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Abstract

This work focuses on a variational approach to image segmentation based on
the Ambrosio-Tortorelli functional. We propose an efficient algorithm, which com-
bines the functional minimization with a smart choice of the computational mesh.
With this aim, we resort to an anisotropic mesh adaptation procedure driven by an
a posteriori recovery-based error analysis. We apply the proposed algorithm to a
Computed Tomography dataset of a fractured pelvis, to create a virtual model of
the anatomy. The result is verified against a semi-automatic segmentation carried
out using the ITK-SNAP tool. Furthermore, a physical replica of the virtual model
is produced by means of Fused Filament Fabrication technology, to assess the ap-
propriateness of the proposed solution in terms of resolution-quality balance for 3D
printing production.

Keywords: image segmentation, variational model, anisotropic mesh adaptation, a
posteriori error estimator, additive manufacturing

AMS: 65N30, 65N50, 65K10, 68U10

1 Introduction

Image segmentation is the process of partitioning a digital image into multiple sets of
pixels in order to obtain a simplified representation, more meaningful and easier to
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analyze. This is reached by assigning a label to every pixel such that tiles with the
same label share certain characteristics (e.g., color, intensity, texture) [38]. For instance,
in the medical field, automated delineation of different image components is used for
analyzing anatomical structures and tissue types, spatial distribution of function and
activity, pathological regions. Applications can be various, as tumor edge identification,
evaluation of fractures, surgical access definition, location of a stent deployment site,
starting from the elaboration of volumetric radiologic image dataset (e.g., Multi-Detector
Computed Tomography (MDCT), Magnetic Resonance (MR)).

The result of an image segmentation process applied to a 3D dataset can be trans-
formed into a 3D virtual anatomical model, by means of rendering tools, and then
possibly into a physical replica by means of Additive Manufacturing (AM) techniques.
Both virtual and physical models enable the exploration of the target anatomy by clini-
cians, thus supporting the diagnosis and the planning process of complex interventional
management, for intra-operative navigation and for surgical training purposes [39]. In
particular, AM is gaining popularity in many fields, including healthcare, thanks to the
capability to reproduce complex geometries, such as solid organs or major blood vessels
[37]. Moreover, the creation of a patient-specific anatomical model is instrumental to
the personalization of the treatment, one of the keys of modern precision medicine.

AM technologies include a wide range of different solutions, which are all based on the
same approach: the selected object is manufactured through a layer-by-layer process.
Various technologies differ in the way layers are deposited, according to the type of
material employed. Through the so-called “slicing” process, the 3D virtual model is
converted into a series of 2D slices and then into a set of instructions to drive the 3D
printer operations for each layer. Among the various technologies, Fused Deposition
Modeling (FDM - trademarked by Stratasys) or Fused Filament Fabrication (FFF - the
open source equivalent term) machines are the most widespread on the market, since they
have a wide range of prizes, including also few hundreds euro solutions and affordable
printing materials. In FFF printers, a thermoplastic filament is pushed through a heating
chamber, extruded through a small nozzle and deployed layer by layer, following the
designated path.

The slicing process starts from the virtual model of the geometry, commonly provided
in Standard Triangulation Language (STL) format. The more the geometry is detailed in
terms of number of triangles, the more the slicing process will take, sometimes failing due
to the overwhelming computational burden. To contain this issue, many slicing programs
subsample the virtual geometry before the 3D printing, but this is particularly critical
when dealing with anatomical models, for which the loss of details can impair the clinical
evaluation.

Virtual models of patient-specific anatomies can be used to perform computational
simulations as well. In this context, the smart choice of the computational mesh rep-
resents a crucial issue, being required to ensure a good compromise between simulation
accuracy and computational effort. Mesh adaptation provides a possible solution to
strike this balance. In particular, anisotropic adapted meshes proved to be very effective
since they allow a very fine control of the geometric features of the elements (size, shape
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and orientation) by aligning the shortest element size to the direction of the gradient
of the physical variable of interest [7, 16, 17, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53].
As far as a segmentation problem is concerned, the gradient of the image intensity is
usually tracked.

Goal of the present work is to enrich a variational approach to image segmentation
based on the minimization of the Ambrosio-Tortorelli functional [4, 5] with an anisotropic
mesh adaptation procedure. We extend [8] to the more challenging case of a 3D segmen-
tation, by devising the new algorithm MES AMIS (MESh adaptation with Alternating
Minimization for Image Segmentation). This algorithm is applied to a MDCT dataset
of a fractured pelvis, with the aim of creating a virtual model of the anatomy, verified
against a semi-automatic segmentation carried out in ITK-SNAP [11]. Furthermore, an
experimental validation is performed by producing a physical replica of the virtual model
by means of a FFF technology. The MES AMIS procedure proved to be effective for the
reconstruction and 3D printing of the anatomical district of interest, thanks to a signi-
ficative reduction of the amount of data to be processed during the slicing phase. The
comparison with a state-of-the-art software together with this experimental validation
represent a remarkable improvement over the pure numerical 2D context in [8].

The paper is organized as follows. Section 2 introduces the variational model based
on the Ambrosio-Tortorelli functional together with the alternating minimization fixed
point method used to deal with the non-convexity of the functional. In section 3, we
provide the anisotropic setting and the mathematical tool employed to drive the mesh
adaptation. We devise the MES AMIS algorithm in section 4, which is successively
numerically verified against ITK-SNAP in section 5 and experimentally validated in
section 6 by 3D printing a physical replica of the virtual model. Some conclusions and
perspectives are finally drawn in section 7.

