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Abstract

In this work, we present an uncertainty quantification analysis to de-
termine the influence and importance of some physical parameters in a
reactive transport model in fractured porous media. An accurate de-
scription of flow and transport in the fractures is key to obtain reliable
simulations, however, fractures geometry and physical characteristics pose
several challenges from both the modeling and implementation side. We
adopt a mixed-dimensional approximation, where fractures and their in-
tersections are represented as objects of lower dimension. To simplify the
presentation, we consider only two chemical species: one solute, trans-
ported by water, and one precipitate attached to the solid skeleton. A
global sensitivity analysis to uncertain input data is performed exploiting
the Polynomial Chaos expansion along with spectral projection methods
on sparse grids.

1 Introduction

The Paris agreement, adopted by 196 parties in 2015, aims at limiting global
warming to below 2◦C, preferably to 1.5◦C, compared to pre-industrial levels.
The reduction of greenhouse gas emissions in the atmosphere is crucial to achieve
such long term goal, and requires the transition towards renewable energies,
and the subsequent need for effective energy storage; moreover, a safe long term
sequestration of CO2 is considered a promising strategy to reduce emissions
into the atmosphere. Many of the aforementioned strategies entail a massive
use of the subsurface for fluids injection, storage and production. If, on one
hand, it is necessary to guarantee the mechanical integrity of the subsurface
to avoid unwanted fracturing and induced seismicity, it is also important to
evaluate the effect of chemical reactions on the hydraulic properties of the porous
media. Indeed, the injection of water at different temperature and with different
solutes concentration with respect to the formation can cause dissolution and
precipitation of minerals, with an impact on porosity and permeability. In some
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cases, as in the case of in situ carbon mineralization, these reactions can be
exploited to our advantage to obtain a better storage of CO2 by 1) chemically
trapping carbon by binding it into existing mineral and, at the same time 2)
thanks to the change of specific volume associated with the transformation of
the minerals, creating a more effective cap-rock, [23]. Even if this process occurs
over very long time scales in natural conditions, its controlled exploitation is an
interesting technological challenge.

A realistic mathematical model of these phenomena encompasses a model
for flow in porous media (we focus on single phase flow, assuming small con-
centrations of gases, if present), coupled with the transport of mobile species
and the modeling of both kinetic and equilibrium reactions. Moreover, since
reaction rates are usually influenced by temperature, and in view of the possi-
ble application of the model to low temperature geothermal plants, the coupled
model is completed by the heat equation, [14].

Since fractures are ubiquitous in porous media and have a major impact
on flow and transport (both of solutes and heat) this work is focused on the
modeling of fractured porous media, where fractures are modeled as lower di-
mensional objects, which can be much more permeable than the surrounding
medium, or nearly impermeable if, for instance, precipitation occurs reducing
their aperture, [15].

Many physical, geometrical and geochemical parameters involved in the
model are affected by uncertainty, therefore a purely deterministic evaluation of
the model is useless without a suitable analysis of the solution variance. In this
work we propose an uncertainty quantification workflow based on Polynomial
Chaos [30, 18] and sparse grids [6] for the sampling of the parameters space: this
choice allows us to obtain accuracy with a manageable number of evaluations of
the model, which, being coupled and time dependent, has a non-negligible com-
putational cost. The goal is to compute the Sobol indices associated with some
input parameters to quantify the impact of the uncertainty of such quantities
on a variable of interest, typically the medium porosity. The space distribution
of the Sobol indices, or the partial variances, can also give interesting insight
into the problem, which, in spite of being reduced to the minimum possible
complexity, already exhibits a non-trivial, fully coupled behavior.

The paper is structured as follows. In Section 2 we present the model equa-
tion in a homogeneous porous medium; then, in Section 3, we extend the equa-
tions to the hybrid dimensional case to account for the coupling with fractures.
Section 4 briefly discusses the proposed numerical approximation schemes and
some implementation details. Section 5 describes the uncertainty quantification
workflow and Section 6 is devoted to the presentation of a a complete set of test
cases. Finally, conclusions are drawn in Section 7.

2 Problem description and mathematical model

We consider the coupled problem of single-phase flow and reactive transport
in porous media, accounting for the porosity changes linked to mineral reac-
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tions. Single phase flow can be assumed, even in the presence of CO2, at low
gas concentrations, for instance at the edge of the plume, away from injection
wells. Typically, a large number of species is needed for a realistic modeling of
reactive transport, including solid mineral species and aqueous complexes, and
the chemical reactions include equilibrium and kinetic ones. In the following we
will discuss the general case and then specialize the model to the simple case of
the dissolution/precipitation of a single mineral species.

2.1 Single phase flow

Under the assumption of single-phase flow, the fluid pressure p and Darcy ve-
locity q can be computed as the solution of a Darcy problem

q +
k(ϕ)

µ
(∇p− ρwgez) = 0

∇ · q = −∂tϕ
(1)

complemented by suitable boundary conditions prescribing a given pressure or
normal flux on the boundary. Here k is the permeability, µ the viscosity, ρw
is the fluid density and g is the gravity acceleration. Note that in (1) we have
assumed constant density, but we are accounting for porosity changes through
a source term. Indeed, porosity depends on the changes of the mineral volume
fraction as detailed in Section 2.3.

The intrinsic permeability, which we assume to be isotropic in the bulk
porous medium, can be modeled as a function of porosity. We consider the
following law

k(ϕ) = k0

(
ϕ

ϕ0

)2

where k0 is the reference value at the initial porosity ϕ0. Note that this depen-
dence will introduce a non-linear coupling among the model equations.

