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Abstract

This paper focuses on the Adaptive Rectangular Decomposition (ARD) scheme, a wave-
based method utilized for acoustic simulations. ARD holds promise for diverse applica-
tions. In architectural design, it can forecast acoustical parameters, facilitating the cre-
ation of spaces with superior sound quality. Moreover, in the domain of Acoustic Virtual
Reality, ARD can offer users a more immersive and lifelike acoustic environment. Our
enhancement proves advantageous for all these applications, enabling the simulation of
larger environments with heightened precision. Despite its notable efficiency, ARD faces
a significant drawback: the absence of atmospheric absorption modeling. The principal
aim of this study is to rectify this limitation, thereby augmenting the capabilities of the ARD
algorithm.
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1 Introduction

Since the early 1990s, numerous architects and building designers have begun utilizing acous-
tic simulation software to anticipate specific objective acoustical parameters during the room
design phase. However, many errors have arisen due to overreliance on acoustical quality
indices like clarity and strength, which fail to grasp the intricacies of environmental acoustic
features. Auralizations were introduced to address challenges, enabling individuals to audibly
experience how a designed room sounds before construction through numerical simulations,
and facilitating subjective evaluation of acoustic design quality.
The emergence of acoustic virtual reality (AVR) is notable: equipped with a virtual reality head-
set, users can navigate simulated environments to experience the predicted acoustic am-
biance. This enables straightforward assessment of spatial acoustic variations and the effects
of changing parameters (e.g., altering wall materials or rearranging furniture), streamlining the
design process. For a dynamic scene-compatible auralization algorithm, readers are referred
to [7]. Given that acoustic is influenced by source/receiver placement and other geometry or
material parameters, AVR necessitates continuous acoustic simulations, which can be com-
putationally demanding. In the literature, we find two primary approaches to acoustics simu-
lation: geometrical and wave-based methods. See, e.g., [22, 4]. Geometrical methods prove
highly efficient in simulating roomacoustics; however, since their simplified assumptions, they
fail to capture numerous acoustic phenomena, especially at low frequencies, despite theirmin-
imal computational demands. On the other hand, wave-based methods approximate partial
differential equations, inherently capturing all wave phenomena, albeit at a higher computa-
tional cost that increases with frequency [17].
The Adaptive Rectangular Decomposition (ARD), introduced by [19] and developed succes-
sively in [20, 21, 16, 18, 5], is a wave-based simulation algorithm noted for its accuracy and
computational efficiency, which also incorporates support for absorbing boundary conditions
via Perfectly Matched Layers (PML). Nevertheless, it possesses inherent limitations such as
the absence of atmospheric absorption modeling which is addressed in this study. To explain
the fundamentals of ARD, we report the pioneering algorithm presented in [19] that is based on
the following steps: (i) the domain is voxelized into a uniform grid with spacing dh; (ii) the grid
is partitioned into rectangular subdomains; (iii) assuming homogeneous Neumann boundary
conditions, modal analysis is performed in each subdomain to retrieve the mode shapes and
modal frequencies; (iv) a transformation is built to move from the modal-time domain to the
space-time domain and back. The governing equation considered in each rectangular subdo-
main is the wave equation which is discretized in space employing a finite-difference method,
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resulting in a system of coupled ordinary differential equations (ODE) in time. Then, the ODE
system is solved in the modal space through the transformation in (iii), obtaining a system
of independent ODE in time. These ODEs are solved using a Finite-Difference Time-Domain
(FDTD) scheme, and the solution is transformed back to the spatial domain. The solutions ob-
tained in each subdomain are corrected (interface handling step) to impose the propagation
of sound waves between all the subdomains sharing an internal interface.
In [20], ARD is presented as an improvement of the previously described method. In particular
(a) the ODE system is solved using an exact discretization scheme presented in [8] which, un-
like the previously employed FDTD scheme, is unconditionally stable and does not introduce
numerical dispersion; (b) the transformation between modal-time and space-time domain is
replaced by the Discrete Cosine Transform (DCT), which can be performed more efficiently.
The benefits of ARD, according to [19] and [20], are the following:

• it encompasses all wave phenomena, such as diffraction and reflection, in contrast to
geometrical methods;

• even as the grids approach the Nyquist limit, its accuracy remains intact. In contrast,
many wave-based methods demand grids with at least 5 points per wavelength to min-
imize dispersion, resulting in heightened computational and memory efficiency;

• it can be easily coupled with other simulation methods;

• it can be easily parallelized: all the subdomains can be updated independently (coarse-
grained parallelism), and all the cells in modal subdomains can be updated indepen-
dently (fine-grained parallelism). Refer to [15] for further details.

