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Abstract

In this paper we present a multiscale model for human cardiac perfusion which ac-
counts for the different length scales of the vessels in the coronary tree. Epicardial
vessels are represented with fully three-dimensional (3D) fluid-dynamics, whereas
intramural vessels are modeled as a multi-compartment porous medium. The cou-
pling of these models takes place through interface conditions based on the conti-
nuity of mass and momentum. To estimate the physical parameters of the multi-
compartment model, a virtual intramural vascular network is generated using a novel
algorithm which works in non-convex domains. Modeling epicardial vessels with a
3D model and intramural ones with a porous medium approach makes it possible to
apply the proposed strategy to patient-specific heart geometries reconstructed from
clinical imaging data. We also address the derivation of numerical solvers for the
coupled problem. In particular, we propose a splitting algorithm for the monolithic
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problem, with the corresponding convergence analysis, and a suitable preconditioner
for the multi-compartment porous sub-model. Finally, we test the computational
framework in a realistic human heart, and we obtain results that fall in the physio-
logical range for both pressures and local myocardial flows.

1 Introduction

The cardiac muscular tissue (myocardium) requires continuous oxygen supply to properly
work, i.e. to contract and pump the blood into the whole arterial system. Oxygenated
blood reaches the heart through the coronaries and perfuses the whole myocardium,
allowing the exchange of oxygen at the level of the microvasculature [49]. A reduced
oxygen delivery to the myocardium can occur in the presence of flow reduction either
because of the presence of coronary arteries obstructions, like in atherosclerosis, as well
as in the presence of normal coronary arteries because of a severe aortic valve regurgi-
tation, with steal of coronary flow during diastole, or because of severe left ventricular
hypertrophy, causing inadequate oxygen delivery, like in severe aortic valve stenosis or
chronic systemic hypertension.

The direct measurement of blood perfusion is nowadays possible by means of my-
ocardial blood flow (MBF) maps [31, 9, 36] or myocardial perfusion reserve [51, 13, 5],
obtained by Computed Tomography (CT) scan and Magnetic Resonance Imaging (MRI),
respectively. However, these techniques are still seldom used in the daily diagnostic prac-
tice, also because they require very expensive procedures, which are also very demanding
for the patients in terms of radiological exposition and/or duration of the acquisition
exam. In addition, we have to take in account that a realistic coronary tree reconstruc-
tion should provide not only morphometric data but also information about the flow
[35]. The myocardium is the organ in the body with the highest oxygen consumption
and extraction per gram [20], and the coronary blood flow is controlled by multiple mech-
anisms [20, 35], with the coronary microvessels responsible for the major portion of the
flow resistance [35].

Numerical simulation can in principle provide meaningful quantitative information
about myocardial perfusion, both in physiological and in pathological conditions. It
allows, for instance, to quantify the amount of blood perfusing the different regions of
the myocardium for selected virtual scenarios of coronary artery stenosis. For this reason
several authors have developed in the past few years mathematical and numerical models
for a better understanding of such process.

For a comprehensive mathematical description of myocardial perfusion, we detail in
what follows the specific processes and features that should be considered in the models,
together with some related significant works.

1. The coronary tree is characterized by the co-existence of multiple space scales, go-
ing from the large coronaries (∼ 1 mm), to the arterioles and venules (∼ 0.1 mm),
until the microvasculature (∼ 0.01 mm) [29]. Since only the large coronaries are
detectable by the standard imaging techniques, it is mandatory to properly build
surrogate models for arterioles/venules and microvasculature or reconstruct them
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from ex-vivo data. The blood dynamics in the largest coronaries is typically de-
scribed by means of the 3D fluid-structure interaction problem [21, 26], the 3D
Navier-Stokes equations in rigid domains [46, 45], or the reduced 1D model for blood
flow [48]. Regarding the modeling of the medium and micro- vasculature, a multi-
compartment model based on a hierarchical subdivision of the vessels has been con-
sidered in [23, 22]. After operating an homogenization procedure, the blood flow in
the myocardium is treated as the flow through a porous medium. In this respect,
a straight Darcy model has been considered in [28], whereas a more-sophisticated
multi-compartment Darcy model has been proposed in [12, 33, 24, 25, 27], see also
[42] for an application to the perfusion in the liver.

2. The interaction between the cardiac muscle and the coronaries is relevant because
there is a strong interplay between the blood dynamics in the large vessels, which
are usually located on the epicardium, and that in the medium and micro- vessels
which sit in the myocardial muscle. Indeed, pressures and flow rates are contin-
uously exchanged. With this aim, a 1D-3D model for the coupling between large
coronary arteries and intramural vessels has been considered in [33, 25, 28, 27].

Further, the coronary flow rate is strongly influenced by the cardiac muscle contrac-
tion. During the systolic phase the myocardial contraction increases the ventricular
pressure, causing the compression and the closure of the intramural coronary ves-
sels. The corresponding increase of vascular resistances leads to a decrease of the
coronary blood flow during the systole. On the contrary, during the diastolic phase,
the myocardial relaxation reduces the ventricular pressure, the lumen of the intra-
mural coronaries is open and the tissue can be widely perfused [60]. This effect is
usually called the systolic inhibition. To account for this, some authors considered
a poro-elastic model of the myocardium, see e.g. [23, 10, 12, 28, 27, 58].

3. Selective perfusion is important because recent studies suggested that the my-
ocardium is composed by well defined regions which are perfused by distinct arterial
coronaries [50]. For the modeling of such feature, a subdivision of the myocardium
in perfusion regions has been proposed in [12], see also [7] for an application to the
upper limb.

4. A complete description of both ventricles is particularly relevant in view of an
integrated model of myocardial perfusion and coronary hemodynamics, accounting
for the blood supply provided by the coronary arteries, with the total coronary
blood flow unequally distributed between right and left coronary arteries [5], and
for the corresponding coronary venous return.