2.2 Advection-diffusion-reaction equations for mobile species

Let ui denote the molar concentration of the i-th mobile species, for instance a
dissolved mineral or gas. The governing equation reads

∂t(ϕui) + ∇ · (qui − ϕd∇ui) = ϕ

Nr∑
r=1

νirRr (2)

where d is the diffusion tensor (which may account for mechanical dispersion,
and is considered to be the same for all species), q is the Darcy velocity, Nr is
the number of reactions and νir is the stoichiometric coefficient of species i in
reaction r.
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In particular, we consider a set of Nr reactions in the form∑
i

νirXi ⇄ 0 r = 1, . . . , Nr

where Xi is a generic species, solid or mobile, νir is zero if Xi is not involved in
the reaction r, negative if Xi is a reactant in the forward reaction, and positive
if it is a product. The reaction rate Rr should be interpreted as the net rate,
i.e.

Rr = R+
r −R−

r

where R+
r is the forward reaction rate and R−

r is the backward one. Their
expressions are often empirical and problem dependent; the one considered in
this work is illustrated in Section 2.5. Finally, equation (2) should be comple-
mented by initial conditions ui(x, 0) = ui,0(x), and boundary conditions on the
concentration or normal flux.

2.3 Mineral species

In the case the species is immobile the evolution equation for its concentration,
denoted as wi, reduces to an ordinary differential equation since we do not have
the transport and diffusion terms, i.e.

dt(ϕwi) = ϕ

Nr∑
r=1

νirRr (3)

where an initial condition is supplemented as wi(x, 0) = wi,0(x). However, it
may be more convenient to consider a different measure of concentration for
solid species, in particular we want to compute the solid volume fractions ϕi
as the ratio of the volume of mineral i for a unit volume of rock. The volume
fractions can be obtained from the concentrations as

ϕi = wiηiϕ (4)

where ηi is the molar volume of the mineral. If we let ϕI be the volume fraction
of inert minerals (i.e. species that are not affected by chemical reactions) we
have that

ϕ = 1 − ϕI −
Ns∑
i=1

ϕi

dtϕ = −
Ns∑
i=1

ηidt(ϕwi)

where Ns is the number of solid, immobile species.
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2.4 Heat equation

Since reaction rates usually depend on temperature, we include in our model the
heat equation for thermal conduction (based on Fourier’s law) and convection
in the porous media. We assume thermal equilibrium between rock and water,
so that only one equation can be considered instead of two.

The temperature field is indicated as θ and its evolution is described by

∂t(c(ϕ)θ) + ∇ · (ρwcwqθ − Λ(ϕ)∇θ) + j = 0. (5)

Here c is the effective thermal capacity defined as the porosity-weighted average
of the water cw and solid cs specific thermal capacities,

c(ϕ) = ϕρwcw + (1 − ϕ)ρscs,

where ρw and ρs are the densities of the water and solid phase respectively. The
effective thermal conductivity Λ is computed in a similar way, as

Λ(ϕ) = Λϕ
wΛ1−ϕ

s ,

where Λs and Λs are the water and solid thermal conductivity. Finally, j models
a source or sink of heat in the system. Equation (5) is completed by initial
conditions, θ(x, 0) = θ0(x), and boundary conditions on the temperature or
heat flux.

2.5 Simplified dissolution-precipitation model

In this work we consider a single, simple kinetic reaction in the form

U + V −W ↔ 0

where U and V are the positive and negative ion respectively, and W is the
precipitate they can form, [27]. The net reaction rate results from the difference
between precipitation (forward reaction) and dissolution (backward reaction).
Under the hypotheses of electrical equilibrium, we can assume that the concen-
tration of U and V are equal and denoted by u, which from now on is the molar
concentration of the mobile species, whereas w is the molar concentration of the
precipitate. The reaction rates are modeled as

rp = λ−(θ)u2

rd = λ+(θ)

moreover, at equilibrium we have that rd = rp, thus, λ+ = λ and λ− = λu−2
e

where ue is the equilibrium solute concentration. The net reaction rate is then

rw(u,w, θ) =


λ

(
u2

u2e
− 1

)
if w > 0

λ
u2

u2e
if w ≤ 0.

Note that precipitation proceeds at a constant rate until w = 0, and is then set
to zero.
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Figure 1: Fractured domain and notation.

2.6 The complete model

The complete model, in the case of our interest, computes (q, p, θ, u, w, ϕ) by
solving the following system of non-linear and coupled equations given by

q +
k(ϕ)

µ
(∇p− ρgez) = 0

∇ · q = −∂tϕ
∂t[c(ϕ)θ] + ∇ · (ρwcwqθ − Λ(ϕ)∇θ) + j = 0

∂t(ϕu) + ∇ · (qu− ϕd∇u) = −ϕrw(u,w, θ)

dt(ϕw) = ϕrw(u,w, θ)

dtϕ = −ηdt(ϕw)

(6)

complemented by constitutive laws and suitable initial and boundary conditions.

3 Hybrid dimensional model for fractured porous
media

In the following we introduce the extension of the coupled model (6) to the
case of fractured porous media, following [15]. For the sake of simplicity we
will present the model in the case of a single fracture, geometrically reduced
to its centerline, see Figure 1. This model reduction strategy is often adopted
in the simulation of fractured porous media to reduce the computational cost
by avoiding excessive mesh refinement; moreover, in our case it is particularly
convenient since the aperture can change in time due to reactions. For more
references on this approach see [24, 19, 28, 26, 5, 1, 3, 14] and references therein.