We refer to [14] for application/validation of the ARD scheme in scenarios involving the scat-
tering of spherical waves by a rigid sphere and edge diffraction from a right-angled rigid wall.
Furthermore, ARD is employed to predict acoustic propagation in a test urban (outdoor) envi-
ronment, and the agreement with measurement data is reported to be better than the results
obtained with the FDTD method in 2D [14]. In [1], the validation of ARD was conducted within
a selected architectural setting, encompassing both indoor and outdoor scenarios. The find-
ings revealed a close correspondence between the simulated decay profile generated by ARD
and the measured data. Notably, ARD accurately anticipated mitigating flutter echoes when
certain walls were tilted. In [16] a novel efficient parallelization or the ARD algorithm is pro-
posed to improve computational efficiency and obtain scalable performance on distributed
architectures. [18] use the ARD algorithm to simulate sound propagation in a confined en-
vironment while accurately taking account of the acoustic scattering and diffraction effects
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generated by the presence of geometrical relief on the room surfaces. Finally, [5] try to accel-
erate the simulations using the ARD algorithm coupled with the spectral element method near
the boundaries to handle complex geometries with realistic boundaries.
Despite these important applications, one of the main limitations of ARD is the lack of atmo-
spheric absorption modeling. The attenuation of sound waves in the free medium becomes
significant in large rooms, particularly at high frequencies [12]. Hence, to achieve realistic
room acoustic simulations, emulation of air absorption is critical [11]. In this work, we intro-
duce frequency-dependent damping to model viscous dissipation in the air. By following [8]
we extend, generalize, and analyze the ARD algorithm for this case. The remaining of the pa-
per is organized as follows. In Section 2 we introduce the mathematical model and derive the
ARD method by introducing the necessary methodology, i.e., the Finite-Difference Time Do-
main (FDTD), the Fourier, and the Rectangular Domain Decomposition (RDD) methods. We
also briefly discuss their stability properties. Next, we generalize the RDD to domains of arbi-
trary shape with partial absorbing boundaries. In Section 3, we first verify the scheme against
manufactured solutions and then, in Section 4, we apply the scheme to a case of engineering
interest.

2 Model problem and numerical discretization

In this section, we introduce the model problem and present the discretization technique that
will be employed extensively in this work.

2.1 Acoustic problem formulation

The propagation of sound waves in an isentropic fluid within a three-dimensional domain Ω =

[0, ℓx]× [0, ℓy]× [0, ℓz] is characterized by the (viscous) acoustic wave equation:

∂2p

∂t2
(
¯
x, t) + 2α

∂p

∂t
(
¯
x, t)− c2∆p(

¯
x, t) = f(

¯
x, t), t ∈ R+,

¯
x ∈ Ω,

∂p

∂
¯
n
(
¯
x, t) = 0, t ∈ R+,

¯
x ∈ ∂Ω,(

p,
∂p

∂t

)
(
¯
x, 0) = (p0, v0)(

¯
x),

¯
x ∈ Ω,

(1)

where p(
¯
x, t) denotes the pressure at point

¯
x = (x, y, z) at time t, c is the propagation speed,

f(
¯
x, t) denotes an external force, and α ≥ 0 is the absorption coefficient. In (1) p0 and v0 are

given functions representing arbitrary initial conditions. The homogeneous Neumann bound-
ary condition models a sound hard boundary. By introducing the pressure velocity v we can
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reformulate (1) as

∂v

∂t
(
¯
x, t) + 2αv(

¯
x, t)− c2∆p(

¯
x, t) = f(

¯
x, t), t ∈ R+,

¯
x ∈ Ω,

∂p

∂t
(
¯
x, t) = v(

¯
x, t), t ∈ R+,

¯
x ∈ Ω,

∂p(
¯
x, t)

∂
¯
n

= 0, t ∈ R+,
¯
x ∈ ∂Ω,

(p, v)(
¯
x, 0) = (p0, v0)(

¯
x),

¯
x ∈ Ω.

(2)

2.2 Finite-Difference Time-Domain method (FDTD)

To find an approximated solution to problem (2) we define a space-time grid (staggered in
space) with constant space step size dh and constant time step dt:

xi =

(
i+

1

2

)
· dh, i ∈ Dx = {0, . . . , Lx − 1},

yj =

(
j +

1

2

)
· dh, j ∈ Dy = {0, . . . , Ly − 1},

zk =

(
k +

1

2

)
· dh, k ∈ Dz = {0, . . . , Lz − 1},

tn = n · dt, n ∈ N,

with Lw = ℓw/dh − 1 for w = {x, y, z}. We store the discretized functions in vectors with a
row-major order: D =

{
m = i + jLx + kLxLy | i ∈ Dx, j ∈ Dy, k ∈ Dz

}
= {0, . . . , L − 1},

where L = LxLyLz . Next, for anym ∈ D and any n ∈ N, we introduce the notation

φn
m = φn

i,j,k = φ(xi, yj , zk, t
n),

and define the vector
¯
φn
:,j,k to denote the restriction of φ to the line parallel to the x axis and

passing through the point (x0, yj , zk), for φ ∈ {p, v, f}. In the same way, we define
¯
φn
i,:,k and