On the basis of the works reviewed above, we present a mathematical model of
myocardial perfusion in both left and right ventricles of a human heart. We adopt a
multiscale approach where we couple the 3D blood dynamics inside the large coronary
vessels with the blood dynamics inside the intramural vasculature, which is modeled by
means of 3D multi-compartment Darcy equations. This model requires a set of parame-
ters, the estimation of which depends on the topology of the network of the intramural
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vessels. To this purpose, we propose an algorithm to generate a surrogate intramural
vascular network in a biventricular geometry combining the algorithm proposed for the
cube in [24] with the strategy proposed in [47] for the generation of vessels in non-convex
domains. This approach has the advantage to be directly applicable to data that are
available in clinical practice, such as the CT scan of the coronary tree (also named CT
angiography, CTA). In fact, such data allow to reconstruct the geometries of the main
epicardial coronaries and the ventricles. Moreover, we carry out an in-depth investigation
of the numerical approximation of the multiscale coupled problem. In particular, we pro-
pose an iterative algorithm to split the monolithic problem and we provide a convergence
analysis. Further, we approximate the Navier-Stokes and the multi-compartment Darcy
subproblems by means of backward differences formula for time and Finite Elements for
space discretizations and we propose a block diagonal preconditioner for the algebraic
problem related to the multi-compartment Darcy problem. Finally, we assess the validity
of the proposed algorithms by means of numerical experiments both in an ideal and in a
realistic scenario, taking a first step towards the validation of the proposed models.

The outline of this work is as follows. In Section 2 we present the mathematical
coupled problem, the strategy for the partition of the myocardium, and we describe how
to generate the intramural network for the estimation of the multi-compartment Darcy
model parameters. In Section 3 we introduce the Finite Elements and time discretiza-
tions, we detail the splitting strategies to handle the coupled problem and we describe
the preconditioners used for the solution of the linear systems. In Section 4 we present
several numerical results showing the effectiveness of the mathematical and numerical
models proposed in this work. We conclude the paper with some final remarks in Section
5.

2 Multiscale modeling of myocardial perfusion

The morphology of the coronary arterial tree (form large vessels to capillaries) has a
well-defined structure, as illustrated in Figure 1(a). The large coronaries start at the
aortic root and spread along the epicardial surface. A clear scale separation is observed
between the main vessels laying on the epicardium and the smaller vessels penetrating
into the tissue. Following the subdivision proposed in [29], we name the former as
epicardial coronaries and the latter as intramural vessels. We point out that in this
classification we include microvessels and in particular capillaries into the intramural
vessels. Intramural vessels should not be confused with the intramural coronary artery,
which refers to the coronary patterns in which there is an intimate relationship between
aortic and coronary arterial walls; histologically, the aortic and coronary medial walls are
attached without interposed adventitia [34]. We also observe that much smaller vessels
depart transversally from the main coronaries and penetrate into the cardiac muscle to
perfuse portions of it. We refer to such vessels as transversal vessels.

On the basis of the observable scale separation, multiscale approaches seem the only
viable choice for a comprehensive mathematical description of myocardial perfusion.
In this work, we adopt a multiscale model where epicardial vessels are represented as
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Figure 1: (a) Cast of Coronary Arteries, source Wikipedia; (b) epicardial vessels; (c)
intramural vessels; (d) 3D blood flow dynamics model inside coronary domain (pressure
depicted); (e) porous media flow model inside myocardial domain (pressure depicted);
(f) myocardium partitioned into different perfusion regions; (g) example of generated
intramural vascular network inside a perfusion region.

three-dimensional objects (see Sect. 2.1). To model the variation and the evolution of
spatio-temporal fields, such as the pressure, in the intramural vessels, we adopt a ho-
mogenization approach leading to a multi-compartment porous medium model in the
myocardium (see Sect. 2.2). This model is well suited to be coupled with the 3D de-
scription of the coronary flow because they share the same geometric dimension and
mathematical structure. However, the coefficients characterizing such a model are diffi-
cult to measure, partly because they may vary in space through the myocardium. For
this reason we introduce a (sub-scale) description of the myocardium into perfusion dis-
tricts combined with the generation of virtual intramural vascular trees, respecting the
fundamental physiological principles. Even if this subscale description could be used to
obtain a direct accurate numerical solution (as an example the whole myocardium will
be split in our case reported here into 17 perfusion regions each containing thousands
of vessels), due to the computational effort we use them only to estimate the physi-
cal parameters characterizing the porous medium perfusion model, see Section 2.4. In
conclusion, the proposed multiscale model consists in the 3D description of blood flow
coupled with a multi-compartment porous medium model of the myocardial perfusion.
The coupling takes place at multiple levels: directly, through interface conditions based
on the continuity of mass and of momentum (see Sect. 2.3), and indirectly, through the
virtual network of intramural vessels. The design of the multiscale model is displayed in
Figure 1.
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2.1 Fluid-dynamics in the epicardial coronary vessels

Nowadays standard biomedical imaging acquisition techniques, like CT scan, allow to
detect and reconstruct only the large coronaries, above 1 mm of diameter. For such vessels
(usually up to about 20 vessels for the most detailed level of reconstruction), classical
segmentation techniques [4] can be applied to reconstruct the 3D patient-specific vascular
geometry. 3D Navier-Stokes (NS) equations are then used to model the blood dynamics
therein. Although far more computationally expensive than 1D flow models (very often
used for the coronary tree), 3D models ensure a better accuracy and a better fit of the
patient coronary shapes. These features are of primary importance, e.g. to evaluate
the vascular flow reserve, as well as to better capture flow disturbance downstream
a stenosis, an instance that could have a great impact on the clinical applications of
the cardiac perfusion model. Notice however that we are not accounting here for the
compliance of the coronary vessels wall. Fluid-structure interaction problems, where
3D NS equations are coupled with suitable elastodynamic equations for wall deformation
[40], possibly combined to poro-elasticity models for the intramural vessels, could provide
an interesting improvement for future studies.

