
MOX–Report No. 49/2013

Fast simulations in Matlab for Scientific Computing

Micheletti, S.

MOX, Dipartimento di Matematica “F. Brioschi”
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox@mate.polimi.it http://mox.polimi.it

Fast simulations in Matlab for Scientific Computing

Stefano Micheletti

14 ottobre 2013

♯ MOX– Modellistica e Calcolo Scientifico
Dipartimento di Matematica “F. Brioschi”

Politecnico di Milano
Piazza L. da Vinci 32, 20133 Milano, Italy

stefano.micheletti@polimi.it

Sommario

We show how the numerical simulation of typical problems found in
Scientific Computing can be run efficiently even under the serial Matlab
environment. This is made possible by a strong employment of vectorization
and sparse matrix manipulation. Numerical examples based on FEMs on
2D unstructured triangular grids assess the flexibility and efficiency of the
simulation tool, both on simple elliptic problems as well as on the steady
and unsteady incompressible Navier-Stokes equations. Any type of finite
elements, and 1D and 2D quadrature rules can be easily accommodated
within our framework. Emphasis is focused on vectorization programming
and sparse matrix storage and operations, which allow one to obtain very
efficient programs which run in a few minutes on a common notebook.

Keywords: Finite Element Method, Navier-Stokes equations, Programming
languages

AMS: 68N15, 35Q30, 65N30, 65M60

1

1 Introduction

It is commonly believed that fast numerical simulations of partial differential
equations under the Matlab environment is beyond reach. However, thanks to
the employment of a suitable programming paradigm, we want to show that
this objective is actually achievable, even on standard notebooks. In particu-
lar, we aim at providing the user with a simple and short open-box Matlab
implementation of FEMs on 2D triangular meshes. An early attempt in this
direction was proposed in [1]. However, we improve on [1] in three respects: 1)
efficiency; 2) room for finite elements other than P1; 3) employment of arbitrary
quadrature rules. In contrast to [1], we will not deal with the approximations
on quadrilateral elements. Actually, once our philosophy has been understood,
simple modifications of the proposed codes allow the user to also tackle such
elements. Moreover, the extension to the 3D case is straightforward, once the
suitable geometric data structures are available.

Our main effort has been devoted to the employment, as far as possible, of
vectorized operations. As a matter of fact, the assembly of the stiffness matrix is
typically based on the standard loop-over-the-elements (see, e.g., [1, 12, 13, 16]):
each triangle of the mesh is processed in turn; the local matrix and right-hand
side are computed and then assembled into the global matrix and load vector,
respectively, exploiting the local-to-global numbering of the degrees of freedom.
However, as it stands, this is the actual bottleneck of the whole procedure: the
larger the number of degrees of freedom, the longer the relative time it takes
to execute, until the overall computation cost is swamped with the assembly
phase. To overcome this strong limitation, we move from the implementation
of the stiffness matrix included in the functions assema and pdeasmc of the
pdetool in Matlab [14].1 There, the assembly of the stiffness matrix associated
with the bilinear form

∫
Ω c(x)∇u · ∇v dx, deriving from an elliptic problem, is

carried out. This is performed very efficiently, thanks to the employment of
the command sparse. On the other hand, this works only for P1 FEM and
using the midpoint quadrature rule. Inspired by this assembly paradigm, we
have extended this philosophy to other differential problems, type of FEMs, and
quadrature rules.

The layout of the paper is organized as follows. We start by introducing the
data structure required for describing the mesh in Sect. 2. Here, we employ a
so-called minimum data structure, i.e., sufficient for characterizing completely
the lowest order FEM space, i.e., of piecewise linear and continuous functions.
This data structure can be then enriched according to the higher order FEM
at hand. To illustrate our paradigm on a model problem, the Poisson problem
completed with Dirichlet boundary conditions is described in Sect. 3 along with
the associated weak and discrete weak formulations, which lay the basis for the
successive FEM approximation. In particular, we consider the simple case of

1We are referring to the release 7.9.0.529 (R2009b)

2

Fast simulations in Matlab for Scientific Computing 3

piecewise liner and continuous FEMs and we approximate the integrals involved
in the load vector by the midpoint quadrature rule. Then we extend this basis
approach to the case of a diffusion-reaction problem in Sect. 4. Here we consider
general mixed (Dirichlet and Neumann) boundary conditions and we incorporate
the use of quadrature rules for both triangles and edges. In Sect. 5, we address
the discretization of the incompressible Navier-Stokes equations. In particular,
we deal with some benchmark problems which aim at computing the drag and lift
coefficients around a cylinder placed in a rectangular channel. These quantities
involve boundary integrals around the cylinder. Instead of directly computing
these integrals, we resort to a “trick” which is sometimes exploited in the finite
element community. This relies on the weak form of the discretized Navier-
Stokes equations and allows one to obtain more accurate results than the direct
computation. The validation on the benchmarks is carried out in Sect. 6. Finally,
some conclusions and future developments are gathered in Sect. 7.

2 A minimum data structure

Given an open and bounded polygonal domain Ω ⊂ R
2 with boundary ∂Ω, we

denote by Th = {K} a conformal mesh of Ω = Ω ∪ ∂Ω consisting of triangles
K’s. We want to provide the minimum data structure required for the later
FEM implementation. We take inspiration from the Partial Differential Equation
Toolbox pde in Matlab. Let us denote by Np, Nt, and Ne the number of vertexes,
triangles and boundary edges, respectively, of the actual mesh. Then the toolbox
characterizes any mesh by the three arrays p,t and e, with dimensions 2 × Np,
4× Nt and 7× Ne, respectively. The full description of all of the entries of these
arrays is not required next. Instead, let us just focus on the main ones, which
constitute the minimum data structure, i.e., sufficient for the description of the
piecewise linear FEMs.
The entries

1. p(1:2,i) provide the two coordinates of the i-th vertex, xi, of the mesh;

2. t(1:3,k) yield the global numbering of the three vertexes of the k-th
triangle, in a counterclockwise fashion;

3. e(1:2,j) return the global numbering of the two vertexes of the j-th
boundary edge; e(5,j) furnishes the labeling of the portion of the domain
boundary containing the j-th boundary edge.

We notice that when these structures are generated by Matlab, e.g., through the
command initmesh, there is no guarantee that the local ordering of the boun-
dary nodes in the array e be counterclockwise. For later use, a post-processing
of these nodes may thus be required, and we henceforth assume that this has
been carried out. The labeling of the boundary portions of the domain may be
useful for assigning different boundary conditions, e.g., of Dirichlet or Neumann

Fast simulations in Matlab for Scientific Computing 4

1

3

7

9

4

1

2

4

3

1

2

5

3

9
8

11

106
12

13

5
2

4

6

8

5

10

11

12

7

Figura 1: Example of a mesh and numbering of the geometrical entities:
boundary portions (blue), vertexes (black) and elements (red).

type, etc. Figure 1 provides an example of a simple mesh comprising 5 boundary
portions (blue), 12 vertexes (black), 13 elements (red), and 9 boundary edges.
The reduced data structures t and e are given by

t =

3 1 6 8 1 2 11 7 5 9 4 2 11

12 12 1 1 8 11 12 2 2 2 7 9 9

10 3 3 6 2 1 1 8 7 5 8 11 12

e =

8 7 4 6 5 3 10 12 9

4 5 7 8 9 6 3 10 12

3 5 5 3 4 1 1 2 4

Notice that whereas the ordering of the boundary edges may not be geometrically
consecutive, the local numbering of the two local nodes of each edge is yet
counterclockwise. Furthermore, for later use, we designate by NΩ and N∂Ω the
set of indices, according to their global numbering, of the internal and boundary
nodes, respectively.

3 The Poisson model problem

To illustrate our approach, let us start from the model Poisson problem:

{
−∆u = f in Ω,

u = gD on ∂Ω,
(1)

where ∆ is the Laplacian operator, and f, gD are given functions, which we
suppose to be both defined in Ω. With a view to the FEM approximation to

Fast simulations in Matlab for Scientific Computing 5

problem (1), we recall its weak formulation. Find u ∈ H1
0 (Ω) + gD such that

∫

Ω
∇u · ∇v dx =

∫

Ω
fv dx ∀v ∈ H1

0 (Ω), (2)

where H1
0 (Ω) is the subspace of the Sobolev space H1(Ω), consisting of functions

that together with their first weak derivatives are Lebesgue integrable, which
have zero trace on the boundary ([17]), and H1

0 (Ω)+gD = {v ∈ H1(Ω) : v−gD ∈
H1

0 (Ω)}. The FEM approximation to (2) is obtained in a straightforward way,
after introducing the FEM space V r

h = {vh ∈ C0(Ω) : vh|K ∈ Pr(K),∀K ∈ Th},
where Pr(K) is the space of polynomials of maximum degree r over K. We then
let V r

h,0 = V r
h ∩H1

0(Ω). Thus the discrete formulation reads: find uh ∈ V r
h,0+gD,h

such that ∫

Ω
∇uh · ∇vh dx =

∫

Ω
fvh dx ∀vh ∈ V r

h,0, (3)

with gD,h ∈ V r
h a suitable approximation to gD. It is well known that (3) is

equivalent to an algebraic linear system, say AU = F , where A is the so-called
stiffness matrix, F the load vector, and U collects the degrees of freedom of the
FEM space ([7]). To fix ideas, we choose piecewise linear FEMs, i.e., we pick
r = 1. In this case, the degrees of freedom are the nodal values, {uh(xi)}, of the
FEM function uh at the internal vertexes of the mesh, i.e., those not belonging
to the domain boundary. Thus it is possible to expand the discrete solution as

uh(x) =
∑

j∈NΩ

uh(xj)φj(x) + gD,h(x), with gD,h(x) =
∑

j∈N∂Ω

gD(xj)φj(x),

where {φj} are the hat basis functions, and gD,h is the FEM function that
interpolates gD at the boundary nodes. We recall that the hat functions satisfy
the conditions

span {φi}
Nh

i=1 = V 1
h,0; φi(xj) = δij i, j = 1, . . . , Nh,

where {xi}
Nh

i=1 denotes the set of the internal vertexes of the mesh, Nh being
the number of the internal vertexes, while δij is the Kronecker symbol. Then
the entries, Ai,j, of the stiffness matrix and, Fi, of the load vector are given, for
i, j = 1, . . . , Nh, by

Ai,j =

∫

Ω
∇φj · ∇φi dx, Fi =

∫

Ω
fφi dx−

∑

j∈N∂Ω

gD(xj)

∫

Ω
∇φj · ∇φi dx. (4)

In the next example, we pick the data f and gD such that the exact solution
is u = sin(π(x + 1)/2) sin(π(y + 1)/2) on Ω = (−1, 1)2. The following algori-
thm gathers the Matlab implementation of the assembling and solution of the
resulting algebraic system.