Let Ω̃ be the fractured domain. Following [13], we define γ as a non self-
intersecting C2 curve (if n = 2) or surface (if n = 3). In an equi-dimensional
setting a fracture can be defined as the following set of points

Γ =

{
x ∈ Ω̃ : x = s + rnγ , s ∈ γ, r ∈

(
−ϵγ(s)

2
,
ϵγ(s)

2

)}
.
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Thus, we have a subdomain of Ω̃, separated by the surrounding porous medium
Ω by the interfaces γ+ and γ− with associated normal vectors n+ and n−.
We replace the fracture Γ with its centerline γ and we assign a unique normal
nγ = nγ,+ to the fracture, see Figure 1. We assume that the fracture is open,
with porosity ϕγ = 1.

3.1 Reduced variables

In the following we denote with the subscript γ the variables in the fracture,
and with Ω the variables in the porous medium. Note that, after geometrical
reduction, we denote with Ω the domain Ω̃ \ γ. Reduced vectors variables in
the fracture are defined as the integral of the tangential components of the
corresponding equi-dimensional variables,

qγ(x) :=

∫
ϵγ(x)

T (x)q(x, s)ds

with T := I − N and N := nγ ⊗ nγ the tangential and normal projection
matrices, respectively. The reduced scalar variables are instead the integral
average, for each section of the fracture, of the equi-dimensional counterparts

pγ(x) :=
1

ϵγ(x)

∫
ϵγ(x)

p(x, s)ds θγ(x) :=
1

ϵγ(x)

∫
ϵγ(x)

θ(x, s)ds

uγ(x) :=
1

ϵγ(x)

∫
ϵγ(x)

u(x, s)ds wγ(x) :=
1

ϵγ(x)

∫
ϵγ(x)

w(x, s)ds.

Moreover, we denote by ∇τ , ∇τ · the tangential gradient and divergence
defined on the tangential space of the fracture.

Following [24] we assume that the permeability k and diffusivity d, can be
decomposed in normal and tangential components as

k = κγN + kγT and d = δγN + dγT. (7)

3.2 Reduced Darcy flow model

The reduced model for the Darcy flow, which describes the evolution of the
reduced Darcy velocity qγ and pressure pγ in the fracture is obtained, following
[24], by the following steps:

� integration of the mass balance equation in each section of the fracture,
to obtain a conservation equation for qγ ;

� integration of the tangential component of Darcy law in each section of
the fracture to obtain a relationship between qγ and pγ ;

� integration, with a suitable approximation, of the normal component of
Darcy law in each section of the fracture to obtain two coupling conditions
between the fracture and the surrounding medium.
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The coupled problem in Ω and γ then reads:

µqΩ + kΩ(ϕΩ)∇pΩ = 0

∂tϕΩ + ∇γ · qΩ + fΩ = 0
in Ω × (0, T ), (8)

µqγ + ϵγkγ(ϵγ)∇pγ = 0

∂tϵγ + ∇γ · qγ + qγ · nγ |γ+
− qγ · nγ |γ− + ϵγfγ = 0

in γ × (0, T ), (9)

µϵγqΩ · nγ |γ+ + κγ(ϵγ)(pγ − pΩ|γ+) = 0 on γ+ × (0, T ) (10)

µϵγqΩ · nγ |γ− + κγ(ϵγ)(pγ − pΩ|γ−) = 0 on γ− × (0, T ), (11)

where fγ(x) := ϵ−1
γ (x)

∫
ϵγ(x)

f(x, s)ds is the reduced source or sink term. Fol-

lowing lubrication theory, the fracture tangential permeability kγ can be ex-
pressed as a function of the aperture, as described in more detail in Subsection
3.5.

The conditions on γ± model the fact that the flux exchange between the
fracture and the surrounding porous media is related to the pressure jump via
κγ . Note that, since κγ , as kγ , can be modeled as a function of ϵγ , if the aperture
goes to zero the flux exchange vanishes.

3.3 Reduced heat model

The reduced model that describes the evolution of temperature θ is obtained,
similarly to the Darcy problem, by integrating the conservation equation in
each section of the fracture; the coupling conditions however, which stem from
a suitable approximation of the total normal heat flux, should take into account
the different nature of the advective and diffusive fluxes in the coupling. The
coupled model in Ω and γ reads:

∂t(c(ϕ)θΩ) + ∇ · (ρwcwq − Λ(ϕ)∇θΩ) + j = 0 in Ω × (0, T ),

∂t(ϵγcwθγ) + ∇τ · (ρwcwqγ − Λwϵγ∇τθγ) + ψ+ − ψ− + jγ = 0 in γ × (0, T ).

(12)

where the conservation equation in the fracture accounts for heat flux exchanged
with the fracture on both sides, through the terms ψ±, defined as

ψ+ = ρwcwqΩ · nγ |γ+
θ̃+ +

2Λw

ϵγ
(θΩ|γ+

− θγ)

ψ− = ρwcwqΩ · nγ |γ− θ̃− +
2Λw

ϵγ
(θγ − θΩ|γ−)

where θ̃± is selected as the upwind value, i.e.

θ̃+ =

{
θγ if qΩ · nγ |γ+ > 0

θΩ|γ+
if qΩ · nγ |γ+

< 0
θ̃− =

{
θγ if qΩ · nγ |γ− < 0

θΩ|γ− if qΩ · nγ |γ− > 0.
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3.4 Reduced solute and precipitate model

The reduced model that describes the evolution of the solute uγ is similar to
the reduced heat equation. By integrating the solute conservation equation in
the fracture we obtain the reduced equation, such that

∂t(ϕΩuΩ) + ∇ · (qΩuΩ − dΩ∇uΩ) = ϕΩrw in Ω × (0, T ),

∂t(ϵγuγ) + ∇τ · (qγuγ − ϵγdγ∇τuγ) + χ+ − χ− = ϵγrw in γ × (0, T ).
(13)

Note that the balance equation in the fracture accounts for exchanges with the
porous medium, in particular we have that

χ+ = qΩ · nγ |γ+
ũ+ +

2δγ
ϵγ

(uΩ|γ+
− uγ)

χ− = qΩ · nγ |γ− ũ− +
2δγ
ϵγ

(uγ − uΩ|γ−)

where once again ũ± is the upwind value, i.e.