Referring to Figure 2, the blood dynamics in the coronary domain ΩC are mod-
eled by means of the Navier-Stokes equations for an incompressible, homogeneous, and
Newtonian fluid [39], under the assumption of rigid walls:

ρ

(
∂uC
∂t

+ (uC · ∇)uC

)
− µ∇ ·

(
∇uC + (∇uC )T

)
+∇pC = 0 in ΩC , (1a)

∇ · uC = 0 in ΩC ,

uC = 0 on Γw , (1b)

uC = uin on Γin, (1c)

where uC and pC are the blood velocity and pressure, respectively, in the epicardial
coronaries, ρ the blood density, µ the blood viscosity; Γw is the lateral physical vessel
wall, where a no-slip condition (1b) is prescribed. The surface Γw includes also the outlet
sections feeding the atria, where we assume that the flow rate is negligible with respect
to the ventricular outlets [54]; Γin is the inlet section representing the coronary left and
right ostia located at the aortic root, where a physiological velocity profile uin is imposed.

As we can notice from Figure 2, the computational domain is composed also by the
distal outflow sections Γj , j = 1, ... , J. Here, the coupling with the intramural vasculature
is considered. The corresponding coupling interface conditions will be discussed in Sect.
2.3.

2.2 Fluid-dynamics in the intramural vasculature: multi-compartment
Darcy model

In this section we introduce a mathematical model for the intramural (medium and
micro) vessels. We consider a porous media model for the description of the myocardium
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Figure 2: Sketch of the computational domain for the epicardial coronary vessels

because the standard biomedical in-vivo imaging techniques do not allow to reconstruct
the patient-specific geometry of the intramural vasculature. To account for the different
length scales of the vessels in such a region, we consider a 3D multi-compartment Darcy
model [24, 25]. That requires the introduction of parameters representing the local
permeability and conductance among compartments.

The multi-compartment Darcy model relies on using the Darcy equation in every
compartments, featuring different length scales, that coexist in the same domain ΩM

representing the myocardial muscle [24, 25, 33, 12]. The equations of Darcy flow for
compartment i ∈ [1, N], with N being the number of compartments, are:

K
−1
i uM,i +∇pM,i = 0 in ΩM , (2a)

∇ · uM,i = gi −
N∑

k=1

βi ,k(pM,i − pM,k) in ΩM , (2b)

uM,i · n = 0 on ∂ΩM , (2c)

where, in the i − th compartment for i = 1 ... N, uM,i and pM,i are the Darcy velocity and
the pore pressure, respectively, Ki the permeability tensor, gi a volumetric source (or
sink) term, and βi ,k ≥ 0, i , k = 1 ... N, represent the inter-compartment pressure-coupling
coefficients. In particular, the model hypothesizes that due to mass conservation, the
divergence of the Darcy velocity is compensated by a source or sink external term and by
mass exchanges between different compartments, which depend on the pressure jumps
between the latter. To enforce mass conservation among compartments, we have that
βi ,k = βk,i , ∀i , k = 1, ... , N,. Moreover, βi ,k 6= 0 whenever k = i ± 1 for 2 ≤ i ≤ N − 1,
k = 2 for i = 1, k = N − 1 for i = N, since the compartment i exchanges mass only with
adjacent compartments. The estimation of such parameters will be investigated in Sect.
2.4.

The first compartment is the one upstream, its g1 will be provided by the epicar-
dial blood dynamics (see Sec. 2.3). Instead, the volumetric term of the farthest away
compartment gN (i.e. the microvasculature), is a sink term that accounts for coronary
venous return, see Section 2.3. Finally, we notice that gj = 0, j = 2, ... , N − 1, since the
intermediate compartments do not exchange mass with the external environment.
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From the mass conservation and the null flux conditions on the epicardial and endo-
cardial surface ∂ΩM (2c), we have the following compatibility condition:∫

ΩM

(g1 + gN)dx = 0.

For our purposes, we deem that three compartments are enough for a description of
the hemodynamics in the intramural vessels, see also [25]. We will therefore set N = 3
from now on.

Notice that the most of the blood perfusion in the myocardium (about 80% [20])
occurs during the relaxation phase, when the deformation of the myocardial muscle does
not affect significantly the intramural vessels cross-section. This motivates our choice to
neglect, as a first approximation, the myocardial movement due to heart contraction and
relaxation.

2.3 Mathematical formulation of the coupled problem and coupling
conditions

In this section we close the mathematical problems introduced in the previous sections
by providing the coupling conditions between the epicardial and the intramural hemo-
dynamics. We need two coupling conditions, one ensuring the conservation of mass and
another one for the balance of interface forces (third Newton law, see [41]).

We also identify perfusion regions Ωj
M , j = 1, ... , J, [50] where the exchange of in-

formation between epicardial and intramural vessels occurs. We assume that there is
a one-to-one correspondence between outlets of epicardial vessels and perfusion regions.
So to have exactly J perfusion regions. The procedure used to partition the myocar-
dial domain in non-overlapping perfusion regions will be described in Section 2.4.1. The
coupling conditions between NS equations (1a)-(1c) and the multi-compartment Darcy
model (2a)-(2c) are the following:

a) conservation of mass: the first compartment in the multi-compartment Darcy
model (the most upstream one) exchanges mass with the coronary outflows Γj .
Thus, the volumetric source g1 in (2b) should be provided by the outgoing coro-
nary flow rate:

g1(x) =
J∑

j=1

χ
Ωj

M
(x)

|Ωj
M |

∫
Γj

uC · ndγ,

where the notation χA stands for the characteristic function of the domain A;

b) balance of interface forces: due to the heterogeneity of the two models and to the
distributed nature of the Darcy model, we expect to have a pressure jump at the
interface Γj which induces the following epicardial coronary flow rate [57]:∫

Γj

uC · ndγ = αj

(
1

|Γj |

∫
Γj

pC (x)dx− 1

|Ωj
M |

∫
Ωj

M

pM,1(x)dx

)
, j = 1, ... , J,
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where n is the unit outer normal vector and αj the conductances (supposed to be
dependent on the perfusion region). Notice that again only the first compartment is
involved in the coupling condition and that we consider the average of pressure on
the whole compartment Ωj due to the homogenized nature of the Darcy equation.