Fast simulations in Matlab for Scientific Computing 6

Algorithm 1 1 Np = size(p,2);

2 nD = union(e(1,:),e(2,:));

3 % matrix and vector allocation

4 A = sparse(Np,Np);

5 F = sparse(Np,1);

6 u = sparse(Np,1);

7 % area of triangles and derivatives of the shape functions

8 [ar,g1x,g1y,g2x,g2y,g3x,g3y] = pdetrg(p,t);

9 % local nodes on triangles and centre of mass of triangles

10 n1 = t(1,:);

11 n2 = t(2,:);

12 n3 = t(3,:);

13 xb = (p(1,n1) + p(1,n2) + p(1,n3))/3;

14 yb = (p(2,n1) + p(2,n2) + p(2,n3))/3;

15 % source term and Dirichlet data

16 f = @(x,y) pi^2/2*sin(pi*(x+1)/2).*sin(pi*(y+1)/2);

17 gD = @(x,y) 0*x;

18 % entries of the stiffness matrix

19 a12 = (g1x.*g2x + g1y.*g2y).*ar;

20 a23 = (g2x.*g3x + g2y.*g3y).*ar;

21 a31 = (g3x.*g1x + g3y.*g1y).*ar;

22 % assembling of the stiffness matrix

23 A = A + sparse(n1,n2,a12,Np,Np);

24 A = A + sparse(n2,n3,a23,Np,Np);

25 A = A + sparse(n3,n1,a31,Np,Np);

26 A = A + A’;

27 A = A + sparse(n1,n1,-(a12+a31),Np,Np);

28 A = A + sparse(n2,n2,-(a23+a12),Np,Np);

29 A = A + sparse(n3,n3,-(a31+a23),Np,Np);

30 % assembling of the right-hand side

31 fb = f(xb,yb).*ar/3;

32 F = F + sparse(n1,1,fb,Np,1);

33 F = F + sparse(n2,1,fb,Np,1);

34 F = F + sparse(n3,1,fb,Np,1);

35 % evalutation of the Dirichlet data on the boundary nodes

36 uD = gD(p(1,nD),p(2,nD))’;

37 % construction of the unknown nodes

38 unk = setdiff(1:Np,nD);

39 % elimination of the Dirichlet nodes

40 A = A(unk,:);

41 F = F(unk) - A(:,nD)*uD;

42 A = A(:,unk);

43 % solution of the linear system

44 s = A\F;

Fast simulations in Matlab for Scientific Computing 7

45 u(unk) = s;

46 u(nD) = uD;

Some comments are in order.

1. The variable nD at line 2 collects the Dirichlet nodes (in this case the whole
of the boundary nodes);

2. the stiffness matrix, and the load and unknown vectors are allocated at
lines 4-6 via the command sparse;

3. the Matlab function pdetrg at line 8 returns the row vector ar containing
the area of all the elements, and the row vectors of the partial derivatives
with respect to x (g1x, g2x, g3x) and to y (g1y, g2y, g3y), of the local
basis functions, according to the local numbering implicitly defined by the
array t. For example, g1x(k) yields the (constant) derivative ∂φ/∂x of
the basis function associated with the 1st local node of triangle k;

4. the global numbering of the vertexes is computed at lines 10-12, e.g., n1
is the row vector of dimension Nt containing the global vertexes that are
first local nodes of the triangles;

5. the coordinates of the center of mass of all the triangles are computed at
lines 13-14;

6. the data f and gD are defined through anonymous functions at lines 16-17;

7. at lines 19-21 the entries of the stiffness matrix are computed, each as a
row vector of dimension Nt. For example, a12(k) provides the 1− 2 entry
defined by

a12(k) =

∫

K

∇φ1 · ∇φ2 dx = ∇φ1 · ∇φ2|K|,

where K is the triangle with numbering k, |K| is the area of K, and the
integral can be computed exactly since the integrand is a constant. The
functions φ1, φ2 are the two basis functions associated with the local nodes
1 and 2 of K, respectively;

8. the assembling of the global stiffness matrix is performed at lines 23-29 via
the command sparse. In particular, sparse(n1,n2,a12,Np,Np) builds a
sparse matrix of dimension Np×Np and assigns the values a12 to the entries
identified by the row index n1 and column index n2, i.e., A(n1(k), n2(k)) =
a12(k), for k = 1, . . . , Nt. Notice also that the symmetric structure of the
matrix, as well as that the row sum is zero are exploited at lines 26 and
27-29, respectively;

Fast simulations in Matlab for Scientific Computing 8

9. In an analogous fashion, the assembling of the load vector is carried out
at lines 31-34. In particular, the first integral involved in the definition of
F in (4) is approximated by the midpoint quadrature rule, i.e.,

F(k) =

∫

K

fφi dx =
1

3
f(xb(k), yb(k)) |K|,

with (xb(k), yb(k)) the coordinates of the center of mass of K, where each
basis function attains the value 1/3, and i is here understood to be a local
index ranging in the set {1, 2, 3};

10. The variables uD at line 36 and unk at line 38 define the Dirichlet boun-
dary conditions (evaluated in correspondence with the nodes nD) and the
unknown vector, respectively. In particular, unk is a column vector whose
dimension is given by the cardinality of the internal vertexes. The function
setdiff performs the set difference between two sets.

11. At lines 40-42 the elimination of the Dirichlet nodes is carried out. In
practice this amounts to i) discarding the rows in A associated with the
boundary nodes, ii) moving the columns corresponding to the Dirichlet
nodes to the right-hand side, after multiplication by uD;

12. the algebraic system is solved at line 44 via the built-in sparse direct
solver, while the assembling of the complete solution vector, including both
internal and boundary values, is accomplished at the last lines 45-46.

In order to assess the performance of the above algorithm, we have carried
out a test. Namely, we have solved (3), with the same data as above, for se-
ven different mesh sizes, repeating each computation ten times. The overall
performance is measured by the average time (over the ten runs) required to
complete Algorithm 1 for each of the seven cases. The meshes have been ob-
tained starting from an initial unstructured grid generated by the command
[p,e,t] = initmesh(’squareg’,’hmax’,0.4) (with the function initmesh of
the pdetool), which is then successively uniformly refined by the command
[p,e,t] = refinemesh(’squareg’,p,e,t). This yields meshes characterized
by an average mesh size, h, taking the values {0.2 · 2i}−6

i=0 (and is faster than
using initmesh directly). To measure time, the pair of Matlab functions tic,

toc have been used throughout. The computations have been carried out on a
notebook with an Intel R© CoreTM 2 Duo Processor P8600 @ 2.40 GHz, and 4
GB RAM. Figure 2 shows the average time, T , in seconds (black ∗), as a function
(in log-log scale) of the dimension, S, of the stiffness matrix (after eliminating
the Dirichlet nodes). The slope of the estimated fit (blue line) is 1.45, showing
a superlinear dependence of time on size. To get a feeling about the CPU time,
notice that, for a size S on the order of 4 · 104, which is usually considered quite
large for this problem (in 2D), it takes less than 2 seconds two completely run the
program. For comparison purposes, the average time, Tl, required by the whole

Fast simulations in Matlab for Scientific Computing 9

Tabella 1: Average CPU time versus matrix dimension. Mesh size h; matrix
size S; CPU time T ; CPU time Tl with loop-over-the-elements; CPU time Ts to
solve the linear system.

h S T Tl Ts

1/5 157 2.07 · 10−03 3.07 · 10−02 3.48 · 10−04

1/10 665 5.86 · 10−03 1.57 · 10−01 1.58 · 10−03

1/20 2,737 2.93 · 10−02 1.95 · 10+00 1.06 · 10−02

1/40 11,105 1.81 · 10−01 3.21 · 10+01 4.92 · 10−02

1/80 44,737 1.74 · 10+00 6.70 · 10+02 2.75 · 10−01

1/160 179,585 2.28 · 10+01 1.42 · 10+04 1.62 · 10+00

1/320 719,617 4.14 · 10+02 out of time 8.86 · 10+00

algorithm (data definition + allocation + assembling + solving) employing the
loop-over-the-elements for the same problem is shown as well (red ◦). The code
used for the assembling is provided below.

for k = 1:Nt

nloc = t(1:3,k);

Aloc = [-a12(k)-a31(k), a12(k), a31(k);

a12(k), -a23(k)-a12(k), a23(k);

a31(k), a23(k), -a31(k)-a23(k)];

A(nloc,nloc) = A(nloc,nloc) + Aloc;

xb = sum(p(1,nloc))/3;

yb = sum(p(2,nloc))/3;

fb = f(xb,yb)*ar(k)/3;

F(nloc) = F(nloc) + fb;

end

The linear fit (green line) in Figure 2 shows a slope of 1.89, which is clearly
higher than the previous one. Notice that the computation on the last grid
ran out of time (the estimated average time is on the order of 105s ≃ 1 day).
The average computing time, Ts, required to solve the linear system (which is
the same both with and without the loop-over-the-elements) is shown as well in
Table 1 and in Figure 2 (black �). The corresponding linear fit (magenta line)
yields a slope of 1.21.

To sum up, these results show that, the larger the matrix size, the higher
the relative time spent in the assembling. This is particularly emphasized when
looping over the elements, which exhibits both a higher cost (in absolute sense)
as well as a larger sensitivity to the problem size with respect to the “sparse”
assembling.

Fast simulations in Matlab for Scientific Computing 10

10
2

10
3

10
4

10
5

10
6

10
−4

10
−2

10
0

10
2

10
4

10
6

Figura 2: Average CPU time versus matrix dimension. Black (∗): actual values;
blue solid line: linear regression; red (◦): actual values; green solid line: linear
regression (with loop-over-the-elements); black (�): actual values; magenta solid
line: linear regression (linear system solve).

4 The diffusion-reaction problem

We now deal with the management of quadrature formulas and, for this purpose,
we move to an extension of the model Poisson problem, i.e., to the diffusion-
reaction problem






−∇ · (µ∇u) + σ u = f in Ω,
u = gD on ∂ΓD,

µ
∂u

∂n
= gN on ∂ΓN ,

(5)

where ΓD ∪ ΓN = ∂Ω with ΓD ∩ ΓN = ∅, gN ∈ C0(ΓN) is a given function, and
∂/∂n designates the outward normal derivative. The functions µ ∈ C0(Ω), with
µ ≥ µ0 > 0, and σ ∈ C0(Ω) with σ ≥ 0, represent the diffusion and reaction
coefficient, respectively. As in the previous section, f ∈ C0(Ω) is the source term,
while gD ∈ C0(ΓD) is the Dirichlet datum. Although the regularity requirements
for all of these functions can be relaxed, here we enforce the continuity because
of the use of quadrature formulas. With a view to the FEM approximation to
problem (5), we recall its weak formulation. Find u ∈ H1

ΓD
(Ω) + gD such that

∫

Ω
µ∇u · ∇v dx +

∫

Ω
σ u v dx =

∫

Ω
fv dx +

∫

ΓN

gN v ds ∀v ∈ H1
ΓD

(Ω), (6)

where H1
ΓD

(Ω) + gD = {v ∈ H1(Ω) : v − gD = 0 on ΓD}, with H1
ΓD

(Ω) = {v ∈

H1(Ω) : v = 0 on ΓD}. To obtain the FEM approximation to (6), we define the

Fast simulations in Matlab for Scientific Computing 11

FEM space V r
h,ΓD

= V r
h ∩ H1

ΓD
(Ω). Thus the discrete formulation reads: find

uh ∈ V r
h,ΓD

+ gD,h such that

∫

Ω
µ∇uh ·∇vh dx+

∫

Ω
σ uh vh dx =

∫

Ω
fvh dx+

∫

ΓN

gN vh ds ∀vh ∈ V r
h,ΓD

, (7)

with gD,h ∈ V r
h a suitable approximation to gD. As in the case of the Poisson

model problem, (7) is equivalent to an algebraic linear system, say AU = F ,
where A is still called stiffness matrix, F the load vector, and U collects the
degrees of freedom of the FEM space. For example, with piecewise linear FEMs,
i.e., r = 1, the degrees of freedom are the nodal values of the FEM function uh

at the internal vertexes of the mesh and at the nodes belonging to ΓN . Let the
total number of these vertexes be Nh. Moreover, it holds

uh(x) =
∑

j∈NΩ∪NΓN

uh(xj)φj(x) + gD,h(x), with gD,h(x) =
∑

j∈NΓD

gD(xj)φj(x),

where {φi} are the hat basis functions, gD,h is the FEM function that interpolates
gD at the Dirichlet boundary nodes, and we have partitioned the set N∂Ω =
NΓN

∪NΓD
, with NΓN

∩NΓD
= ∅, into the two sets of indices, according to their

global numbering, of the Neumann, NΓN
, and Dirichlet, NΓD

nodes, respectively.
Then the entries, Ai,j , of the stiffness matrix and, Fi, of the load vector are given,
for i, j = 1, . . . , Nh, by

Ai,j =

∫

Ω
µ∇φj · ∇φi dx +

∫

Ω
σ φj φi dx, (8)

Fi =

∫

Ω
fφi dx +

∫

ΓN

gN φi ds−
∑

j∈NΓD

gD(xj)

∫

Ω
µ∇φj · ∇φi dx.

