Φi = 0.25
Intersection porosity Φi = 0.25
Total simulation time tend = 0.05
Timestep max ∆tmax = 2× 10−3

EA 6.25

Table 4: Case 2. Parameters used for this problem. The intersection normal permeability is
the harmonic average of the intersecting fractures Γj and Γq .

is low permeable. Fig. 13 illustrates the 2D fracture network immersed in a
3D domain. The fracture intersection are of X and Y-type with small angles.
This complicated geometry entails the generation of ill-shaped grid elements, a
challenge for the discretization methods, Fig. 13.

As in the previous case, we set the heavy phase to lay initially in the top part
of the domain and the motion is then forced by the gravity. The permeability
contrast produces a fast dynamics in the fracture that lasts till around time
0.1 before a slow motion takes place in the whole domain till the end of the
simulation, we can appreciate the different speed of diffusion inside the fracture
and in the matrix due to different EA numbers, 11.25 for the matrix and 875 for
the fracture. In Fig. 13 the saturation during the transient is shown. A small
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Figure 11: Case 2. (a) Domain. The fracture network geometry is taken from [25]. (b)
Saturation at time t = 0.013. The profiles of the saturation in the high-permeable fractures
adjust to the surrounding domain. Instead, the low-permeable fracture permit a small motion
of fluid across and along them.
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Figure 12: Case 2. Characteristics regarding the iterative method.

diffusion is visible in the 3D domain, while a large displacement of the phases
occurred in the fracture network. Results in Fig. 12 show that the PPU fails to
converge at the beginning of the simulation, during the fast dynamics, while the
increased robustness of HU enabled this challenging simulation to be completed
with a limited number of time step cuts.
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Matrix intrinsic permeability K3 = 100
Fracture i intrinsic permeability Ki = 104

Intersection i intrinsic permeability Ki = 104

Fracture i normal permeability k⊥,i = 104

Intersection i normal permeability k⊥,i = 104

Fracture cross-sectional area εi = 0.01
Intersection cross-sectional area εi = 0.01
Matrix porosity Φ3 = 0.2
Fracture porosity Φi = 0.2
Intersection porosity Φi = 0.2
Total simulation time tend = 0.01
Timestep max ∆tmax = 10−5

Newton tolerance tol = 2× 10−5

EA 11.25

Table 5: Case 3. Parameters defining the test case.

(a) Fracture network (b) Ill-shaped cells (c) t = 1.3× 10−3 (d) t = 2.86× 10−3

Figure 13: Case 3. (a) Domain and fracture network. (b) The fracture configuration with
narrow angles leads to ill-shaped grid elements. The highlighted elements have a ratio of the
circumscribed and inscribed sphere radius between 3.5 and 4.1. (c) and (d) Saturation at time
t = 1.3× 10−4 and t = 2.86× 10−3, respectively. We can appreciate different time scales due
to different EA numbers, specifically 11.25 in the matrix and 875 in the fracture, the fast one
inside the fractures and the slow one in the 3D domain. Some fractures are made partially
transparent for graphical reason.
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Figure 14: Case 3. Characteristics regarding the iterative method. The PPU method fails to
converge up to a reasonable timestep size while the HU proves to be more robust.
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7. Conclusion

We address the physical problem of two-phase flow in the subsurface with a
fractured matrix rock. We model fractures, and possibly intersections, through
a dimensionally reduced object obtaining a mixed-dimensional domain. The
fluid motion is governed by partial derivative equations defined in each subdo-
main, while the interaction between the subdomains is described by Lagrange
multipliers that are represented by fluid fluxes. The fluid flow is dictated by pos-
sible sources/wells, boundary conditions and, most importantly, gravity. This
configuration is known to generate countercurrent flows, a condition that spoils
the performance of the nonlinear solver (Newton).

We tackle the convergence problem by working on the discretization of the
fluxes. We then extended the work done in [18] on a hybrid upwind strategy
to the case of a mixed-dimensional framework. We implement the method in
PorePy, a simulation tool for fractured and deformable porous media suitable
for the mixed-dimensional problem [46].

We test the discretization method on three different geometries, both 2D and
3D, with intersecting fracture network, discretized with simplex and hexahedral
meshes, and we test the method on different flow regimes, imposed by different
rock properties. We show numerically the convergence of the method, even with
non-conforming grids at subdomain interfaces. In each test case, the proposed
method reduces the number of Newton iterations. In particular, in the third
case (Section 6.3), the standard discretization method fails to converge, making
it impossible to complete the time-dependent simulation. On the other hand,
an increase in numerical diffusion is observed.

Given the promising results obtained, further developments will be under-
taken, such as, from the physical point of view, extension to n-phases, high
compressible fluids, inclusion of capillary effects and chemical reactions. From
the numerical point of view, a hybrid upwind strategy should also be adopted at
the interfaces to further improve performance, in addition to a study aimed at
decreasing the numerical diffusion added by the discretization method. More-
over, despite an increment in the computational cost for solving the linear sys-
tem, we expect an improvement in the accuracy by using of MPFA and gravity
consistent transmissibilities in (17) instead of TPFA.

The numerical scheme has been shown to be robust and effective in reducing
the number of Newton iterations, resulting in benefits in computational cost of
the simulation.
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