The previous condition is defective since involves average quantities [56, 17, 38].
We therefore reformulate it into the following mixed pointwise/defective Robin con-
dition, which guarantees enough boundary information for the normal component
:

−pC +µ
(
∇uC + (∇uC )T

)
n·n+

1

αj

∫
Γj

uC ·ndγ = − 1

|Ωj
M |

∫
Ωj

M

pM,1(x)dx on Γj ,

where we have assumed a constant coronary normal traction over the section Γj .

Being a second order partial differential equation, the epicardial problem needs
also a condition for the tangential components. Here, we assume that tangential
tractions are null, i.e.:

µ(∇uC + (∇uC )T )n · τ i = 0, i = 1, 2 on Γj ,

where τ i are the two tangential unit vectors.

In what follows we summarize the whole coupled problem with its coupling conditions.
In order to better highlight its properties in the case we are interested in, we write it
directly for the case of three compartments (N = 3 in the multi-compartment Darcy
model).

ρ

(
∂uC
∂t

+ (uC · ∇)uC

)
− µ∇ ·

(
∇uC + (∇uC )T

)
+∇pC = 0 in ΩC , (3a)

∇ · uC = 0 in ΩC , (3b)

pC − µ
(
∇uC + (∇uC )T

)
n · n− 1

αj

∫
Γj

uC · ndγ =
1

|Ωj
M |

∫
Ωj

M

pM,1dx on Γj , (3c)

µ(∇uC + (∇uC )T )n · τ i = 0 i = 1, 2 on Γj ,

uM,1 + K1∇pM,1 = 0 in ΩM ,

∇ · uM,1 =
J∑

j=1

χ
Ωj

M

|Ωj
M |

∫
Γj

uC · ndγ − β1,2(pM,1 − pM,2) in ΩM , (3d)

uM,2 + K2∇pM,2 = 0 in ΩM ,

∇ · uM,2 = −β2,1(pM,2 − pM,1)− β2,3(pM,2 − pM,3) in ΩM ,

uM,3 + K3∇pM,3 = 0 in ΩM ,

∇ · uM,3 = −γ(pM,3 − pveins)− β3,2(pM,3 − pM,2) in ΩM ,

where in the last equation we have accounted for the coronary venous return through
pveins which denotes the venous pressure and γ is a suitable coefficient. Parameters
Ki , i = 1, 2, 3, αj , j = 1, ... , J, and βi ,k , i , k = 1, 2, 3, need to be properly estimated.
This will be the topic of the next section.
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2.4 Generation of the intramural vascular network and parameter es-
timation

In order to provide the estimation of parameters Ki , i = 1, 2, 3, αj , j = 1, ... , J, and
βi ,k , i , k = 1, 2, 3, appearing in the coupled problem (3), we first need to generate a
personalized intramural vascular network. With this aim, in Sect. 2.4.1 we introduce
a new algorithm to obtain a partition of the myocardium in non-overlapping perfusion
regions (see Section 2.3), whereas in Section 2.4.2 we describe the steps for the generation
of the network. Finally, in Section 2.4.3 we detail the procedure for the estimation of
the parameters.

2.4.1 Partitioning of the myocardium into perfusion regions

In this section, we describe the procedure used to partition the myocardial domain into
non-overlapping perfusion regions. As highlighted before, each perfusing vessel feeds only
one of such regions.

We state that a generic point P in the myocardium belongs to the perfusion region
Ωj
M , j = 1, ... , J, if, among all the epicardial outflows, the section Γj is the closest one to

P. Given P, to find j such that P ∈ Ωj
M , we propose the following steps, see Figure 3:

Figure 3: The three main steps of the partitioning of the domain: (a) computing the
closest epicardial point to the barycenter (projected outflows Q j); (b) domain with 4 pro-
jected outflows and solution of the corresponding 4 eikonal problems; (c) corresponding
perfusion regions

1. for any outflow section Γj , j = 1, ... , J, we look for the point Q j such that

Q j = argmin
P∈∂ΩM

‖xP − xB j‖,

where xP are the coordinates of P and B j is the barycenter of Γj (see Figure 3(a)).
In other words, we look for the closest point of the epicardial surface ∂ΩM , named
Q j to Γj ; for this reason we refer to Q j as projected outflows;
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2. for each j = 1, ... , J, we solve the following eikonal problem:

|∇d j | = 1 in ΩM ,

d j = 0 on Q j .

This allows us to compute for each point x of the myocardium the distance d j(x)
from Γj (i.e. from its barycenter, see Figure 3(b));

3. finally, according to the definition of perfusion region provided above, we define
Ωj
M as follows (see Figure 3c):

Ωj
M =

{
P ∈ ΩM : d j(xP) = min

k=0,...,J
dk(xP)

}
.

2.4.2 Generation of the intramural vasculature network

To overcome the lack of anatomical data on the intramural vasculature, we propose
here an algorithm to generate a personalized (although not patient-specific) intramural
vascular network. This is inspired by the bifurcating volume-filling network generation
algorithm proposed in [59, 52], extended here to the case of non-convex geometries using
an approach similar to the one proposed in [47], based on iso-potential surfaces constraint.
Moreover, we have to specify the radius distribution along the network. With this aim,
we suppose that at each bifurcation the radii of the daughter vessels follow the Murray’s
law:

r 3
γ = r 3

α + r 3
β ,

where rγ is the radius of the parent vessel, whereas rα and rβ are the radii of the daughter
vessels.