Notice that now, for general functions µ, σ, f, gN , the corresponding integrals in
(8) are no longer exactly computable. Thus it is necessary to resort to some
quadrature formulas. These exploit the relations

∫

Ω
(·) dx =

∑

K∈Th

∫

K

(·) dx and

∫

ΓN

(·) ds =
∑

e∈ΓN

∫

e

(·) ds,

so that we are led to approximate integrals on triangles and edges. In particular,
in the first case we employ the Dunavant-type formulas developed by J. Burkardt
and downloadable from [4] (see also [5, 18]), while for the second case we use the
Gauss-Legendre formulas developed by G. von Winckel and available through
the Matlab Central [22]. We recall that, in general, the quadrature formulas for
a dummy function v on a triangle K, and on an edge e read

∫

K

v(x) dx ≃

NK
q∑

i=1

wK
i v(xK

i) and

∫

e

v(s) ds ≃

Ne
q∑

i=1

we
i v(s

e
i),

Fast simulations in Matlab for Scientific Computing 12

where {xK
i , w

K
i }

NK
q

i=1 and {se
i , w

e
i }

Ne
q

i=1 define the pair of NK
q and N e

q nodes and
weights, for K and e, respectively. Proceeding according to the standard prac-
tice in the FEM community, the use of a quadrature rule, either one- or two-
dimensional, is carried out by resorting to the so-called reference element. In
particular, in the two-dimensional case, a reference element, say K̂, is chosen as
the right-angled triangle with vertexes in (0,0), (1,0), and (0,1). Then any other
triangle, K ∈ Th, can be defined via an affine mapping, TK : K̂ → K, such that

x = TK(x̂) = MK x̂ + ~tK , (9)

where MK ∈ R
2×2 is the (constant) Jacobian of the transformation, and ~tK ∈ R

2

is a shift. If we denote by {(xK
i , y

K
i)}3

i=1, the coordinates of the three vertexes
of K (ordered counterclockwise), then it holds

MK =

[
xK

2 − xK
1 xK

3 − xK
1

yK
2 − yK

1 yK
3 − yK

1

]
and ~tK = [xK

1 , y
K
1]T , (10)

so that the vertexes (0,0), (1,0), and (0,1) of K̂ are mapped into (xK
1 , y

K
1),

(xK
2 , y

K
2), and (xK

2 , y
K
2), respectively. The employment of the reference map

facilitates the implementation of the quadrature rule since the nodes and the
weights can be defined once and for all on K̂, and mapped into the actual nodes

and weights on K in a simple way. Let {x̂K
i , ŵ

K
i }

NK
q

i=1 be the node-weight pair

on K̂, such that

NK
q∑

i=1

ŵK
i = 1, then it holds

xK
i = TK(x̂K

i) and wK
i = ŵK

i |K|. (11)

Moreover, thanks to the differentiation chain rule, it is possible to write the
derivative of a function, say v, defined on K in terms of derivatives of the
pullback, v̂, of v by TK , defined on K̂, where v̂ = v ◦ TK , i.e., v̂(x̂) = v(TK(x̂)),
∀x̂ ∈ K̂. In fact, thanks to (9), we have that ∇v = M−T

K ∇̂v̂, where

M−T
K =

1

2|K|

[
yK
3 − yK

1 yK
1 − yK

2

xK
1 − xK

3 xK
2 − xK

1

]
(12)

designates the inverse of the transposed Jacobian in (10). Gathering all this
properties, it is possible to approximate the contributions to the stiffness matrix
and to the load vector. Let us start from the diffusion term:

∫

K

µ∇φj · ∇φi dx =

∫

bK

µ̂M−T
K ∇̂φ̂j ·M

−T
K ∇̂φ̂i |K| d̂x

≃ |K|

NK
q∑

l=1

(
ŵK

l µ̂(x̂K
l)M−T

K ∇̂φ̂j(x̂
K
l) ·M−T

K ∇̂φ̂i(x̂
K
l)

)
. (13)

Fast simulations in Matlab for Scientific Computing 13

The reaction contribution is easily dealt with as

∫

K

σ φj φi dx = |K|

∫

bK

σ̂ φ̂j φ̂i d̂x ≃ |K|

NK
q∑

l=1

(
ŵK

l σ̂(x̂K
l) φ̂j(x̂

K
l) φ̂i(x̂

K
l)

)
, (14)

and in an analogous fashion the source term:

∫

K

f φi dx = |K|

∫

bK

f̂ φ̂i d̂x ≃ |K|

NK
q∑

l=1

(
ŵK

l f̂(x̂K
l) φ̂i(x̂

K
l)

)
. (15)

The remaining term in (8), i.e., the Neumann contribution can be treated using
the one-dimensional quadrature on the generic edge e ∈ ΓN as:

∫

e

gN φi ds = |e|

∫

be

ĝN φ̂i d̂s ≃ |e|

Ne
q∑

l=1

(
ŵe

l ĝN (ŝK
l) φ̂i(ŝ

K
l)

)
, (16)

where now the hatted quantities, say v̂, are defined through the affine map
Te : ê→ e, where ê is the reference interval [0, 1], and thus v̂ = v ◦ Te.

In the following example we take in (5): Ω = (−1, 1)2, ΓN = {(x, y) : x =
1 & − 1 < y < 1}, ΓD = ∂Ω\ΓN , µ = ex+y, σ = 1 + ex+y, gN = −π

2 sin(π(y +
1)/2) ex+y , gD = 0, and we construct f so that u = sin(π(x+1)/2) sin(π(y+1)/2)
is the exact solution. Algorithm 2 gathers the Matlab code for computing the
numerical approximation uh in (7) along with the auxiliary function basis at
the bottom.

Algorithm 2

1 Np = size(p,2);

2 Nt = size(t,2);

3 e1 = find(e(5,:)==1); % top

4 e2 = find(e(5,:)==2); % right

5 e3 = find(e(5,:)==3); % bottom

6 e4 = find(e(5,:)==4); % left

7 ne1 = union(e(1,e1),e(2,e1));

8 ne2 = union(e(1,e2),e(2,e2));

9 ne3 = union(e(1,e3),e(2,e3));

10 ne4 = union(e(1,e4),e(2,e4));

11 % number of Neumann edges

12 Nn = length(e2);

13 % Dirichlet nodes

14 nD = unique([ne1,ne3,ne4]);

15 % matrix and vector allocation

16 A = sparse(Np,Np);

17 M = sparse(Np,Np);

Fast simulations in Matlab for Scientific Computing 14

18 F = sparse(Np,1);

19 u = sparse(Np,1);

20 % area of triangles

21 ar = pdetrg(p,t);

22 % quadrature nodes (2 x nq) and weights (1 x nq) on ref. element

23 % nq = # quadrature nodes, sum(w) = 1

24 [xy, w] = dunavant_rule (3);

25 nq = length(w);

26 % basis functions and derivatives on the ref. element (3 x nq)

27 [phi, phi_x, phi_y] = basis(xy);

28 % local nodes on triangles

29 n1 = t(1,:);

30 n2 = t(2,:);

31 n3 = t(3,:);

32 % coordinates of vertices of triangles

33 x1 = p(1,n1);

34 x2 = p(1,n2);

35 x3 = p(1,n3);

36 y1 = p(2,n1);

37 y2 = p(2,n2);

38 y3 = p(2,n3);

39 % array for the local-to-global nodes

40 loc2glob = t(1:3,:);

41 % local nodes on Neumann edges and edge length

42 nN1 = e(1,e2);

43 nN2 = e(2,e2);

44 lN = sqrt((p(1,nN1)-p(1,nN2)).^2 + (p(2,nN1)-p(2,nN2)).^2);

45 % Gauss-Legendre quadrature (with 3 nodes) on [0,1]

46 [xgl,wgl] = lgwt(3,0,1);

47 xgl = xgl(end:-1:1);

48 % Jacobian of the transformation between ref. element and K

49 % [x2 - x1, x3 - x1]

50 % [y2 - y1, y3 - y1]

51 % transponse of the inverse of the Jacobian

52 % [y3 - y1, y1 - y2]

53 % [x1 - x3, x2 - x1]/(2*|K|)

54 iMKt11 = (y3 - y1)./(2*ar);

55 iMKt12 = (y1 - y2)./(2*ar);

56 iMKt21 = (x1 - x3)./(2*ar);

57 iMKt22 = (x2 - x1)./(2*ar);

58 % extension of iMKt (nq x Nt)

59 iMKt11q = iMKt11(ones(nq,1),:);

60 iMKt12q = iMKt12(ones(nq,1),:);

61 iMKt21q = iMKt21(ones(nq,1),:);

Fast simulations in Matlab for Scientific Computing 15

62 iMKt22q = iMKt22(ones(nq,1),:);

63 % diffusion and reaction coefficients

64 mu = @(x,y) exp(x + y);

65 sigma = @(x,y) 1 + exp(x + y);

66 % source term, Dirichlet and Neumann data

67 f = @(x,y) (pi*exp(x + y).*(2*sin((pi*(x + y))/2) + ...

68 pi*cos((pi*(x + y))/2) + pi*cos((pi*(x - y))/2)))/4 + ...