¯
φn
i,j,:. To reduce dispersion errors in the finite-difference scheme, as suggested in [20], we

approximate ∆p in (2) using the 19−points centered stencil

(∆p)ni,j,k =
1

dh2

3∑
ℓ=−3

(
ahp

n
i+ℓ,j,k + ahp

n
i,j+ℓ,k + ahp

n
i,j,k+ℓ

)
,

where the coefficients are given by a−3 = a3 = 1/90, a−2 = a2 = −3/20, a−1 = a1 = 3/2, and
a0 = −49/18. To impose Neumann boundary conditions we modify the scheme by imposing
even symmetry in a standard manner [13]. Then, to integrate in time equations in (2), we
employ the explicit scheme

pn+1
m = dtvnm + pnm, n ∈ N,m ∈ D,

vn+1
m =

vnm + c2dt(∆p)n+1
m + dtfn+1

m

1 + 2dtα
, n ∈ N,m ∈ D,

(
¯
p0,

¯
v0) = (

¯
p0,

¯
v0),

(3)
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where
¯
p0 and

¯
v0 are vectors storing the initial pressure and pressure velocity conditions at the

grid points.

Proposition 1 (Stability of the FDTD scheme (3)). Scheme (3) is stable provided that the following
Courant-Friedrichs-Lewy (CFL) condition is satisfied:

c
dt

dh
≤
√
255

34
≈ 0.47. (4)

Proof. We start by rewriting the first two equations in (3):[
¯
v

¯
p

]n+1

= [SFD]2L

[
¯
v

¯
p

]n
+

[
dt
¯
fn+1

¯
0

]
, (5)

where [SFD]2L ∈ R2L×2L is defined as

[SFD]2L =

 [I]L + c2 dt2

dh2 [K]L

1 + 2dtα

c2 dt
dh2 [K]L

1 + 2dtα
dt[I]L [I]L

 ,
with [I]L the identity matrix in RL×L and [K]L ∈ RL×L defined as

[K]L = [I]Lz ⊗ [I]Ly ⊗ [K]Lx + [I]Lz ⊗ [K]Ly ⊗ [I]Lx + [K]Lz ⊗ [I]Ly ⊗ [I]Lx ,

being ⊗ the Kronecker product. The matrices [I]Lw , for w = {x, y, z} are identity matrices
of dimension Lw × Lw while [K]Lw , for w = {x, y, z} are heptadiagonal matrices having size
Lw × Lw and are defined as

[K]Lw =



a0 + a1 a1 + a2 a2 + a3 a3 0 0 0 0 . . .

a1 + a2 a0 + a3 a1 a2 a3 0 0 0 . . .

a2 + a3 a1 a0 a1 a2 a3 0 0 . . .

a3 a2 a1 a0 a1 a2 a3 0 . . .

0 a3 a2 a1 a0 a1 a2 a3 . . .
...

...
...

...
...

...
...

... . . .


.

To prove the stability of (5) we compute the spectral radius σSFD
of [SFD]2L and check if it is

less than or equal to 1, i.e., σSFD
≤ 1. Let us start by considering the case α = 0 and observing

that the eigenvalues λSFD
of [SFD]2L are given by

λ2SFD
−

(
2 + λK

(
c
dt

dh

)2
)
λSFD

+ 1 = 0,
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being λK an eigenvalue of [K]L. It can be shown that |λSFD
| = 1 if the discriminant is non-

positive, i.e., (
1

2
λK

(
c
dt

dh

)2
)

+ λK

(
c
dt

dh

)2

≤ 0.

This condition is satisfied if and only if |λK | ≤ 4/

(
c
dt

dh

)2

for any λK . This is equivalent to

requiring that the spectral radius σK of [K]L is σK ≤ 4/

(
c
dt

dh

)2

, that is c
dt

dh
≤ 2
√
σK

. From

the Gershgorin’s theorem [3] it follows that

σK = 3

3∑
i=−3

|ai| =
272

15
,

hence c
dt

dh
≤
√
255

34
. The proof for the case α > 0 is analogous (despite being longer) and

omitted here for brevity: it can be shown that (4) is a lower bound for a less restrictive CFL
condition.