The preliminary step of the procedure consists in subdividing the myocardial do-
main into right and left ventricles. Accordingly, referring to Figure 4, we compute the
solution of the following Laplace equation for the potential function Ψ between the epi-
cardium (∂Ωepi ) and the endocardium of the right and the left ventricles (∂Ωrv and ∂Ωlv ,
respectively )[6]:

Figure 4: The biventricle domain (on the left) and the Laplace solution (on the right)
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∆Ψ = 0 in ΩM ,

Ψ = 0 on ∂Ωepi ,

Ψ = −1 on ∂Ωrv ,

Ψ = 2 on ∂Ωlv .

The boundary conditions are chosen to distinguish the two ventricles walls. Indeed,
we create a positive (resp. negative) gradient potential inside the left (resp. right)
ventricle wall (Figure 4) and the values (Ψ = 2 and Ψ = −1, respectively) allow to
assign two thirds of the septum to the left ventricle and one third to the right ventricle,
according to experimental evidence [15, 19, 2, 44, 8]. In particular, if there exist x1

and x2 ∈ Ωj
M s.t. Ψ(x1) Ψ(x2) < 0, then the perfusion region Ωj

M is split into the two

subdomains Ωj ,lv
M and Ωj ,rv

M that will be treated as single perfusion regions from now on

(with an abuse of notation we will still use Ωj
M to refer to such regions).

The following step consists in another pre-process of the myocardium to allow the
vascular network generation in the domain ΩM . Indeed, the bifurcating volume-filling
network generation algorithm [59, 52] in its standard definition is not enough to generate a
network inside a non-convex geometry like the myocardial one. For this reason, similarly
to [47], we want to define isopotential volumes inside the myocardium to address the
vascular network generation in a first phase in which the generated vessels cover part of
the topology of the epicardial surface. In a second phase the following vessels penetrate
and ”fill” the walls of the myocardium.

To this aim, for each perfusion region Ωj
M , we build Niso isopotential surfaces that will

be used to find a set of layers L`, ` = 0, ... , Niso − 1, inside Ωj
M , defined as the volumes

included between two consecutive isopotential surfaces. Then we use these layers to
distinguish two different zones of the myocardial wall, one for each phase of the vessel
generation: the first one, defined as the set of layers L` with ` = 0, ... , Niso−epi << Niso ,
where the vessels grow according to the topology of the epicardial surface and the second
one, corresponding to the internal layers Niso−epi < ` < Niso , where the vessels penetrate
the myocardial wall.

The last step of the procedure consists in the network generation itself. To generate
the vessels in the first zone, for each perfusion region Ωj

M , we consider a double loop with
indices ` for the layers and m for the volumes generated within a layer. We start from
layer ` = 0, we define the nodes x−1

B,1 = x−1
∗,1 = B j (B j being the barycenter of the outflow

section Γj , cf Figure 3(a)) and x−2
B,1 = O, and we set Υ0

1 = Ωj
M . Thus, remembering that

dy/xe indicates the superior integer part (ceiling) of y/x , we have Algorithm 1.
This procedure allows us to create for each level ` exactly 2` volumes Υ`

m. Each
volume contains the terminal point of a vessel of the network. Notice also that Υ`−1

m//2
is

the parent volume of Υ`
m, whereas Υ`−2

m//4
its grandparent. With respect to the algorithm

proposed in [59, 52], we added here the solution of the Laplacian (5) and the definition
of the layers L`. This allows us to create vessels that better follow the morphology of
the epicardium. This is possible thanks to the definition of points x`∗,m used to generate
the vessels instead of the barycenters x`B,m as done in [59, 52]. The use of barycenters
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Algorithm 1 Generation of the intramural network

1: for ` = 0, ... , Niso−epi − 1 do
2: for m = 1, ... , 2` do
3: Compute the barycenter x`B,m of the volume Υ`

m;

4: Find the point y`B,m = argminP∈L`∩Υ`m
‖xP − x`B,m‖;

5: Compute the midpoint z`m =
y`B,m − x`−1

∗,dm/2e

2
;

6: Find the point x`∗,m = argminP∈L`∩Υ`m
‖xP − z`m‖;

7: Generate a new vessel considering the line going from x`−1
∗,dm/2e to x`∗,m;

8: Split the domain Υ`
m into two subdomains Υ`+1

2m−1 and Υ`+1
2m using the plane

passing through the points x`B,m, x`−1
B,dm/2e and x`−2

B,dm/4e;
9: end for

10: end for

Figure 5: Procedure to generate the vessels in the first zone of the myocardial wall

would not be optimal in our case since the non-convexity of the domain would lead to
barycenters outsides the volume.

Finally, regarding the second zone (the inner layers L`, ` > Niso−epi ), we consider the
generation of the vessels using the original algorithm in [59, 52]. This is motivated by
the fact that for the inner layers the domains are regular and convex. The generation
stops if the radius of a daughter vessel is less than Rmin. In this work, we have set
Rmin = 30µm. This means that, in order to reduce the complexity, we do not generate
vessels in the microvasculature. Thus, since we want to correlate the third compartment
to the microvasculature, but we do not generate the corresponding vessels of the network,
we choose to associate the intramural vascular network only to the first and second
compartment (see Section 2.2), and not correlate any vessel to the third one.

An example of the results of the proposed procedure is shown in Figure 6.
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Figure 6: Example of a generated network inside a partition region: on the left the first
2Niso−epi − 1 vessels in the case Niso−epi = 3, the first zone (in grey) and the Laplace
solution; on the right the complete network

2.4.3 Estimation of the multi-compartment model parameters

Once we have generated a vascular network for the intramural vessels, we can consider
the estimation of parameters Ki , i = 1, 2, 3, αj , j = 1, ... , J, and βi ,k , i , k = 1, 2, 3, in (3).