2 The discretized Ambrosio-Tortorelli functional

Among image segmentation algorithms, the class of the level set methods [9, 10] and
the variational models [4, 5, 59] have been extensively studied and employed in practice.
These methods become even more effective when coupled with mesh adaptation proce-
dures [8, 58, 19, 12]. The segmentation method that we propose is based on a variational
approach, where the image is idealized as a function f defined over Ω ⊂ R3 taking values
in [0, 255]. A suitable functional, which consists of a fidelity contribution to the original
image plus extra-regularization terms, is minimized. One of the most well-known choice
in this class is represented by the Mumford-Shah functional [2]

I(u,E) =

∫
Ω

(u− f)2dΩ + β

∫
Ω\E
|∇u|2dΩ + γH2(E), (1)

where β and γ are positive constants to be tuned, the image f ∈ L∞(Ω), E ⊂ Ω is
a closed set defining the separating edge, and H2 denotes the 2-dimensional Hausdorff
measure. Functional I(u,E) is minimized over u ∈ C1(Ω\E) and the set E. The first
term of (1) represents the fidelity of the approximated image, u, to the original one.
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The second term provides a control over the gradient of the approximated image outside
the objects borders, while the last term controls the total area of the objects to be
segmented.
It has been proved that the minimization problem admits at least one solution [3], and
the set E is at most a countably union of surfaces of class C1. This problem is hard to be
handled numerically, because of the presence of the 2-dimensional entity, E, embedded
in a 3D Euclidean space.
In order to avoid to deal with lower dimensional entities, it is customary to solve an
approximate version of (1). The driving idea is to substitute the argument E in I(u,E)
with an indicator-like function, v, suitably smoothed. An example of such a procedure
has been proposed by L. Ambrosio and V.M. Tortorelli [4], given by

Iε(u, v) =

∫
Ω

(u− f)2dΩ + β

∫
Ω

(v2 + η)|∇u|2dΩ + γ

∫
Ω

(
ε|∇v|2 +

1

4ε
(v − 1)2

)
dΩ, (2)

where the minimum is searched in the space V = H1(Ω) × (H1(Ω) ∩ L∞(Ω)), ε > 0
and η = O(ε2) is a positive parameter. Function v takes values in [0, 1] and provides an
approximate indicator of the set E, with thickness ε. The second term forces v to get
close to zero in the neighborhood of an object boundary, where a sharp variation of the
image occurs, whereas the last integral makes v to be close to 1 far from the boundaries.
It is shown that the functional in (2) Γ-converges to the Mumford-Shah functional as
ε→ 0, in the strong topology of L2(Ω) [5].

The functional (2) is not jointly convex because of the term v2|∇u|2, and the existence
of a minimum is not guaranteed. Functional Iε is convex in u and v separately, so that
a suitable alternating optimization procedure will be employed in the sequel [54]. For
this purpose, the Gâteaux derivatives of the functional Iε with respect to u and v along
the directions φ and ψ, respectively, are computed as

Iε,u(u, v)φ = 2

∫
Ω

(u− f)φdΩ + 2β

∫
Ω

(v2 + η)∇u · ∇φdΩ =: 2a(v;u, φ),

Iε,v(u, v)ψ = 2β

∫
Ω
|∇u|2vψ dΩ +

γ

2ε

∫
Ω

(v − 1)ψ dΩ + 2γε

∫
Ω
∇v · ∇ψ dΩ =: 2b(u; v, ψ).

Hence, the minimizers of Iε satisfy

I ′ε(u, v;φ, ψ) := 2
(
a(v;u, φ) + b(u; v, ψ)

)
= 0 (3)

for all (φ, ψ) ∈ V . It can be proved that the function v enjoys the following

Proposition 2.1 If (u, v) ∈ V is a critical point of Iε, then 0 ≤ v ≤ 1 a.e. in Ω.

This proposition supports the interpretation of v as a smoothed indicator of the bound-
aries of the image f , and it can be proved by contradiction using a truncation argument
[6]. We discretize the functional (2) in the context of the finite element method [55]. Let
{Th}h>0 be a family of conforming tetrahedral meshes of a domain Ω and let Vh be the
associated space of continuous piecewise affine finite elements

Vh = {v ∈ C0(Ω) : v
∣∣
K
∈ P1,∀K ∈ Th}.
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Now, we introduce the discrete counterpart of Iε given by

Iε,h(uh, vh) =

∫
Ω
Ph((uh − fh)2) dΩ + β

∫
Ω

(Ph(v2
h) + η)|∇uh|2 dΩ

+ γ

∫
Ω

(
ε|∇vh|2 +

1

4ε
Ph((vh − 1)2)

)
dΩ,

(4)

where (uh, vh) ∈ V 2
h , fh ∈ Vh is a suitable approximation of f , and Ph : C0(Ω) → Vh is

the Lagrangian interpolant on Vh [55]. The Gâteaux derivatives of Iε,h are

Iε,u,h(uh, vh;φh) = 2

∫
Ω
Ph((uh − fh)φh) dΩ + 2β

∫
Ω

(Ph(v2
h) + η)∇uh · ∇φh dΩ

=: 2ah(vh;uh, φh),

Iε,v,h(uh, vh;ψh) = 2β

∫
Ω
|∇uh|2Ph(vhψh) dΩ +

γ

2ε

∫
Ω
Ph((vh − 1)ψh) dΩ

+ 2γε

∫
Ω
∇vh · ∇ψh dΩ =: 2bh(uh; vh, ψh),

(5)

for every pair (φh, ψh) ∈ V 2
h . The operator Ph allows us to guarantee the discrete ana-

logue of Proposition 2.1 [6, 7]. Functional (4) is not jointly convex in uh and vh, anal-
ogously to its continuous counterpart. This justifies the employment of the alternating
optimization procedure shown in Algorithm 1.