69 (1 + exp(x + y)).*sin(pi*(x+1)/2).*sin(pi*(y+1)/2);

70 gD = @(x,y) 0*x;

71 gN = @(x,y) -pi/2*sin((pi*(y+1))/2).*exp(x+y);

72 % assembling of lhs and rhs

73 for i = 1:3

74 % extension of the i-th basis function (nq x Nt)

75 phiq = phi (i,:)’; phiq = phiq (:,ones(Nt,1));

76 phi_xq = phi_x(i,:)’; phi_xq = phi_xq(:,ones(Nt,1));

77 phi_yq = phi_y(i,:)’; phi_yq = phi_yq(:,ones(Nt,1));

78 % derivative of the i-th basis function on K

79 Phi_x = iMKt11q.*phi_xq + iMKt12q.*phi_yq;

80 Phi_y = iMKt21q.*phi_xq + iMKt22q.*phi_yq;

81 % quadrature nodes on K (nq x Nt)

82 xq = (1 - xy(1,:) - xy(2,:))’*x1 + xy(1,:)’*x2 + xy(2,:)’*x3;

83 yq = (1 - xy(1,:) - xy(2,:))’*y1 + xy(1,:)’*y2 + xy(2,:)’*y3;

84 % rhs

85 fi = (w*(f(xq,yq).*phiq)).*ar;

86 F = F + sparse(loc2glob(i,:),1,fi,Np,1);

87 for j = 1:3

88 % extension of the j-th basis function (nq x Nt)

89 phjq = phi (j,:)’; phjq = phjq (:,ones(Nt,1));

90 phj_xq = phi_x(j,:)’; phj_xq = phj_xq(:,ones(Nt,1));

91 phj_yq = phi_y(j,:)’; phj_yq = phj_yq(:,ones(Nt,1));

92 % derivative of the j-th basis function on K

93 Phj_x = iMKt11q.*phj_xq + iMKt12q.*phj_yq;

94 Phj_y = iMKt21q.*phj_xq + iMKt22q.*phj_yq;

95 % mass matrix

96 mij = (w*(sigma(xq,yq).*phiq.*phjq)).*ar;

97 M = M + sparse(loc2glob(i,:),loc2glob(j,:),mij,Np,Np);

98 % stiffness matrix

99 aij = (w*(mu(xq,yq).*(Phi_x.*Phj_x + Phi_y.*Phj_y))).*ar;

100 A = A + sparse(loc2glob(i,:),loc2glob(j,:),aij,Np,Np);

101 end

102 end

103 % global stiffness matrix

104 A = A + M;

105 % assembly of the Neumann contribution

Fast simulations in Matlab for Scientific Computing 16

106 phi_edge = basis_edge(xgl’);

107 xe = (1 - xgl)*p(1,nN1) + xgl*p(1,nN2);

108 ye = (1 - xgl)*p(2,nN1) + xgl*p(2,nN2);

109 gNe = gN(xe,ye);

110 % extension of the basis function of first node

111 phie = phi_edge(1,:)’; phie = phie(:,ones(Nn,1));

112 fN = (wgl’*(gNe.*phie)).*lN;

113 F = F + sparse(nN1,1,fN,Np,1);

114 % extension of the basis function of second node

115 phie = phi_edge(2,:)’; phie = phie(:,ones(Nn,1));

116 fN = (wgl’*(gNe.*phie)).*lN;

117 F = F + sparse(nN2,1,fN,Np,1);

118 % construction of the unknown nodes

119 unk = setdiff(1:Np,nD);

120 % evalutation of the Dirichlet data on the boundary nodes

121 uD = gD(p(1,nD),p(2,nD))’;

122 % elimination of the Dirichlet nodes

123 A = A(unk,:);

124 A = A(:,unk);

125 F = F(unk) - A(:,nD)*uD;

126 % solution of the linear system

127 s = A\F;

128 u(unk) = s;

129 u(nD) = uD;

%%

function [phi, phi_x, phi_y] = basis(xy);

Phi = @(x,y) [1 - x - y ; x ; y];

Phi_x = @(x,y) [-ones(size(x)); ones(size(x)) ; zeros(size(x))];

Phi_y = @(x,y) [-ones(size(x)); zeros(size(x)); ones(size(x))];

phi = Phi (xy(1,:),xy(2,:));

phi_x = Phi_x(xy(1,:),xy(2,:));

phi_y = Phi_y(xy(1,:),xy(2,:));

%%

In particular, notice that

1. The four boundary segments defining the domain Ω are numbered cloc-
kwise from 1 to 4, starting from the top segment up to the left segment
(see lines 3-6). The corresponding nodes are defined at lines 7-10 and the
Dirichlet nodes at line 14 via the Matlab command unique. Notice that
the two vertexes at the top-right and bottom-right corners of the domain
are Dirichlet nodes. The mesh structures are supposed to be obtained,
e.g., through the command [p,e,t] = initmesh(’squareg’,’hmax’,h),
where the parameter h controls the maximum edge size of the triangles;

Fast simulations in Matlab for Scientific Computing 17

2. the matrix M allocated at line 17 is the mass matrix, i.e., associated only
with the reaction contribution (14), while A is reserved for the stiffness
matrix (the diffusion contribution (13), strictly speaking). M is only used
temporarily; in fact the global matrix is then overwritten to A at line 104;

3. the quadrature nodes on the reference triangle are computed at line 24;
notice that the sum of the weights is 1; moreover, the values of the basis
functions and of their derivatives on the reference element are computed
at line 27;

4. at line 40, the array loc2glob whose dimensions are 3 × Nt is formed.
It provides the correspondence between local, i.e., {1, 2, 3}, and global
numbering of the nodes. Although it coincides with the mesh array t, this
is only a lucky coincidence due to the choice of the finite elements. The
array loc2glob will in general set the correspondence between local and
global degrees of freedom of the finite element space at hand;

5. in the same spirit, at the lines 42-43 the global numbering of the local
nodes on the Neumann edges are extracted, along with the length of these
edges at line 44;

6. the nodes and weights of the Gauss-Legendre quadrature formula are com-
puted at line 46 and the nodes are successively swapped in ascending order
at line 47;

7. the entries of the inverse of the transposed Jacobian (12) are computed
in parallel for each element at the lines 54-57 as arrays of dimension Nt,
and are then extended on the quadrature nodes as arrays NK

q ×Nt at lines
59-62;

8. the data of the problem are defined at lines 64-71 as anonymous functions;

9. At lines 73-102, the assembling of the mass and stiffness matrices, and of
the load vector is implemented through two nested loops of size 3 (number
of degrees of freedom of the P1 FEM per element). In particular, we point
out the extension of the basis functions φ̂i at the lines 75-77 and φ̂j at
89-91; the construction of the corresponding derivatives on K at 79-80

and 93-94; the computation of contributions due to the source (15) at 85,
the diffusion (13) at 99, and the reaction (14) at 96;

10. the contribution due to the Neumann boundary condition is carried out at
the lines 106-117;

11. the program then proceeds by eliminating the rows and columns of the
global stiffness matrix associated with the Dirichlet nodes, and by taking
into account their effect on the analogously reduced load vector at line
125, according to (8);

Fast simulations in Matlab for Scientific Computing 18

12. finally, the linear system is solved at line 127 an the complete solution is
recovered in the last two lines;

13. the function basis at the end of the algorithm computes the values of
the basis functions and of their partial derivatives as functions of the local
coordinates on the reference element.

5 The Navier-Stokes equations

We deal with some test cases that represent typical benchmark problems for
the Navier-Stokes equations ([21]). The objective is to compute some physical
meaningful quantity, such as the lift and drag coefficients for a cross-section of a
cylinder in a channel flow, both in steady and unsteady conditions. This allows
us to investigate our algorithmic paradigm on a more challenging situation. Let
us consider the conservative form (with respect to the stress rate) of the Navier-
Stokes equations for an incompressible fluid, completed with mixed boundary
conditions:






ρ
(∂~u
∂t

+ (~u · ∇) ~u
)
−∇ · σ = ~0 in Ω × (0, T),

∇ · ~u = 0 in Ω × (0, T),

σ~n = ~0 on ΓN × (0, T),
~u = ~uD on ΓD × (0, T),
~u = ~u0 on Ω at t = 0,

(17)

where the stress rate σ = σ(~u, p) = 2ρν ǫ(~u)−pI depends on the velocity ~u and
on the pressure p, while ρ = 1.0 Kg/m3 is the fluid density and ν = 10−3 m2/s
is the kinematic viscosity, ǫ(~u) = 1

2

(
∇~u+(∇~u)T

)
represents the strain rate, and

I denotes the identity tensor. The constant T > 0 represents the final time
level while ~u0 is a given initial velocity profile. The operator ∇· stands for the
divergence (for both vectors and tensors). As is the case of the Poisson problem
(5), ΓD and ΓN are two disjoint portions of the domain boundary.
The weak formulation of (17) is: given ~u(0) = ~u0, find (~u(t), p(t)) ∈ (V +~uD)×Q,
such that ∀(~v, q) ∈ V ×Q, and t ∈ (0, T),

0 =

∫

Ω
ρ

(∂~u
∂t

+ (~u · ∇) ~u
)
· ~v dx +

∫

Ω
σ(~u, p) : ǫ(~v) dx −

∫

Ω
q∇ · ~udx

=

∫

Ω
ρ

(∂~u
∂t

+ (~u · ∇) ~u
)
· ~v dx +

∫

Ω
2ρνǫ(~u) : ǫ(~v) dx−

∫

Ω
p∇ · ~v dx (18)

−

∫

Ω
q∇ · ~udx,

where we have introduced the function spaces V = [H1
ΓD

(Ω)]2 and Q = L2(Ω),

while the inner product between tensors is denoted by “:”, i.e., σ : ǫ =
∑

i,j=1,2

σijǫij .

Fast simulations in Matlab for Scientific Computing 19

0 0.5 1 1.5 2
0

0.2

0.4

0.16

0.15

0.1
0.15

2.2

Figura 3: Domain Ω for the flow past a cylinder test case.

The benchmarks tests at hand are defined on the rectangular channel Ω,
with a width H = 0.41, drilled with a circular hole representing the cross-
section of a cylinder and characterized by a slightly asymmetric configuration
(see Figure 3). The boundary conditions are prescribed as follows: we take
ΓD = Γin ∪ Γcyl ∪ Γwall, where on the inflow section Γin = {(x, y) : x = 0 & 0 <
y < H}, ~u = [vin, 0]

T , with vin = 4Um y (H − y)/H2 the inlet parabolic profile,
and Um the peak velocity, while on the remaining rigid walls Γcyl ∪ Γwall, the
no-slip constraint ~u = ~0 holds, where Γcyl,Γwall denote the cylinder and the two
horizontal sides, respectively. The Neumann boundary ΓN coincides with the
outlet Γout = {(x, y) : x = 2.2 & 0 < y < H} and the zero-traction condition
applies.

The Reynolds number is defined by Re = vinD/ν and is based on the mean
velocity vin over Γin; the cylinder diameter is D = 0.1 m. The chosen physical
quantities

Jdrag = c0

∫

Γcyl

σ(~u, p)~n ·~1‖ ds and Jlift = c0

∫

Γcyl

σ(~u, p)~n ·~1⊥ ds, (19)

represent the so-called drag and lift coefficients, where ~1‖ = [1, 0]T ,~1⊥ = [0, 1]T

are the unit vectors parallel and orthogonal, respectively to the main flow direc-
tion (the horizontal one), with c0 = 2/(ρD vin

2). The goal of the benchmarks
is to compute these quantities as accurate as possible in an efficient way. The
results obtained with different approaches by several teams are gathered in [21].
Since the purpose of these notes is to present a computational paradigm based
on Matlab, we are not going to push too hard on the computational resour-
ces. However, to show that even with a Matlab program run on a notebook
featuring quite common performances it is still possible to face very challenging
problems, we enhance efficiency by adopting a somewhat original approach that
we describe below.
As already observed, e.g., in [9, 2], the straightforward employment of (19) to
compute the drag and lift coefficients does not yield accurate results, due to
the need of computing numerically first-order derivatives along the cylinder. A
more stable and accurate way is instead obtained by resorting to an interior

Fast simulations in Matlab for Scientific Computing 20

rather than a boundary integral. In particular, if we pick any two vector fields,
~wdrag, ~wlift : Ω → R

2, associated with the drag and the lift, as suitable extensions
into Ω of the two unit vectors ~1‖,~1⊥, respectively, i.e., on the boundary

~wdrag =

{
~1‖ on Γcyl

~0 on ∂Ω\Γcyl

and ~wlift =

{
~1⊥ on Γcyl

~0 on ∂Ω\Γcyl,
(20)

it is possible to replace (19) by the equivalent form

Jdrag = c0

(∫

Ω
ρ

(∂~u
∂t

+ (~u · ∇) ~u
)
· ~wdrag dx +

∫

Ω
σ(~u, p) : ǫ(~wdrag) dx

)
,

Jlift = c0

(∫

Ω
ρ

(∂~u
∂t

+ (~u · ∇) ~u
)
· ~wlift dx +

∫

Ω
σ(~u, p) : ǫ(~wlift) dx

)
,(21)

where only integrals over Ω are involved. Indeed, from (21), (20) and (17), we
have that

Jdrag = c0

∫

Γcyl

σ(~u, p)~n ·~1‖ ds = c0

∫

Γcyl

σ(~u, p)~n · ~wdrag ds

= c0

∫

∂Ω
σ(~u, p)~n · ~wdrag ds = c0

∫

Ω
∇ · (σ(~u, p)~wdrag) dx

= c0

(∫

Ω
(∇ · σ(~u, p)) · ~wdrag dx +

∫

Ω
σ(~u, p) : ǫ(~wdrag) dx

)

= c0

(∫

Ω
ρ
(∂~u
∂t

+ (~u · ∇) ~u
)
· ~wdrag dx +

∫

Ω
σ(~u, p) : ǫ(~wdrag) dx

)
,

and analogously for Jlift. Notice that (21) can be interpreted as residuals asso-
ciated with the weak formulation (18), where the test function, ~wdrag, ~wlift, do
not belong to the space V (due to the nonzero value over Γcyl). In this respect,
expressions (21) can be thought of as weak fluxes. These play a key role in
Domain Decomposition methods ([20]).
On the continuous level, (19) and (21) are thoroughly equivalent (under standard
regularity conditions for σ(u, p) and ~wdrag, ~wlift). However, this regularity is
definitely lost on the discrete level (as long as one does not employ flux conserving
FEMs). Nonetheless, after introducing the discrete formulation of (18), we shall
employ the natural discretization to (21) as an accurate evaluation of the drag
and lift coefficients.