The first step consists in the separation of the intramural vascular network into two
groups of vessels using a specific metric. This is motivated by the fact that we can relate
the largest vessels to the first compartment, whereas the smallest ones to the second
compartment (remember that we do not have vessels in the third compartment). To
perform such operation, a hierarchic parameter ζ ∈ [0, 1] is defined for each node yi of
the network. Following the approach used in [24, 25], ζ(yi ) is defined as the ratio between
the sum of the lengths of the vessels which are located distally to yi and the the sum
of the lengths of all the vessels of the network. In this way ζ will be 1 for the most
proximal nodes and 0 for the most distal terminal nodes. Then, given for each perfusion
region Ωj

M a value Z j ∈ (0, 1), we sort a vessel of the network to belong to the first (resp.
second) group if the average of the values of ζ in the nodes of the vascular network at
hand is in the range [0, Z j) (resp. [Z j , 1]). The values Z j are chosen in order to have
about the same number of vessels in the two groups.

Let Kj
i be the permeability tensor of the i − th compartment in the perfusion region

Ωj
M . Following [24], we assume that this tensor is isotropic:

K
j
i = φji I,

where I is the identity tensor with unit of cm2Pa−1s−1 and φji is the constant porosity.
The latter is defined as follows:

φji =

∑M j
i

n=1 V j
i ,n

V
Ωj

M

,

14



where V
Ωj

M
is the volume of Ωj

M , M j
i the number of the vessels in Ωj

M , and V j
i ,n the volume

of the n−th vessel in the i−th compartment of Ωj
M . Finally, the global piecewise constant

permeability tensor Ki is defined as

Ki (x) =
J∑

j=1

K
j
i χΩj

M
(x).

To compute parameters βi ,k and αj , the geometric description of the network is not
enough. We need also information about the pressure and flow distributions in the
vascular network. In order to find an approximation of them, we consider the solution
of a Poiseuille flow problem along vascular network, given by the union between the
epicardial coronaries and the intramural network. To reduce the computational effort, we
consider the epicardial coronaries as 1D models (notice that this is done only here for the
parameter estimation, whereas elsewhere in the model the coronaries are 3D). As for the
boundary conditions, we prescribe an inlet pressure of 109 mmHg [11] and outlet pressures
depending on the radius of the terminal vessels [11]. A constant multiplicative correction
factor η is in case applied to all the vessels radii in order to obtain a physiological flow
rate starting from this pressure gradient. In our case, we adopt η = 2.3.

Referring to this Poiseuille solution, let Q j
i ,k = Q j

k,i , i , k = 1, 2, 3, be the total flow

rate exchanged in the perfusion region Ωj
M at the interface between compartment i and

compartment k. Since we do not have vessels in the third compartment, we set Q j
2,3 to

be equal to the total flow rate at the outlet of the second compartment of Ωj
M . Moreover,

let pj
i ,n, i = 1, 2, be the pressure in the n − th vessel of compartment i in the perfusion

region Ωj
M and pj

3 = 39 mmHg a reference value for the microvasculature pressure for all
j , computed as the average value between the pressure of the most downstream vessels
(' 56 mmHg [11] ) and the value of pveins = 22.5 mmHg [25]. Thus, introducing the local
coupling coefficient βji ,k inside the perfusion region Ωj

M (symmetric over the indices i and
k), we have [24]:

βj1,2 =


0 if pj

1 − pj
2 = 0,

Q
j
1,2

|pj
1 − pj

2|
otherwise,

βj2,3 =


0 if pj

2 − pj
3 = 0,

Q
j
2,3

|pj
2 − pj

3|
otherwise,

βji ,k = 0 elsewhere, where

Q
j
i ,k =

Q j
i ,k

V
Ωj

M

and

pj
i =

∑M j
i

n=1 pj
i ,nV j

i ,n∑M j
i

n=1 V j
i ,n

i = 1, 2. (6)
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As done before for the permeability Ki , the global piecewise constant inter-compartment
coupling coefficient βi ,k is defined as:

βi ,k(x) =
J∑

j=1

βji ,kχΩj
M

(x).

In a similar way the conductance coefficient αj is computed as:

αj =
Q j

inlet

|pj
inlet − pj

1|
, j = 1, ... , J,

where Q j
inlet is the flow rate entering in the first compartment of Ωj

M and pj
inlet is the

pressure in the first node of the first compartment of Ωj
M .

3 Numerical approximation

In this section we describe the numerical methods used to solve the problems addressed
above. In particular, for the spatial discretization of problems (4), (3) and (5) we use
the Finite Element method for spatial discretization in combination with the Finite Dif-
ference method for time discretization. To this purpose we have created two volumetric
tetrahedral meshes, one for ΩC and one for ΩM . Moreover, for an effective numerical
solution of the coupled problem (3), we propose an iterative splitting strategy for the
solution and an efficient numerical strategy to solve the corresponding linear systems.

3.1 Time and Finite Element discretizations

We adopt P1 Finite Elements for both the eikonal problem (4) and the Laplace equation
(5). We recall that the standard FE discretization of the eikonal equation is unstable; in
order to stabilize it, we add an artificial diffusion term ε∆d j , with ε = hmax/2 and where
hmax is the maximum cell diameter of the mesh of ΩM .