2.3 Fourier method

In this section, based on the work by [19], [20] and [23], wemodify the classical Fourier method
to support air absorption. We start by introducing the following mode shapes, cf. [2],

qµνξ(
¯
x) =

√
8

ℓxℓyℓz
εµενεξ cos

(
µπ

ℓx
x

)
cos

(
νπ

ℓy
y

)
cos

(
ξπ

ℓz
z

)
, (6)

where ε0 =
1√
2
, and εµ = 1 for µ > 0, and express p(

¯
x, t) as a linear combination of the mode

shapes

p(
¯
x, t) =

∞∑
ξ=0

∞∑
ν=0

∞∑
µ=0

Pµνξ(t)qµνξ(
¯
x), (7)

where the modal coefficients Pµνξ(t) can be computed as

Pµνξ(t) =

∫ ℓz

0

∫ ℓy

0

∫ ℓx

0
p(
¯
x, t)qµνξ(

¯
x)dxdydz. (8)

Next, we do the same for f and v to obtain Fµνξ and Vµνξ . Then, we reformulate problem (1)
for t ∈ R+, µ, ν , ξ ∈ N+, (1) asP̈µνξ(t) + 2αṖµνξ(t) + ω2

0;µνξPµνξ(t) = Fµνξ(t),

(Pµνξ, Ṗµνξ)(0) = (Pµνξ,0, Vµνξ,0),
(9)
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wherePµνξ,0, Vµνξ,0 are given coefficients representing arbitrary initial conditions, and ω0;µνξ =

cπ

√
µ2

ℓ2x
+
ν2

ℓ2y
+
ξ2

ℓ2z
. We notice that, for each tuple (µ, ν, ξ), (9) represents the equation of mo-

tion for a single degree-of-freedom system (forced damped harmonic oscillator). Employing
the staggered space grid defined in Sec. 2.2, we rewrite the mode shapes in (6) as

qµνξ,ijk =

√
8

LxLyLz
εµενεξ cos

(
πµ

Lx

(
i+

1

2

))
cos

(
πν

Ly

(
j +

1

2

))
cos

(
πξ

Lz

(
k +

1

2

))
.

Notice that, since we are dealing with discrete signals in space, the spatial frequencies are
limited by the Nyquist frequency. E.g., considering for example the x axis, we have that

πµ

Lx
<

π =⇒ µ < Lx. Hence, µ ∈ Dx, ν ∈ Dy , and ξ ∈ Dz . Recalling (7), we express pm(t) as

pm(t) =

L−1∑
η=0

qη,mPη(t), (10)

where Pη are the modal coefficients of the pressure p. Conversely, recalling (8), the modal
coefficients Pη(t) can be computed through

Pη(t) =
L−1∑
m=0

qη,mpm(t). (11)

The same can be done for the force f and the pressure velocity v. Notice that (11) corresponds
to the Discrete Cosine Transform (DCT) in its DCT-II form, while (10) corresponds to the inverse
DCT in its DCT-III form [6]. To conclude, we reformulate problem (9) asP̈η(t) + 2αṖη(t) + ω2

0;ηPη(t) = Fη(t), t ∈ R+, η ∈ D,

(
¯
P, ˙

¯
P )(0) = (

¯
P0,

¯
V0),

(12)

or in its first-order variant
V̇η(t)
Ṗη(t)

 =

−2α −ω2
0;η

1 0

Vη(t)
Pη(t)

+

Fη(t)

0

 , t ∈ R+, η ∈ D,

(
¯
P (0),

¯
V (0)) = (

¯
P0,

¯
V0).

(13)

Following the idea presented in [8], to integrate in time system (13), we consider the general
scheme [

Vη

Pη

]n+1

= [Sη]

[
Vη

Pη

]n
+ [Tη]F

n
η , for n ≥ 0. (14)

The definition of the matrices [Sη] and [Tη] depend on the four cases:
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i) η = 0 and α = 0,

[S0] =

[
1 0

dt 1

]
, [T0] =

 dt
dt2

2

 ,
ii) η = 0 and α > 0,

[S0] =

 e−2αdt 0

1− e−2αdt

2α
1

 , [T0] =

 1− e−2αdt

2α
e−2αdt − 1

4α2
+

1

2α
dt

 ,
iii) η > 0 and 0 ≤ α < ω0;η ,

[Sη] = e−αdt cos(ωηdt)

[
1 0

0 1

]
+ e−αdt sin(ωηdt)

−
α

ωη
−
(
ωη +

α2

ωη

)
1

ωη

α

ωη

 ,

[Tη] = −
1

ω2
0;η

 e−αdt

(
ωη +

α2

ωη

)
sin(ωηdt)

1− e−αdt

(
cos(ωηdt) +

α

ωη
sin(ωηdt)

)
 ,

where ωη =
√
ω2
0;η − α2 are the damped frequencies.

iv) η > 0 and α > ω0;η ,

[Sη] =
1

2

[(
e−α1;ηdt + e−α2;ηdt

)
−
(
α1;ηe

−α1;ηdt + α2;ηe
−α2;ηdt

)
0 2

(
e−α1;ηdt + e−α2;ηdt

) ]

+
1

2αd;η

[
α
(
e−α1;ηdt − e−α2;ηdt

)
−α

(
α2;ηe

−α2;ηdt − α1;ηe
−α1;ηdt

)(
e−α2;ηdt − e−α1;ηdt

) (
α2;ηe

−α2;ηdt − α1;ηe
−α1;ηdt

) ]
,

[Tη] =
1

ω2
0;η


1

2

(
α1;ηe

−α1;ηdt + α2;ηe
−α2;ηdt +

α

αd;η

(
α2;ηe

−α2;ηdt − α1;ηe
−α1;ηdt

))
1− e−α1;ηdt − e−α2;ηdt − 1

2αd;η

(
α2;ηe

−α2;ηdt − α1;ηe
−α1;ηdt

)
 ,

where and αd;η =
√
α2 − ω2

0;η , α1,2;η = α± αd;η .

