
MOX-Report No. 48/2025

On the inf-sup condition for Hierarchical Model reduction of the

Stokes problem

Temellini, E.; Ballarin, F.; Chacon Rebollo, T.; Perotto, S.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it https://mox.polimi.it



On the inf-sup condition for Hierarchical Model

reduction of the Stokes problem

Erika Temellini1, Francesco Ballarin2,3,
Tomás Chacón Rebollo4, Simona Perotto1

1 MOX – Department of Mathematics
Politecnico di Milano

Piazza L. da Vinci, 32, 20133 Milano, Italy
{erika.temellini, simona.perotto}@polimi.it

2 Department of Mathematics and Physics
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Abstract

Hierarchical Model Reduction is an effective Reduced Order Modelling
technique for problems defined on elongated, pipe-like domains. It is par-
ticularly suitable when a dominant dynamics is aligned with the longitu-
dinal direction, while transverse effects are locally significant but spatially
limited.
When applied to two-field problems such as the Stokes equations, a main
challenge is to ensure the stability of the reduced formulation, particularly
the inf-sup condition for pressure discretization. In this work, we provide
a rigorous analysis showing that the inf-sup condition holds whenever
the number of velocity modes is at least equal to the number of pres-
sure modes, thereby extending previous heuristic approaches. The proof
exploits the separation of variables in HiMod and is valid for pipe-like
domains under some geometric assumptions. Numerical assessment con-
firms the theoretical findings, providing a solid foundation for stable and
efficient HiMod reduction in incompressible flow problems.

Keywords Stokes equations; hierarchical model reduction; inf-sup condition;
educated modal expansion; finite elements.
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1 Introduction

Reduced Order Modelling (ROM) has become an essential tool in computa-
tional science, offering a practical alternative to high-fidelity models. These of-
ten involve millions of variables, particularly for large-scale problems governed
by partial differential equations, making traditional numerical approaches com-
putationally prohibitive. This is the case, for instance, of contexts requiring
repeated evaluations of the governing equations such as in optimization, con-
trol, inverse analysis, uncertainty quantification, and real-time or multi-query
scenarios.
ROM techniques aim to replace the full-order model with a surrogate that cap-
tures the dominant features of the problem at hand, while drastically reduc-
ing the associated number of variables. This approach leads, on average, to a
significant reduction in computational cost and time. The resulting trade-off
between efficiency and accuracy has proven crucial across a broad spectrum of
application domains, including fluid and structural mechanics, electromagnet-
ics, thermal sciences, biomedical simulations, energy systems, geophysics, and
acoustics. In these fields, ROM enables virtual prototyping of scenarios that
would otherwise be numerically intractable.
Among the most widely adopted ROM techniques are Proper Orthogonal De-
composition (POD), Proper Generalized Decomposition (PGD), Reduced Basis
(RB) Methods, Galerkin projection-based approaches, and Hierarchical Model
(HiMod) reduction. A comprehensive introduction to the theoretical founda-
tions and applications of ROM can be found in [1, 2, 3, 4, 5, 6, 7].

This work is devoted to HiMod reduction, a ROM technique developed to ef-
ficiently tackle problems exhibiting a dominant direction of propagation, while
still accounting for secondary transverse dynamics. Such configurations fre-
quently occur in elongated, pipe-like domains, where one dimension governs the
main behavior of the system.
The core idea behind HiMod is to exploit a separation of variables approach,
using distinct approximation strategies along the dominant and transverse di-
rections. In the early development of HiMod reduction, a classical finite element
(FE) discretization was adopted along the dominant direction, while a standard
sinusoidal modal expansion was employed to account for transverse dynam-
ics [8, 9]. This results in a dimensionality reduction that reformulates the full
model as a system of coupled one-dimensional equations, regardless of the di-
mensionality of the original problem. As a consequence, HiMod reduction has
been successfully applied to several real-life problems, such as linear acoustics
[10], advection-diffusion reaction phenomena [11, 8, 12, 13, 9, 14], blood flow
modeling [15, 16] also in patient-specific artery segments [17] and electromag-
netic framework [18].
In recent advancements, the FE approximation has been replaced by isogeomet-
ric analysis, which offers great flexibility in representing geometrically complex
domains and challenging dynamics [19, 17]. As for the choice of the modal basis,
the most effective and versatile strategy so far relies on the so-called educated
modal basis, built from the eigenfunctions of a Sturm–Liouville problem [11].
This choice allows for an explicit incorporation of the boundary conditions pre-
scribed along the transverse boundaries, thereby improving the accuracy and
adaptability of the reduced model. It is also possible to vary the number of
modes used to describe the transverse dynamics. This leads to the concepts of

2



model hierarchy and adaptivity, where the number of modal functions is ad-
justed locally (i.e., more modes are used in regions with rich dynamics while
fewer where the behavior is smoother), coherently with the local complexity of
the solution. In particular, the number of modal functions can be tuned ei-
ther a priori, based on preliminary insights into the expected behavior of the
system [8, 9, 20, 21], or automatically, by relying on an a posteriori modeling
error analysis [22, 23, 24]. While selecting the number of modes is certainly an
important aspect, it can be considered somewhat optional in certain contexts
(e.g., for elliptic problems) where, in the worst case, the simulation remains
feasible albeit less efficient. However, in the case of two-field problems, such
as the Stokes equations studied in this work, this choice becomes essential to
ensure both accuracy and stability of the reduced model. So far, an empirical
strategy has been adopted, based on a heuristic criterion that assumes a specific
scaling between the number of modal functions used to approximate the trans-
verse dynamics of velocity and pressure, respectively [25, 15, 17, 26]. In all these
references, a stable pressure field is computed, although pressure approximation
remains the most challenging component.

The goal of this work is to provide a rigorous theoretical analysis to guar-
antee the stability of the HiMod pressure discretization in terms of the inf-sup
condition. We prove that this condition is satisfied whenever the number of
velocity modes is equal to or greater than the number of pressure modes. This
result extends the current state-of-the-art by allowing a broader range of ad-
missible combinations for the two modal indices.
The proof is based on constructing a velocity field whose divergence reproduces
a given pressure profile. This is achieved by solving a Cauchy problem for a
system of ordinary differential equations governing the velocity modal coeffi-
cients, which admits a unique solution. Thanks to the separation of variables
underlying the HiMod formulation, the problem is restricted to the dominant
(longitudinal) direction only.
The analysis is carried out on a general class of pipe-like domains that can
be mapped smoothly to a reference configuration. To ensure the validity of
the theoretical results, we assume some geometric constraints on this mapping,
allowing only small deformations from a rectangular configuration.

The paper is structured as follows. Section 2 details the HiMod discretiza-
tion for the Stokes problem. In Sec. 3, we present a set of preliminary results
that are instrumental for proving the well-posedness of the HiMod discretiza-
tion for the Stokes problem, which is the focus of the subsequent section. In
Sec. 5, we validate the theoretical findings through numerical tests across differ-
ent geometries. In particular, we examine the optimality of the condition on the
number of modal functions required to satisfy the inf-sup stability, comparing
it against the heuristic strategy currently adopted in the literature. Moreover,
we verify the key geometric assumptions underlying the proposed inf-sup anal-
ysis, particularly those related to the admissible shapes of the computational
domain. Finally, concluding remarks are provided in the last section.
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2 HiMod semidiscrete formulation of the Stokes
problem

In this work, we focus on the steady Stokes equations, modeling an incompress-
ible viscous flow in a domain Ω ⊂ R2, with boundary ∂Ω, namely

−ν∆u(z) +∇p(z) = f(z) in Ω

∇ · u(z) = 0 in Ω

u(z) = h(z) on ∂Ωin

u(z) = 0 on ∂Ωlat

[(ν∇u− pI)n](z) = 0 on ∂Ωout,

(1)

completed with a prescribed velocity at the inlet section, ∂Ωin, no slip conditions
on the wall boundary, ∂Ωlat, and do nothing boundary conditions on the outflow
section, ∂Ωout, with ∂Ωin, ∂Ωlat, ∂Ωout such that ∂Ωin ∩ ∂Ωlat ∩ ∂Ωout = ∅
and ∂Ωin ∪ ∂Ωlat ∪ ∂Ωout = ∂Ω. Here, ν is the kinematic viscosity, u(z) =
[u1(z), u2(z)]

T is the velocity field, p = p(z) denotes the pressure field, f(z) =
[f1(z), f2(z)]

T is the force per unit mass, h = h(z) is a given inflow profile, I is
the identity tensor, n = n(z) is the unit outward normal vector to the domain
boundary, and z = (x1, x2) is the generic point in Ω. Without loss of generality,
in the sequel, we assume h(z) = 0.

The weak formulation of problem (1) is: given ν ∈ R+ and f ∈ L2(Ω;R2),
find u ∈ V and p ∈ Q such that{

a(u,v) + b(v, p) = F (v) ∀v ∈ V

b(u, q) = 0 ∀q ∈ Q,
(2)

with V = H1
∂Ωin∪∂Ωlat

(Ω;R2) =
{
v ∈ H1(Ω;R2) : v(z) = 0 a.e. on ∂Ωin ∪ ∂Ωlat

}
and Q = L2(Ω), a(·, ·) : V × V → R, b(·, ·) : V ×Q → R and F (·) : V → R the
bilinear and the linear forms defined by

a(u,v) = ν

∫
Ω

∇u(z) : ∇v(z) dz, b(v, p) = −
∫
Ω

p(z) ∇ · v(z) dz,

F (v) =

∫
Ω

f(z) · v(z) dz,

standard notation being adopted for the involved function spaces [27].
Problem (2) represents the so-called full problem to be discretized with the
Hierarchical Model reduction. We observe that the regularity assumptions on
the problem data guarantee the well-posedness of form (2) (see, e.g., [28, 27]).

2.1 HiMod reduction basics

Hierarchical Model (HiMod) reduction hinges on two main assumptions, namely
the domain Ω exhibits a fiber bundle structure and trial and test functions are
expanded through a separation of variables paradigm. In more detail, the com-
putational domain is given by Ω =

⋃
x1∈Ω1D

{x1}×γx1
, where Ω1D = (0, L) ⊂ R

is the leading fiber aligned with the mainstream, while {γx1
}x1∈Ω1D

denotes
a set of transverse fibers parallel to the secondary dynamics. For computa-
tional convenience, the physical domain Ω is mapped into the reference domain
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Ω̂ = Ω̂1D × γ̂, with Ω̂1D = γ̂ = (0, 1), through the map Ψ : Ω → Ω̂, such that
Ψ(z) = (Ψ1(z),Ψ2(z)) = (x̂1, x̂2) = ẑ. The Jacobian associated with map Ψ is
denoted by

J(z) =
∂Ψ(z)

∂z
=


∂Ψ1(z)

∂x1

∂Ψ1(z)

∂x2

∂Ψ2(z)

∂x1

∂Ψ2(z)

∂x2

 . (3)

We assume that map Ψ is invertible, with inverse Φ : Ω̂ → Ω such that Φ(ẑ) =
(Φ1(ẑ),Φ2(ẑ)) = (x1, x2) = z. Regularity assumptions are made on both Ψ and
Φ, by requiring that Ψ ∈ C1(Ω;R2) ∩ C0(Ω;R2).
Maps Ψ and Φ are used to relate corresponding boundary portions of Ω and Ω̂,
so that we define ∂Ω̂b = Ψ(∂Ωb), with b ∈ {in, lat, out}. We assume that the
inflow (outflow) boundary of the physical domain is entirely mapped onto the
left (right) side of the reference domain, namely, for any z ∈ ∂Ωin (∂Ωout), Ψ(z)
is such that x̂1 = 0 (x̂1 = 1) while x̂2 ∈ γ̂. As a result, the lateral walls of Ω
are mapped onto the top and bottom sides of Ω̂. We remark that the regularity
hypotheses on Ψ and Φ allow to extend the map continuity up to ∂Ω, allowing
for sufficiently smooth boundary transformations.