Algorithm 1 AMIS: Alternating Minimization for Image Segmentation

1: function AMIS(f , ε, η, β, γ, v0, Fxv, Jmax)
2: Set Evh = 1+Fxv;

3: Set v
(0)
h = v0;

4: Set fh = Qhf ;
5: Set j = 0;
6: while Evh >Fxv & j <Jmax do

7: u
(j)
h = arg min zh∈VhIε,h(zh, v

(j)
h );

8: v
(j+1)
h = arg min

zh∈Vh
Iε,h(u

(j)
h , zh);

9: Evh = ||v(j+1)
h − v(j)

h ||L∞(Ω);
10: j = j + 1;

11: return u
(j−1)
h , v

(j)
h

AMIS algorithm receives as input the image, f , the parameters ε, η, β, γ in (4),
the initial guess, v0, for the approximate indicator, the tolerance Fxv and the maximum
number, Jmax, for the fixed point iterations associated with the alternating minimization.
The operator Qh in line 4 is the L2(Ω)-projection onto the space Vh and it turns the
pixel image into a finite element function.

5



3 Anisotropic a posteriori error analysis

Mesh adaptation has been combined with the minimization of the Ambrosio-Tortorelli
functional in the context of crack propagation in brittle materials (see, e.g., [7, 56,
57, 45, 6]), and of segmentation of 2D images [8, 19]. These previous works can be
classified according to the type of mesh adaptation, by distinguishing between isotropic
and anisotropic grids. We decide upon adopting an anisotropic framework, backed up by
the consolidated computational superiority of anisotropic over isotropic meshes [7, 16,
17, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. We first introduce the anisotropic quantities
describing a tetrahedral conforming mesh. Following [17, 46, 15, 16], we consider the
affine map, TK : K̂ → K, which characterizes a mesh element K ∈ Th, starting from the
reference tetrahedron K̂, inscribed in the unit sphere with a vertex at (0, 0, 1), such that

x = TK(x̂) = MK x̂ + tK ,

where MK ∈ R3×3 is the Jacobian of TK , and tK ∈ R3 denotes a shift vector. Combining
the polar decomposition of MK , MK = BKZK , with the spectral decomposition of BK ,
we have

MK = RTKΛKRKZK ,

where BK is a symmetric and positive definite matrix, and ZK is an orthogonal matrix.
In particular, BK acts on the reference tetrahedron as a stretch, while ZK applies a
rotation. The diagonal matrix ΛK collects the eigenvalues of BK , and RTK gathers by
columns the corresponding eigenvectors, namely

ΛK = diag(λ1,K , λ2,K , λ3,K), RTK = [r1,K , r2,K , r3,K ],

with λ1,K ≥ λ2,K ≥ λ3,K > 0. The eigenvectors describe the directions of the semi-axes
of the ellipsoid circumscribing the element K, while the eigenvalues measure their length
(see Figure 1). The deformation of tetrahedron K is quantified by the three aspect ratios

s1,K =
( λ2

1,K

λ2,Kλ3,K

)2/3
, s2,K =

( λ2
2,K

λ1,Kλ3,K

)2/3
, s3,K =

( λ2
3,K

λ1,Kλ2,K

)2/3
, (6)

such that s1,K ≥ s2,K ≥ s3,K and s1,Ks2,Ks3,K = 1 [15, 16].
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Figure 1: Action of the affine map TK on the reference tetrahedron.

The next proposition provides the theoretical result supporting the anisotropic mesh
adaptation procedure.

Proposition 3.1 Let (uh, vh) ∈ V 2
h be a critical point of Iε,h. If the cardinality #∆K <

N , for some N ∈ N+, and if diam(T−1
K (∆K)) < D, where ∆K = {T ∈ Th : T ∩K 6= ∅},

uniformly with respect to K ∈ Th, then it holds

|I ′ε(uh, vh;φ, ψ)| ≤ C
∑
K∈Th

{ρAK(uh, vh)ωK(φ) + ρBK(uh, vh)ωK(ψ)} (7)

for any (φ, ψ) ∈ H1(Ω) × (H1(Ω) ∩ L∞(Ω)), where I ′ε(·, ·; ·, ·) is defined as in (3), C is
a positive constant depending on N and D, while

ρAK(uh, vh) = ||uh − f ||L2(K) + 2β||vh(∇vh · ∇uh)||L2(K)

+
β

2
||J∇uhK||L∞(∂K)||v2

h + η||L2(∂K)

(
hK

λ1,Kλ2,Kλ3,K

) 1
2

+
1

λ3,K
||v2

h − Ph(v2
h)||L∞(K)||∇uh||L2(K) +

h2
K

λ3,K
|uh − fh|W 1,∞(K),

ρBK(uh, vh) =
∣∣∣∣∣∣(β|∇uh|2 +

γ

4ε
)vh −

γ

4ε

∣∣∣∣∣∣
L2(K)

+
γε

2
||J∇vhK||L2(∂K)

(
hK

λ1,Kλ2,Kλ3,K

) 1
2

+
h2
K

λ3,K

∣∣∣∣∣∣β|∇uh|2 +
γ

4ε

∣∣∣∣∣∣
L2(K)

|vh|W 1,∞(K),

ωK(z) =
[ 3∑
i=1

λ2
i,K(rTi,KG∆K

(z)ri,K)
] 1

2 ∀z ∈ H1(Ω), (8)
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where hK is the diameter of the tetrahedron K, and

J∇whK =

{
|[∇wh · n]| on Eh
|∇wh · n| on Eh ∩ ∂Ω,

is the absolute value of the jump of the normal derivative, with n the unit normal vector
to the generic element face in the skeleton Eh of Th. The symmetric positive semidefinite
matrix G∆K

(z) is defined by

[G∆K
(z)]ij =

∫
∆K

∂z

∂xi

∂z

∂xj
dx with i, j = 1, 2, 3. (9)

Proof: The proof of this result can be obtained by merging the analysis in [8] and by
exploiting the property of the operator Qh. �

The estimate (7) holds for any pair (φ, ψ) ∈ H1(Ω) × (H1(Ω) × L∞(Ω)). Following
[7, 8], we choose φ = u − uh and ψ = v − vh, so that the term I ′ε(uh, vh;φ, ψ) becomes
proportional to the functional error Iε(u, v) − Iε(uh, vh), up to a third-order remainder
term. Finally, in order to make the right-hand side in (7) explicitly computable, we
replace the weights ωK(u− uh) and ωK(v − vh) in (8) with