Proposition 2 (Stability of the Fourier method). Scheme (14) is unconditionally stable.
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Proof. For each of the four cases, we compute the eigenvalues of [Sη] and check that their
absolute value is less than or equal to 1.

i) It is easy to check that |λ1,2| = 1.

ii) Similarly, we have |λ1| = e−2αdt < 1 and |λ2| = 1.

iii) For α = 0, the characteristic equation is

|[Sη]− λ[I]| = λ2 − 2λ cos(ωηdt) + 1 = 0.

Hence, λ1,2 = cos(ωηdt)± ȷ sin(ωηdt) and then |λ1,2| = 1. Similar result holds for 0 < α <

ω0;η .

iv) In this case, it can be proven that

λ1 = e
−dt

(
α+

√
α2−ω2

0;η

)
, λ2 = e

−dt
(
α−

√
α2−ω2

0;η

)
,

so that |λ1,2| < 1 for each value of α > ω0;η .

2.4 Rectangular Domain Decomposition

The Fourier method presented in Sec. 2.3 is not suited for complex geometries: indeed, it is
valid only for parallelepipedal domains. To overcome this limitation. the Rectangular Domain
Decomposition (RDD) has been introduced and employed in the literature [19, 20, 23]. Here,
for the sake of completeness, we briefly review the main aspects of RDD considering the case
where Ω is a parallelepiped of dimension 2ℓx, ℓy , and ℓz as represented in Fig. 1, and adapt it
to handle the discretization in Section 2.2.

2.4.1 Derivation of RDD for the FDTD scheme and extension to the Fourier method

We consider a staggered uniform spatial grid of step size dh along all directions as follows:

xi =

(
i+

1

2

)
· dh, i ∈ Dx = {0, . . . , 2Lx − 1},

yj =

(
j +

1

2

)
· dh, j ∈ Dy = {0, . . . , Ly − 1},

zk =

(
k +

1

2

)
· dh, k ∈ Dz = {0, . . . , Lz − 1}.
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ΓΩ1 Ω2

ℓy

2ℓx

ℓz

ℓx

Figure 1: Representation of the domain Ω partitioned into two non-overlapping subdomains
Ω1,Ω2, sharing the interface Γ.

We store the grid functions in vectors with a row-major order

D =
{
m = i+ j2Lx + k2LxLy | i ∈ Dx, j ∈ Dy, k ∈ Dz

}
= {0, . . . , 2L− 1},

where L = LxLyLz , and consider the first-order FDTD scheme (3). For the sake of presenta-
tion, we partition the domainΩ into two distinct non-overlapping subdomains: Ω1, correspond-
ing to x ≤ ℓx, and Ω2, corresponding to x ≥ ℓx. These subdomains have dimensions ℓx, ℓy ,
and ℓz , as illustrated in Figure 1, and they share the interface Γ, which is a surface parallel to
the yz plane. We use the subscript d to denote a quantity in the subdomain Ωd, d = 1, 2, and
use the notation

φn
i,j,k;d = φ(xi, yj , zk, t

n), for (xi, yj , zk) ∈ Ωd,

with φ = {p, v, f}. We proceed by decoupling the matrix [K]2Lx of dimensions 2Lx× 2Lx into
a block-diagonal form matrix [A]2Lx and a residual matrix [C]2Lx :

[K]2Lx = [A]2Lx + [C]2Lx ,

where

[A]2Lx =

[
[K]Lx [0]Lx

[0]Lx [K]Lx

]
,

and [C]2Lx is computed by difference. We can interpret the matrix [A]2Lx as imposing the
homogeneous Neumann boundary conditions (even symmetry) at the interface Γ, while the
matrix [C]2Lx as imposing the transmission conditions. We introduce the residual rn+1

i,j,k , defined
as

¯
rn+1
:,j,k =

( c

dh

)2
[C]2Lx

¯
pn+1
:,j,k , n ∈ N, j ∈ Dy, k ∈ Dz. (15)
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Notice that the residual cannot be computed independently in each subdomain, as it depends
also on the pressure in the neighboring region. However, as the matrix [C]2Lx is sparse, only 6
pressure values are considered at positions Lx− 3, Lx− 2, and Lx− 1 for Ω1 and at positions
0, 1, and 2 for Ω2. With this formalism, the FDTD scheme (3) can be rewritten as

pn+1
i,j,k;d = dtvni,j,k;d + pni,j,k;d,

v̂n+1
i,j,k;d =

vni,j,k;d + c2dt(∆p)n+1
i,j,k;d + dtfn+1

i,j,k;d

1 + 2dtα
,

(
¯
p0d,¯

v0d) = (
¯
pd;0,

¯
vd;0),

(16)

for n ∈ N, i ∈ Dd, j ∈ Dy, k ∈ Dz , and d = 1, 2. We then use the residual (15) to correct the
solution given by (16) near the interfaces:

vn+1
i,j,k ← v̂n+1

i,j,k +
dt

1 + 2dtα
rn+1
i,j,k . (16.a)