In accordance with a separation of variables criterion, we introduce the func-
tion spaces

V̂1D = H1
{0}(Ω̂1D;R2) =

{
v̂ ∈ H1(Ω̂1D;R2) : v̂(0) = 0

}
, Q̂1D = L2(Ω̂1D)

associated with Ω̂1D and the modal bases

Bv = {Ti}mi=1, Bq = {Rj}nj=1 (4)

defined on γ̂, that we use to approximate the velocity and the pressure along
the mainstream and the transverse direction, respectively with m, n ∈ N∗ the
modal indices. In particular, we add the following assumptions on the modal
functions Ti and Rj :

Ti ∈ C1(γ̂) and

∫
γ̂

Ti(x̂2)Tk(x̂2) dx̂2 = δik i, k = 1, . . . ,m (A1)

with δik the Kronecker symbol;

Rj ∈ C0(γ̂) and

∫
γ̂

Rj(x̂2)Rl(x̂2) dx̂2 = δjl j, l = 1, . . . , n. (A2)

The Dirichlet boundary conditions for u on ∂Ωin (i.e., on ∂Ω̂in) are enforced in
the definition of V̂1D, whereas the boundary data on ∂Ωlat (i.e., on ∂Ω̂lat) are
properly taken into account by the modal functions in Bv through the educated
basis approach (see [11] for all the details). For instance, the assignment of a
homogeneous Dirichlet condition on ∂Ωlat in (1) often leads to identifying modes
Ti and Rj in (4) with standard trigonometric functions.

Thus, the HiMod function spaces to surrogate the velocity and the pressure
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in (2) can be defined by

Vm =
{
vm(z) = vm(x1, x2) =

m∑
i=1

v̂i(Ψ1(z))Ti(Ψ2(z)), v̂i ∈ V̂1D

}
,

Qn =
{
qn(z) = qn(x1, x2) =

n∑
j=1

q̂j(Ψ1(z))Rj(Ψ2(z)), q̂j ∈ Q̂1D

}
,

(5)

respectively, where the HiMod coefficients {v̂i}mi=1 and {q̂j}nj=1 are collected

into the vectors V̂m ∈ Vm,x := [V̂1D]m, Q̂n ∈ Qn,x := [Q̂1D]n, with

V̂m = V̂m(x̂1) = [v̂1, v̂2, . . . , v̂m]T , Q̂n = Q̂n(x̂1) = [q̂1, q̂2, . . . , q̂n]
T , (6)

being v̂i = v̂i(x̂1) = [v̂i,1(x̂1), v̂i,2(x̂1)]
T and q̂j = q̂j(x̂1). Definitions (5) and (6)

allow us to introduce a bijection between Vm,x and Vm as well as between Qn,x

and Qn, since, for each vector Ĝm = Ĝm(x̂1) = [ĝ1, ĝ2, . . . , ĝm]T ∈ Vm,x and

Ĥn = Ĥn(x̂1) = [ĥ1, ĥ2, . . . , ĥn]
T ∈ Qn,x, we can define the HiMod functions

gm(z) = gm(x1, x2) =

m∑
i=1

ĝi(Ψ1(z))Ti(Ψ2(z)) ∈ Vm,

hn(z) = hn(x1, x2) =

n∑
j=1

ĥj(Ψ1(z))Rj(Ψ2(z)) ∈ Qn,

and vice versa. Following the seminal work [9], we enforce a conformity condition
on the HiMod spaces in (5), requiring that Vm ⊂ V and Qn ⊂ Q.
Spaces Vm and Qn identify a hierarchy of reduced models according to the values
of the modal indices m and n. In principle, we can employ a different number,
m1 and m2, of modal basis functions for the two velocity components, although,
for our purposes, we select m1 = m2 = m, following [11, 17]. The specific values
of m and n can be chosen a priori (e.g., based on physical considerations) or
determined automatically through an a posteriori modeling error analysis (see,
e.g., [22, 23]). However, to ensure that the HiMod discretization preserves the
stability properties of the full-order model (see, e.g., [28]), it is crucial to adjust
indices m and n appropriately with respect to one another. This critical issue,
which represents the key focus of the paper, will be thoroughly analyzed in the
upcoming sections.

2.2 The HiMod formulation

The introduction of the reduced spaces in (5) allows us to provide the semi-
discrete1 HiMod formulation for the Stokes problem (2) in a straightforward
way: for m, n ∈ N∗, find um ∈ Vm and pn ∈ Qn such that{

a(um,w) + b(w, pn) = F (w) ∀w ∈ Vm

b(um, z) = 0 ∀z ∈ Qn.
(7)

1The term semi-discrete refers to the fact that, at this stage, the leading direction remains
continuous. This contrasts with the fully discrete HiMod formulation, where discretization is
applied in both directions.
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By exploiting the separation of variables characterizing the reduced spaces (5),
it is well-known that a HiMod approximation leads to solve a system of coupled
one-dimensional (1D) problems in Ω̂1D, independently of the dimensionality of
the full model [8, 9]. This reduced representation ensures a significant compu-
tational saving without compromising the accuracy of the HiMod solution (see,
e.g., [17, 10, 18] for different application contexts).

In order to take advantage of a HiMod reduction for the Stokes problem as
well, in (7) we exploit the HiMod expansion for the velocity and the pressure,
i.e., we select

um(z) =

m∑
k=1

ûk(Ψ1(z))Tk(Ψ2(z)), pn(z) =

n∑
j=1

p̂j(Ψ1(z))Rj(Ψ2(z)), (8)

and we choose the associated test functions as

wi(z) = ŵi(Ψ1(z))Ti(Ψ2(z)), zl(z) = ẑl(Ψ1(z))Rl(Ψ2(z)),

with ŵi = ŵi(x̂1) = [ŵi,1(x̂1), ŵi,2(x̂1)]
T ∈ V̂1D and ẑl ∈ Q̂1D, for i = 1, . . . ,m,

and l = 1, . . . , n. We observe that modal coefficients {ûk}mk=1 and {p̂j}nj=1 are
the unknowns of the HiMod formulation in (7).
Now, the bilinear forms involved in (7) can be written by leveraging the ex-
pression for the gradient and the divergence operators of a generic function
vm ∈ Vm, given by

[
∇vm(z)

]
st

=

m∑
i=1

[
v̂′i,s(Ψ1(z))

∂Ψ1(z)

∂xt
Ti(Ψ2(z))+v̂i,s(Ψ1(z))T

′
i (Ψ2(z))

∂Ψ2(z)

∂xt

]
,

with s, t = 1, 2, and

∇·vm(z) =

m∑
i=1

2∑
s=1

[
v̂′i,s(Ψ1(z))

∂Ψ1(z)

∂xs
Ti(Ψ2(z))+v̂i,s(Ψ1(z))T

′
i (Ψ2(z))

∂Ψ2(z)

∂xs

]
,

respectively. In addition, we introduce the quantities

M1(Φ(ẑ)) =

2∑
t=1

(
∂Ψ1(Φ(ẑ))

∂xt

)2

, M2(Φ(ẑ)) =

2∑
t=1

(
∂Ψ2(Φ(ẑ))

∂xt

)2

,

M12(Φ(ẑ)) =

2∑
t=1

(
∂Ψ1(Φ(ẑ))

∂xt

∂Ψ2(Φ(ẑ))

∂xt

)
,

(9)
associated with the components of the Jacobian in (3), together with the func-
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tions

A0,0
cd (x̂1) =

∫
γ̂

Tc(x̂2)Td(x̂2)M1(Φ(ẑ))j(ẑ) dx̂2,

A1,0
cd (x̂1) = A0,1

dc (x̂1) =

∫
γ̂

T ′
c(x̂2)Td(x̂2)M12(Φ(ẑ))j(ẑ) dx̂2,

A0,1
cd (x̂1) = A1,0

dc (x̂1) =

∫
γ̂

Tc(x̂2)T
′
d(x̂2)M12(Φ(ẑ))j(ẑ) dx̂2,

A1,1
cd (x̂1) =

∫
γ̂

T ′
c(x̂2)T

′
d(x̂2)M2(Φ(ẑ))j(ẑ) dx̂2,

B0,0
df,s(x̂1) =

∫
γ̂

Td(x̂2)Rf (x̂2)J1s(Φ(ẑ))j(ẑ) dx̂2,

B1,0
df,s(x̂1) =

∫
γ̂

T ′
d(x̂2)Rf (x̂2)J2s(Φ(ẑ))j(ẑ) dx̂2,

(10)

which compress the information associated with the bilinear forms a(·, ·), b(·, ·)
along the transverse fiber γ̂, respectively for c, d = 1, . . . ,m, f = 1, . . . , n,
with Jgh the components of the Jacobian matrix in (3) for g, h = 1, 2, and
j(ẑ) =

∣∣det(J−1 (Φ (ẑ)))
∣∣.

Thus, by exploiting the definitions in (9) and (10) and the separation of vari-
ables intrinsic to the HiMod reduction, we can expand the viscous contribution
in (7) as

a(um,wi) = ν

m∑
k=1

∫
Ω̂

{( 2∑
s=1

û′
k,s(x̂1)ŵ

′
i,s(x̂1)

)
Tk(x̂2)Ti(x̂2)M1(Φ(ẑ))

+

( 2∑
s=1

û′
k,s(x̂1)ŵi,s(x̂1)

)
Tk(x̂2)T

′
i (x̂2)M12(Φ(ẑ))

+

( 2∑
s=1

ûk,s(x̂1)ŵ
′
i,s(x̂1)

)
T ′
k(x̂2)Ti(x̂2)M12(Φ(ẑ))

+

( 2∑
s=1

ûk,s(x̂1)ŵi,s(x̂1)

)
T ′
k(x̂2)T

′
i (x̂2)M2(Φ(ẑ))

}
dẑ

= ν

m∑
k=1

∫
Ω̂1D

{( 2∑
s=1

û′
k,s(x̂1)ŵ

′
i,s(x̂1)

)
A0,0

ki (x̂1)

+

( 2∑
s=1

û′
k,s(x̂1)ŵi,s(x̂1)

)
A0,1

ki (x̂1)

+

( 2∑
s=1

ûk,s(x̂1)ŵ
′
i,s(x̂1)

)
A1,0

ki (x̂1)

+

( 2∑
s=1

ûk,s(x̂1)ŵi,s(x̂1)

)
A1,1

ki (x̂1)

}
dx̂1

(11)
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for i = 1, . . . ,m, while the terms associated with the divergence operator are
equivalent to

b(wi, pn) = −
n∑

j=1

∫
Ω̂

{ 2∑
s=1

[
ŵ′

i,s(x̂1)p̂j(x̂1)Ti(x̂2)Rj(x̂2)J1s(Φ(ẑ))

+ ŵi,s(x̂1)p̂j(x̂1)T
′
i (x̂2)Rj(x̂2)J2s(Φ(ẑ))

]}
j(ẑ) dẑ

= −
n∑

j=1

∫
Ω̂1D

2∑
s=1

[
ŵ′

i,s(x̂1)p̂j(x̂1)B0,0
ij,s(x̂1) + ŵi,s(x̂1)p̂j(x̂1)B1,0

ij,s(x̂1)
]
dx̂1

(12)
for i = 1, . . . ,m and

b(um, zl) = −
m∑

k=1

∫
Ω̂

{ 2∑
s=1

[
û′
k,s(x̂1)ẑl(x̂1)Tk(x̂2)Rl(x̂2)J1s(Φ(ẑ))

+ ûk,s(x̂1)ẑl(x̂1)T
′
k(x̂2)Rl(x̂2)J2s(Φ(ẑ))

]}
j(ẑ) dẑ

= −
m∑

k=1

∫
Ω̂1D

2∑
s=1

[
û′
k,s(x̂1)ẑl(x̂1)B0,0

kl,s(x̂1) + ûk,s(x̂1)ẑl(x̂1)B1,0
kl,s(x̂1)

]
dx̂1,

(13)
for l = 1, . . . , n, respectively. Finally, the forcing term in (7) is commuted into

F (wi) =

∫
Ω̂

[
f1(Φ(ẑ))ŵi,1(x̂1)Ti(x̂2) + f2(Φ(ẑ))ŵi,2(x̂1)Ti(x̂2)

]
j(ẑ) dẑ

=

∫
Ω̂1D

2∑
s=1

[
ŵi,s(x̂1)

∫
γ̂

Ti(x̂2)fs(Φ(ẑ))j(ẑ) dx̂2

]
dx̂1.