Regarding problem (3), for the time discretization we subdivide the time interval
[0, T ] into Nt subintervals of dimension ∆t = T

Nt
and the time steps are defined as

tn = n∆t for n = 0, ... , Nt . Accordingly, given a function of time z(t), we indicate
with zn the approximation of z(tn). Then, for the fluid problem (3a)-(3b), we use
a backward differentiation formula of order 1 and we treat the convective term in a
semi-implicit way [41]. This introduces a CFL-like restriction on the time discretization
parameter, ∆t . hmin, where hmin is the minimum cell diameter of the mesh of ΩC . As
for the spatial discretization, we consider P1/P1 Finite Elements with a SUPG-PSPG
stabilization [53, 55, 16, 18] for (3a)-(3b), whereas we adopt RT0/P0 Finite Elements for
the multi-compartment Darcy problem.

3.2 Iterative splitting strategy

For the numerical solution of the coupled problem (3) a monolithic (one shot) approach
would be very demanding in terms of computational costs. For this reason, we propose an
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iterative strategy based on the splitting of the problem into two sub-problems which are
solved sequentially. In particular, the idea is to equip the fluid problem with a Neumann
boundary condition coming from the Robin interface condition (3c), and to provide to
the first (most upstream) Darcy problem a mass term coming from (3d). The iterations
read as follows:
Let the current temporal index n + 1 be omitted for the notation; then, we propose the
iterative procedure described in Algorithm 2, where s is the current iteration, εtol is a

given tolerance, diffx =
‖x(s)−x(s−1)‖
‖x(s)‖ and the norm has to be intended in [H1]3 for the

velocities and L2 for the pressures.
We considered two versions of this algorithm: the first one is fully explicit, in which

we perform only one iteration per time step, whereas the second one is implicit, which
means that we continue to subiterate until convergence. In the first case, we expect to
have another bound on ∆t to ensure stability of the scheme. However the numerical
experiments showed that this constraint is milder than the CFL one coming from the
semi-implicit treatment for the discretization of the Navier-Stokes problem.

In what follows, we provide a convergence analysis of Algorithm 2. To do this, we
consider, for the sake of simplicity, the Stokes equations for the 3D fluid problem at step
3, constant scalar permeabilities Ki and just one outflow Γ. Moreover, since the coupled
problem is linear, we are interested at each time step in the convergence towards the null
solution, thus we set to zero the forcing terms and the quantities at previous time step.
We refer to this algorithm as Algorithm 2bis. Thus, we have the following result.

Proposition 1. Consider Algorithm 2bis defined above. Then, given ε > 0 small enough,
under the following hypotheses on the parameters

K1 > K2,

β2,3(K2 − εK3) ≥ β1,2(K1 − K2),

γ ≥ 1− 2ε

2ε
− K2β2,3

2K3
,

µ >
2K1C 2

T |Γ|1/2

|ΩM |β1,2(K1 − K2)
,

∆t <
ρ

µ
,

there exists a constant C with 0 < C < 1 such that the algorithm is a contraction with
respect to the interface variable pM,1, i.e.

‖p(s)
M,1‖L2(ΩM) ≤ C‖p(s−1)

M,1 ‖L2(ΩM).

Proof. From now on, if not specified, the current iteration s will be understood.
We start from the weak formulation of the 3D fluid problem at step 3. We obtain,

for uC , vC ∈ [H1(ΩC )]3 and pC ∈ L2(ΩC ):

ρ

∆t

∫
ΩC

uC ·vC+µ

∫
ΩC

∇uC : ∇vC−
∫

ΩC

pC ∇·vC+
1

α

∫
Γ
uC ·n

∫
Γ
vC ·n = − 1

|ΩM |

∫
ΩM

p
(s−1)
M,1

∫
Γ
vC ·n,
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Algorithm 2 Iterative splitting strategy

1: for n = 1 ... Nt do
2: while max(diffuC ; diffpC ; diffuM,1

; diffpM,1
) > εtol do

3: Solve the fluid problem at iteration s:

ρ

(
u

(s)
C − unC

∆t
+ (unC · ∇)u

(s)
C

)
− µ∇ ·

(
∇u(s)

C +
(
∇u(s)

C

)T)
+∇p

(s)
C = 0 in ΩC ,

∇ · u(s)
C = 0 in ΩC ,

− p
(s)
C + µ

(
∇u(s)

C + (∇u(s)
C )T

)
n · n = − 1

|Ωj
M |

∫
Ωj

M

p
(s−1)
M,1 dx− 1

αj

∫
Γj

u
(s−1)
C · ndγ on Γj ,

µ(∇u(s)
C + (∇u(s)

C )T )n · τ i = 0 i = 1, 2 on Γj ;

4: Solve the multi-compartment Darcy problem at iteration s:

u
(s)
M,1 + K1∇p

(s)
M,1 = 0 in ΩM ,

∇ · u(s)
M,1 =

J∑
j=1

χ
Ωj

M

|Ωj
M |

∫
Γj

u
(s)
C · ndγ − β1,2(p

(s)
M,1 − p

(s)
M,2) in ΩM ,

u
(s)
M,2 + K2∇p

(s)
M,2 = 0 in ΩM ,

∇ · u(s)
M,2 = −

3∑
k=1

β2,k(p
(s)
M,2 − p

(s)
M,k) in ΩM ,

u
(s)
M,3 + K3∇p

(s)
M,3 = 0 in ΩM ,

∇ · u(s)
M,3 = −γ(p

(s)
M,3 − pveins)− β3,2(p

(s)
M,3 − p

(s)
M,2) in ΩM ;

5: s → s + 1;
6: end while
7: end for
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where, for the sake of simplicity, we have taken the term 1
αj

∫
Γj u

(s)
C · ndγ in the Robin

condition at the current iteration. Taking vC = uC , we obtain

ξ‖uC‖2
H1(ΩC ) ≤

1

|ΩM |

∫
ΩM

p
(s−1)
M,1 CT‖uC‖H1(ΩC ),

where CT is the constant of the trace inequality and ξ = min{ρ/∆t;µ}. Thus, from the
Cauchy-Schwarz inequality, we have

‖u(s)
C ‖H1(ΩC ) ≤

CT

ξ|ΩM |1/2
‖p(s−1)