ũ+ =

{
uγ if qΩ · nγ |γ+

> 0

uΩ|γ+
if qΩ · nγ |γ+

< 0
ũ− =

{
uγ if qΩ · nγ |γ− < 0

uΩ|γ− if qΩ · nγ |γ− > 0.

For the precipitate in the fracture wγ , being the original model an ordinary
differential equation valid for each point of the domain, the reduced model in
the fracture becomes simply

∂t(ϵγwγ) − ϵγrw(uγ , wγ , θγ) = 0 in γ × (0, T ). (14)

Note that (14) is not directly coupled with the corresponding equation in the
porous matrix since both describe local phenomena.

3.5 Permeability and aperture model

As already mentioned we assume that both components of the permeability k
in the fracture follow a law which relates them to the aperture, more precisely

kγ(ϵγ) = kγ,0
ϵ2γ
ϵ2γ,0

and κγ(ϵγ) = κγ,0
ϵ2γ
ϵ2γ,0

, (15)

where kγ,0 and κγ,0 are reference coefficients along and across the fracture,
respectively, and ϵγ,0 > 0 is the initial aperture. As the porosity changes with
mineral precipitation, we consider a similar law to describe the evolution of the
fracture aperture ϵγ . We have

∂tϵγ + ηγ∂t(ϵγwγ) = 0 in γ × (0, T )

ϵγ(t = 0) = ϵγ,0 in γ × {0} , (16)

where ηγ represents the molar volume of the mineral as it precipitates on the
fracture walls.
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4 Numerical approximation

The numerical schemes for the solution of the deterministic problem (6) are
implemented in the PorePy library [20] which provides support for multidimen-
sional coupling, allowing for an easy implementation of the problem in fractured
media.

4.1 Time integration and splitting strategy

Problem (6) is fully coupled in a non-linear way. For the sake of computational
efficiency, in this work its solution is based on a non-iterative splitting strategy,
with the underlying assumption that the changes to the flow parameters due to
chemical reactions are relatively slow. In particular, at each time step we follow
the scheme proposed in [15] and:

1. we first solve the Darcy problem to obtain the advective fields qΩ, qγ . The
flow problem is discretized in time by approximating the time derivative
∂tϕ by finite differences as

∂tϕ ≃ ϕ∗ − ϕn

∆t

where ϕ∗ = 2ϕn − ϕn−1 is the extrapolated value;

2. with qΩ, qγ we solve the heat equation, discretized in time with the Im-
plicit Euler method;

3. then, given the temperature field we solve the advection-diffusion-reaction
problem which is in turn split into

(a) the advective step, discretized in time with the Implicit Euler scheme,
which gives and intermediate solute concentration u∗;

(b) the reaction step to compute the final solute and precipitate concen-
trations (note that the precipitate is not affected by transport). This
step is integrated explicitly in time, with the addition of an event
location procedure to avoid negative precipitate concentrations.

4. Finally, we update porosity and permeability for the next step.

4.2 Space discretization

Space discretization is based on a standard, conforming approach where frac-
tures are honoured by the computational grid and each element of the fractures
grid is a face of the porous media grid. However, this assumption could be
relaxed allowing for different grid resolutions with the use of mortar variables.
Finally, since equations are in mixed-dimensions, all the numerical schemes are
applied in different dimensions, i.e. in 2D and 1D.

Since the Darcy flux is involved in the advective terms of the transport and
heat equations it is of fundamental importance that local mass conservation is
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fulfilled. Therefore, we approximate the Darcy problem in its mixed formulation
and employ a suitable pair of discrete spaces for the pressure and the Darcy flux.
In particular we employ the lowest order Raviart-Thomas element pair RT0, P0.

For the numerical solution of the heat equation and the advection-diffusion-
reaction equation we apply, in hybrid dimensions, the Finite Volume method.
Consistently with the continuous model we consider an upwind approximation
of the advective term, whereas the diffusive term is approximated with the two
point flux approximation (TPFA), see [10], [11], [9]. Since we are considering
constrained triangulations to honour the fractures the grid may in principle not
be orthogonal. However, we assume that the distortion is small enough to obtain
a reliable approximation even with a simple TPFA scheme.

5 Sensitivity analysis workflow

In this section we present the algorithm employed to approximate stochastic
quantities by means of Polynomial Chaos (PC) expansions [30, 18]. This tech-
nique will allow us to compute the sensitivity Sobol indices and to obtain a
surrogate model of the problem for a quick evaluation of the quantities of inter-
est. PC expansion have been used to treat a large variety of problems, including
elliptic models (see, e.g., [2, 25]), fluid mechanics problems [21], and flow and
transport in porous media (see, e.g., [17, 4]).

The sampling of the uncertain parameters space is performed with pseudo-
spectral projection on sparse grids [6], thus obtaining an accurate estimate with
a limited number of evaluation of the deterministic model. This is particularly
important since the problem is time dependent and, moreover, the presence of
chemical reactions can introduce a fast time scale, constraining the time step
amplitude with an increase in the computational cost for each evaluation.