We refer to the last step as interface correction step. This technique can be combined with the
Fourier method introduced in Section 2.3. Indeed, one can apply the scheme (14) to compute
the solution in each subdomain Ωd, d = 1, 2 and use the residual (16.a) to update it near the
interfaces. In this case, the coupling is not exact, as the residual is built on the FDTD method.
This introduces erroneous (spurious) reflections at the interface between subdomains, grid
dispersion, and a restriction on the simulation time step given by (4). The latter result comes
from [14, 15], which suggest that the CFL condition of the ARD corresponds to that of the FDTD
scheme employed to derive the residual.

2.4.2 Generalization of RDD for domains of arbitrary shape with partial absorbing boundaries

In this section, we explain how to generalize the scheme introduced previously for the case of
arbitrarily shaped domains with partial absorbing boundaries. Themodel introduces the latter
through perfectly matched layer (PML) conditions. For presentation sake, we detail the imple-
mentation of PML conditions in Appendix A. As proposed in [20] partial boundary absorption
is treated by modifying the interface correction step:

vn+1
i,j,k ← v̂n+1

i,j,k + β
dt

1 + 2dtα
rn+1
i,j,k ,

where 0 ≤ β ≤ 1 is the dimensionless boundary absorption coefficient (e.g., full reflection with
β = 0 or full absorption with β = 1). This scheme, called Adaptive Rectangular Decomposition
(ARD), consists of two primary stages:

• Preprocessing (Fig. 4).
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1) The input scene is voxelized into grid cells at grid resolution dh.

2) The grid cells are grouped intoNd rectangles corresponding to air subdomains Ωd,
for d = 1, ..., Nd, and PML subdomainsΩPML are generated for each boundary. For
each Ωd we store the grid functions and other variables needed to run the solution
scheme.

3) The interfaces between adjacent subdomains are created by examining adjacency
relationships.

• Simulation loop.

1) For each subdomain Ωd, we update the solution by employing the Fourier method
in Section 2.3, and the FDTD scheme described in Section A for PML subdomains.
The chosen time step dtmust satisfy (4).

2) For each interface, we perform the interface correction step.

3 Numerical results

In this section, we perform numerical experiments to validate the efficiency of the proposed
scheme (14), either with or without the interface correction step (16.a), in terms of conver-
gence, accuracy, and efficiency.

3.1 Fourier method

In this section, we perform some convergence tests for the scheme (14). We consider a do-
main Ω = (0, 10 m)3, with propagation speed c = 1 m/s, and the following standing wave
solution associated to mode (µ, ν, ξ) = (7, 2, 2):

p(x, y, z, t) = cos
(
7π

10
x

)
cos

(
2π

10
y

)
cos

(
2π

10
z

)
e−αt cos(ωt), (17)

where ω =
√
ω2
0 − α2 rad/s and ω0 =

√
57

10
cπ rad/s. The L∞ error at the final time T =

0.1 s is computed as ErrL∞(T ) = maxxi,yj ,zk∈Ω |ph(xi, yj , zk, T ) − p(xi, yj , zk, T )|, where ph
represents the numerical solution, p is the analytical solution in (17). Tables 1 and 2 summarize
the computedL∞ error for different choices of dh and dt and different values of the absorption
coefficientα. We notice how the error stays in the order ofmagnitude of themachine precision
(2.2204e–16). This confirms that the Fourier method is exact in both space and time. The
small numerical error is a consequence of the floating-point arithmetic.

13



α

dt
0.001 0.002 0.005 0.01

0 5.5927e–15 2.9560e–15 1.2768e–15 6.5226e–16
0.5ω0 4.3993e–15 2.2204e–15 1.2629e–15 4.9960e–16
1.5ω0 5.1070e–15 1.8874e–15 1.0825e–15 4.9960e–16

Table 1: Test case of section 3.1: computed L∞ error for the Fourier method (14) by varying
dt for dh = 0.125 and different values of α.