ωRK(zh) =
[ 3∑
i=1

λ2
i,K(rTi,KG

R
∆K

(zh)ri,K)
] 1

2
, with zh = uh, vh,

where GR∆K
(zh) is the matrix with entries[

GR∆K
(zh)

]
ij

=

∫
∆K

(
Ri(zh)− ∂zh

∂xi

)(
Rj(zh)− ∂zh

∂xj

)
dx with i, j = 1, 2, 3,

with R(zh) = [R1(zh),R2(zh),R3(zh)]T the Zienkiewicz-Zhu recovered gradient of zh
[13, 14]. In particular, we have adopted the volume-weighted average in [15, 16]

R(zh)(x) =
1

|∆K |
∑
T∈∆K

|T |∇zh|T ∀x ∈ ∆K .

To sum up, the actual anisotropic error estimator is provided by ζ =
∑
K∈Th

ζK , where

ζK = ρAK(uh, vh)ωRK(uh) + ρBK(uh, vh)ωRK(vh). (10)

We now exploit the estimator ζ to set up the anisotropic mesh adaptation procedure.
For this purpose, we adopt a metric-based approach, following [18]. The adapted mesh is

induced by a metric, i.e., a positive definite tensor field, M̃N , associated with the nodes of
the current mesh. The challenge is to convert estimator ζ into M̃N . Following [15, 16], we

first derive a piecewise constant metric, M̃ , such that M̃
∣∣
K

= M̃K =
∑3

i=1 λ̃
−2
i,K r̃i,K r̃Ti,K ,

which ensures a certain accuracy, τ , on ζ, while minimizing the cardinality of the mesh
and equidistributing the error estimator throughout the elements. The outcome of this
procedure is stated in the following result.
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Proposition 3.2 Let τ be the tolerance demanded by the user on ζ. Then, the local
metric M̃K equidistributing the error and minimizing the number of elements is provided
by

λ̃i,K =

(
τ

√
3|K̂|#Th

) 1
4
(

3∏
i=1

gi,K

) 1
8

g
− 1

2
4−i,K ,

and
ri,K = g4−i,K ,

for i = 1, 2, 3, where {gi,K , gi,K} are the eigenpairs of the matrix

ΓK =
(
ρAK(uh, vh)

)2
G
R
∆K

(uh) +
(
ρBK(uh, vh)

)2
G
R
∆K

(vh),

where the quantities

ρZK(uh, vh) =
ρZK(uh, vh)[
|K̂|

3∏
i=1

λi,K

] 1
2

, G
R
∆K

(zh) =
GR∆K

(zh)

|K̂|
3∏
i=1

λi,K

,

with Z = A, B and zh = uh, vh, have been scaled to the volume of K, |K| = |K̂|
∏3
i=1 λi,K .

Then, the nodewise metric M̃N is computed via a volume-weighted average over the
patch, ∆N , of the elements sharing the node N , namely,

M̃N =
3

8

1

|∆N |
∑

K∈∆N

|K|M̃K ,

where the factor 3
8 shrinks the reference tetrahedron to a unit edge one. This is justified

by the property that an optimal mesh is such that each edge has unit length with respect
to the associated metric [18].

Remark 3.1 In practice, it is advisable to check whether the predicted number of ele-
ments is computationally affordable, i.e., to within a maximum value NMAX. The expected
number, #M̃ , of tetrahedra associated with M̃ is

#M̃ =
∑
K∈Th

1 =
∑
K∈Th

∫
K

1

|K|
dK =

∑
K∈Th

∫
K

1

|K̂|det(M̃K)−
1
2

dK, (11)

which follows from the relations det(M̃K) =
∏3
i=1 λ̃

−2
i,K , and |K| = |K̂|

∏3
i=1 λ̃i,K . This

means that, when #M̃ > NMAX, the metric is scaled so that

M̃K ←
(
NMAX

#Th

) 2
3

M̃K . (12)

This scaling preserves the shape and the orientation of K while modifying the element
size only.
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4 Anisotropic mesh adaptation for image segmentation

We now merge the segmentation procedure in section 2 with the mesh adaptation process
in the previous section. For this purpose, following [8], we resort to an optimize-then-
adapt strategy, as an alternative to an optimize-and-adapt procedure [6, 7, 56, 57].

The adopted procedure is named MES AMIS (MESh adaptation with Alternating
Minimization for Image Segmentation) and it is listed in Algorithm 2. The input pa-
rameters to MES AMIS include the inputs to AMIS plus additional data, namely, the
tolerances τ , TOLm, TOLi, TOLth, controlling the accuracy on the error estimator, the
stagnation of the computational mesh throughout the adaptation procedure, the conver-
gence of the energy functional in (4), and the threshold to extract the segmented surface,
respectively, the maximum number NMAX of the allowed elements, the initial mesh, T 0

h ,
whose generation will be described in Section 5.