5.1 Polynomial Chaos expansion

Let N be the number of parameters ξ = (ξi)1≤i≤N and Ξ the space of possible
realizations. For the sake of simplicity the parameters are rescaled so that
Ξ = [0, 1]N . Moreover, given a probability measure ρ : Ξ → R+, the inner
product of two second-order random variables X(ξ) and Y (ξ) is defined as

⟨X,Y ⟩ =

∫
Ξ

X(ξ)Y (ξ)ρ(ξ)dξ.

The Polynomial Chaos (PC) expansion of a variable X(ξ) reads

X(ξ) =
∑

k∈NN

Xkϕk(ξ), (17)

where {Xk = ⟨X,ϕk⟩ : k ∈ NN} are the spectral modes of X, the basis functions
{ϕk(ξ) : k ∈ NN} are multi-variate polynomials chosen to be orthogonal with
respect to the product ⟨·, ·⟩, and the multi-index k = (k1, . . . , kN ) denotes the
polynomial degree with respect to the parameters ξi.
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Figure 2: Sparse grid for two parameters of level 2 on the left, level 4 on the
centre and level 6 on the right.

The PC approximation is then obtained by truncating the expansion in (17)
to a finite set K ⊂ NN , which determines the quality of the approximation:

XK(ξ) :=
∑
k∈K

Xkϕk(ξ). (18)

The statistical moments of the variables of interest are easily obtained from the
PC approximations; e.g., mean, variance, and covariance are given by

⟨XK⟩ = X0, Var(XK) =
∑

k∈K\0

X2
k, Cov(XK, YK) =

∑
k∈K\0

XkYk. (19)

5.2 Spectral projection method

The coefficients of the PC expansion in (18) can be computed in different ways
(see, e.g., [22, 7]). This work is based on non-intrusive pseudo-spectral projec-
tion, which in our opinion, provides the best trade-off between complexity and
precision. The numerical quadrature schemes are constructed as sparse ten-
sorization of a one dimensional formula [16]. Then, given M quadrature points
and the respective weights {w(q)}1≤q≤M , the modes (Xk)k∈K are computed as

Xk = ⟨X,ϕk⟩ ≃
M∑
q=1

w(q)X(ξ(q))ϕk(ξ(q)).

The complexity of the method is governed by the number M of evaluations of
the deterministic problem, while the accuracy depends on the PC basis {ϕk}k∈K.
In order to maximize the accuracy with respect to the computational effort, we
adopt a sparse method (cf. Figure 2) hinging on the application of Smolyak’s
formula [29] directly on the projection operator, rather than on the integration
operator. Specifically, the set K is defined as the largest possible one such that
the discrete projection is exact for any function spanned by {ϕk}k∈K, i.e.:

∀k, l ∈ K,
M∑
q=1

w(q)ϕk(ξ(q))ϕl(ξ
(q)) =

{
1 if k = l

0 otherwise
.
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In this work, we have opted for an isotropic sparse tensorization of nested
Clenshaw–Curtis quadrature rules, where the level l ∈ N of the sparse grid is
the only parameter controlling the quality of the approximation. As l increases,
both the number of nodes M and the multi-index set K increase.

5.3 Sensitivity analysis

The sensitivity analysis consists in the evaluation of the different contributions
of the input parameters on the variance of the solution. This is achieved by
the computation of the Sobol indices, defined as the ratio between the partial
variance corresponding to the input parameter under investigation ξi, and the
total variance of the quantity of interest X

S1,i :=
Var(E(X(ξ)|ξi))

Var(X(ξ))
, ∀1 ≤ i ≤ N, (20)

where E(X(ξ)|ξi) denotes the conditional expected value of X given ξi. The
indices (S1,i)1≤i≤N in (20) are known as principal or first-order Sobol indices
and measure the individual contribution of the coefficient ξi to the variance.

Higher-order Sobol indices measure the effect of the concurrent variation of
more variables. For instance, second-order Sobol indices read

Si,j :=
Var(E(X(ξ)|ξi, ξj))

Var(X(ξ))
− S1,i − S1,j , ∀1 ≤ i < j ≤ N.

Finally, the total Sobol index is obtained as the sum of the indices involving
parameter ξi

STi
:= 1 − Var(E(X(ξ)|ξ\i))

Var(X(ξ))
,

where the vector ξ\i = (ξj ̸=i) contains all uncertain variables except ξi.
The computation of the Sobol indices results directly from the PC approx-

imation (18) of the variable of interest. Indeed, the partial variances can be
explicitly expressed as functions of the spectral modes similarly to the statisti-
cal quantities in (19). We refer the reader to [8] for all the details.

6 Numerical examples

In this section, we present two test cases to validate the proposed approach. In
both cases we show the reference numerical solution and discuss the uncertainty
quantification related to three parameters affected by uncertainty.

Due to the complexity of the problem, all data in the two cases are the same
except for the number of fractures in the network. In the first case, presented
in Subsection 6.1, a single fracture touching one boundary is considered, while
in Subsection 6.2, ten intersecting fractures are considered.

13



µ = 1 g = 0 ρw = 1 kΩ,0 = 1 ϕΩ,0 = 0.2
dΩ = 0.1 cw = 1 cs = 1 Λw = 1 Λs = 0.1

j = 0 θ0 = 0 λ = 10 exp
(
−E

θ

)
u0 = 0 w0 = 0.3

ue = 1 pinflow∂Ω = 1 poutflow∂Ω = 0 pinflow∂γ = 1 poutflow∂γ = 0

ϵγ,0 = 10−2 kγ,0 = 102 κγ,0 = 102 fΩ = 0 fγ = 0
θinflow∂Ω = 1.5 θinflow∂γ = 1.5 uinflow∂Ω = 2 uinflow∂γ = 2 jγ = 0

dγ = 0.1 δγ = 0.1 η = 0.5

Table 1: Common data for the advection-reaction problem, examples in Section
6. For • ∈ {kΩ;ϕΩ; Θ;u;w; εγ ; kγ ;κγ}, the notation (•)0 is used for the reference
value of the quantity • prescribed as initial condition.