5.1 Discretization of the Navier-Stokes equations

The discretization of the Navier-Stokes equations with finite elements is addres-
sed in, e.g., [6, 11, 15, 19]. The approximation of the weak formulation (18)
proceeds in a standard way. As far as the spatial discretization is concerned, we
employ suitable finite element spaces Vh ⊂ V and Qh ⊂ Q, while for the time
discretization we resort to a finite different approximation. Thus, we introduce

Fast simulations in Matlab for Scientific Computing 21

the partition {tn}
NT

n=0 consisting of NT + 1 time levels, such that tn+1 = tn + ∆t
for a given constant time step ∆t (such that t0 = 0 and tNT

= T). The choice of
a uniform mesh is made just for the sake of simplicity. Then, the discretization
of the time derivative ∂~u/∂t consists of the backward Euler method, BE, for the
first time step (from t0 to t1) and of the second-order Backward Differentiation
Formula, BDF2, for the remaining steps. Both approaches can be given a general
format, i.e.,

∂~u

∂t
(tn+1) ≃

1

∆t

(
a1 ~u(tn+1) − a2 ~u(tn) − a3 ~u(tn−1)

)
, (22)

where a1 = a2 = 1, a3 = 0 (BE), and a1 = 3
2 , a2 = 2, a3 = −1

2 (BDF2).
To deal with the nonlinear convective term (~u · ∇) ~u, we employ the following
extrapolation

[(~u · ∇) ~u](tn+1) ≃ (~u∗(tn+1) · ∇) ~u(tn+1), with ~u∗(tn+1) = b1 ~u(tn) + b2 ~u(tn−1),
(23)

where b1 = 1, b2 = 0 (first step) and b1 = 2, b2 = −1 (successive steps). Thus
we use a first-order accurate extrapolation at the first step and a second-order
method for the further steps. Overall, the discretizations of the time derivative
and of the nonlinear term ensure a second-order consistency error at the final
time t = T .

As far as the choice of the finite element spaces, Vh, Qh, it is well known that
any choice will not do. In particular, the so-called discrete inf-sup condition must
be satisfied in order to obtain a stable discretization ([7]). Neglecting for the
moment the boundary conditions, two pairs that are inf-sup stable are provided
by the so-called Taylor-Hood element: Vh = (P2)

2 and Qh = P1, and by the
mini-element (ME): Vh = (P1 ⊕ Pb)

2 and Qh = P1, where Pb denotes the space
of cubic polynomial bubbles, b, such that, for any K ∈ Th it holds

b ∈ P3(K) ∩H1
0 (K), 0 ≤ b ≤ 1, b(C) = 1,

where C is the barycenter of K.
We are now in a position to state the discrete formulation of the Navier-Stokes

equations. We let ~un
h ≃ ~u(tn), pn

h ≃ p(tn), n = 0, 1, . . . , NT . Then given ~u 0
h , we

are to find (~un+1
h , pn+1

h) ∈ (Vh +~uD,h)×Qh such that, for n = 0, 1, 2, . . . , NT − 1

∫

Ω
ρ

(a1

∆t
~un+1

h +
(
(b1 ~u

n
h + b2 ~u

n−1
h) · ∇

)
~un+1

h

)
· ~vh dx

+

∫

Ω
2ρν ǫ(~un+1

h) : ǫ(~vh) dx−

∫

Ω
pn+1

h ∇ · ~vh dx−

∫

Ω
qh ∇ · ~un+1

h dx

=

∫

Ω

ρ

∆t

(
a2 ~u

n
h + a3 ~u

n−1
h

)
· ~vh ∀(~vh, qh) ∈ Vh ×Qh, (24)

where ~u 0
h , ~uD,h are suitable approximations to ~u0, ~uD, and Vh ⊂ [H1

ΓD
(Ω)]2, Qh ⊂

L2(Ω).

Fast simulations in Matlab for Scientific Computing 22

In the following test cases, we employ the discrete space ME. Thus the degrees
of freedom of the velocity can be chosen as the values taken at the vertexes of
the mesh belonging to NΩ ∪NΓN

and at the centroids of the elements, while the
degrees of freedom of the pressure are associated with the values attained at all
the vertexes NΩ∪NΓN

∪NΓD
. Let us denote the set of the indices associated with

the degrees of freedom of each velocity component as NU , and of the pressure as
NP , where it is understood that the first |NΩ ∪ NΓN

| indices of NU correspond
to the P1 degrees of freedom (value at vertex), | · | being the cardinality of a
set, while the remaining Nt indices are associated with the Pb degrees of freedom
(value at centroid), whereas the degrees of freedom of the pressure are all of
type P1. Let us then denote for brevity by NU = |NΩ ∪NΓN

|+ Nt and NP = Np

the cardinalities of the two sets NU and NP , respectively. After introducing this
notation, problem (24) admits an algebraic counterpart which we now describe.
Expand the discrete velocity-pressure pair at an arbitrary time level n as

~un
h (x) =

∑

j∈NU

~un
h (xj)φj(x) + ~un

D,h(x), with ~un
D,h(x) =

∑

j∈NΓD

~un
D(xj)φj(x),

pn
h(x) =

∑

j∈NP

pn
h(xj)ψj(x),

where ~un
D,h is a suitable approximation to the exact data ~uD(tn) constructed

only via P1 degrees of freedom, since the bubble functions are zero on the whole
∂Ω. Other choices for ~un

D,h are clearly possible but this turns out to be handy
in the implementation. The functions {φj} and {ψj} collect the basis functions
for the velocity and the pressure, respectively. For a given time level, n, we now
collect the degrees of freedom of the velocity in the vector Un ∈ R

2NU , with
Un = [Un

1 ,U
n
2]T , where Un

i ∈ R
NU gathers the degrees of freedom associated

with the i-th component of the velocity field, for i = 1, 2, and we group the
degrees of freedom of the pressure in the vector Pn ∈ R

NP .
Then the algebraic counterpart of (24) reads: given [U0,P0]T ∈ R

2NU+NP ,
for n = 0, 1, 2, . . . , NT − 1 find Wn+1 = [Un+1,Pn+1]T ∈ R

2NU+NP such that

AnWn+1 = Fn+1, (25)

where An ∈ R
(2NU +NP)×(2NU +NP) is given by

An =

[a1

∆t
M +A+N(b1U

n + b2U
n−1) BT

B 0

]
, (26)

and the right-hand side Fn+1 ∈ R
2NU+NP is

Fn+1 =

[
Fn+1

u + 1
∆t
M(a2U

n + a3U
n−1)

Fn+1
p

]
. (27)

Fast simulations in Matlab for Scientific Computing 23

Matrix M ∈ R
2NU×2NU is the mass matrix of the velocity, A ∈ R

2NU×2NU is the
stiffness matrix associated with the viscous stresses, N(·) ∈ R

2NU×2NU is the ma-
trix associated with the advective term, B ∈ R

NP×2NU collects the contributions
of the ”divergence” term; on the right-hand side, Fn+1

u ∈ R
2NU and Fn+1

p ∈ R
NP

gather the quantities associated with the Dirichlet conditions at time level n+1,
and all the contributions of the previous time steps. In more detail, all of these
matrices have the following block structure: M is the symmetric two-by-two
block diagonal matrix

M =

[
Mu 0
0 Mu

]
,

with Mu ∈ R
NU×NU (and zero blocks of the same size), and

[Mu]i,j =

∫

Ω
ρφjφi dx, i, j ∈ NU ;

A is the symmetric two-by-two block matrix

A =

[
A11 A12

AT
12 A22

]
,

where the four blocks are the R
NU×NU matrices, for i, j ∈ NU , given by

[A11]i,j =

∫

Ω
2ρν ǫ([φj , 0]

T) : ǫ([φi, 0]
T) dx =

∫

Ω
2ρν

(
∂φj

∂x

∂φi

∂x
+

1

2

∂φj

∂y

∂φi

∂y

)
dx

[A12]i,j =

∫

Ω
2ρν ǫ([φj , 0]

T) : ǫ([0, φi]
T) dx =

∫

Ω
2ρν

1

2

∂φj

∂x

∂φi

∂y
dx

[A22]i,j =

∫

Ω
2ρν ǫ([0, φj]

T) : ǫ([0, φi]
T) dx =

∫

Ω
2ρν

(
∂φj

∂y

∂φi

∂y
+

1

2

∂φj

∂x

∂φi

∂x

)
dx;

N(~vh), for a dummy discrete velocity field ~vh, is the nonsymmetric two-by-two
advection matrix

N(~vh) =

[
Nu 0
0 Nu

]
,

with Nu ∈ R
NU×NU (and zero blocks of the same size), and

[Nu]i,j =

∫

Ω
ρ~vh · ∇φj φi dx, i, j ∈ NU ;

B is the one-by-two block matrix

B = [B1 B2],

with Bi ∈ R
NP×NU , for i = 1, 2, and

[B1]i,j = −

∫

Ω

∂φj

∂x
ψi dx, [B2]i,j = −

∫

Ω

∂φj

∂y
ψi dx, i ∈ NP , j ∈ NU ;

Fast simulations in Matlab for Scientific Computing 24

Fn+1
u is given by [Fn+1

u,1 Fn+1
u,2]T , with Fn+1

u,i ∈ R
NU , i = 1, 2, and, for i ∈ NU ,

[Fn+1
u,1]

i
= −

∫

Ω
ρ

(a1

∆t
~un+1

D,h +
(
(b1 ~u

n
h + b2 ~u

n−1
h) · ∇

)
~un+1

D,h

)
· [φi, 0]

T dx

+

∫

Ω
ǫ(~un+1

D,h) : ǫ([φi, 0]
T) dx +

∫

Ω

ρ

∆t

(
a2 ~u

n
h + a3 ~u

n−1
h

)
· [φi, 0]

T

[Fn+1
u,2]

i
= −

∫

Ω
ρ

(a1

∆t
~un+1

D,h +
(
(b1 ~u

n
h + b2 ~u

n−1
h) · ∇

)
~un+1

D,h

)
· [0, φi]

T dx

+

∫

Ω
ǫ(~un+1

D,h) : ǫ([0, φi]
T) dx +

∫

Ω

ρ

∆t

(
a2 ~u

n
h + a3 ~u

n−1
h

)
· [0, φi]

T ,

while Fn+1
p ∈ R

Np has components

[Fn+1
p]i =

∫

Ω
ψi∇ · ~un+1

D,h dx, i ∈ NP .