(14)
for i = 1, . . . ,m. The expansions in (11)–(14) can alternatively be expressed
in a more compact form, by introducing suitable arrays, consistent with the
definitions in (6). Indeed, we consider: vectors

Ûm = Ûm(x̂1) = [û1, û2, . . . , ûm]T ∈ Vm,x,

P̂n = P̂n(x̂1) = [p̂1, p̂2, . . . , p̂n]
T ∈ Qn,x,

gathering the (unknown) modal coefficients for the HiMod velocity and pressure
in (8), with ûk = ûk(x̂1) = [ûk,1(x̂1), ûk,2(x̂1)]

T for k = 1, . . . ,m, and p̂j =
p̂j(x̂1) for j = 1, . . . , n, together with vectors

Ŵm = Ŵm(x̂1) = [ŵ1, ŵ2, . . . , ŵm]T ∈ Vm,x,

Ẑn = Ẑn(x̂1) = [ẑ1, ẑ2, . . . , ẑn]
T ∈ Qn,x,

associated with the test functions for the momentum and continuity equation,
respectively with ŵi = ŵi(x̂1) = [ŵi,1(x̂1), ŵi,2(x̂1)]

T for i = 1, . . . ,m, and
ẑl = ẑl(x̂1) for l = 1, . . . , n; the 2m × 2m block matrices of functions A0,0 =
A0,0(x̂1), A

0,1 = A0,1(x̂1), A
1,0 = A1,0(x̂1), A

1,1 = A1,1(x̂1). In particular,

9



matrix Aq,r consists of m×m blocks of order 2, such that the block in position
ik,

[
Aq,r

]
Bik

=
[
Aq,r(x̂1)

]
Bik

, is given by[
Aq,r

]
Bik

= diag(Aq,r
ik ,Aq,r

ik )

for i, k = 1, . . . ,m, and q, r = 0, 1; the 2m × n block matrices of functions
B0,0 = B0,0(x̂1), B

1,0 = B1,0(x̂1) which collect, by rows, the m blocks

[
Bq,0

]
Bi

=

[
Bq,0
i1,1 Bq,0

i2,1 . . . . . .Bq,0
in,1

Bq,0
i1,2 Bq,0

i2,2 . . . . . .Bq,0
in,2

]
∈ R2×n (15)

for i = 1, . . . ,m and q = 0, 1. Thus, the HiMod formulation (7) can be equiv-

alently reformulated as: for m, n ∈ N∗, find Ûm ∈ Vm,x and P̂n ∈ Qn,x such
that {

ã(Ûm,Ŵm) + b̃(Ŵm, P̂n) = F̃ (Ŵm) ∀Ŵm ∈ Vm,x

b̃(Ûm, Ẑn) = 0 ∀Ẑn ∈ Qn,x,
(16)

where

ã(Ûm,Ŵm) = ν

∫
Ω̂1D

{[
Ŵ′

m

]T
A0,0 Û′

m +
[
Ŵm

]T
A1,0 Û′

m

+
[
Ŵ′

m

]T
A0,1 Ûm +

[
Ŵm

]T
A1,1 Ûm

}
dx̂1

b̃(Ŵm, P̂n) = −
∫
Ω̂1D

{[
Ŵ′

m

]T
B0,0 P̂n +

[
Ŵm

]T
B1,0 P̂n

}
dx̂1

b̃(Ûm, Ẑn) = −
∫
Ω̂1D

{[
Ẑn

]T
[B0,0]T Û′

m +
[
Ẑn

]T
[B1,0]T Ûm

}
dx̂1

F̃ (Ŵm) =

∫
Ω̂1D

[Ŵm]T F̂m dx̂1

(17)

where F̂m = F̂m(x̂1) denotes the function vector with components

[F̂m(x̂1)]e =


∫
γ̂

Ti(x̂2)f1(Φ(ẑ))j(ẑ) dx̂2 if e = 2i− 1∫
γ̂

Ti(x̂2)f2(Φ(ẑ))j(ẑ) dx̂2 if e = 2i

with e = 1, . . . , 2m, for i = 1, . . . ,m. Problem (16) constitutes the reference
formulation to carry out the well-posedness analysis in Sec. 4.

3 Preliminaries

This section lays the groundwork for establishing the well-posedness of (7), by
collecting partial results needed to analyze the bilinear forms ã(·, ·) and b̃(·, ·).

To this end, we denote by j0 and j1 the two strictly positive constants such
that

0 < j0 ≤ j(ẑ) ≤ j1 < +∞ ∀ẑ ∈ Ω̂, (18)

10



whose existence is guaranteed by the regularity assumptions made on the map
Ψ. In practice, the boundedness of j1 ensures that an element of infinitesimal
area, ε, in Ω̂ is transformed into an element in Ω with area bounded above by
j1ε, while inequality j0 > 0 guarantees that two distinct points in Ω̂ cannot
collapse into the same point in Ω.

In addition, we can properly bound some of the quantities strictly related
to the map Ψ, specifically M1, M2, M12 in (9), when multiplied by j. In
particular, we have

ϑ0 ≤ M1(Φ(ẑ))j(ẑ) ≤ ϑ1, ξ0 ≤ M2(Φ(ẑ))j(ẑ) ≤ ξ1 ∀ẑ ∈ Ω̂,∣∣M12(Φ(ẑ))j(ẑ)
∣∣ ≤ π1 ∀ẑ ∈ Ω̂,

(19)

for 0 < ϑ0 ≤ ϑ1 < +∞, 0 < ξ0 ≤ ξ1 < +∞ and 0 ≤ π1 < +∞. In particular, it
is the invertibility of the Jacobian in (3) that guarantees the strict positivity of
the two lower bounds ϑ0 and ξ0.

With similar arguments, we can bound the Jacobian components J1s and
J2s involved in (10), when multiplied by j, as∣∣J1s(Φ(ẑ))j(ẑ)

∣∣ ≤ γs,
∣∣J2s(Φ(ẑ))j(ẑ)

∣∣ ≤ σs ∀ẑ ∈ Ω̂ (20)

for certain positive constants γs and σs and s = 1, 2.
We also introduce the 2m× 2m block matrix of functions A1,1

γ̂ consisting of
m×m blocks of order 2, whose block in position ki is given by[

A1,1
γ̂

]
Bki

= diag(A1,1
γ̂,ki,A

1,1
γ̂,ki) (21)

with

A1,1
γ̂,ki =

∫
γ̂

T ′
k(x̂2)T

′
i (x̂2) dx̂2.

Notice that, for k, i = 1, . . . ,m, quantity A1,1
γ̂,ki pushes back the stiffness matrix

in (10)4 to the reference fiber γ̂. Matrix A1,1
γ̂ is assumed to satisfy the two-sided

inequality

ξ̄0 ≤ λmin(A
1,1
γ̂ ) ≤ λmax(A

1,1
γ̂ ) ≤ ξ̄1 m

2 (A3)

for certain positive constants ξ̄0, ξ̄1, with λmin(A
1,1
γ̂ ) and λmax(A

1,1
γ̂ ) the mini-

mum and the maximum eigenvalue of the matrix A1,1
γ̂ .

Moreover, to prove the inf-sup property for the bilinear form b̃(·, ·), we will
resort to a condensed counterpart, B0,0

c = B0,0
c (x̂1), of matrix B0,0 in (15),

coinciding with a n× n array of functions whose i-th row is defined by[
B0,0

c

]
i
=

[
B0,0
i1,1,B

0,0
i2,1, . . . ,B

0,0
in,1

]
∈ Rn, (22)

for i = 1, . . . , n. Matrix B0,0
c is assumed to satisfy the lower bound

λmin

([
B0,0

c

]T
B0,0

c

)
≥ γ2

0 n
−1/4 ∀x̂1 ∈ Ω̂1D, (A4)

with γ0 > 0.
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Finally, we will exploit the spaces associated with γ̂ spanned by the velocity
and the pressure modal basis functions, i.e.,

Vm,y = span{Ti}mi=1, Qn,y = span{Rj}nj=1,

respectively. This allows us to establish a bijection between R2m and [Vm,y]
2

as well as between Rn and Qn,y. Indeed, for each vector t = [t1, t2, . . . , tm]T ∈
R2m, with ti = [ti,1, ti,2]

T for i = 1, . . . ,m, and r = [r1, r2, . . . , rn]
T ∈ Rn, we

can define the modal functions

τm(x̂2) =

m∑
i=1

tiTi(x̂2) ∈ [Vm,y]
2, ρn(x̂2) =

n∑
j=1

rjRj(x̂2) ∈ Qn,y, (23)

and vice versa, with, thanks to assumptions (A1) and (A2),

∥τm∥L2(γ̂) = ∥t∥, ∥ρn∥L2(γ̂) = ∥r∥, (24)

respectively, ∥ · ∥ denoting the standard Euclidean norm.

The remaining part of the section is devoted to establishing auxiliary results
relevant to the well-posedness analysis of formulation (7).

Lemma 1. Under assumptions (A1) and (A3), we can prove the Poincaré-type
inequality

∥τm∥L2(γ̂) ≤ (ξ̄0)
− 1

2 ∥τ ′
m∥L2(γ̂) (25)

and the inverse-type inequality

∥τ ′
m∥L2(γ̂) ≤ (ξ̄1)

1
2 m ∥τm∥L2(γ̂), (26)

for any function τm ∈ [Vm,y]
2, and with ξ̄0 and ξ̄1 defined as in (A3).

Proof. The bijection between R2m and [Vm,y]
2 in (23) when combined with the

definition of A1,1
γ̂ according to (21) justifies the equality

∥τ ′
m∥2L2(γ̂) = tTA1,1

γ̂ t.

By exploiting the Rayleigh quotient definition and assumption (A3), we have

ξ̄0 ∥t∥2 ≤ λmin(A
1,1
γ̂ ) tT t ≤ ∥τ ′

m∥2L2(γ̂) = tTA1,1
γ̂ t ≤ λmax(A

1,1
γ̂ )tT t ≤ ξ̄1m

2 ∥t∥2.

Now, thanks to assumption (A1), we use relation in (24)1 to replace ∥t∥ with
∥τm∥L2(γ̂). This concludes the proof.

Remark 3.1. The deterioration of the upper bound in (26) as m increases is
coherent with the spectral theory (see, e.g., [29]). This justifies the discrepancy
(i.e., the dependence on m) between the lower and upper bounds in (A3).

As a straightforward consequence of the above Lemma, we can state the
following

Corollary 2. Under assumptions (A1) and (A3), it can be proved that the
derivatives of the modal functions Ti in Bv satisfy the following inequality

m∑
i=1

∥T ′
i (x̂2)∥2L2(γ̂) ≤ ξ̄1 m

3 (27)

with ξ̄1 defined as in (A3).
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Proof. We exploit the modal definition for τm in (23)1 to verify that

∥τ ′
m∥2L2(γ̂) =

∫
γ̂

[
T ′
i (x̂2)

]2
dx̂2 = ∥T ′

i (x̂2)∥2L2(γ̂)

when vector t in (23)1 is chosen such that

[tj ] =

{
[1 0]T if j = i

0 overwhise,

with 0 ∈ R2 the null vector. The norm equality in (24)1, in combination with
the inverse-type inequality in (26), guarantees that

∥τ ′
m∥2L2(γ̂) = ∥T ′

i (x̂2)∥2L2(γ̂) ≤ ξ̄1 m
2 ∥t∥2 = ξ1 m

2

since ∥t∥2 = 1. By summing over i, we have the desired result.

The coercivity and the continuity properties of the bilinear form ã(·, ·) will
involve the result below.

Lemma 3. Under assumptions (A1) and (A3), we can prove that

1. block matrices of functions A0,0 and A1,1 are symmetric positive definite
for any x̂1 ∈ Ω̂1D, and the following two-sided inequalities hold:

ϑ0 ≤ λmin(A
0,0) ≤ λmax(A

0,0) ≤ ϑ1 ∀x̂1 ∈ Ω̂1D,

ξ0 ξ̄0 ≤ λmin(A
1,1) ≤ λmax(A

1,1) ≤ ξ1 ξ̄1 m2 ∀x̂1 ∈ Ω̂1D,
(28)

with ϑ0, ϑ1, ξ0, ξ1 are defined as in (19), while ξ̄0, ξ̄1 are the same as in
(A3);

2. the spectral norm of the block matrices of functions A1,0 and A0,1 can be
bounded from above as

∥A1,0∥22 = λmax

(
[A1,0]TA1,0

)
≤ π2

1 ξ̄1 m
3 ∀x̂1 ∈ Ω̂1D, (29)

∥A0,1∥22 = λmax

(
[A0,1]TA0,1

)
≤ π2

1 ξ̄1 m
3 ∀x̂1 ∈ Ω̂1D, (30)

with π1 defined as in (19)3.