The data for the Darcy problem, the heat equation, and the precipitattion-
dissolution process are given in Table 1. Furthermore, we assume that the
following three parameters are affected by uncertainty and uniformly distributed
with mean and variance given by

ηγ ∼ U(2, 0.17) E ∼ U(4, 0.35) θinflow ∼ U(1.5, 0.11)

where θinflow denotes the inflow temperature on the bottom boundary. Being
the construction of the sparse grids dependent only on the chosen level and the
number of uncertain parameters, the number of simulations needed to construct
the PC expansion are: 31 runs for level 2, 111 runs for level 3, 351 for level 4,
1023 for and level 5. Once constructed, the evaluation of the PC expansion takes
a small fraction of the time used by the full order model to evaluate the solutions
for different times and for different values of the uncertain parameters. Hence,
we will use the PC expansion as a surrogate model and evaluate its perfor-
mances and accuracy properties. In both cases, we will discuss the convergence
properties of the PC expansion by increasing the level of the sparse grid con-
sidered, the analysis of the Sobol indices, conditioned variances and covariances
for selected solutions and finally the probability distribution functions.

The simulations are developed with the library PorePy, a simulation tool for
fractured and deformable porous media written in Python, see [20].

6.1 Single fracture network

Let us consider a domain Ω = (0, 1)2 with a single immersed fracture defined
by the following vertices: (0.1, 0) and (0.9, 0.8). The fracture thus touches the
bottom boundary of Ω as depicted in Figure 3. Data and uncertain parameters
are reported in the beginning of Section 6. We point out that the fracture is
permeable at the beginning of the simulation and due to the solute precipitation
its aperture diminishes in time. As a result the effective fracture permeability
decreases and until the fracture behaves as a barrier and not any more as a
preferential path.

In the following parts, we detail some aspects related to the uncertainty
quantification analysis. In Subsection 6.1.1 a convergence study is carried out,
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Figure 3: Domain Ω and fracture γ for the example of Subsection 6.1.

Figure 4: Reference solutions with mean value of the uncertain parameters. On
the left pressure at time t = 0.1T and on the centre for t = T , on the right the
solute for t = 0.1T . Test case of Subsection 6.1.

in Subsection 6.1.2 we discuss the variances and covariances of the solutions and
in Subsection 6.1.3 we introduce the computed probability distribution functions
of some of the components of the solutions along the fracture.

The reference solution, corresponding to the average input parameters, is
reported in Figure 4, where it is possible to notice the variation of the pressure
distribution over time due to the sealing of the fractures and the transport of
the solute when the fractures are still highly permeable.

6.1.1 Convergence

In this part, we discuss the convergence and accuracy properties of the surrogate
model built with the PC expansion. In fact, the latter can be used to make fast
simulations without the need of running the full order model. Since we are
dealing with a time dependent problem, we analyse the PC expansion for two
different simulation times: after few time steps (t = t1 = 0.1T ) and at the end
of the simulation (t = T ).

Figure 5 presents, for both times, the error decay of the computed solutions
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Figure 5: Error convergence for increasing level of the sparse grids, on the left
at time t = 0.1T and on the right at final time t = T . Test case of Subsection
6.1.1.

by increasing the level of the sparse grid. For a smooth relation between uncer-
tain parameters and the solutions, we expect exponential decay of the error with
respect to the level, which is the behaviour observed in the figure. Addition-
ally, for t = t1 the error computed is much smaller compared to the end of the
simulation, showing a temporal dependence on the quality of the PC expansion.

In Figure 6, we compare the porosity ϕ computed with the full order model
with the one constructed by the PC expansion and the corresponding relative
error. The two solutions are in good agreement for both times and the error is
rather low. As before, the latter is smaller at the beginning of the simulation
and tends to increase at the end, in particular near the inflow boundary at
the bottom of Ω. Moreover, at the beginning of the simulation the fracture is
highly permeable and, consequently, we observe also a region in the proximity
of γ where the error is higher due to stronger geochemical effects.

Finally, Figure 7 compares some of the variables in the fractures computed
with the full order model or reconstructed with the PC expansion. Also in this
case, the quality of the latter is high and in good agreement with the reference
solution. Moreover, in Figure 7 the green dashed lines represent the solutions
obtained for each run to construct the PC expansion and can be useful to
visualize the variance of the solution.

6.1.2 Analysis of variance and correlations

An important factor is the impact on observed variables of the uncertain input
data. In Figure 8 we report the Sobol indices for some variables in the fracture
for t = t1 and t = T . We notice that the three variables are influenced in a
similar manner by the uncertain data, and the activation energy is the most
important factor, followed by the temperature at the inflow boundary. We
notice that while the high temperature front penetrates in the domain and in
the fracture, the importance of the activation energy over the temperature inflow
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Figure 6: On the left porosity in the media computed with the original model
and on the centre with the polynomial chaos expansion, on the right the error
between them. On the top at time t = 0.1T and on the bottom at final time
t = T . Test case of Subsection 6.1.1.
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Figure 7: Solutions along γ: in blue computed with the original model, in
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model on each sparse grid node (sparse grid level 2). On the top at time t = 0.1T
and on the bottom at final time t = T . Test case of Subsection 6.1.1.
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Figure 8: First order Sobol indexes for different unknowns along γ, on the top
at time t = t1 and on the bottom at final time t = T . The local coordinate of
the fracture starts from the bottom boundary. Test case of Subsection 6.1.2.

tends to diminish and the latter becomes more important. Note also that the
Sobol indices of ϵγwγ at final time are different from the other two considered
variables since ηγ dominates the induced uncertainty of the precipitate.