Algorithm 2 MES AMIS: MESh adaptation with Alternating Minimization for Image
Segmentation

1: Input: f , ε, η, β, γ, v0, Fxv, Jmax, τ , TOLm, TOLi, TOLth, NMAX, T 0
h

2: Set Em = 1+TOLm

3: Set Ei = 1+TOLi

4: Set i = 0
5: Set V0 = v0

6: Set Iold = −1
7: while Em >TOLm & Ei >TOLi do
8: [u

(i)
h , v

(i)
h ] = AMIS(f , ε, η, β, γ, V0, Fxv, Jmax)

9: T (i+1)
h = adapt mesh(u

(i)
h ,v

(i)
h ,τ ,NMAX)

10: Set u
(i+1)
h = Πi→i+1(u

(i)
h ), v

(i+1)
h = Πi→i+1(v

(i)
h )

11: Compute Inew = Iε,h(u
(i+1)
h , v

(i+1)
h )

12: Em = |#T (i+1)
h −#T (i)

h |/#T
(i)
h

13: Ei = |Inew − Iold|/|Iold|
14: Iold = Inew
15: V0 = v

(i+1)
h

16: i = i+ 1

17: Set [T thh , vthh ] = extract contours(T (i)
h , v

(i)
h , TOLth)

18: Output: ufh = u
(i)
h , vfh = v

(i)
h , T fh = T (i)

h , vthh , T thh

The convergence check involves both the stagnation of the mesh and of the func-
tional (line 7) to control simultaneously the two phases of the optimize-then-adapt pro-

cedure. Function adapt mesh construct the metric M̃ and generates the corresponding

adapted mesh, T (i+1)
h . Before starting with a new iteration, functions uh and vh have

to be interpolated on the new mesh for consistency, via the operator Πi→i+1. Func-
tion extract contours performs a truncation of the mesh, so that T thh = ∪K∈ΘK, with
Θ = {K ∈ Th : vh(bK) < TOLth}, where bK is the centroid of the cell K, with associated
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approximate indicator, vthh = vh
∣∣
T th
h

. The output quantities are the approximate image,

ufh, and indicator, vfh , the final mesh, T fh , the truncated approximate indicator, vthh , and
grid, T thh .

Algorithm MES AMIS has been implemented in FreeFEM [20], while mesh adapta-
tion is carried out through the software suite Mmg PLATFORM [1]. Finally, starting
from T thh and vthh , the boundary surface mesh, Σh, is extracted using the open source
software ParaView [22]. ParaView is also used to provide the visualization of the com-
putational results in the next sections.

5 Numerical verification

The MES AMIS algorithm is applied to a MDCT (Multi Detector Computed Tomogra-
phy) dataset of a fractured human pelvis.1 This dataset contains the images of tissues
of different nature: bone, soft tissues (as fat, muscles), cartilage and others. In a MDCT
scan, the grayscale pixel intensity depends on the radiodensity of the tissue, which mea-
sures the associated opacity to radiomagnetic fields. In particular, low grayscale values
identify air, fat, soft tissues and, in general, tissues with low radio-opacity, medium
grayscale values correspond to fluids such as water, bile, or urine, while high grayscale
values are associated with bones [21]. As a consequence, the segmentation of a fractured
pelvis will be performed on a pre-processed image sequence, to manage the coexistence of
tissues characterized by a different radiodensity. In particular, we apply a thresholding
of the original image f by defining the thresholded image

ft(x) =

{
f(x) if f(x) > 140

140 if f(x) ≤ 140,
(13)

where the value 140 depends on the dataset at hand and is chosen so that the resulting
image highlights the bone tissue, while removing the soft parts.

The region of interest consists of a set of 304 slices, which are uniformly stacked 1
mm apart. Each slice coincides with a nx×ny = 204×244 pixel image, and it is obtained
by cutting out the original source characterized by a 512×512 pixel resolution. In Figure
2, we show the selected volumetric dataset reconstructed along the axial, sagittal and
coronal planes. The three views are particularly helpful when evaluating the extent and
morphology of the fracture.

To generate the initial mesh, T 0
h , we apply the following steps:

i) we keep one out of two pixels along the x- and y-direction;

ii) we associate each pixel with its centroid and we build a 3D structured paral-
lelepiped grid with size (nx/2− 1)× (ny/2− 1)× (nz − 1), with nz the number of
stacked slices, whose vertices coincide with the pixel centroids;

1Courtesy of Dipartimento di Radiologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
The case is retrospective, thus no image acquisition was carried out specifically for the present work.
The image dataset includes the pelvic region and it is acquired at 1 mm of slice thickness without the
use of contrast medium.
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Figure 2: Visualization of the selected dataset along the axial (a), sagittal (b) and
coronal (c) plane.

iii) we subdivide each parallelepiped into six tetrahedra, by preserving the number of
vertices.

The choice of reducing the dataset along the x- and y-direction is justified by memory
allocation reasons related to the optimization routines in Algorithm AMIS. Mesh T 0

h is
the one involved in the definition of the projection operator, Qh. As far as the image is
concerned, f is first thresholded on each slice, and then associated with the vertices of
the tetrahedra mesh.

Now we run the MES AMIS algorithm with the following input parameters: f = ft,
ε = 10−3, η = ε2, β = 2.0, γ = 0.1, v0 = 1, Fxv = 10−2, Jmax = 10, τ = 10−2, TOLm
= 10−2, TOLi = 10−2, TOLth = 10−1, NMAX = 1.3× 106, T 0

h being the mesh constructed
as above. The tuning of the parameters characterizing functional Iε is driven by the
sensitivity analysis performed in [8] for the 2D case.

Algorithm 2 converges in 10 iterations, after 10779 seconds2. Figure 3 shows the
trend of the Ambrosio-Tortorelli functional (left) together with the evolution of the
mesh cardinality (right). The two panels confirm the combined check performed in line
7 by MES AMIS algorithm.
In Figure 4 (a), we provide the surface thresholded by the algorithm. The cut-off value
adopted in (13) leads to segment also the sacrum (see the two panels in Figure 5) and the

femoral head besides the fractured hemipelvis. The final adapted mesh, T fh , consists of
1.139·106 elements, while 1.148·105 triangles delimit the surface mesh, Σh, the maximum
and average values of the three aspect ratios in (6), being max

K∈T f
h
s1,K = 101.52,

max
K∈T f

h
s2,K = 10.24, max

K∈T f
h
s3,K = 0.92, and s̄1,K = 5.96, s̄2,K = 1.52, s̄3,K = 0.19,

respectively.