α

dh
0.03125 0.0625 0.125 0.25

0 5.8287e–16 6.3838e–16 6.5226e–16 5.2736e–16
0.5ω0 4.9960e–16 6.2450e–16 4.9960e–16 5.6899e–16
1.5ω0 4.1633e–16 4.9960e–16 4.9960e–16 3.8858e–16

Table 2: Test case of section 3.1: computed L∞ error for the Fourier method (14) by varying
dh for dt = 0.01 and different values of α.

3.2 Fourier method with RDD

In this section, we first perform a convergence test by combining the schemes (14) and (16.a),
considering the same solution presented in the previous section with α = 0. The domain Ω =

(0, 10 m)3 is partitioned into two subdomains as shown in Fig. 1: Ω1 = (0, 5 m) × (0, 10 m)2

andΩ2 = (5m, 10m)×(0, 10m)2. We have chosen a test case suitable for assessing interface
errors: a propagative solution. In this case, the propagation speed is c = 5m/s, the prescribed
initial velocity is zero, and the initial pressure is

p0(x, y, z) =
1

(2π)3/2σxσyσz
exp

(
−1

2

[
(x− µx)2

σ2x
+

(y − µy)2

σ2y
+

(z − µz)2

σ2z

])
,

where µx = 2.5, µy = µz = 0.5 and σx = σy = σz = 0.5. We obtain two waves: one traveling to
the left and the other to the right of the domain. In Fig. 2, we plot the computedL∞ error at the
final time T = 1 s for different choices of dh and dt. We have chosen a longer simulation time
to accentuate the interface errors. We conclude that the Fourier method with RDD converges
to the ground truth solution with order O(dh+ dt).
Then, in Fig. 3, we show the computedL∞ error in dB scale (ErrL∞(T )dB = 20 log10 (ErrL∞(T )))
by increasing the number of subdomains fixing dh = 0.0625 and dt = 5.e–3. We notice that
the error increases slowly with the number of subdomains and can be considered inaudible
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Figure 2: Test case of section 3.2: computed L∞ error at the final time T = 1 s for the Fourier
method with RDD by varying dh = 2.5dt.

due to the acousticmasking phenomenon: the spurious reflections aremasked by the incident
waves, being the latter higher in loudness [9].

4 Application to room acoustics

30m
10m

26m
10m

20m
10m

(a) Hall (domain). (b) Voxelization with dh =

1m.

Air 0

PML 0

Air 1

Air 2

(c) Partitioning.

Figure 4: Preprocessing step of ARD in a test scenario (top view).

In this section, we test the previously derived ARD by enhancing the c++ software ARD-simulator
freely available on https://github.com/jinnsjj/ARD-simulator to include air absorption in
the computational domain.
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Figure 3: Test case of section 3.2: computed L∞ error at the final time 1 s for Fourier method
with RDD convergence test varying the number of subdomains.

This new version is available on https://github.com/mazamin7/WASAbi. We consider the
simplified hall Ω depicted in Fig. 4(a) having a constant height of 10 m, a volume of 7600 m3

and a surface area of 760 m2. We partition Ω into three rectangles, Ω1, Ω2 and Ω3 as shown
in Fig. 4(c). We choose the propagation speed c = 343.5 m/s, the grid spacing dh = 0.2 m,
the time step dt = 2e–4 s, the boundaries absorption coefficient is β = 0.5 and the PML
thickness is set to 5 dh. A visual comparison between the first case, where the air absorption
coefficient is α = 0, and the second case, where the air absorption coefficient is α = 10, is

shown in Fig. 5. The applied force is of the form f(
¯
x, t) = δ(

¯
x−

¯
x0)e

−
(

t−t0
σ

)2

,where δ(·) is the
three-dimensional Dirac delta function,

¯
x0 is the position of the source, i.e., the center of the

lower rectangle, t0 = 6dh/(cdt) and σ = 3dh/(cdt). As expected, the solution obtained for the
damped case is similar to the undamped one, except for the decaying pressure caused by air
damping. This simulation, irrespective of the chosen physical parameters (speed of propaga-
tion, air and boundaries absorption), takes approximately 5 minutes to simulate 0.1 seconds
of the event on a mid-range laptop (parallel computation on 8 cores). With this example, we
have demonstrated the applicability of this algorithm to realistic cases. We are convinced that
its natively parallel structure will make it suitable for (almost) real-time simulations.
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5 Conclusion

We have proposed an improved version of ARDwhich adds support for modeling atmospheric
absorption, which leads to an increased simulation accuracy at higher frequencies, while not
decreasing the computational efficiency and retaining all the other benefits (and the other
limitations) of the original ARD presented in [20]. Future work could focus on rigorous mathe-
matical analysis of the scheme convergence and accuracy, to ensure that the improved ARD
method consistently provides reliable and precise results across different scenarios.
Further improvements in accuracy may involve developing an improved interface handling
scheme that introduces less dispersion and reduces spurious reflections. Moreover, ARD
could be embedded into a hybrid simulation technique to improve efficiency.
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Figure 5: Comparison of undamped (column 1) and damped case (column 2) at different in-
stants.
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A Implementation of Perfectly Matched Layer