Notice that the matrix An in (26) is time dependent due to the advection
contribution only.

As for the actual computation of the drag and lift, we adopt the discrete
counterpart of (21), replacing the pair (~u, p) with (~uh, ph), approximating the
time derivative with the corresponding finite differences, and using as ~wdrag, ~wlift

the harmonic finite element functions which satisfy (20) obtained as follows. We
first construct the harmonic function, Zh ∈ P1 ⊕ Pb, satisfying Zh = 1 on Γcyl

and Zh = 0 on ∂Ω\Γcyl. Then we define ~wdrag = [Zh, 0]
T and ~wlift = [0, Zh]T .

On the discrete level, this amounts to computing the quantity

Jdrag = c0[Z 0]T (AnWn+1 − Fn+1) Jlift = c0[0 Z]T (AnWn+1 − Fn+1), (28)

where Z ∈ R
2NU collects the degrees of freedom of the function Zh, and the zero

block has dimension NP .

6 The benchmark test cases

We are now ready to present the numerical results on some benchmarks proposed
in [21]. For simplicity, here we only focus on the drag and lift coefficients.
Other quantities, such as pressure difference, Strouhal number and length of
recirculation will not be addressed.

6.1 Test case 2D-1

This is a stationary test case, with Um = 0.3, and thus Re = 20. The drag
and lift coefficients have to be computed. Table 2 summarizes the results for
this test case, showing the number of elements, Nt, the number of vertexes, Np,
the size of the global stiffness matrix, S, the average CPU time, T1, required
to complete one time step, the values of the drag and lift coefficients, for three

Fast simulations in Matlab for Scientific Computing 25

0 0.5 1 1.5 2

0.2

0.4

0.1 0.15 0.2 0.25 0.3
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Figura 4: First mesh for the test case 2D-1 (left) and zoom in on the cylinder
(right).

Tabella 2: Test case 2D-1. Number of elements Nt; number of nodes Np; matrix
size S; average CPU time per time step T1; drag coefficient Jdrag ; lift coefficient
Jlift.

Nt Np S T1 Jdrag Jlift

3,392 1,788 11,794 0.9 5.5811 · 10+00
−2.8478 · 10−03

13,568 6,968 47,334 4.3 5.5799 · 10+00 7.1270 · 10−03

15,560 7,980 54,318 5.1 5.5798 · 10+00 2.3325 · 10−02

different computational meshes. The first mesh (see Figure. 4) exhibits some
refinement around the cylinder. In particular, 32 elements are placed around
the cylinder. The second mesh is obtained through a uniform refinement of the
first one, i.e., each triangle is divided into four similar triangle by joining the
mid-edges, and thus it has 64 elements attached to the cylinder. The third mesh
is a uniform mesh characterized by a maximum mesh size of 0.014 throughout
all of the domain. Around the cylinder there are only 24 elements. The number,
S, of global unknowns is comparable to the coarsest and medium size meshes of
the benchmarks reported in [21], which span from 6,562 to 30,775,296. In order
to get the steady state solution, we chose ∆t = 10−2 and T = 8. The values in
Table 2 for the drag coefficient are consistent with the range deduced in [21], i.e.,
5.5700 ≤ Jdrag ≤ 5.5900. For this test case, the lift coefficient turns out to be
the most critical quantity to compute. Actually, the values in Table 2, although
not strictly in the range 1.04 · 10−02 ≤ Jlift ≤ 1.10 · 10−02 suggested in [21], are
in any case of the same order as many of the values reported in [21]. Notice also
that, it takes about 13 minutes (in the best case) and 1 hour (in the worst) for
the program to execute a full sweep over 800 time steps.

6.2 Test case 2D-2

This is an unsteady test case, where Um = 1.5, yielding Re = 100. It is requi-
red to compute the drag and lift coefficients as functions of time for one period
[t0, t0 + 1/f] (with f = f(Jlift)), maximum drag coefficient, Jdrag,M , maximum
lift coefficient, Jlift,M . The initial data (t = t0) should correspond to the flow
state with Jlift,M . For the simulation, we employed ∆t = 10−2 and T = 8. Ta-

Fast simulations in Matlab for Scientific Computing 26

ble 3 shows the maximum value of the drag, Jdrag,M , and lift, Jlift,M coefficients
over the period. The computational work per time step is the same as in the pre-
vious test case. The computed values appear to be comparable to the reference
values in [21], i.e., 3.2200 ≤ Jdrag,M ≤ 3.2400 and 0.9900 ≤ Jlift,M ≤ 1.0100.

Tabella 3: Test case 2D-2. Number of elements Nt; number of nodes Np; matrix
size S; average CPU time per time step T1; maximum drag coefficient Jdrag,M ;
maximum lift coefficient Jlift,M .

Nt Np S T1 Jdrag,M Jlift,M

3,392 1,788 11,794 0.9 3.2289 · 10+00 1.0088 · 10+00

13,568 6,968 47,334 4.3 3.2529 · 10+00 1.0385 · 10+00

15,560 7,980 54,318 5.1 3.1065 · 10+00 8.0528 · 10−01

6.3 Test case 2D-3

Tabella 4: Test case 2D-3. Number of elements Nt; number of nodes Np; matrix
size S; average CPU time per time step T1; maximum drag coefficient Jdrag,M ;
maximum lift coefficient Jlift,M .

Nt Np S T1 Jdrag,M Jlift,M

3,392 1,788 11,794 0.9 2.9106 · 10+00 5.5318 · 10−01

13,568 6,968 47,334 4.3 2.9370 · 10+00 5.7065 · 10−01

15,560 7,980 54,318 5.1 2.8843 · 10+00 4.3683 · 10−01

This is a time dependent problem, where the inflow condition is vin =
4Um y (H − y) sin(πt/8)/H2, with Um = 1.5, and the time interval is 0 ≤ t ≤ 8.
This gives a time varying Reynolds number between 0 ≤ Re(t) ≤ 100. The
initial data (t = 0) are ~u0 = ~0, P = 0. The following quantities should be com-
puted: drag and lift coefficients as functions of time for 0 ≤ t ≤ 8, maximum
drag coefficient, Jdrag,M , and maximum lift coefficient, Jlift,M . Although not
explicitly mentioned in [21], the value of vin to be used in the definitions (19)
is the value associated with the maximum height of the inflow profile, i.e., at
t = 4. Table 4 gathers the results for this test case. Again, ∆t = 10−2 and
T = 8 were chosen. Also in this case, the computed drag and lift coefficients are
consistent with the reference values in [21], i.e., 2.9300 ≤ Jdrag,M ≤ 2.9700 and
0.4700 ≤ Jlift,M ≤ 0.4900.

The full list of the program, for the test case 2D-1, is provided in the
Appendix.

Fast simulations in Matlab for Scientific Computing 27

7 Conclusions

We have developed a numerical tool for solving problems described by partial
differential equations. In particular, our tool is based on a simple and short open-
box Matlab implementation of FEMs on 2D triangular meshes. Our effort has
been mainly devoted to making the program as efficient as possible, in order to
run in few seconds or minutes (in case of a steady simulation). The employment
of Matlab is by no means restrictive. Our choice was mainly motivated by the
fact that it still represents a very popular interactive environment for numerical
computation, visualization, and programming. However, simple modifications
allow one to adapt our tool to other high-level interpreted languages, such as
GNU Octave [10].

To describe our approach, we have first considered the Poisson problem,
completed with both Dirichlet and Neumann boundary conditions, as one of the
typical problems which appear in Scientific Computing. Then we have generali-
zed this to the diffusion-reaction problem, where both the diffusion and reaction
coefficients, as well as the boundary data may vary as a function of position,
thus requiring the use of suitable quadrature rules. Finally, we have dealt with
the steady and unsteady incompressible Navier-Stokes equations. In all cases,
it turns out that low computing times can be really achieved even for the more
challenging problems represented by the Navier-Stokes equations. This was ma-
de possible by first adopting a suitable data structure to describe the mesh, and
secondly, by a thorough use of vectorization programming and sparse matrix
storage and operations which is made possible within the Matlab environment.
Only 2D configurations have been addressed in this paper. However, we have
already extended all of this techniques to the 3D case, and impressive improve-
ments of the computing times can be obtained also in this case. As a possible
task for the future, it would be desirable to develop a tool for easily generating
a data structure suitable to deal with higher-order polynomials, i.e., Pk, with
k ≥ 2.

Appendix A

Algorithm 3 1 % physical and geometrical parameters

2 rho = 1;

3 nu = 1e-3;

4 mu = rho*nu;

5 Um = 0.3;

6 H = 0.41;

7 D = 0.1;

8 Ubar = 2*(4*Um*H/2*(H-H/2)/H^2)/3; % mean inflow velocity

9 Re = Ubar*D/nu;

10

Fast simulations in Matlab for Scientific Computing 28

11 % data for time discretization

12 dt = 0.01;

13 Tf = 8;

14 time = linspace(0,Tf,Tf/dt+1);

15

16 % load mesh and geometry: p, e, t

17 load cylinder

18

19 % classification of the nodes

20 [ninf,nout,ndir,nunk] = find_nodes(p,e,t);

21

22 % choice of FEM space

23 % ’TH’ = Taylor-Hood (P2/P1)

24 % ’ME’ = Mini-element (P1b/P1)

25 element = ’ME’

26

27 % coefficients of backward Euler

28 a1 = 1; a2 = 1; a3 = 0;

29

30 % extrapolation of convective term: b1*u^n + b2*u^{n-1}

31 % at first time step: first-order extrapolation

32 b1 = 1; b2 = 0;

33

34 % quadrature nodes (2 x nq) and weights (1 x nq) on ref. triangle

35 % sum(w) = 1

36 [xy, w] = dunavant_rule (5);

37 nq = length(w);

38

39 % velocity (phi) and pressure (psi) basis functions

40 % on the reference triangle: nb x nq, nb = # local basis functions

41 [phi, phi_x, phi_y, psi, psi_x, psi_y] = basis(xy,element);

42

43 % number of global dofs for velocity (dofV) and pressure (dofP)

44 % loc2globV: nbV x Nt

45 % loc2globP: nbP x Nt

46 [dofV, dofP, loc2globV, loc2globP] = dofs(p,t,element);

47

48 % area of triangles and number of vertices and elements

49 ar = pdetrg(p,t);

50 Nt = size(t,2);

51 Np = size(p,2);

52

53 nbV = size(phi,1); % # local basis functions for velocity

54 nbP = size(psi,1); % # local basis functions for pressure

Fast simulations in Matlab for Scientific Computing 29

55 ZZ = sparse(dofP,dofP);

56 ZP = sparse(dofP,1);

57

58 % initial conditions

59 U = sparse(dofV,1);

60 U1 = sparse(dofV,1); % u^{n-1}

61 U2 = sparse(dofV,1); % u^{n-2}

62 V = sparse(dofV,1); % v^{n-1}

63 V1 = sparse(dofV,1); % v^{n-2}

64 V2 = sparse(dofV,1);

65 P = sparse(dofP,1);

66

67 % coordinates of local (1, 2 and 3) node of each triangle

68 n1 = t(1,:);