5.1 Comparison with ITK-SNAP

This investigation is carried out by comparing Algorithm 2 with the result of a semi-
automatic segmentation performed by means of the open-source software ITK-SNAP
[11]. ITK-SNAP is devoted to the segmentation of 3D medical images, which combines
active contour methods [32] with manual delineation and image navigation. In more

2The processor used to perform the computation is an Intel Core i5-2310 @2.90GHz, and 8GB of
RAM
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Figure 3: MES AMIS: convergence history of the functional Iε,h (left) and of the cardi-
nality of the mesh Th (right).

(a) MES AMIS (b) ITK-SNAP

Figure 4: Comparison between MES AMIS and ITK-SNAP: reconstruction of a fractured
hemipelvis.
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(a) MES AMIS: front view (b) MES AMIS: lateral view

Figure 5: MES AMIS: reconstructed geometry of the sacrum.

detail, we have applied a geodesic active contour model on the original stack of 304
slices with a resolution of 204× 244 pixels [23]. The choice of preserving the full dataset
is justified on the one hand by the need of dealing with a high resolution surface as a
reference model, on the other hand by the fact that ITK-SNAP can afford the storage and
the processing of the whole data thanks to the employment of a narrow band formulation
[24].

In particular, the surface reconstructed by MES AMIS is compared with a reference
segmentation, Σ, called ground truth. This surface is obtained by means of a four-step
semi-automatic procedure:

a) Three experts3 are asked to perform a semi-automatic segmentation of the target
structure usign ITK-SNAP on the nx × ny × nz voxel grid;

b) afterward, each expert is asked to manually correct the segmentation, still using
ITK-SNAP, checking the consistency with the original structure. Thus, three in-
dependent label sets (“inside” or “outside” the segmented contour) are generated;

c) a final labelling is obtained by a majority pronunciation (i.e., if a pixel is labelled
in at least two out of three label sets, it is kept labelled also in the final set) based

3Biomedical engineers with at least three years of experience in processing and segmentation of
medical images in the orthopedic field.
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on these three inputs, and it is considered as a reference, and assumed perfectly
coinciding with the real pelvis;

d) starting from this labelling, a marching cube algorithm [42] provides the final
triangulated ground truth surface Σ.

Alternative procedures to build the ground truth can be adopted, such as, a manual
segmentation [27, 30, 29] or by resorting to mathematical techniques, which employ this
manual segmentation as input data [28, 31].

Figure 4 (b) shows the ground truth yielded by ITK-SNAP, consisting of 1.389 · 106

triangles. The two panels in the figure are qualitatively comparable despite the large
difference in the triangulation cardinality.

In the next two paragraphs, we investigate the robustness to the data resolution by
considering all the 304 slices and only a subset of these.

Robustness to subsampling on the whole geometry We investigate the effect
produced by a subsampling of the whole pelvis geometry with respect to the stack size
in terms of quality of surface reconstruction. For this purpose, we carry out six numerical
experiments where we run MES AMIS on an initial grid T 0

h obtained by replacing in
item ii) nz with nz/s, with s = 2i for i = 1, . . . , 6, while preserving the same values for
all the other input parameters of Algorithm 2.

Table 1 collects the results of this investigation by providing the subsampling ratio, s,
the cardinality of the final adapted mesh, T fh , and of the surface triangulation, Σh. The
variation of the two cardinalities in the table is essentially negligible, with a maximum
discrepancy of 90.17% between Σh and Σ in terms of number of triangles. This can be
ascribed to the constraint enforced through the input parameter NMAX in the algorithm
MES AMIS.

In terms of computational effort, all the six runs require a CPU time between 9000
and 12600 seconds.

Table 1: Robustness of MES AMIS with respect to the subsampling on the whole geom-
etry

s #T fh #Σh

1 1.139 · 106 1.478 · 105

2 1.136 · 106 1.419 · 105

4 1.129 · 106 1.418 · 105

6 1.109 · 106 1.365 · 105

8 1.120 · 106 1.412 · 105

10 1.108 · 106 1.396 · 105

12 1.119 · 106 1.419 · 105

The accuracy of the seven segmentations in Table 1 is now quantified in terms of
distance with respect to the ground truth. For this purpose, we adopt three distance
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Figure 6: Comparison between MES AMIS and ITK-SNAP: average distance between
the ground truth and Σh as a function of the subsampling level.

measures [25], namely the Hausdorff distance

dH(S ′h,S ′′h) = max
v∈S′h

min
x∈S′′h

|v− x| (14)

between the discrete surfaces, S ′h and S ′′h , with v the generic vertex of S ′h and x the
generic point over S ′′h , | · | being the Euclidean norm; the average Hausdorff distance

d̄H(S ′h,S ′′h) =
1

#S ′h

∑
v∈S′h

min
x∈S′′h

|v− x|; (15)

the local distance associated with the generic vertex v ∈ S ′h,

dloc(v) = min
x∈S′′h

|x− v|. (16)

In particular, for comparison purposes, we identify S ′h with the ground truth, S ′′h with
Σh, and we resort to the CloudCompare [26] built-in functions to compute the distances.

Distance (15) makes the measure provided by (14) robuster with respect to the
possible presence of outliers, which frequently characterizes a surface reconstruction
procedure. Figure 6 shows the trend of the distance (15) as a function of the subsampling
level, s, in Table 1.

In general, we expect a degradation of the values for d̄H as s increases, together with
an unavoidable misalignment between the frames of reference associated with the two
surfaces. This is confirmed in Figure 6, where the misalignment dominates in the range
1 ≤ s ≤ 4, whereas the discrepancy between Σ and Σh overtakes the error due to mis-
alignment for larger values of s. This allows us to discriminate among the subsamplings
in Table 1, by inferring that the reconstructions associated with s = 2, 4 are the most
effective since the error due to subsampling is on the same order of magnitude of the
misalignment error.
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Figure 7: Comparison between MES AMIS and ITK-SNAP: histograms of dloc for dif-
ferent values of s.