Proof. We start by considering the two-sided inequality in (28)1. We take an
arbitrary vector t ∈ R2m together with the associated function τm according to
(23)1. Then, thanks to (A1), it holds

tTA0,0t =

m∑
i=1

m∑
k=1

∫
γ̂

tTk tiTk(x̂2)Ti(x̂2)M1(Φ(ẑ))j(ẑ) dx̂2

=

∫
γ̂

[τm(x̂2)]
2M1(Φ(ẑ))j(ẑ) dx̂2.

Now, thanks to the boundedness of M1(Φ(ẑ))j(ẑ) in (19)1, we have

ϑ0∥τm∥2L2(γ̂) ≤ tTA0,0t ≤ ϑ1∥τm∥2L2(γ̂).
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This leads to the inequality in (28)1 after using the Rayleigh quotient definition
and the norm equivalence in (24)1 which is guaranteed by assumption (A1).
As far as (28)2 is concerned, in a similar way we obtain

ξ0∥τ ′
m∥2L2(γ̂) ≤ tTA1,1t ≤ ξ1∥τ ′

m∥2L2(γ̂).

By applying the Poincaré inequality (25) and the inverse inequality (26) on the
left- and on the right-hand side, respectively, combined with the Rayleigh quo-
tient definition, we immediately obtain the desired control on the eigenvalues of
A1,1 in (28)2.
To prove result in (29), we first introduce vector y = A1,0t, where y =
[y1,y2, . . . ,ym]T with yi = [yi,1, yi,2]

T for i = 1, . . . ,m, to write

yi =

m∑
k=1

∫
γ̂

tkTk(x̂2) T
′
i (x̂2) M12(Φ(ẑ))j(ẑ) dx̂2.

As a consequence, using the explicit definition of matrix A1,0 as a block matrix
with diagonal blocks, it turns out that

yTy =

m∑
i=1

[
m∑

k=1

∫
γ̂

tkTk(x̂2) T
′
i (x̂2) M12(Φ(ẑ))j(ẑ) dx̂2

]2

=

m∑
i=1

[ ∫
γ̂

τm(x̂2) T
′
i (x̂2) M12(Φ(ẑ))j(ẑ) dx̂2

]2
≤ π2

1 ∥τm∥2L2(γ̂)

m∑
i=1

∥T ′
i∥2L2(γ̂) ≤ π2

1 ξ̄1 m
3∥τm∥2L2(γ̂)

where representation (23)1 for τm, the bound in (19)3, the Cauchy-Schwarz
inequality and the upper bound in (27) have been employed. The Rayleigh
quotient definition and the norm equivalence in (24)1 conclude the proof of
(29).
By exploiting the difference in the definitions of A1,0 and A0,1, we can derive
result (30). Thus, after defining vector y = A0,1t with

yi =

m∑
k=1

∫
γ̂

tkT
′
k(x̂2) Ti(x̂2) M12(Φ(ẑ))j(ẑ) dx̂2,

we obtain

yTy =

m∑
i=1

[
m∑

k=1

∫
γ̂

tkT
′
k(x̂2) Ti(x̂2) M12(Φ(ẑ))j(ẑ) dx̂2

]2

=

m∑
i=1

[ ∫
γ̂

τ ′
m(x̂2) Ti(x̂2) M12(Φ(ẑ))j(ẑ) dx̂2

]2
≤ π2

1 ∥τ ′
m∥2L2(γ̂)

m∑
i=1

∥Ti∥2L2(γ̂) ≤ π2
1 ξ̄1 m

3∥τm∥2L2(γ̂),

where we have used the representation for τ ′
m according to (23)1, the bound in

(19)3, the Cauchy–Schwarz inequality, the inverse-type relation in (26) to bound
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∥τ ′
m∥L2(γ̂) and the orthonormality assumption on modal functions Ti in (A1).

Finally, result (30) follows from the Rayleigh quotient definition and the norm
equivalence in (24)1.

The continuity and the inf-sup properties of the bilinear form b̃(·, ·) rely on
the following result.

Lemma 4. Under assumptions (A1), (A2) and (A3), we can prove the following
inequalities

1. the spectral norm of the block matrices of functions B0,0 and B1,0 can be
upper-bounded as

∥B0,0∥22 = λmax

(
[B0,0]TB0,0

)
≤ γ2

max m ∀x̂1 ∈ Ω̂1D, (31)

∥B1,0∥22 = λmax

(
[B1,0]TB1,0

)
≤ σ2

max ξ̄1m
3 ∀x̂1 ∈ Ω̂1D, (32)

where γmax = max(γ1, γ2), σmax = max(σ1, σ2) with γ1, γ2, σ1, σ2 defined
as in (20), and where ξ̄1 is defined as in (A3);

2. the spectral norm of the block matrices of functions
[
B0,0

]T
and

[
B1,0

]T
can be bounded from above as∥∥[B0,0

]T∥∥2
2
= λmax

(
B0,0

[
B0,0

]T ) ≤ γ2
max n ∀x̂1 ∈ Ω̂1D, (33)∥∥[B1,0

]T∥∥2
2
= λmax

(
B1,0

[
B1,0

]T ) ≤ σ2
max ξ̄1 nm2 ∀x̂1 ∈ Ω̂1D. (34)

Proof. The bound in (31) can be proved by defining vector y = [y1,y2, . . . ,ym]T =
B0,0r, with r = [r1, . . . , rn]

T a generic vector in Rn, being

yi = [yi,1, yi,2]
T =

n∑
l=1

∫
γ̂

rlRl(x̂2)Ti(x̂2) J(1,:)(Φ(ẑ))j(ẑ) dx̂2

for i = 1, . . . ,m, and J(1,:) = [J11, J12]
T the vector collecting the entries of the

first row of the Jacobian in (3). Thus, we have

yTy =

m∑
i=1

[
n∑

l=1

∫
γ̂

rlRl(x̂2)Ti(x̂2) J(1,:)(Φ(ẑ))j(ẑ) dx̂2

]2

namely, thanks to the representation in (23)2,

yTy =

m∑
i=1

[∫
γ̂

ρn(x̂2)Ti(x̂2) J(1,:)(Φ(ẑ))j(ẑ) dx̂2

]2
≤ γ2

max ∥ρn∥2L2(γ̂)

m∑
i=1

∥Ti∥2L2(γ̂) ≤ γ2
max m ∥ρn∥2L2(γ̂) = γ2

max m ∥r∥2

where the upper bounds in the last row are due to (20)1, for s = 1, 2, the
Cauchy-Schwarz inequality, the assumption in (A1) and the norm equivalence
in (24)2. By resorting to the Rayleigh quotient definition, we get the desired
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estimate.
To prove (33) we set y = [y1, y2, . . . , yn]

T =
[
B0,0

]T
t, with t = [t1, t2, . . . , tm]T ∈

R2m and ti = [ti,1, ti,2]
T , so that

yl =

m∑
i=1

∫
γ̂

Rl(x̂2)Ti(x̂2)
[
J(1,:)(Φ(ẑ))

]T
ti j(ẑ) dx̂2

for l = 1, . . . , n. It follows

yty =

n∑
l=1

[ ∫
γ̂

τm(x̂2)Rl(x̂2)
[
J(1,:)(Φ(ẑ))

]T
j(ẑ) dx̂2

]2
≤ γ2

max ∥τm∥2L2(γ̂)

n∑
l=1

∥Rl∥2L2(γ̂) ≤ γ2
max n ∥τm∥2L2(γ̂) = γ2

max n ∥t∥2

where we have employed the definition of τm in (23)1 in combination with the
Cauchy-Schwarz inequality, the estimates for the Jacobian components in (20)1,
the orthonormality assumption (A2), and the equality in (24)1. The definition
of the Rayleigh quotient provides the desired result.
The bound in (32) can be proved by defining vector y = [y1,y2, . . .ym]T =
B1,0r, with r = [r1, . . . , rn]

T a generic vector in Rn, being

yi = [yi,1, yi,2]
T =

n∑
l=1

∫
γ̂

rlRl(x̂2)T
′
i (x̂2) J(2,:)(Φ(ẑ))j(ẑ) dx̂2

for i = 1, . . . ,m, and vector J(2,:) = [J21, J22]
T which gathers the entries in the

second row of the Jacobian (3). Thus, we have

yTy =

m∑
i=1

[ n∑
l=1

∫
γ̂

rlRl(x̂2)T
′
i (x̂2) J(2,:)(Φ(ẑ))j(ẑ) dx̂2

]2
namely, using the modal expansion in (23)2,

yTy =

m∑
i=1

[∫
γ̂

ρn(x̂2)T
′
i (x̂2) J(2,:)(Φ(ẑ))j(ẑ) dx̂2

]2
≤ σ2

max ∥ρn∥2L2(γ̂)

m∑
i=1

∥T ′
i∥2L2(γ̂) ≤ σ2

max ξ̄1 m
3 ∥ρn∥2L2(γ̂)

where we have exploited relations in (20)2, the Cauchy-Schwarz inequality and
the upper bound in (27), thanks to assumptions (A1) and (A3). By resorting
to the equivalence in (24)2 and to the Rayleigh quotient definition, we have
estimate (32).

To prove (34), we introduce vector y = [y1, y2, . . . , yn]
T =

[
B1,0

]T
t, being

t = [t1, t2, . . . , tm]T ∈ R2m and ti = [ti,1, ti,2]
T . It holds that

yl =

m∑
i=1

∫
γ̂

Rl(x̂2)T
′
i (x̂2)

[
J(2,:)(Φ(ẑ))

]T
ti j(ẑ) dx̂2

for l = 1, . . . , n, so that

yty =

n∑
l=1

[ ∫
γ̂

τ ′
m(x̂2)Rl(x̂2)

[
J(2,:)(Φ(ẑ))

]T
j(ẑ) dx̂2

]2
.
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Thus, we have

yty ≤ σ2
max ∥τ ′

m∥2L2(γ̂)

n∑
l=1

∥Rl∥2L2(γ̂) ≤ σ2
max n ξ̄1m

2∥τm∥2L2(γ̂),

thanks to the definition of τ ′
m according to (23)1, the upper bounds in (20)2,

the Cauchy-Schwarz inequality, assumption (A2) and the inverse-type estimate
in (26).

We now have all the necessary tools to address the well-posedness analysis
of problem (7).

4 Well-posedness of the HiMod formulation

This section represents the core of the paper, where we establish the well-
posedness of the HiMod discretization (7) for the Stokes problem, by customiz-
ing the standard inf-sup theory for saddle-point problems to the HiMod setting.
The focus will be on the discretization along the transverse direction, to de-
termine whether specific combinations of the modal indices, m and n, for the
reduced velocity and pressure, respectively may influence the stability of the
HiMod formulation. In contrast, along the supporting fiber we do not expect
significant deviations from the standard inf-sup theory which properly relates
the finite element spaces for velocity and pressure. This ansatz will be corrob-
orated by the numerical assessment in Sec. 5.

The results from the previous section, along with the compact notation in-
troduced in (16), will play a fundamental role in the proof of the main theorem
of this section, namely

Theorem 5. We assume that hypotheses (A1), (A2), (A3), (A4) hold. In
addition, we require that the constant π1 in (19)3 is a O(m−3/2), while the
constant σ1 in (20)2 is a O(n−3/2) and that m ≥ n. Then, there exists a unique

HiMod pair (Ûm, P̂n) ∈ Vm,x ×Qn,x solution to (16) that satisfies the stability
estimates

∥Ûm∥Vm,x
≤ MF

α
, ∥P̂n∥Qn,x

≤ 1

β

(
1 +

Ma

α

)
MF (35)

where:
MF = MF (m) = j

1
2
1 m

1
2 ∥f∥L2(Ω)

is the continuity constant of the linear form F̃ (·) in (17)4, with j1 the upper
bound in (18);

α = α(m) =
ν

2

{
ϑ0 + ξ0 ξ̄0 +

[(
ξ0 ξ̄0 − ϑ0

)2
+ 4π2

1 ξ̄1 m
3
] 1

2
}

the coercivity constant of the bilinear form ã(·, ·) in (17)1, with ϑ0 and ξ0 the
constants involved in the regularity assumptions in (19) on map Ψ, ξ̄0, ξ̄1 the
constants characterizing the lower and the upper bound in hypothesis (A3);

β = β(n) =

{[
2n

1
4

γ2
0

σ2
1 ξ̄1 n

3 + 1

]
κ0 +

2n
1
4

γ2
0

}− 1
2
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the inf-sup constant for the bilinear form b̃(·, ·) in (17)3, with γ0 defined as in
(A4),

κ0(n) =
n

1
8

4 ε γ0

{
1

2
− n

1
8

γ0

[
σ1 (ξ̄1)

1
2 n

3
2 + ε

]}−1

,

with ε an arbitrary positive constant such that inequality ε < γ0/(2n
1
8 ) holds;

Ma = Ma(m) = ν
[
ϑ1 + ξ1 ξ̄1 m

2 + 2π1 (ξ̄1)
1
2 m

3
2

]
,

the continuity constant of the bilinear form ã(·, ·), with ϑ1 and ξ1 the constants
appearing in the regularity assumptions (19) on the map Ψ.