In Figure 9, we compare the variances of the porosity in the domain Ω
induced by the uncertain data. Depending on the situation, it might be more
convenient to consider the Sobol indices instead of the variances in particular
when they span different order of magnitudes. The importance of the activation
energy over time is rather interesting. In the beginning the fracture is highly
permeable and most of the flow is concentrated around the fracture. However,
due to the deposition of new material the fracture becomes very low permeable;
thus the water flow tends to avoid it and concentrates more in the right part
of the domain, where the solute is transported and becomes precipitate altering
the porosity. This effect, less evident, can be seen also in the spatial distribution
of the Sobol index of ηγ . For the temperature, we still notice the permeability
change effect coupled with the inflow of higher temperature that speeds up the
precipitation process and, as a result, the porosity decay.

Another important aspect is the interdependency of the output variables,
which can be expressed by their covariances. Figure 10 presents this relation
between the porosity in the media and several other variables at the two con-
sidered times. In the pressure-porosity covariance we observe again the effect
of the variation of the fracture behavior in time, fromp permeable to imperme-
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Figure 9: On the left the variance of porosity conditioned to the activation
energy E, on the centre conditioned with ηγ expansion, and on the right con-
ditioned with the temperature inflow θinflow. On the top at time t = 0.1T and
on the bottom at final time t = T . Test case of Subsection 6.1.2.
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Figure 10: Covariances between different solutions in the porous media. On
the top at time t = 0.1T and on the bottom at final time t = T . Test case of
Subsection 6.1.2.

able. For the porosity and ϕΩwΩ we observe a negative correlation, namely if
more precipitate is deposited in the porous media, less void space is left, and
the porosity diminishes. Finally, the temperature front can be seen in the plot
of the covariance between ϕΩ and θΩ, i.e. higher values of the latter tend to fa-
cilitate the deposition of solute with concentration higher than the equilibrium.
This increases the value of the precipitate and consequently lowers the value of
the porosity; conversely, in the top part of the domain the effect is the opposite
due to the fact that thermal capacity and conductivity depend on the porosity
in a complex way.

6.1.3 Probability density functions

We consider now the probability density functions (PDFs) of some variables
induced by the uncertain data, which are uniformly distributed. Figure 11
shows, for level 2, the distribution of ϵγuγ at two points along the fracture,
and for both times. We notice that at the beginning of the simulation the
PDFs are more spread showing a high variability of the considered variable.
However, at the end of the simulation the uncertainty tends to become much
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Figure 11: Probability distribution function of ϵγuγ for level 2 at two points in
γ, on the top at time t = 0.1T and on the bottom at final time t = T . Test case
of Subsection 6.1.3.

smaller and the value is more concentrated. Another important aspect is that
the PC expansion outcomes might not fulfill physical bounds, in this case we
can get negative values of ϵγuγ which are not correct. The situation improves
by considering a higher level of the sparse grid, indeed as represented in Figure
12 this phenomena is not present any more and the PDFs constructed with the
PC expansion are in good agreement with the one computed by the full order
model.

6.2 Multiple fractures network

We consider now a test case with a network composed of multiple-fractures.
The geometry is given by the Benchmark 3 of [12], where fractures at t = 0 are
now considered all highly permeable with material properties and problem data
equal to the previous test case. A graphical representation of the computational
domain is given in Figure 14 on the left. Fractures γ3 and γ8 will be considered
later for a specific analysis.
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Figure 12: Probability distribution function of ϵγuγ for level 5 at two points in
γ, on the top at time t = 0.1T and on the bottom at final time t = T . Test case
of Subsection 6.1.3.
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Figure 13: Reference solutions with mean value of the uncertain parameters.
On the left pressure at time t = 0.1T and on the centre for t = T , on the right
the solute for t = 0.1T . Test case of Subsection 6.2.
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Figure 14: On the right the computational domain with boundary conditions
and on the left the error convergence for increasing level of the sparse grids.
Test case of Subsection 6.2.1.

Some quantities from the reference numerical solution are reported in Figure
13, where it is possible to notice the variation of the pressure distribution over
time due to the sealing of the fractures and the transport of the solute when
the fractures are still highly permeable.

6.2.1 Convergence

We discuss now the convergence properties of the PC expansion. On the right
of Figure 14, we plot the error decay for increasing sparse grid level for multiple
variables. Also in this case, the exponential decay expected is confirmed for all
the variables.

In Figure 15 we compare the porosity computed by the differential model
with the one computed by the PC expansion. On the right we also represent the
relative error. The two solutions are in good agreement with a maximum error of
13% confined at the bottom of the domain, the error is much smaller in the other
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Figure 15: On the left porosity in the media computed with the original model
and on the centre with the polynomial chaos expansion, on the right the error
between them. Test case of Subsection 6.2.1.

parts being of the order of 5% or less. The surrogate model provided by the PC
expansion gives a satisfactory result at (almost) no additional computational
cost.

Figure 16 compares some of the variables along the two fractures γ3 and
γ8 computed by the full order model and by the PC expansion. Also in the
fractures, we observe a high quality for the solutions computed with the PC
expansion even for γ8 that has two intersections with other fractures. The jump
across the intersection is properly captured, confirming also in this case that
the surrogate model from the PC expansion yields a good approximation of the
solutions.