To model partial absorption of the acoustic pressure on the boundaries of the computational
domain we consider in the sequel perfectly matched layer (PML) conditions. In practice, we
solve problem (2) in a domain Ω̂ = Ω ∪ΩPML, where Ω̂ = [0, ℓ′x]× [0, ℓ′y]× [0, ℓ′z] with ℓ′w > ℓw

for w = x, y, z and ΩPML = Ω̂ \ Ω. Following [10], we consider the modified wave equation

∂v

∂t
(
¯
x, t)− tr(Γ1)v(

¯
x, t) + tr(Γ3)p(

¯
x, t)− c2∆p(

¯
x, t)

= ∇ ·
¯
ϕ(
¯
x, t)− ζxζyζzψ(

¯
x, t), t ∈ R+,

¯
x ∈ Ω̂,

∂p

∂t
(
¯
x, t) = v(

¯
x, t), t ∈ R+,

¯
x ∈ Ω̂,

∂
¯
ϕ

∂t
(
¯
x, t) = Γ1

¯
ϕ(
¯
x, t) + c2Γ2∇p(

¯
x, t) + c2Γ3∇ψ(

¯
x, t), t ∈ R+,

¯
x ∈ Ω̂,

∂ψ

∂t
(
¯
x, t) = p(

¯
x, t), t ∈ R+,

¯
x ∈ Ω̂.

(18)

where tr(·) is the trace operator,
¯
ϕ and ψ are auxiliary variables, and Γ1,Γ2, and Γ3 are defined

as

Γ1 =


−ζx 0 0

0 −ζy 0

0 0 −ζz

 , Γ2 =


ζy + ζz − ζx 0 0

0 ζx + ζz − ζy 0

0 0 ζx + ζy − ζz

 , Γ3 =


ζyζz 0 0

0 ζxζz 0

0 0 ζxζy

 .

The functions ζw(w) for w = {x, y, z} are positive inside the absorbing layer ΩPML but van-
ishes insideΩ. This damping profile can be chosen arbitrarily as a constant, linear, or quadratic
function. An example of such profile, for w = {x, y, z} is given by

ζw(w) =


0, 0 ≤ w ≤ ℓw,

ζw

(
w − ℓw
ℓ′w − ℓw

− 1

2π
sin
(
2π

w − ℓw
ℓ′w − ℓw

))
, ℓw < w < ℓ′w,

ζw

(
w

ℓw − ℓ′w
− 1

2π
sin
(
2π

w

ℓw − ℓ′w

))
, ℓw − ℓ′w < w < 0,

where ζw is a constant related to the relative reflectionR =
c

(ℓ′w − ℓw)
log
(
1

R

)
, a measure of

the amount of reflection that occurs when a wave encounters an interface. To approximate
(18) we proceed as follows. For any (i, j, k) ∈ Dx ×Dy ×Dz and any n ∈ N we define

φn̂
i,j,k =

φ
n+ 1

2
i,j,k + φ

n− 1
2

i,j,k

2
, with φ

n+ 1
2

i,j,k =
φn+1
i,j,k + φn

i,j,k

2
,

for φ = {ψ, p}, and set

(∇ ·
¯
ϕ)ni,j,k =

1

dh

(
2∑

h=−2

bhϕ
n
i+h,j,k +

2∑
h=−2

bhϕ
n
i,j+h,k +

2∑
h=−2

bhp
n
i,j,k+h

)
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with b−2 = 1/12, b−1 = −2/3, b0 = 0, b1 = 2/3, b2 = −1/12. System (18) is discretized by
means of the following scheme:

vn+1
i,j,k =

(
1− dt

2 (ζx;i + ζy;j + ζz;k)
)
vni,j,k + dtc2(∆p)ni,j,k

1 + dt
2 (ζx;i + ζy;j + ζz;k)

− dt
(ζy;jζz;k + ζx;iζz;k + ζx;iζy;j)p

n
i,j,k − (∇ ·

¯
ϕ)ni,j,k + (ζx;iζy;jζz;k)ψ

n̂
i,j,k

1 + dt
2 (ζx;i + ζy;j + ζz;k)

,

for the first equation and

pn+1
i,j,k = pni,j,k + dtvn+1

i,j,k ,

ϕn+1
i,j,k =

(
1− dt

2 ζx;i
)
ϕni,j,k + dt(ζy;j + ζz;k − ζx;i)

p
n+ 1

2
i,j,k − p

n+ 1
2

i,j,k

dh
+ dt(ζy;jζz;k)

ψ
n+ 1

2
i,j,k − ψ

n+ 1
2

i,j,k

dh
1 + dt

2 ζx;i
,

ψ
n+ 1

2
i,j,k = ψ

n− 1
2

i,j,k + dtpni,j,k,

for the remaining ones.
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