Proof. According to the standard theory in [28], we proceed by establishing the
continuity and coercivity of ã(·, ·), the continuity and the inf-sup condition of
b̃(·, ·) and the continuity of F̃ . Each of these properties is analyzed separately
in the following.

Continuity of ã(·, ·) We aim to prove the existence of a constant Ma > 0
such that∣∣ã(Ûm,Ŵm)

∣∣ ≤ Ma ∥Ûm∥Vm,x ∥Ŵm∥Vm,x ∀Ûm,Ŵm ∈ Vm,x, (36)

with Vm,x ≡ H1
{0}(Ω̂1D; R2m). We bound the four terms on the right-hand side

of (17)1, separately. In particular, we employ the compatibility between the
spectral and the Euclidean norms, Lemma 3, the Cauchy-Schwarz inequality
and the standard relation between the L2(Ω̂1D)- and the H1(Ω̂1D)-norms, to
obtain ∣∣∣∣ ν ∫

Ω̂1D

[
Ŵ′

m

]T
A0,0 Û′

m dx̂1

∣∣∣∣ ≤ ν

∫
Ω̂1D

∥Ŵ′
m∥ ∥A0,0∥2 ∥Û′

m∥ dx̂1

= ν

∫
Ω̂1D

λmax(A
0,0) ∥Ŵ′

m∥ ∥Û′
m∥ dx̂1 ≤ ν ϑ1

∫
Ω̂1D

∥Ŵ′
m∥ ∥Û′

m∥ dx̂1

≤ ν ϑ1 ∥Ŵ′
m∥L2(Ω̂1D;R2m) ∥Û

′
m∥L2(Ω̂1D;R2m) ≤ ν ϑ1 ∥Ŵm∥Vm,x ∥Ûm∥Vm,x .

In a similar way, we have∣∣∣∣ ν ∫
Ω̂1D

[
Ŵm

]T
A1,1 Ûm dx̂1

∣∣∣∣ ≤ ν

∫
Ω̂1D

∥Ŵm∥ ∥A1,1∥2 ∥Ûm∥ dx̂1

≤ ν ξ1 ξ̄1 m
2

∫
Ω̂1D

∥Ŵm∥ ∥Ûm∥ dx̂1 ≤ ν ξ1 ξ̄1 m
2 ∥Ŵm∥Vm,x

∥Ûm∥Vm,x
.
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Concerning the non-symmetric contributions, it follows∣∣∣∣ ν ∫
Ω̂1D

[
Ŵm

]T
A1,0 Û′

m dx̂1

∣∣∣∣ ≤ ν

∫
Ω̂1D

∥Ŵm∥ ∥A1,0∥2 ∥Û′
m∥ dx̂1

= ν

∫
Ω̂1D

(
λmax([A

1,0]TA1,0)
) 1

2 ∥Ŵm∥ ∥Û′
m∥ dx̂1

≤ ν π1 (ξ̄1)
1
2 m

3
2

∫
Ω̂1D

∥Ŵm∥ ∥Û′
m∥ dx̂1

≤ ν π1 (ξ̄1)
1
2 m

3
2 ∥Ŵm∥L2(Ω̂1D;R2m) ∥Û

′
m∥L2(Ω̂1D;R2m)

≤ ν π1 (ξ̄1)
1
2 m

3
2 ∥Ŵm∥Vm,x

∥Ûm∥Vm,x
,

and∣∣∣∣ ν ∫
Ω̂1D

[
Ŵ′

m

]T
A0,1 Ûm dx̂1

∣∣∣∣ ≤ ν
∫
Ω̂1D

∥Ŵ′
m∥ ∥A0,1∥2 ∥Ûm∥ dx̂1

≤ ν π1 (ξ̄1)
1
2 m

3
2

∫
Ω̂1D

∥Ŵ′
m∥ ∥Ûm∥ dx̂1

≤ ν π1 (ξ̄1)
1
2 m

3
2 ∥Ŵm∥Vm,x

∥Ûm∥Vm,x
,

respectively. This concludes the proof of (36) with Ma = ν
[
ϑ1 + ξ1 ξ̄1 m

2+

2π1 (ξ̄1)
1
2 m

3
2

]
.

Coercivity of ã(·, ·) We look for a constant α > 0 such that

ã(Ûm, Ûm) ≥ α ∥Ûm∥2Vm,x
∀Ûm ∈ Vm,x. (37)

We start by considering the contributions in (17)1 associated with the symmet-
ric positive definite matrices A0,0 and A1,1. Thanks to the Rayleigh quotient
definition and Lemma 3, it holds

ν

∫
Ω̂1D

{[
Û′

m

]T
A0,0 Û′

m +
[
Ûm

]T
A1,1 Ûm

}
dx̂1

≥ ν λmin(A
0,0)

∫
Ω̂1D

∥Û′
m∥2 dx̂1 + ν λmin(A

1,1)

∫
Ω̂1D

∥Ûm∥2 dx̂1

≥ ν ϑ0 ∥Û′
m∥2

L2(Ω̂1D;R2m)
+ ν ξ0 ξ̄0 ∥Ûm∥2

L2(Ω̂1D;R2m)
.

By adding the terms involving matrices A1,0 and A0,1 after observing that
[Ûm]TA1,0 Û′

m = [Û′
m]TA0,1 Ûm, we have

ã(Ûm, Ûm) ≥ ν ϑ0 ∥Û′
m∥2

L2(Ω̂1D;R2m)
+ ν ξ0 ξ̄0 ∥Ûm∥2

L2(Ω̂1D;R2m)

+ 2 ν

∫
Ω̂1D

[
Ûm

]T
A1,0 Û′

m dx̂1 ≥ ν

(
ξ0 ξ̄0 −

1

2 ε

)
∥Ûm∥2

L2(Ω̂1D;R2m)

+ ν
(
ϑ0 − 2 ε π2

1 ξ̄1 m
3
)
∥Û′

m∥2
L2(Ω̂1D;R2m)

,

(38)
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where the last inequality follows from Young’s inequality and Lemma 3, with
ε > 0 to be properly selected. In particular, we choose ε to ensure that both
the quantities in brackets are strictly positive and, additionally, to arbitrar-
ily enforce that the coefficient multiplying the norm of Ûm is greater than
∥Û′

m∥L2(Ω̂1D;R2m). This implies that

0 < ϑ0 − 2 ε π2
1 ξ̄1 m

3 < ξ0 ξ̄0 −
1

2 ε
. (39)

The left inequality requires that 0 < ε < ε∗ with ε∗ = ϑ0

(
2π2

1 ξ̄1 m
3
)−1

. The
right inequality leads to demand that ε < ε̃0 as well as ε > ε̃1 with

ε̃0,1 =
ϑ0 − ξ0 ξ̄0 ±

[(
ξ0 ξ̄0 − ϑ0

)2
+ 4π2

1 ξ̄1 m
3
] 1

2

4π2
1 ξ̄1 m

3
.

We observe that ε̃0 < ε̃1, regardless of the sign taken by the quantity ϑ0− ξ0 ξ̄0.
Now, to simultaneously satisfy the two requirements on ε, we have to prescribe
that ε̃1 < ε∗, namely we have to assume that

π2
1 <

ϑ0 ξ0 ξ̄0
ξ̄1 m3

. (40)

This allows us to arbitrarily choose parameter ε in (38) as ε̄ in the interval
(ε̃1, ε

∗), where the optimal choice is ε̄ = ε̃1. This leads us to the inequality

ã(Ûm, Ûm) ≥ ν
ϑ0 + ξ0 ξ̄0 +

[(
ξ0 ξ̄0 − ϑ0

)2
+ 4π2

1 ξ̄1 m
3
] 1

2

2
∥Ûm∥2Vm,x

,

namely to inequality (37) with α = ν
2

{
ϑ0+ξ0 ξ̄0+

[(
ξ0 ξ̄0−ϑ0

)2
+4π2

1 ξ̄1 m
3
] 1

2
}
,

thus proving the coercivity of ã(·, ·).2

Continuity of b̃(·, ·) The objective is to prove the existence of a constant
Mb > 0 such that∣∣b̃(Ûm, Ẑn)

∣∣ ≤ Mb ∥Ûm∥Vm,x ∥Ẑn∥Qn,x ∀Ûm ∈ Vm,x and ∀Ẑn ∈ Qn,x, (41)

with Qn,x ≡ L2(Ω̂1D; Rn). Starting from definition (17)3, we leverage the com-
patibility between the spectral and the Euclidean norms, Lemma 4, the Cauchy-
Schwarz inequality and the standard relation between the L2(Ω̂1D)- and the

2Inequalities alternative to (39) could be used to prove the coercivity of the bilinear form
ã(·, ·). For instance, we can impose that

0 < ξ0 ξ̄0 −
1

2 ε
< ϑ0 − 2 ε π2

1 ξ̄1 m
3

or ϑ0 − 2 ε π2
1 ξ̄1 m3 > 0 and ξ̄0 −

(
2 ε

)−1
> 0, separately. It is worth noting that these

different requirements lead to the same relationship between π1 and the modal index m as in
(40), although the coercivity constant α in (37) may vary.
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H1(Ω̂1D)-norms. This yields the sequence of inequalities∣∣b̃(Ûm, Ẑn)
∣∣ ≤ ∣∣∣∣ ∫

Ω̂1D

[
Ẑn

]T
[B0,0]T Û′

m dx̂1

∣∣∣∣+ ∣∣∣∣ ∫
Ω̂1D

[
Ẑn

]T
[B1,0]T Ûm dx̂1

∣∣∣∣
≤

∫
Ω̂1D

∥Ẑn∥ ∥[B0,0]T ∥2 ∥Û′
m∥ dx̂1 +

∫
Ω̂1D

∥Ẑn∥ ∥[B1,0]T ∥2 ∥Ûm∥ dx̂1

≤ γmax n
1
2 ∥Ẑn∥L2(Ω̂1D;Rn) ∥Û

′
m∥L2(Ω̂1D;R2m)

+σmax (ξ̄1)
1
2 n

1
2 m ∥Ẑn∥L2(Ω̂1D;Rn) ∥Ûm∥L2(Ω̂1D;R2m)

≤ n
1
2

[
γmax + σmax (ξ̄1)

1
2 m

]
∥Ẑn∥Qn,x

∥Ûm∥Vm,x
,

namely the desired result in (41) with Mb = n
1
2

[
γmax + σmax (ξ̄1)

1
2 m

]
.