69 n2 = t(2,:);

70 n3 = t(3,:);

71 x1 = p(1,n1);

72 x2 = p(1,n2);

73 x3 = p(1,n3);

74 y1 = p(2,n1);

75 y2 = p(2,n2);

76 y3 = p(2,n3);

77

78 % matrix and vector allocation

79 A = sparse(2*dofV+dofP,2*dofV+dofP);

80 F = sparse(2*dofV+dofP,1);

81 M = sparse(dofV,dofV);

82 A11 = sparse(dofV,dofV);

83 A12 = sparse(dofV,dofV);

84 A22 = sparse(dofV,dofV);

85 B1t = sparse(dofV,dofP);

86 B2t = sparse(dofV,dofP);

87

88 % Jacobian of the mapping from reference element to K

89 % [x2 - x1, x3 - x1]

90 % [y2 - y1, y3 - y1]

91 %

92 % inverse of transposed Jacobian

93 % [y3 - y1, y1 - y2]

94 % [x1 - x3, x2 - x1]/(2*|K|)

95 iMKt11 = (y3 - y1)./(2*ar);

96 iMKt12 = (y1 - y2)./(2*ar);

97 iMKt21 = (x1 - x3)./(2*ar);

98 iMKt22 = (x2 - x1)./(2*ar);

Fast simulations in Matlab for Scientific Computing 30

99 % extension on the quadrature nodes of iMKt

100 iMKt11q = iMKt11(ones(nq,1),:);

101 iMKt12q = iMKt12(ones(nq,1),:);

102 iMKt21q = iMKt21(ones(nq,1),:);

103 iMKt22q = iMKt22(ones(nq,1),:);

104

105 % lift and drag initialization

106 cD = zeros(length(time),1);

107 cL = zeros(length(time),1);

108

109 for n = 1:(length(time)-1)

110

111 N1 = sparse(dofV,dofV);

112 N2 = sparse(dofV,dofV);

113

114 if n == 1

115

116 for i = 1:nbV

117

118 % extension of the i-th basis function: nq x Nt

119 phiq = phi (i,:)’; phiq = phiq (:,ones(Nt,1));

120 phi_xq = phi_x(i,:)’; phi_xq = phi_xq(:,ones(Nt,1));

121 phi_yq = phi_y(i,:)’; phi_yq = phi_yq(:,ones(Nt,1));

122 % derivative of i-th basis function on K

123 Phi_x = iMKt11q.*phi_xq + iMKt12q.*phi_yq;

124 Phi_y = iMKt21q.*phi_xq + iMKt22q.*phi_yq;

125

126 for j = 1:nbV

127

128 % extension of the j-th basis function: nq x Nt

129 phjq = phi (j,:)’; phjq = phjq (:,ones(Nt,1));

130 phj_xq = phi_x(j,:)’; phj_xq = phj_xq(:,ones(Nt,1));

131 phj_yq = phi_y(j,:)’; phj_yq = phj_yq(:,ones(Nt,1));

132

133 % velocity mass matrix

134 mij = rho*(w*(phiq.*phjq)).*ar/dt;

135 M = M + sparse(loc2globV(i,:),loc2globV(j,:),mij,dofV,dofV);

136

137 % derivative of j-th basis function on K

138 Phj_x = iMKt11q.*phj_xq + iMKt12q.*phj_yq;

139 Phj_y = iMKt21q.*phj_xq + iMKt22q.*phj_yq;

140

141 % viscous strains stiffness matrix

142 a11 = 2*mu*(w*(Phi_x.*Phj_x + Phi_y.*Phj_y/2)).*ar;

Fast simulations in Matlab for Scientific Computing 31

143 a12 = 2*mu*(w*(Phi_y.*Phj_x/2)).*ar;

144 a22 = 2*mu*(w*(Phi_y.*Phj_y + Phi_x.*Phj_x/2)).*ar;

145 A11 = A11 + sparse(loc2globV(i,:),loc2globV(j,:),a11,dofV,dofV);

146 A12 = A12 + sparse(loc2globV(i,:),loc2globV(j,:),a12,dofV,dofV);

147 A22 = A22 + sparse(loc2globV(i,:),loc2globV(j,:),a22,dofV,dofV);

148

149 % convection matrix N(u_h)

150 for l = 1:nbV

151 U1K = U1(loc2globV(l,:))’;

152 U2K = U2(loc2globV(l,:))’;

153 V1K = V1(loc2globV(l,:))’;

154 V2K = V2(loc2globV(l,:))’;

155 phlq = phi (l,:)’; phlq = phlq (:,ones(Nt,1));

156 nl1 = w*(phiq.*phlq.*Phj_x).*(b1*U1K + b2*U2K).*ar;

157 nl2 = w*(phiq.*phlq.*Phj_y).*(b1*V1K + b2*V2K).*ar;

158 N1 = N1 + sparse(loc2globV(i,:),loc2globV(j,:),nl1,dofV,dofV);

159 N2 = N2 + sparse(loc2globV(i,:),loc2globV(j,:),nl2,dofV,dofV);

160 end

161

162 end

163

164 for j = 1:nbP

165

166 psjq = psi (j,:)’; psjq = psjq (:,ones(Nt,1));

167 % ‘‘divergence’’ matrix B

168 b1t = -(w*(Phi_x.*psjq)).*ar;

169 b2t = -(w*(Phi_y.*psjq)).*ar;

170 B1t = B1t + sparse(loc2globV(i,:),loc2globP(j,:),b1t,dofV,dofP);

171 B2t = B2t + sparse(loc2globV(i,:),loc2globP(j,:),b2t,dofV,dofP);

172

173 end

174 end

175

176 % auxiliary variable for drag & lift

177 Z = compute_Z(p,e,t,ar,nbV,dofV,dofP,loc2globV,w,phi_x,phi_y);

178

179 else

180

181 for i = 1:nbV

182 % extension of the i-th basis function: nq x Nt

183 phiq = phi (i,:)’; phiq = phiq (:,ones(Nt,1));

184 phi_xq = phi_x(i,:)’; phi_xq = phi_xq(:,ones(Nt,1));

185 phi_yq = phi_y(i,:)’; phi_yq = phi_yq(:,ones(Nt,1));

186 % derivative of i-th basis function on K

Fast simulations in Matlab for Scientific Computing 32

187 Phi_x = iMKt11q.*phi_xq + iMKt12q.*phi_yq;

188 Phi_y = iMKt21q.*phi_xq + iMKt22q.*phi_yq;

189

190 for j = 1:nbV

191

192 % extension of the j-th basis function: nq x Nt

193 phjq = phi (j,:)’; phjq = phjq (:,ones(Nt,1));

194 phj_xq = phi_x(j,:)’; phj_xq = phj_xq(:,ones(Nt,1));

195 phj_yq = phi_y(j,:)’; phj_yq = phj_yq(:,ones(Nt,1));

196 % derivative of j-th basis function on K

197 Phj_x = iMKt11q.*phj_xq + iMKt12q.*phj_yq;

198 Phj_y = iMKt21q.*phj_xq + iMKt22q.*phj_yq;

199

200 % advection matrix N(u_h)

201 for l = 1:nbV

202 U1K = U1(loc2globV(l,:))’;

203 U2K = U2(loc2globV(l,:))’;

204 V1K = V1(loc2globV(l,:))’;

205 V2K = V2(loc2globV(l,:))’;

206 phlq = phi (l,:)’; phlq = phlq (:,ones(Nt,1));

207 nl1 = w*(phiq.*phlq.*Phj_x).*(b1*U1K + b2*U2K).*ar;

208 nl2 = w*(phiq.*phlq.*Phj_y).*(b1*V1K + b2*V2K).*ar;

209 N1 = N1 + sparse(loc2globV(i,:),loc2globV(j,:),nl1,dofV,dofV);

210 N2 = N2 + sparse(loc2globV(i,:),loc2globV(j,:),nl2,dofV,dofV);

211 end

212

213 end

214 end

215 end

216

217 N = rho*(N1 + N2);

218 % global stiffness and load vector

219 A = [a1*M+A11+N, A12 , B1t;

220 A12’ , a1*M+A22+N, B2t;

221 B1t’ , B2t’ , ZZ];

222

223 F = [M*(a2*U1+a3*U2); M*(a2*V1+a3*V2); ZP];

224

225 % boundary conditions at inflow

226 uinf = assign_inflow(p,ninf,Um,H,time(n+1));

227

228 % global indices of unknowns

229 unk_glob = [nunk,Np+(1:Nt),dofV + [nunk,Np+(1:Nt)],2*dofV+(1:Np)];

230 Aglob = A;

Fast simulations in Matlab for Scientific Computing 33

231 Fglob = F;

232 A = A(unk_glob,:);

233 F = F(unk_glob);

234 F = F - A(:,ninf)*uinf;

235 A = A(:,unk_glob);

236

237 % solution of the linear system

238 numb_unkV = length(nunk) + Nt;

239 uvp = A\F;

240 u = uvp(1:numb_unkV);

241 v = uvp([1:numb_unkV] + numb_unkV);

242 P = uvp(2*numb_unkV+1:end);

243 U([nunk,(1:Nt)+Np]) = u;

244 V([nunk,(1:Nt)+Np]) = v;

245 U(ninf) = uinf;

246

247 % drag & lift computation

248 [cD(n+1), cL(n+1)] = compute_drag_lift(dofV,dofP,Aglob,Fglob,...

U,V,P,Z,rho,Ubar,D);

249

250 % update velocity for next time step

251 U2 = U1;

252 U1 = U;

253 V2 = V1;

254 V1 = V;

255

256 % coefficient of BDF2

257 a1 = 3/2; a2 = 2; a3 = -1/2;

258 % coefficients of second-order extrapolation

259 b1 = 2; b2 = -1;

260

261 end

The auxiliary functions required by this program are gathered below

function [ninf,nout,ndir,nunk] = find_nodes(p,e,t)

% ninf = inflow nodes

% nout = outflow nodes

% ndir = Dirichlet nodes = ninf + walls + cylinder

% nout = unknown nodes = internal + outflow

Np = size(p,2);

% 1 = right

Fast simulations in Matlab for Scientific Computing 34

% 2 = top

% 3 = left

% 4 = bottom

% 5-8 = cylinder

e1 = find(e(5,:) == 1);

e2 = find(e(5,:) == 2);

e3 = find(e(5,:) == 3);

e4 = find(e(5,:) == 4);

e5 = find(e(5,:) == 5);

e6 = find(e(5,:) == 6);

e7 = find(e(5,:) == 7);

e8 = find(e(5,:) == 8);

n1 = union(e(1,e1),e(2,e1));

n2 = union(e(1,e2),e(2,e2));

n3 = union(e(1,e3),e(2,e3));

n4 = union(e(1,e4),e(2,e4));

n5 = union(e(1,e5),e(2,e5));

n6 = union(e(1,e6),e(2,e6));

n7 = union(e(1,e7),e(2,e7));

n8 = union(e(1,e8),e(2,e8));

ninf = n3;

nout = setdiff(n1,union(n2,n4));

ndir = unique([n2,n3,n4,n5,n6,n7,n8]);

nunk = setdiff(1:Np,ndir);

%%

function [phi, phi_x, phi_y, psi, psi_x, psi_y] = basis(xy,element);

switch element

case ’TH’

disp(’TH element not yet implemented’)

case ’ME’

Phi = @(x,y) [1 - x - y ; x ; y ; ...

27*(1 - x - y)*x*y];

Phi_x = @(x,y) [-ones(size(x)); ones(size(x)) ; zeros(size(x)); ...