To complete this analysis, in Figure 7 we provide the histograms of the quantity in
(16) for s = 1, 4, 8. We can appreciate an increase of the variance for larger values of s,
with a corresponding deterioration of the segmentation.

Robustness to subsampling on a portion of the geometry We select a subregion
of the whole hemipelvis coinciding with a small portion of the hip bone, which corre-
sponds to the location of the largest fracture (see the area highlighted in Figure 8 (a)).
In particular, we pick the volume emphasized in Figure 8 (b), consisting of a stack of 38
slices. This choice allows us a more thorough investigation, namely, first by preserving
the original resolution along the x- and y-direction (204 × 244) and keeping all the 38
slices; then employing a 102× 122 resolution per slice and carrying out the subsampling
(along the z-direction) as in the previous paragraph.

For the sake of comparison, we need to build a new ground truth, which coincides
with the surface in Figure 9 (b), comprising 1.132 · 105 triangles, obtained by running
the four-step semi-automatic procedure described at the beginning of this section on
the 204 × 244 × 38 dataset. We observe that the surface shows a considerable level of
roughness despite the large number of elements.

The MES AMIS algorithm is run on the selected subregion, by keeping the same
values of all the input parameters as in the previous paragraph, except for NMAX, which
is set to 2 ·105. Moreover, the initial mesh, T 0

h , is built by keeping all the pixels along the
x- and y-direction, generating a 3D structured parallelepiped grid with size 203×243×37
and subdividing each parallelepiped into six tetrahedra. The employment of a portion
of the fractured hemipelvis allows us to perform a comparison between ITK-SNAP and
MES AMIS at the full (and the same) resolution.

The algorithm stops after 10 iterations, by delivering the surface in Figure 9 (a),
composed by 1.775 · 104 triangles. We observe a higher smoothness of this surface, when
compared with the one in panel (b), despite one order of magnitude less elements.

The comparison between MES AMIS and ITK-SNAP is carried out in terms of the
distances defined in (14)-(16). In particular, dH = 7.058, d̄H = 0.555 and min dloc = 0.0.
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(a) the main fracture (b) the analyzed portion

Figure 8: Comparison between MES AMIS and ITK-SNAP: partial subsampling check.

In Figure 10, we provide the distribution of dloc over the vertices of the ground truth,
obtained using CloudCompare [26]. We note that the larger mismatch is located in the
regions inside the bone, since here the tissue is spongy and exhibits a high variability.
This also depends strongly on the thresholding phase, in particular on the cut-off value
used in (13). For these reasons, dH is likely an overestimation of the actual distance.

To perform the subsampling along the z-direction, we halve again the resolution of
each slice (102 × 122) and we consider 38/s slices, with s = 1, 2, 4, which amounts
to considering 24.78%, 12.05% and 6.03% of the elements in T 0

h with respect to the
cardinality of the initial mesh associated with the full resolution dataset. For each
subsampling, we compute the average distance d̄H , which is provided in the second
column of Table 2. The values of the distances are thoroughly comparable to each
other and also to the distance associated with the full dataset, i.e., d̄fH = 0.555. The
last anomalous value (i.e., the minimum distance for the coarsest sampling) can be
justified by the same sources of bias affecting the check on the full dataset. We also
collect the percentage of the triangles in Σh with respect to the ground truth (third

column), together with the distance variation percentage, computed as (d̄H − d̄fH)/d̄fH
(last column).

To sum up, the accuracy characterizing the segmentation provided by MES AMIS
is thoroughly acceptable, with a contained value of the distance variation even though
employing a small portion of the original dataset.
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(a) MES AMIS (b) ITK-SNAP

Figure 9: Comparison between MES AMIS and ITK-SNAP: reconstruction of a full-
resolution portion of the fractured hip bone.

Figure 10: Comparison between MES AMIS and ITK-SNAP: distribution of dloc over
the ITK-SNAP surface.

Table 2: Comparison between MES AMIS and ITK-SNAP: subsampling on a portion of
the whole geometry

s d̄H [mm] triangles reduction [%] distance variation [%]

1 0.617 84.32 11.17
2 0.596 90.53 7.39
4 0.587 90.54 5.77
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6 Experimental Validation: Additive Manufacturing test-
ing

We test the effectiveness of the surface reconstruction provided by MES AMIS for the
manufacturing of a physical replica using Additive Manufacturing (AM) technology. The
assessment of the quality of a 3D printed model is not a trivial task in many cases. When
the original physical object is available, the validation of the accuracy of 3D printed
objects can be carried out by measuring the two objects with a caliper, or by comparing
the scan of the 3D printed replica with the scan of the original object [33, 36, 34, 35].
In the medical field, it is almost impossible to directly measure the structure to be
replicated. Moreover, even if the anatomical sample is available, it is very difficult to
deal with a direct assessment.

In the present work, we rely on a qualitative approach, by assessing the presence and
the level of detail of the most important features of interest for the surgical planning.
The overall quality of the final 3D printed model depends on many factors, such as the
resolution of the machine, the employed material, the specific set of printing parameters
(e.g., extrusion temperature, speed, flow rate, deposition pattern), but also on the way
the virtual model is processed by the software employed for the slicing phase. A standard
input data to a slicing software is a discrete representation of the virtual geometry (i.e.,
the triangular mesh Σh), commonly stored in an STL (namely, Stereolithography or
Standard Triangulation Language) file. Successively, the slicing software cuts the virtual
geometry in a sequence of slices, with a thickness equal to the height of the corresponding
layer to be deposited, according to the selected parameters. Then, each slice is processed
so that the commands to deploy the material in each layer are issued, following the
prescribed path. In particular, machine instructions provide a list of spatial coordinates
to move the printing head and to control the speed and the amount of material to be
extruded.