The inf-sup condition for b̃(·, ·) Our goal is to identify a constant β =
β(n) > 0 such that

inf
Ẑn∈Qn,x

sup
Ûm∈Vm,x

b̃(Ûm, Ẑn) ≥ β ∥Ûm∥Vm,x ∥Ẑn∥Qn,x . (42)

This is equivalent to selecting an arbitrary pressure

Ẑ∗
n = Ẑ∗

n(x̂1) = [ẑ∗1 , ẑ
∗
2 , . . . , ẑ

∗
n]

T ∈ Qn,x

with ẑ∗l = ẑ∗l (x̂1) for l = 1, . . . , n, and accordingly identifying a velocity

Û∗
m = Û∗

m(x̂1) = [û∗
1, û

∗
2, . . . , û

∗
m]T ∈ Vm,x,

with û∗
k = û∗

k(x̂1) = [û∗
k,1(x̂1), û

∗
k,2(x̂1)]

T for k = 1, . . . ,m, that satisfies rela-
tions

b̃(Û∗
m, Ẑ∗

n) = ∥Ẑ∗
n∥2Qn,x

∥Û∗
m∥Vm,x

≤ κ(n) ∥Ẑ∗
n∥Qn,x

,
(43)

with κ(n) > 0 and where β in (42) depends on this constant. To build Û∗
m, we

begin by requiring that

u∗
k,2(x̂1) = 0 k = 1, . . . ,m,

u∗
k,1(x̂1) = 0 k = n+ 1, . . . ,m,

having assumed that m ≥ n. These assumptions lead us to introduce the
condensed velocity vector Û∗,c

n = Û∗,c
n (x̂1) = [û∗,c

1 , û∗,c
2 , . . . , û∗,c

n ]T ∈ Vc
n,x =

[V̂ c
1D]n with V̂ c

1D =
{
v̂ ∈ H1(Ω̂1D) : v̂(0) = 0

}
and with û∗,c

k = û∗,c
k (x̂1) for

k = 1, . . . , n. In practice, velocity Û∗,c
n is a 1D vector which gathers the non-

null components of Û∗
m, so that the bilinear form on the left-hand side of (43)1

can be equivalently rewritten as

b̃(Û∗
m, Ẑ∗

n) = −
∫
Ω̂1D

{[
Ẑ∗

n

]T [
B0,0

c

]T [
Û∗,c

n

]′
+

[
Ẑ∗

n

]T [
B1,0

c

]T
Û∗,c

n

}
dx̂1

:= b̃n(Û
∗,c
n , Ẑ∗

n),
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where B0,0
c is defined as in (22), while B1,0

c = B1,0
c (x̂1) is the n×n block matrix

of functions whose i-th row is defined by[
B1,0

c

]
i
=

[
B1,0
i1,1,B

1,0
i2,1, . . . ,B

1,0
in,1

]
∈ Rn. (44)

Thus, to prove equality (43)1, we have to ensure that

−
∫
Ω̂1D

{[
Ẑ∗

n

]T [
B0,0

c

]T [
Û∗,c

n

]′
+
[
Ẑ∗

n

]T [
B1,0

c

]T
Û∗,c

n

}
dx̂1 =

∫
Ω̂1D

[
Ẑ∗

n

]T
Ẑ∗

n dx̂1.

For this condition to hold, it is enough that

[B0,0
c ]T

[
Û∗,c

n

]′
+
[
B1,0

c

]T
Û∗,c

n = −Ẑ∗
n

for any x̂1 ∈ Ω̂1D. Now, since Û∗,c
n ∈ Vc

n,x, it holds Û∗,c
n (0) = 0, so that the

velocity vector Û∗,c
n satisfies the Cauchy problem

[
Û∗,c

n

]′
= −

[
B0,0

c

]−T [
B1,0

c

]T
Û∗,c

n −
[
B0,0

c

]−T
Ẑ∗

n

Û∗,c
n (0) = 0

(45)

for any x̂1 ∈ Ω̂1D, where assumption (A4) guarantees the invertibility of matrix
B0,0

c . Problem (45) admits a unique solution thanks to the regularity assump-
tions on maps Ψ and Φ. This proves equality (43)1. Concerning result (43)2,
we first verify the two inequalities∥∥Û∗,c

n

∥∥2
L2(Ω̂1D;Rn)

≤ κ0(n)
∥∥Ẑ∗

n

∥∥2
L2(Ω̂1D;Rn)∥∥[Û∗,c

n

]′∥∥2
L2(Ω̂1D;Rn)

≤ κ1(n)
∥∥Ẑ∗

n

∥∥2
L2(Ω̂1D;Rn)

,
(46)

for some positive quantities κ0(n) and κ1(n). We start by proving (46)1. To

this aim, we multiply the differential equation in (45) by
[
Û∗,c

n

]T
to obtain

1

2

d∥Û∗,c
n ∥2

dx̂1
=

[
Û∗,c

n

]T [
Û∗,c

n

]′
= −

[
Û∗,c

n

]T [
B0,0

c

]−T [
B1,0

c

]T
Û∗,c

n −
[
Û∗,c

n

]T [
B0,0

c

]−T
Ẑ∗

n.

Thanks to the compatibility between the spectral and the Euclidean norms, it
follows

1

2

d∥Û∗,c
n ∥2

dx̂1
≤

∥∥[B0,0
c

]−T∥∥
2

∥∥[B1,0
c

]T∥∥
2

∥∥Û∗,c
n

∥∥2 + ∥
[
B0,0

c

]−T ∥2 ∥Û∗,c
n ∥ ∥Ẑ∗

n∥

=
∥∥[B0,0

c

]−1∥∥
2

∥∥B1,0
c

∥∥
2

∥∥Û∗,c
n

∥∥2 + ∥
[
B0,0

c

]−1∥2 ∥Û∗,c
n ∥ ∥Ẑ∗

n∥

≤ n
1
8

γ0
σ1 (ξ̄1)

1
2 n

3
2

∥∥Û∗,c
n

∥∥2 + n
1
8

γ0
∥Û∗,c

n ∥ ∥Ẑ∗
n∥,

(47)
where the last inequality is due to assumption (A4) and to the counterpart of
result (32) when applied to the condensed matrix in (44). By integrating on
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(0, x̂1) and using the Young inequality on the second term at the right-hand
side, we have

1

2
∥Û∗,c

n (x̂1)∥2 ≤ n
1
8

γ0

[
σ1 (ξ̄1)

1
2 n

3
2 + ε

] ∫
Ω̂1D

∥∥Û∗,c
n

∥∥2 dx̂1 +
n

1
8

4 ε γ0

∫
Ω̂1D

∥Ẑ∗
n∥2 dx̂1

=
n

1
8

γ0

[
σ1 (ξ̄1)

1
2 n

3
2 + ε

]
∥Û∗,c

n ∥2
L2(Ω̂1D;Rn)

+
n

1
8

4 ε γ0
∥Ẑ∗

n∥2L2(Ω̂1D;Rn)

being Û∗,c
n (0) = 0 and with ε > 0 to be properly selected. As a result of a

further integration on Ω̂1D, we find{
1

2
− n

1
8

γ0

[
σ1 (ξ̄1)

1
2 n

3
2 + ε

]}
∥Û∗,c

n ∥2
L2(Ω̂1D;Rn)

≤ n
1
8

4 ε γ0
∥Ẑ∗

n∥2L2(Ω̂1D;Rn)
,

namely relation (46)1 after setting

κ0(n) =
n

1
8

4 ε γ0

{
1

2
− n

1
8

γ0

[
σ1 (ξ̄1)

1
2 n

3
2 + ε

]}−1

.

To guarantee the positiveness of κ0(n), we require that

σ1 <
γ0 − 2n

1
8 ε

2 (ξ̄1)
1
2 n

13
8

, ε <
γ0

2n
1
8

.

We observe that the choice of ε is problem-dependent since, from the second
bound above, it follows a request on the quantity γ2

0 n
− 1

4 involved in assumption
(A4)3.

Result (46)2 follows by exploiting similar computations as in (47), starting
from the differential equation in (45)1. Indeed, it holds

∥
[
Û∗,c

n

]′∥ ≤
∥∥[B0,0

c

]−T∥∥
2

∥∥[B1,0
c

]T∥∥
2

∥∥Û∗,c
n

∥∥+ ∥
[
B0,0

c

]−T ∥2 ∥Ẑ∗
n∥

=
∥∥[B0,0

c

]−1∥∥
2

∥∥B1,0
c

∥∥
2

∥∥Û∗,c
n

∥∥+ ∥
[
B0,0

c

]−1∥2 ∥Ẑ∗
n∥

≤ n
1
8

γ0
σ1 (ξ̄1)

1
2 n

3
2

∥∥Û∗,c
n

∥∥+
n

1
8

γ0
∥Ẑ∗

n∥,

so that

∥
[
Û∗,c

n

]′∥2 ≤ 2n
1
4

γ2
0

σ2
1 ξ̄1 n

3
∥∥Û∗,c

n

∥∥2 + 2n
1
4

γ2
0

∥Ẑ∗
n∥2.

After integrating on Ω̂1D and leveraging the bound in (46)1, we obtain

∥
[
Û∗,c

n

]′∥2
L2(Ω̂1D;Rn)

≤ 2n
1
4

γ2
0

σ2
1 ξ̄1 n

3
∥∥Û∗,c

n

∥∥2
L2(Ω̂1D;Rn)

+
2n

1
4

γ2
0

∥Ẑ∗
n∥2L2(Ω̂1D;Rn)

≤
{
2n

1
4

γ2
0

σ2
1 ξ̄1 n

3 κ0(n) +
2n

1
4

γ2
0

}
∥Ẑ∗

n∥2L2(Ω̂1D;Rn)

3As an alternative to these steps, one could resort to Young’s inequality with the standard
choice ε = 0.5, combined with the classical Gronwall inequality. This approach would avoid
imposing constraints on σ1, but it would introduce an exponential dependence of κ0(n) on n.
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which coincides with result (46)2 where

κ1(n) =
2n

1
4

γ2
0

{
σ2
1 ξ̄1 n

3 κ0(n) + 1

}
.

This leads to result (43)2, after setting κ(n) =
(
κ0(n)+κ1(n)

) 1
2 , namely to (42)

with β(n) = κ(n)−1.

Continuity of F̃ (·) We seek a constant MF > 0 such that∣∣F̃ (Ŵm)
∣∣ ≤ MF ∥Ŵm∥Vm,x

∀Ŵm ∈ Vm,x. (48)

Thanks to the Cauchy-Schwarz inequality and the standard relation between
the L2(Ω̂1D)- and the H1(Ω̂1D)-norms, we find

∣∣F̃ (Ŵm)
∣∣ = ∣∣∣∣ ∫

Ω̂1D

[Ŵm]T F̂m dx̂1

∣∣∣∣ ≤ ∫
Ω̂1D

∥Ŵm∥ ∥F̂m∥ dx̂1

≤ ∥F̂m∥L2(Ω̂1D;R2m) ∥Ŵm∥L2(Ω̂1D;R2m) ≤ ∥F̂m∥L2(Ω̂1D;R2m) ∥Ŵm∥Vm,x
,

which coincides with result (48) after identifying MF with ∥F̂m∥L2(Ω̂1D;R2m).
This constant can be further elaborated to emphasize its dependence on the
original source function f , as introduced in (1), and on the chosen modal dis-
cretization. In particular, by using the upper bound in (18), the Cauchy-Schwarz
inequality and assumption (A1), we can write

∥F̂m∥2
L2(Ω̂1D;R2m)

=

m∑
i=1

∫
Ω̂1D

2∑
s=1

[ ∫
γ̂

Ti(x̂2) fs(Φ(ẑ)) j(ẑ) dx̂2

]2
dx̂1

≤ j1

∫
Ω̂1D

[ m∑
i=1

∥Ti∥2L2(γ̂)

][ 2∑
s=1

∥fs(Φ(ẑ))j
1
2 (ẑ)∥2L2(γ̂)

]
dx̂1 = j1 m ∥f∥2L2(Ω)

Thus, the continuity constant in (48) can be expressed as MF = j
1
2
1 m

1
2 ∥f∥L2(Ω).

This concludes the proof of the existence and uniqueness of the solution to
problem (16). The two stability estimates in (35) follow in a straightforward
way from the standard inf-sup analysis [28].

Some remarks are in order regarding the main assumptions of Theorem 5.
Assumptions (A1) and (A2), which require the orthonormality of the modal
basis functions for both velocity and pressure, are consistent with the founda-
tional hypotheses of the HiMod reduction theory (see, e.g., [8, 9]). Assumption
(A3), which involves the components of the stiffness matrix associated with the
HiMod velocity field, is partially addressed in Remark 1 and can be directly
verified when using certain modal families, such as trigonometric functions. As-
sumption (A4) is constructed so as to prove the inf-sup stability of the bilinear
form b̃(·, ·) and is numerically verified in the following section in the case of a
trigonometric modal basis. The same section also validates the two conditions
on π1 and σ1, which essentially impose regularity constraints on the map Ψ,
namely on the geometry of the physical domain Ω. In addition, the relation
between the number of velocity and pressure modal functions represents the
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true added value of this theory: not only does it outperform the empirical rule
typically adopted in HiMod simulations for Stokes and Navier–Stokes flows (see,
e.g., [19, 15, 17]), but it also stems from a rigorous theoretical analysis rather
than from a purely practical choice.

Finally, we observe that Theorem 5 enables us to derive error estimates
for both the HiMod velocity and pressure, by relying on the classical inf-sup
theory [28].

5 Numerical assessment

We aim to support the well-posedness analysis presented in the previous sec-
tion through numerical experiments, from both a qualitative and quantitative
perspective4. Particular attention is given to the choice of the modal indices
m and n, considering the improvements introduced by Theorem 5 when com-
pared to the selection criteria currently adopted in the state-of-the-art HiMod
literature [19, 15, 17].