-27*y*(2*x+y-1)];

Phi_y = @(x,y) [-ones(size(x)); zeros(size(x)); ones(size(x)) ; ...

Fast simulations in Matlab for Scientific Computing 35

-27*x*(2*y+x-1)];

phi = Phi (xy(1,:),xy(2,:));

phi_x = Phi_x(xy(1,:),xy(2,:));

phi_y = Phi_y(xy(1,:),xy(2,:));

%

psi = phi(1:3,:);

psi_x = phi_x(1:3,:);

psi_y = phi_y(1:3,:);

otherwise

disp(’Unknown method!’)

end

%%

function [dofV, dofP, loc2globV, loc2globP] = dofs(p,t,element);

Np = size(p,2);

Nt = size(t,2);

% Euler’s theorem: Nt + Np = Nl + 1 (where Nl = # all edges)

switch element

case ’TH’

display(’TH element not yet implemented’)

case ’ME’

dofV = Np + Nt;

dofP = Np;

loc2globV = zeros(4,Nt);

loc2globV(1:3,:) = t(1:3,:);

loc2globV(4,:) = Np + [1:Nt];

loc2globP = t(1:3,:);

otherwise

disp(’Unknown method!’)

end

%%

function uinf = assign_inflow(p,ninf,Um,H,t)

Fast simulations in Matlab for Scientific Computing 36

y = p(2,ninf)’;

uinf = 4*Um*y.*(H-y)/H^2;

% for test case 2D-3

%uinf = 4*Um*y.*(H-y)*sin(pi*t/8)/H^2;

%%

function Z = compute_Z(p,e,t,ar,nbV,dofV,dofP,loc2globV,wq,phi_x,phi_y)

% computes the auxiliary velocity variable Z:

% -Delta Z = 0 in Omega

% Z = 1 on cylinder

% Z = 0 elsewhere

Np = size(p,2);

Nt = size(t,2);

nq = length(wq);

% 1 = right

% 2 = top

% 3 = left

% 4 = bottom

% 5-8 = cylinder

e1 = find(e(5,:) == 1);

e2 = find(e(5,:) == 2);

e3 = find(e(5,:) == 3);

e4 = find(e(5,:) == 4);

e5 = find(e(5,:) == 5);

e6 = find(e(5,:) == 6);

e7 = find(e(5,:) == 7);

e8 = find(e(5,:) == 8);

n1 = union(e(1,e1),e(2,e1));

n2 = union(e(1,e2),e(2,e2));

n3 = union(e(1,e3),e(2,e3));

n4 = union(e(1,e4),e(2,e4));

n5 = union(e(1,e5),e(2,e5));

n6 = union(e(1,e6),e(2,e6));

n7 = union(e(1,e7),e(2,e7));

n8 = union(e(1,e8),e(2,e8));

Fast simulations in Matlab for Scientific Computing 37

ndir1 = unique([n5,n6,n7,n8]);

ndir0 = unique([n1,n2,n3,n4]);

nunk = setdiff(1:Np,[ndir0,ndir1]);

nK1 = t(1,:);

nK2 = t(2,:);

nK3 = t(3,:);

x1 = p(1,nK1);

x2 = p(1,nK2);

x3 = p(1,nK3);

y1 = p(2,nK1);

y2 = p(2,nK2);

y3 = p(2,nK3);

% Jacobian from reference element to K

% [x2 - x1, x3 - x1]

% [y2 - y1, y3 - y1]

%

% The transposed inverse Jacobian from reference element to K

% [y3 - y1, y1 - y2]

% [x1 - x3, x2 - x1]/(2*|K|)

iMKt11 = (y3 - y1)./(2*ar);

iMKt12 = (y1 - y2)./(2*ar);

iMKt21 = (x1 - x3)./(2*ar);

iMKt22 = (x2 - x1)./(2*ar);

% extension of iMKt

iMKt11q = iMKt11(ones(nq,1),:);

iMKt12q = iMKt12(ones(nq,1),:);

iMKt21q = iMKt21(ones(nq,1),:);

iMKt22q = iMKt22(ones(nq,1),:);

A = sparse(dofV,dofV);

F = sparse(dofV,1);

Z = sparse(dofV,1);

for i = 1:nbV

% extension of the i-th basis function: nq x Nt

phi_xq = phi_x(i,:)’; phi_xq = phi_xq(:,ones(Nt,1));

phi_yq = phi_y(i,:)’; phi_yq = phi_yq(:,ones(Nt,1));

% derivative of i-th basis function on K

Phi_x = iMKt11q.*phi_xq + iMKt12q.*phi_yq;

Phi_y = iMKt21q.*phi_xq + iMKt22q.*phi_yq;

Fast simulations in Matlab for Scientific Computing 38

for j = 1:nbV

% extension of the j-th basis function: nq x Nt

phj_xq = phi_x(j,:)’; phj_xq = phj_xq(:,ones(Nt,1));

phj_yq = phi_y(j,:)’; phj_yq = phj_yq(:,ones(Nt,1));

% derivative of j-th basis function on K

Phj_x = iMKt11q.*phj_xq + iMKt12q.*phj_yq;

Phj_y = iMKt21q.*phj_xq + iMKt22q.*phj_yq;

% stiffness matrix of Laplacian

a = (wq*(Phi_x.*Phj_x + Phi_y.*Phj_y)).*ar;

A = A + sparse(loc2globV(i,:),loc2globV(j,:),a,dofV,dofV);

end

end

unk_glob = [nunk,Np+(1:Nt)];

A = A(unk_glob,:);

F = F(unk_glob);

F = F - A(:,ndir1)*ones(length(ndir1),1);

A = A(:,unk_glob);

s = A\F;

Z(ndir1) = 1;

Z(unk_glob) = s;

%%

function [cD, cL] = compute_drag_lift(dofV,dofP,Aglob,Fglob,U,V,P,Z,rho,Ubar,D)

W = sparse(2*dofV+dofP,1);

W(1:dofV) = Z;

drag = W’*(Aglob*[U;V;P]-Fglob);

%

W = sparse(2*dofV+dofP,1);

W((1:dofV)+dofV) = Z;

lift = W’*(Aglob*[U;V;P]-Fglob);

cD = 2*drag/(rho*Ubar^2*D);

cL = 2*lift/(rho*Ubar^2*D);

%%

Fast simulations in Matlab for Scientific Computing 39

Riferimenti bibliografici

[1] J. Alberty, C. Carstensen, and S. A. Funken, Remarks around 50
lines of Matlab: short finite element implementation, Numerical Algorithms,
20 (1999), pp. 117–137.

[2] W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for
Differential Equations, Lectures in Mathematics, ETH Zürich, Birkhäuser
Verlag, Basel, 2003.

[3] R. Becker, Weighted error estimators for the incompressible Navier-Stokes
equations, Rapport de recherche, 3458, INRIA, 1998.

[4] J. Burkardt

http://people.sc.fsu.edu/~jburkardt/m_src/dunavant/dunavant_

html, 2006.

[5] D. Dunavant, High degree efficient symmetrical Gaussian quadrature rules
for the triangle, Internat. J. Numer. Methods Engrg., 21 (1985), pp. 1129–
1148.

[6] H. Elman, D. Silvester, and A. Wathen, Finite Elements and Fa-
st Iterative Solvers: with Applications in Incompressible Fluid Dynamics,
Oxford University Press, New-York, 2005.

[7] A. Ern and J. L. Guermond, Theory and Practice of Finite Elements,
Text in Applied Mathematica Sciences, 159, Springer-Verlag, New-York,
2004.

[8] M. B. Giles, M. G. Larson, J. M. Levenstam, and E. Süli, Adaptive
error control for finite element approximations of the lift and drag coef-
ficients in viscous flow, Technical Report, NA-97/06, Oxford University
Computing Laboratory, 1997.

[9] M. B. Giles and E. Süli, Adjoint methods for PDEs: a posteriori error
analysis and postprocessing by duality, Acta Numer., 11 (2002), pp. 145–236.

[10] www.gnu.org/software/octave

[11] P. M. Gresho, and R. L. Sani, Incompressible Flow and the Finite
Element Method, voll. I and II, John Wiley & Sons, 2000.

[12] P. I. Kattan, MATLAB Guide to Finite Elements: An interactive
approach, Springer-Verlag, Berlin, 2008.

[13] Y. W. Kwon, and H.C. Bang, The Finite Element Method Using
MATLAB, 2nd Edition, CRC Press, 2000.

Fast simulations in Matlab for Scientific Computing 40

[14] Partial Differential Equation ToolboxTMUser’s Guide, The MathWorks,
Inc., http://www.mathworks.com/access/helpdesk/help/toolbox/

pde/, 2011.

[15] W. Layton Introduction to the Numerical Analysis of Incompressible Vi-
scous Flows, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2008.

[16] J. Li, and Yi-T. Chen, Computational Partial Differential Equations
using MATLAB, CRC Press, 2009.

[17] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value
Problems and Applications, vol. I. Springer-Verlag, Berlin, 1972.

[18] J. Lyness and D. Jespersen, Moderate degree symmetric quadrature rules
for the triangle, J. Inst. Math. Appl., 15(1) (1975), pp. 19–32.

[19] A. Quarteroni, Numerical Models for Differential Problems, Springer-
Verlag Italia, Milan, 2009.

[20] A. Quarteroni and A. Valli, Domain Decomposition Methods for
Partial Differential Equations, Numerical Mathematics and Scientific
Computation, Clarendon Press, Oxford, 1999.

[21] M. Schäefer and S. Turek, Benchmark computations of laminar flow
around a cylinder, in NNFM 52 “Flow Simulation on High-Performance
Computers II”, Vieweg, Braunschweig, 1996.

[22] G. von Winckel, Matlab Central,
http://www.mathworks.com/matlabcentral/fileexchange/

4540-legendre-gauss-quadrature-weights-and-nodes, 2004.

MOX Technical Reports, last issues
Dipartimento di Matematica “F. Brioschi”,

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

49/2013 Micheletti, S.

Fast simulations in Matlab for Scientific Computing

48/2013 Simone Palamara, Christian Vergara, Elena Faggiano, Fabio

Nobile

An effective algorithm for the generation of patient-specific Purkinje

networks in computational electrocardiology

47/2013 Chkifa, A.; Cohen, A.; Migliorati, G.; Nobile, F.; Tempone,

R.

Discrete least squares polynomial approximation with random evalua-

tions - application to parametric and stochastic elliptic PDEs

46/2013 Marron, J.S.; Ramsay, J.O.; Sangalli, L.M.; Srivastava, A.

Statistics of Time Warpings and Phase Variations

45/2013 Sangalli, L.M.; Secchi, P.; Vantini, S.

Analysis of AneuRisk65 data: K-mean Alignment

44/2013 Sangalli, L.M.; Secchi, P.; Vantini, S.

AneuRisk65: a dataset of three-dimensional cerebral vascular geome-

tries

43/2013 Patriarca, M.; Sangalli, L.M.; Secchi, P.; Vantini, S.

Analysis of Spike Train Data: an Application of K-mean Alignment

42/2013 Bernardi, M.; Sangalli, L.M.; Secchi, P.; Vantini, S.

Analysis of Juggling Data: an Application of K-mean Alignment

41/2013 Bernardi, M.; Sangalli, L.M.; Secchi, P.; Vantini, S.

Analysis of Proteomics data: Block K-mean Alignment

40/2013 Pacciarini P.; Rozza G.

Stabilized reduced basis method for parametrized advection-diffusion PDEs