To manufacture the pelvis replica, we use a 3NTR A4v4 Fused Filament Fabrication
(FFF) machine equipped with three extruders able to reach an extrusion temperature
of 410◦C, thus suitable also for high performance materials, a heated bed up to 120◦C,
and a heated chamber up to 80◦C. Concerning the material, we employ Acrylonitrile
Butadiene Styrene (ABS) for the model, and High Impact PolyStyrene (HIPS) for the
support, being easy to mechanically detach from ABS, or soluble in limonene solution
for the most complex cases.

Unlike other AM technologies, such as Binder Jetting or Material Jetting machines,
the number of instructions to be issued for FFF printers strongly depends on the level
of detail of the input mesh. The language, G-code, used to drive the FFF machine is
based on a very simple framework [40]. Conceptually, each node of the mesh represents
a coordinate to be translated into a G-code instruction in order to deploy the outer
perimeter of the physical object. Thus, the higher the number of triangles describing
the surface of the model, the higher the number of instructions to be set. This could
result in an extremely heavy computational effort for detailed meshes, as in medical
image segmentation processing. To face the problem, many slicing software subsample
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Figure 11: Validation: the 3D printed process, top-left; two views of the printed model
(black: ABS) with the support material (white: HIPS), top-center and top-right; two
views of the printed model after support removal, bottom.

the input geometry. In some cases, the subsample level can be tuned by the user,
although in most cases this parameter cannot be controlled. In this context, the use
of an adaptive mesh may be instrumental to contain the subsampling phase, since the
input geometry consists of a considerable lower number of vertices.

In Figure 11, we show some pictures of the 3D printed anatomy, which is a portion
of the whole anatomical district considered. We select a layer thickness of 0.3 mm, an
infill of 5%, and two perimeters. The manufacturing process takes about 18 hours and
further 30 minutes for the manual removal of the support structure. The features of
interest, namely the fracture profiles, are correctly reproduced. As shown in Figure 11,
the final 3D printed model features a detailed representation of the fracture profile, that
is crucial to make the model suitable for an effective surgical planning.

7 Conclusions and perspectives

In this work, we addressed the problem of 3D image segmentation by minimizing the
Ambrosio-Tortorelli functional, discretized in a finite element context. For this purpose,
we devised an optimize-then-adapt algorithm, named MES AMIS (MESh adaptation with
Alternating Minimization for Image Segmentation), that we enriched with an anisotropic
mesh adaptation procedure in order to minimize the cardinality of the computational
mesh for a selected accuracy on the segmentation. This allowed us to extend the approach

21



in [8] to the 3D case.
The results of the proposed segmentation algorithm have been compared with a

reference model of a fractured human pelvis (the ground truth geometry) coinciding
with the average of three segmentations obtained after a manual correction of the ITK-
SNAP output by three expert users. This comparison has been carried out in terms
of Hausdorff distance. With reference to Figure 4, it turns out that we are able to
provide a segmented geometry as accurate as the ground truth with a 91.74% reduction
of triangles.

We have also performed a thorough investigation about the robustness of the pro-
posed algorithm to possible subsamplings of the original dataset. We have checked that
we can preserve a good level of accuracy, with a contained distance variation, even when
employing a small portion of the whole data. This analysis may have an impact in
reducing the exposure time to the radiomagnetic waves during the MDCT scan.

In terms of computational efficiency, the current implementation of MES AMIS is
not yet competitive when compared to ITK-SNAP. Indeed, while ITK-SNAP requires,
on average (depending on the quality of MDCT images), a computational time of about
15-20 minutes, to move from the MDCT dataset to the final triangulated geometry, the
computational time demanded by MES AMIS is on the order of hours. ITK-SNAP is
very efficient thanks to the employment of a narrow band formulation. On the contrary,
the current implementation of the proposed algorithm deserves to be optimized, for
instance by using parallel programming. As an alternative, we can conceive to move to
a level set formulation, in order to combine the accuracy of anisotropic mesh adaptation
with the efficiency of the narrow band method.

Another issue that could lead to a computational improvement of MES AMIS is
represented by the tuning of the parameters involved in the functional (2). In particular,
we have focused on the parameters related to the tissue type, which affect the variation of
the gradient of f over the image. In this work, we have limited the analysis to bone tissues
only, allowing us to make a unique choice for the parameters ε, β and γ (ε = 10−3, β =
2.0, γ = 0.1). It is evident that the same values can not be adopted for the segmentation
of tissues of different nature, e.g., soft tissues. A thorough verification in the presence of
diverse datasets is consequently advisable to correctly tune the parameters involved in
the MES AMIS algorithm. An automatic or semi-automatic parameter tuning remains
an extremely interesting challenge.

We have also tested the effectiveness of the mesh provided by MES AMIS to create
a physical replica of the pelvic bone by a FFF machine. The reduction in terms of
virtual model storage brought by the adaptive approach turns out to be particularly
beneficial for the generation of a contained set of the G-code instructions. In addition,
the adapted mesh reduces the computational time to perform the slicing. This limits
the need of subsampling the mesh, which is standard when using ITK-SNAP, and which
can impair the level of detail of the model, thus preventing an effective usage for surgical
planning purposes.

As a free byproduct of the adaptive approach, we emphasize that functional infor-
mation from the original dataset can be directly reconstructed from the recovered image

22



Figure 12: Views of the MES AMIS volumetric mesh including the grayscale values
retrieved from the MDCT dataset. Solid views of the external surface values (left) and
translucent views of the inner volume mesh elements (right).

u. As an example, it is possible to retrieve the grayscale levels of the original MDCT
dataset for each element of a volumetric mesh (see Figure 12), to be used for simulation
purposes or to be transformed into specific materials for AM production. With this
aim, file formats like Additive Manufacturing Format (AMF) [41] or 3D Manufacturing
Format (3MF) [60] have been introduced for AM purposes as an upgraded version of
an STL file. Actually, these formats are based on an XML structure, and include ad-
ditional information besides the geometric one, such as color or material, and property
information, ready to be interpreted by most slicing software.
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