The second part of the section focuses on the geometric constraints led by the
assumptions on π1 and σ1, in order to explore the types of domain geometries
that are admissible under the proposed theoretical setting.

5.1 Accuracy and efficiency analysis

With a view to performing the numerical assessment, we consider the discrete
counterpart of the HiMod formulation introduced in (7) (i.e., in (16)). To this
end, we approximate the dynamics along the main direction using a finite el-
ement discretization [27]. Clearly, alternative strategies are possible. For in-
stance, in [17], an isogeometric approach is adopted to accurately capture com-
plex centerline geometries in a biomedical context.
We introduce a uniform partition, Th, of the supporting fiber, with h the con-
stant discretization step, and the associated finite element (FE) space, Xr

h, of
the continuous piecewise polynomials of degree r [27]. In accordance with the
classical inf-sup theory for the FE discretization of the Stokes problem [28],
we adopt an inf-sup stable pair of approximation spaces for the velocity and
pressure. Specifically, we employ quadratic piecewise polynomials to model the
HiMod velocity and linear piecewise polynomials to define the HiMod pressure.
We emphasize that the primary objective of this work is to define a rigorous
selection criterion for the modal indices m and n in (5), aimed at properly char-
acterize the spaces Vm and Qn involved in the HiMod formulation (7). This
analysis is carried out independently of the discretization adopted along the
x1-direction.
From an algebraic viewpoint, the discrete counterpart of the HiMod formulation
(7) (i.e., (16)) leads to solve a standard saddle point linear system. In more de-
tail, matrix A consists of 2m×2m square blocks of dimension Nh,u, which share
the pentadiagonal sparsity pattern typical of a 1D quadratic FE discretization;
matrix B is composed by 2m× n rectangular blocks of dimension Nh,u ×Nh,p,
with Nh,u and Nh,p the number of the degrees of freedom (DOFs) associated

4The simulations are performed on a desktop computer equipped with a 12th Gen Intel®

Core™ i7-1260P processor, integrated Mesa Intel® Graphics, and 16 GB of RAM. The com-
putational setup relies on MATLAB and on the package GEOPDEs [30].

25



with the finite element spaces [X2
h]

2 and X1
h involved in the definition of the

HiMod velocity and pressure, respectively. We refer to Fig. 1 for some examples
of HiMod matrix sparsity pattern when varying the number of modal functions
and/or the selected FE discretization.

Figure 1: Sparsity pattern of the matrix associated with different HiMod dis-
cretization: m = n = 3, Nh,u = 20, Nh,p = 11 (left); m = n = 5, Nh,u = 200,
Nh,p = 101 (middle); m = n = 7, Nh,u = 2000, Nh,p = 1001 (right).

In the following, we apply the HiMod discretization to different configura-
tions to investigate the quality and the performance of such a model reduction
technique.

5.1.1 Test 1: the rectangular domain

As a first check, we select a basic configuration where Ω coincides with the
rectangular domain (0, L) × (0, H), with L = 10 and H = 1. Concerning
the problem data in (1), we choose ν = 0.1, f = 0, h the parabolic profile
with maximum equal to 1, ∂Ωin = {0} × (0, H), ∂Ωout = {L} × (0, H) and
∂Ωlat = ∂Ω \

(
∂Ωin ∪ ∂Ωout

)
.

Figure 2, left column displays the colour plot of the reference solution used to
verify the HiMod approximation accuracy. It corresponds to a finite element
discretization computed using quadratic elements for the velocity and linear
elements for the pressure, on a conforming and uniform mesh composed of 45.594
triangles.

The HiMod discretization is carried out by introducing a partition Th of the
supporting fiber into 100 uniform subintervals, and by employing m = n = 5
modal basis functions to represent the transverse dynamics. The middle panel
in Fig. 1 displays the sparsity pattern corresponding to this HiMod approxi-
mation. The accuracy of the selected HiMod solution is verified by the three
panels in Fig. 2, right column that show a highly satisfactory agreement with
the corresponding plots of the reference solution. The agreement between the
HiMod and FE approximations is also quantitatively confirmed by the values of
the relative errors

Ep =
∥pFE − phn∥L2(Ω)

∥pFE∥L2(Ω)
· 100, Eu =

∥uFE − uh
m∥H1(Ω;R2)

∥uFE∥H1(Ω;R2)
· 100, (49)

where uFE and pFE are the reference FE velocity and pressure, while uh
m and

phn denote the corresponding discrete HiMod approximations.
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Figure 2: Test 1: reference solution (left) and HiMod approximation (right) with
m = n = 5, Nh,u = 200, Nh,p = 101 for the pressure (top), the x1- (middle)
and x2- (bottom) component of the velocity.

Table 1 presents the values of Ep and Eu, along with the number of HiMod
DOFs, for several combinations of the modal indices m and n, and different FE
discretization steps. In particular, we focus on the case m = n, as it represents
the most cost-effective configuration in terms of DOFs. As expected, the Hi-
Mod approximation error decreases as the mesh size h is refined, provided that
a sufficiently large number of modes is used. Similarly, increasing the number
of modal functions improves the accuracy, as long as h is small enough. We also
observe that the error reduction with respect to the number of modesm becomes
more pronounced as the mesh is refined, reflecting the high spectral convergence
rate of the modal expansion. In particular, a significant improvement in velocity
accuracy is observed between m = 5 and m = 9 for all values of h, confirming
that a relatively small number of modes is sufficient to accurately capture the
transverse dynamics. Beyond this range, improvements become marginal, sug-
gesting that the remaining error is mainly due to the discretization along the
longitudinal direction.

It is of interest to compare the rule currently adopted in the literature for
selecting the modal indices, namely m = n + 2 [19, 15, 17], with the choice
m = n considered in Table 1. In particular, focusing on the block corresponding
to h = 0.125, we compute the values in (49), denoted by EL

p and EL
u , by setting

m = n + 2 for each selected value of n. Table 2 gathers these results together
with the error differences

∆Ep = Ep − EL
p , ∆Eu = Eu − EL

u .

We observe that, for any n, the m = n configuration consistently requires
640 fewer DOFs than the corresponding L setup, confirming its computational
advantage. At the same time, the discrepancies in both pressure and veloc-
ity errors remain moderate and tend to decrease as n (and consequently m)
increases. This confirms that most of the accuracy is already captured when
m = n, and the additional modes in the L configuration bring limited improve-
ments. Hence, the choice m = n appears to be an efficient trade-off, reducing
the computational cost while maintaining high accuracy.

As a further verification, we examine the quality of the HiMod approximation
when the condition m ≥ n on the modal indices in Theorem 5 is violated. We
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Table 1: Test 1: quantitative analysis about the accuracy of the HiMod approx-
imation for a different number (m = n) of modes (by columns) and values of h
(by panels, with h = 1, 0.5, 0.25, 0.125, top-bottom).

m = 5
n = 5

m = 9
n = 9

m = 13
n = 13

m = 17
n = 17

m = 21
n = 21

m = 25
n = 25

m = 29
n = 29

Ep 0.44868 0.44179 0.44049 0.44005 0.43986 0.43977 0.43972

Eu 4.07944 3.46396 3.34937 3.31687 3.30478 3.29929 3.29661

DOFs 255 459 663 867 1071 1275 1479

Ep 0.27633 0.26056 0.25659 0.25499 0.25422 0.25381 0.25357

Eu 3.63625 2.89088 2.74564 2.70410 2.68849 2.68115 2.67730

DOFs 505 909 1313 1717 2121 2525 2929

Ep 0.18211 0.14635 0.13463 0.13379 0.12627 0.12444 0.12332

Eu 3.24905 2.22286 1.97278 1.92456 1.85896 1.84093 1.83106

DOFs 1005 1809 2613 3417 4221 4861 5829

Ep 0.16396 0.11761 0.09798 0.08717 0.08045 0.07596 0.07283

Eu 3.16239 1.91407 1.51112 1.34059 1.25613 1.20900 1.18011

DOFs 2005 3609 5213 6817 8421 10025 11629

run the HiMod solver with the configurations m = 5, n = 6 and m = 5, n = 7,
while setting h = 0.125 as FE discretization step. It can be checked that, on
both cases, the HiMod velocity field still accurately reproduces the reference
advective field. Conversely, the pressure remains consistent with the reference
one when m = 5, n = 6, but exhibits a different behavior throughout the
channel, along with significant instabilities near the outflow boundary, when
m = 5, n = 7. This is highlighted by the contour lines superimposed on the
color plot and by the enlarged views in Fig. 3. This behavior is further supported
by the error values Ep and Eu in (49), which remain essentially unchanged for
both velocity and pressure when moving from m = n = 5 to m = 5, n = 6, but
increase from Ep = 0.16396, Eu = 3.16239 for m = n = 5, to Ep = 1.76783,
Eu = 3.71701 for the choice m = 5, n = 7.

As a final check in this section, we make some considerations on assumption
(A4) underlying Theorem 5. The goal is to provide numerical justification for
the exponent assigned to the modal index n in the lower bound. To this end,
in the left panel of Fig. 4, we plot with blue markers the minimum eigenvalue

of the matrix
[
B0,0

c

]T
B0,0

c as a function of the modal index m = n, along with
curves corresponding to the function γ2

0 n
µ for µ = − 1

4 , −
1
5 , −

1
6 . Here, the

constant γ0 ∈ R+ is chosen so that both terms in (A4) match at the smallest
eigenvalue, corresponding to m = n = 1. It is evident that the choice µ = − 1

4
is the one that effectively provides the desired lower bound.
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Table 2: Test 1: quantitative analysis about the accuracy of the HiMod approx-
imation for a different number of modes m, n and for h = 0.125 (top panel);
comparison between the choices m = n and L (bottom panel).

m = 7
n = 5

m = 11
n = 9

m = 15
n = 13

m = 19
n = 17

m = 23
n = 21

m = 27
n = 25

m = 31
n = 29

EL
p 0.13240 0.10135 0.08883 0.08178 0.07716 0.07391 0.07152

EL
u 2.46781 1.72381 1.44575 1.31672 1.24623 1.20440 1.17713

∆Ep 0.03156 0.01627 0.00915 0.00540 0.00329 0.00205 0.00131

∆Eu 0.69459 0.19025 0.06537 0.02386 0.00991 0.00461 0.00298

Figure 3: Test 1: HiMod approximation for m = 5, n = 6, (left) and m = 5,
n = 7 (right), when Nh,u = 160, Nh,p = 81, for the pressure throughout the
whole channel (top) and in correspondence with the outflow boundary (bottom).

5.1.2 Test 2: the wavy domain

In this section, we assess the accuracy of the HiMod approach when used to
discretize the Stokes problem in a domain featuring a more irregular geometry
compared to the simple rectangular case. In particular, the computational do-
main Ω features a sinusoidal shape with a thickness that decreases from 1 at
the inflow ∂Ωin to 0.2 at the outflow ∂Ωout. The supporting fiber Ω1D is also
sinusoidal, with an oscillation amplitude of 0.5 and a frequency equal to 2 (see
Fig. 5 for a skecth of the domain). The data in (1) are the same as for Test
1, while we assume as reference solution the P2-P1 FE discretization associated
with a mesh consisting of 152.164 elements.

To efficiently handle the curvature of Ω1D within the HiMod discretization,
we adopt the isogeometric variant of this model reduction technique, known
as the HIgaMod reduction (Hierarchical IsoGeometric Approach for Model re-
duction), introduced in [19]. In this approach, the standard finite element
discretization along the main flow direction is replaced by isogeometric anal-
ysis, which offers a highly flexible and computationally efficient framework for
managing complex geometries. More specifically, we partition Ω1D into 1.000
uniform subintervals, employ quadratic and linear splines to approximate the
velocity and pressure trends along the main flow direction, respectively and
adopt m = n = 15 modal functions to capture the transverse dynamics within
the reduced model.

Figure 5 compares the reference solution (the two panels in the left column)

29



Figure 4: Numerical assessment of assumption (A4) for the rectangular (left)
and wavy (right) geometry.

Figure 5: Test 2: reference solution (left) and HiMod approximation (right)
with m = n = 15, Nh,u = 2000, Nh,p = 1001 for the pressure (top) and the
velocity magnitude (bottom).

with the HIgaMod approximation (the two panels in the right column) in terms
of pressure (top) and magnitude of the velocity (bottom). The corresponding
colour plots show a perfect match between the reference and the reduced solu-
tions, as confirmed by the error values Ep = 2.77885 and Eu = 3.26182, high-
lighting the reliability of the proposed approach. The discrepancy in the number
of DOFs (384.912 for the reference solution versus 75.015 for the HIgaMod ap-
proximation) corroborates the effectiveness of the HIgaMod discretization since
significantly reducing the computational complexity.