6.2.2 Analysis of variance and correlations

In this section, we present and analyze the impact of the uncertainty on some
of the computed variables. In particular, Figure 17 shows the Sobol indices for
some of the variables of interest in the fractures γ3 and γ8. Since γ3 is closer to
the inflow boundary than γ8, the associated Sobol indices behave similarly with
respect to the ones of the previous test case. The effect of the inflow is more
evident at the lowest tip of the fracture γ3 with increased impact of θinflow for ϵγ
and ϵγuγ compared to the other variables. For ϵγwγ the relation expressed by
the Sobol index is less clear. Since fracture γ8 is more distant form the inflow
boundary, the high temperature front at the end of the simulation does not fully
reach it. Some effect are still visible since warmer water has been transported
by the fractures, especially for ϵγwγ where the activation energy E becomes less
important than ηγ compared with the other two variables under investigation.

In Figure 18 we present the partial variances of the porosity with respect
to the uncertain data at final simulation time. We notice a small impact of ηγ ,
and a much more significant relevance of E and θinflow. Note that the effect
of these two uncertain parameters on reaction speed is opposite. Moreover, we
notice that, on the bottom of the domain, the effect of the temperature is more
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Figure 16: Solutions along two γi and in blue computed with the original model,
in red with the polynomial chaos expansion and in green computed by the
original model on each sparse grid node. On the top γ3 and on the bottom for
γ8. Level considered 2. Test case of Subsection 6.2.1.
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Figure 17: First order Sobol index for different solutions along two γi. On the
top γ3 and on the bottom for γ8. Test case of Subsection 6.2.2.

pronounced since it is close to the inflow boundary, while for the activation
energy E the impact is more predominant away from the inflow and close to the
fractures. This can be motivated by the fact that the water and solute get more
channelized into the fractures and transported upward. Since the fractures do
not touch the outflow boundary, the solute flows again into the rock matrix and
then alters the value of the porosity by creating more precipitate.

The covariances between some of the computed variables are reported in
Figure 19. The correlation between ϕΩ and θΩ is expected: below the warm
water front, the increased temperature facilitates the chemical reaction and thus
lowers the porosity; above the front, the solute is lower than the equilibrium
value and the temperature is lower, hence precipitation may not occur once
fractures have been sealed and stopped supplying reactant to the upper part
of the domain. The correlation between ϕΩuΩ and ϕΩwΩ is not included here
since they are, as expected, equal to -1 in the whole domain. The same applies
for ϵγuγ and ϵγwγ .

6.2.3 Probability density functions

Finally, we present the PDFs of some of the variables at 25% and 75% of frac-
tures γ3 and γ8 for level 2 of the sparse grid. We notice a phenomenon similar
to the one observed in the previous test case. For γ3 we might obtain unphysical
values of ϵγuγ when the PDF is computed by the PC expansion. This issue does
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Figure 18: On the left the variance of porosity conditioned to the activation
energy E, on the centre conditioned with ηγ expansion, and on the right condi-
tioned with the temperature inflow θinflow. Test case of Subsection 6.2.2.

Figure 19: Covariances between different solutions in the porous media. Test
case of Subsection 6.2.2.
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Figure 20: Probability distribution function of ϵγi
uγi

for level 2 at two points
in γi. On the top γ3 and on the bottom for γ8. Level considered 2. Test case of
Subsection 6.2.3.

not appear for γ8, since it is further from the inflow and, as a consequence, is less
subject to the uncertainty. In both cases the probability distribution functions
computed with the original model and with the PC expansion are quite similar.

7 Conclusions

In this work we have presented a mathematical model to describe the evolution
in time of reactive transport in fractured porous media. We have adopted a
simplified model, where only one solute and one precipitate are involved in the
chemical reactions. In several meaningful applications, the chemical processes
can be triggered and accelerated by high temperatures, thus we have included in
the model also an additional equation to model the thermal effects. The solute,
transported by a liquid, might form precipitate and alter the porosity in the
media, forming a fully coupled and non-linear system. In order to obtain a more
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realistic approximation of the physical process, we have considered a mixed-
dimensional model for the fractures where the latter are represented as object
of lower dimension. We have introduced appropriate equations and derived
coupling conditions with the surrounding porous media. Additionally, we have
applied a splitting strategy to numerically solve the problem by using standard
discretization schemes.

In a real scenario, several parameters might be affected by uncertainty. To
quantify their effect on the system, we have considered a polynomial chaos ex-
pansion constructed by resorting to spectral projection methods on sparse grids.
This strategy proved to be very effective, since it provides high quality approx-
imations at low computational cost. Indeed, a limited amount of simulations
are needed to construct a surrogate model which can then be used to perform
multiple-simulations. Moreover, from the PC expansion one can easily com-
pute useful statistical quantities such as partial variances and Sobol indexes to
investigate the impact of input parameters on the model unknowns and gain
insight into the complex model couplings. This technique has been applied to
two numerical examples by increasing the geometrical complexity of the fracture
network. The results obtained showed the validity of the proposed approach.
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[19] Jérôme Jaffré, Mokhles Mnejja, and Jean E. Roberts. A discrete fracture
model for two-phase flow with matrix-fracture interaction. Procedia Com-
puter Science, 4:967–973, 2011.

[20] Eirik Keilegavlen, Runar Berge, Alessio Fumagalli, Michele Starnoni, Ivar
Stefansson, Jhabriel Varela, and Inga Berre. Porepy: An open-source soft-
ware for simulation of multiphysics processes in fractured porous media.
Computational Geosciences, 2020.
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