Finally, we repeat the numerical assessment of assumption (A4) carried out
in Fig. 4, left panel for the the wavy geometry. As in the case of the rectangular
domain, the choice µ = − 1

4 remains the most reasonable for approximating the

minimum eigenvalue of the matrix
[
B0,0

c

]T
B0,0

c , as highlighted in the right panel
of Fig. 4.

5.2 Domain configuration guidelines

The goal of this section is to identify which types of computational domains
satisfy the geometric constraints stated in Theorem 5, expressed in terms of
the constants π1 and σ1 involved in (19)3 and (20)2, respectively. In general,
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Figure 6: Possible geometric configurations: rectangular (blue), tapered (red),
and sinusoidal (grey) domains, along with the associated main defining param-
eters.

the conditions π1 = O(m− 3
2 ) and σ1 = O(n− 3

2 ) require these constants to be
sufficiently small, which is equivalent to excluding configurations for Ω charac-
terized by abrupt geometric variations either along the horizontal boundaries or
the supporting fiber.

A trivial case is represented by rectangular domains, for which both (19)3
and (20)2 hold with π1 = σ1 = 0, as M12 and J21 vanish identically. In
particular, we consider a rectangular domain with length L and height Hin,
where we assume L ≫ Hin consistently with a HiMod setting (see the blue
polygon in Fig. 6). We characterize the shape of the rectangle by the quantity
Hin/L, referred to as the aspect ratio.
Table 3 furnishes the components, Jgh, of the Jacobian matrix in (3) for three
different values of this ratio, with g, h = 1, 2. Specifically, the table lists the
maximum value of Jgh evaluated at the points in Z = {zeval,ij}, where zeval,ij =
(xFE

1i , x
Q
2j)}, with xFE

1i the FE nodes of the partition Th on Ω1D and xQ
2j the

quadrature nodes along the reference transverse fiber γ̂, for i = 1, . . . , Nh,u and
j = 1, . . . , NQ. Notice that the Jacobian components are directly involved in the
bound (20)2 and in the definition of the quantity M12, which is upper bounded,
up to j, by π1 in (19)3. Finally, the last two columns provide an estimate of
π1 and σ1, computed as the maximum over Z of the left-hand side in (19)3 and
(20)2, respectively. The results confirm that the rectangular domain represents
the ideal case, being both π1 and σ1 equal to zero.

Table 3: Rectangular geometry: values of the components of the Jacobian ma-
trix and of the quantities π1 and σ1 for Hin = 1 and for different values of the
aspect ratio.

Hin/L J11 J12 J21 J22 π1 σ1

0.1 0.10000 0 0 1 0 0

0.01 0.01000 0 0 1 0 0

0.001 0.00100 0 0 1 0 0

Now, we explore some geometric perturbations of the rectangular case that
still yield acceptable values for π1 and σ1. As a first scenario, we modify the
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Table 4: Tapered geometry: values of the components of the Jacobian matrix
and of the quantities π1 and σ1 for Hin = 1 (top panel), Hin = 0.1 (bottom
panel) and for different values of the aspect ratio.

Hin/L J11 J12 J21 J22 π1 σ1

0.1 0.10000 0 0.10000 0.99999 0.10000 0.99999

0.01 0.01000 0 0.01000 0.99999 0.01000 0.99999

0.001 0.00100 0 0.00100 0.99999 0.00100 0.99999

0.1 1.00000 0 0.99980 9.99930 0.10000 0.10000

0.01 0.10000 0 0.10000 9.99930 0.01000 0.10000

0.001 0.01000 0 0.01000 9.99930 0.00100 0.10000

domain height at the outflow, which is now taken equal to Hout, with Hout >
Hin. This variation leads to the definition of a tapered geometry (see the red
polygon in Fig. 6), which we still characterize using the aspect ratio Hin/L. It is
worth noting that the tapered geometry gradually converges to the rectangular
configuration as Hout approaches Hin.
Table 4 shows the same values as in Table 3 for two different choices of the
domain inflow height, Hin. For a fixed value of Hin, as expected, both J11 and
J21 lower with decreasing aspect ratio Hin/L. Regarding the quantity σ1, it is
useful to recall that it depends on the value of J21 and on the determinant in
the definition of j. Thus, keeping Hin fixed and decreasing the ratio Hin/L,
we have a reduction in J21, while we can verify that the determinant increases
proportionally. As a result, the value of σ1 remains essentially unchanged. As
for π1, from the definition of M12 in (9) and the left-hand side of (19)3, it turns
out that π1 essentially coincides with the product of σ1 and J11, since J12 = 0, as
it is confirmed from the values in the table. Finally, a cross-comparison between
the two panels in the table reveals that, for a fixed aspect ratio, reducing Hin

(and consequently L) leads to an increase in J11, J21, and J22, as expected due to
the geometric variations. At the same time, σ1 decreases since the corresponding
determinant diminishes when decreasing Hin.

The second perturbation of the standard rectangular geometry we consider
corresponds to the sinusoidal-shaped domain shown in gray in Fig. 6. This con-
figuration collapses to the tapered geometry as both the oscillation amplitude,
η, and frequency, ϕ = T−1, tend to zero, where T denotes the oscillation period.
As a first check, we replicate the same analysis as in Table 4, obtaining the
results shown in Table 5. The values of J11 and J22 are basically the same,
as these quantities mainly depend on the aspect ratio of the domain, which is
preserved in practice. In contrast, the value of J21 scales with the aspect ratio,
following a trend similar to the tapered domain. However, unlike the tapered
case, where J21 remains essentially constant aside from scaling, in the sinusoidal
case, it takes on slightly different values due to the oscillation of the horizontal
boundaries. This explains the small variations observed in the values of σ1 and,
consequently, in π1, in relation to the tapered configuration.
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Since the sinusoidal geometry depends on a larger set of parameters (i.e., the
amplitude and the frequency) compared with the tapered case, we investigate
the sensitivity of σ1 and π1 with respect to η and ϕ in Table 6 and 7, respec-
tively.
The values of J11 and J22 remain nearly constant across variations in ampli-
tude and frequency, aligning closely with those observed in the tapered and
rectangular domains. Conversely, J21 decreases with lower values of either η or
ϕ, resulting in a corresponding reduction in both σ1 and π1. These quantities
progressively converge toward those of the tapered configuration, as shown in
Table 4.

Table 5: Sinusodial geometry: values of the components of the Jacobian matrix
and of the quantities π1 and σ1 for η = 0.01, ϕ = 1, Hin = 1 (top panel),
Hin = 0.1 (bottom panel) and for different values of the aspect ratio.

Hin/L J11 J12 J21 J22 π1 σ1

0.1 0.10000 0 0.10593 0.99993 0.10594 1.05940

0.01 0.01000 0 0.01063 0.99993 0.01063 1.06268

0.001 0.00100 0 0.00106 0.99993 0.00106 1.06271

0.1 1.00000 0 1.62463 9.99888 0.16248 0.16248

0.01 0.10000 0 0.16279 9.99888 0.01628 0.16281

0.001 0.01000 0 0.01628 9.99888 0.00163 0.16281

Table 6: Sinusodial geometry: values of the components of the Jacobian matrix
and of the quantities π1 and σ1 for ϕ = 1, Hin/L = 0.001 with Hin = 1 (top
panel), Hin = 0.1 (bottom panel) and for different values of the amplitude.

η J11 J12 J21 J22 π1 σ1

0.1 0.00100 0 0.00163 0.99989 0.00163 1.62812

0.01 0.00100 0 0.00106 0.99993 0.00106 1.06271

0.001 0.00100 0 0.00101 0.99993 0.00101 1.00617

0.01 0.01000 0 0.01628 9.99888 0.00163 0.16281

0.001 0.01000 0 0.01063 9.99927 0.00106 0.10627

0.0001 0.01000 0 0.01006 9.99931 0.00101 0.10062

6 Conclusions

In this work, we have addressed the discretization of the Stokes equations using
the HiMod reduction based on the educated modal basis approach previously
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Table 7: Sinusodial geometry: values of the components of the Jacobian matrix
and of the quantities π1 and σ1 for η = 0.001, Hin/L = 0.001 with Hin = 1 (top
panel), Hin = 0.01 (bottom panel) and for different values of the frequency.

ϕ J11 J12 J21 J22 π1 σ1

1 0.00100 0 0.00101 0.99993 0.00101 1.00617

0.1 0.00100 0 0.00100 0.99993 0.00100 1.00052

0.01 0.00100 0 0.00099 0.99993 0.00099 0.99995

1 0.10000 0 0.16279 99.98881 0.00163 0.01628

0.1 0.10000 0 0.10626 99.99270 0.00106 0.01063

0.01 0.10000 0 0.10061 99.99309 0.00101 0.01006

adopted in [11, 15, 17].
The main contribution of this paper is to provide a theoretically grounded dis-
cretization strategy for the HiMod framework, improving upon the heuristic
criteria currently employed in the literature. In particular, while the use of
an inf-sup stable finite element pair for velocity and pressure is a consolidated
practice, more care has to be taken in selecting the number of modal functions
used to approximate each field. In this regard, existing studies suggest that a
stable pressure approximation can be achieved by choosing the number, m, of
modal functions for the velocity larger than that, n, for the pressure, following
the empirical rule m = n+ 2.

Theorem 5 formalizes our theoretical contribution by establishing a well-
posedness result for the HiMod formulation (7) of the Stokes problem. Under
standard hypotheses on the modal bases for velocity and pressure (assumptions
(A1) and (A2)), and mild regularity conditions on the spectral behavior of the
HiMod stiffness matrix and the coupling matrix between velocity and pressure
(assumptions (A3) and (A4)), the inf-sup stability follows. This result is valid
provided that the computational domain does not exhibit excessively abrupt
geometric variations, either along the horizontal boundaries or the supporting
fiber, and that the number of modal functions for the velocity field is chosen
greater than or equal to that used for the pressure, namely m ≥ n. This analysis
not only replaces the purely empirical with a theoretically justified selection
criterion, but also broadens the spectrum of admissible HiMod discretizations
for the Stokes problem (7), thereby extending the current state of the art.

The numerical investigation in Sec. 5 first confirms the accuracy and effi-
ciency of the HiMod approximation under the theoretical assumptions of Theo-
rem 5. It then numerically supports assumption (A4) and assesses the geometric
constraints on the domain Ω by evaluating the order of magnitude of the quan-
tities π1 and σ1. A particularly insightful check is the test case in Fig. 5, where,
despite a violation of the bound on σ1 (here equal to 6.6891), the HiMod solution
still closely matches the reference shown in the figure.

Future research directions include both theoretical and application-oriented
developments. From a theoretical perspective, a key objective is to extend the
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well-posedness analysis to account also for the discretization along the domain
Ω1D. On the practical side, we plan to apply the proposed methodology to
realistic engineering problems, such as the simulation of blood flow in patient-
specific vascular geometries.
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ometric Hierarchical Model Reduction for advection-diffusion process sim-
ulation in microchannels, Biomechanics of Living Organs, Elsevier, Ams-
terdam, 2023, Ch. 10, pp. 197–211.

[17] Y. A. Brandes Costa Barbosa, S. Perotto, Hierarchically reduced models
for the Stokes problem in patient-specific artery segments, Int. J. Comput.
Fluid Dyn. 34 (2) (2020) 160–171.
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Vincent, C. Schwab (Eds.), Spectral and High Order Methods for Partial
Differential Equations ICOSAHOM 2018, Springer International Publish-
ing, Cham, 2020, pp. 61–77.

[22] S. Perotto, A. Veneziani, Coupled model and grid adaptivity in hierarchical
reduction of elliptic problems, J. Sci. Comput. 60 (3) (2014) 505–536.

[23] S. Perotto, A. Zilio, Space-time adaptive hierarchical model reduction for
parabolic equations, Adv. Model. Simul. Eng. Sci. 2 (1) (2015) 1–45.

[24] S. Perotto, A. Zilio, Hierarchical model reduction: Three different ap-
proaches, in: A. Cangiani, R. L. Davidchack, E. Georgoulis, A. N. Gorban,
J. Levesley, M. V. Tretyakov (Eds.), Numerical Mathematics and Advanced
Applications 2011, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013,
pp. 851–859.
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