M,1 ‖L2(ΩM). (10)

Consider now the multi-compartment Darcy problem at step 4. Its weak formulation,
for uM,i , vM ∈ [H1

div ,0(ΩM)]3 and pM,i , qM ∈ L2(ΩM), reads:∫
ΩM

uM,1 · vM − K1

∫
ΩM

pM,1∇ · vC = 0,∫
ΩM

∇ · uM,1qM =
1

|ΩM |

∫
Γ
uC · n

∫
ΩM

qM − β1,2

∫
ΩM

(pM,1 − pM,2)qM ,∫
ΩM

uM,2 · vM − K2

∫
ΩM

pM,2∇ · vC = 0,∫
ΩM

∇ · uM,2qM = −β2,1

∫
ΩM

(pM,2 − pM,1)qM − β2,3

∫
ΩM

(pM,2 − pM,3)qM ,∫
ΩM

uM,3 · vM − K3

∫
ΩM

pM,3∇ · vC = 0,∫
ΩM

∇ · uM,1qM = −γ
∫

ΩM

pM,3qM − β3,2

∫
ΩM

(pM,3 − pM,2)qM .

By taking vM = uM,i , i = 1, 2, 3 in the first, third and fifth equation, respectively, and
qM = pM,i , i = 1, 2, 3 in the second, fourth and sixth equation, respectively, and then
summing up, we obtain

3∑
i=1

‖uM,i‖2
L2(ΩM) + K1

∫
ΩM

β1,2(pM,1 − pM,2)pM,1 + K2

∫
ΩM

β1,2(pM,2 − pM,1)pM,2+

K2

∫
ΩM

β2,3(pM,2 − pM,3)pM,2 + K3

∫
ΩM

β2,3(pM,3 − pM,2)pM,3 + γ‖pM,3‖L2(ΩM)

= K1
1

|ΩM |

∫
Γ
uC · n

∫
ΩM

pM,1.

From the Young inequality applied to the mixed pressure terms, we obtain(
K1β1,2

2
− K2β1,2

2

)
‖pM,1‖2

L2(ΩM) +

(
−K1β1,2

2
+

K2β1,2

2
+

K2β2,3

2
− εK3β2,3

2

)
‖pM,2‖2

L2(ΩM)

+

(
−K2β2,3

2
+

K3β2,3

2ε
+ γK3

)
‖pM,3‖2

L2(ΩM) ≤
K1CT |Γ|1/2

|ΩM |1/2
‖uC‖H1(ΩC )‖pM,1‖L2(ΩM),
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where ε > 0 is used for the term
∫

ΩM
K3β2,3pM,2pM,3. Owing to hypotheses (9), we have

‖p(s)
M,1‖L2(ΩM) ≤

2K1CT |Γ|1/2

|ΩM |1/2β1,2(K1 − K2)
‖u(s)

C ‖H1(ΩC ).

By inserting (10) in the previous inequality, we obtain

‖p(s)
M,1‖L2(ΩM) ≤

2K1CT |Γ|1/2

|ΩM |1/2β1,2(K1 − K2)

CT

ξ|ΩM |1/2
‖p(s−1)

M,1 ‖L2(ΩM) = C‖p(s−1)
M,1 ‖L2(ΩM).

Thanks to hypotheses (9), we have 0 < C < 1 and thus the thesis follows.

Remark 1. In the numerical experiments often K2 < K3 (as for example in Test I
reported in Section 4.1). Thus, we introduced ε in the previous proof in order to make
positive the left hand side of the second hypothesis (9).

3.3 Numerical Solvers

We detail here the numerical solvers used to solve the two subproblems (7) and (8)
appearing at each iteration of the previous iterative algorithm.

The algebraic linear system associated to the fluid problem (7) is solved using the
preconditioned GMRES. In particular, we consider the SIMPLE preconditioner in its
approximated formulation (aSIMPLE) [14].

Regarding the multi-compartment Darcy problem (8), we start defining the corre-
sponding algebraic system (omit for the sake of simplicity the iteration index s):

A1 BT O O O O
B C12 O −C12 O O
O O A2 BT O O
O −C21 B C21 + C23 O −C23

O O O O A3 BT

O O O −C32 B C32 + Cγ





UM,1

PM,1

UM,2

PM,2

UM,3

PM,3


=



O
G1(UC )

O
O
O
G3


, (14)

where, for each compartment i = 1, 2, 3, UM,i and PM,i are the velocity and the pressure
vectors of unknowns, respectively, Gi is the vector accounting for the source term (notice
in particular the dependence of G1 on the epicardial coronary velocity UC ). Moreover,
let ψj and ϕ` the basis functions related to the velocity and pressure, respectively. Thus

we have (Ai )jp =
∫

ΩM
(K−1

i ψp) · ψj , B`j = −
∫

ΩM
∇ · ψjϕ`, (Cik)`m =

∫
ΩM

βi ,kϕmϕ`,

(Cγ)`m =
∫

ΩM
γϕmϕ`.

To solve the linear system (14), we consider a block diagonal preconditioner P defined
as follows:

P =



A1 BT O O O O
B C12 O O O O
O O A2 BT O O
O O B C21 + C23 O O
O O O O A3 BT

O O O O B C32 + Cγ


. (15)
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This is a convenient choice because, to compute the residual at each iteration of a
Krylov method, each block of (15) can be considered as an independent mono-compartment
Darcy problem which can be solved using an internal GMRES method and applying the
aSIMPLE preconditoner adapted to the Darcy case. As for the external iterations, we
consider the Flexible-GMRES (FGMRES) variant of GMRES to deal with the fact that
at each iteration we are solving each subproblem inexactly, up to a prescribed tolerance
[43].

4 Numerical results

In this section, we present several numerical results aiming at assessing the reliability,
stability and accuracy of the proposed methods and algorithms. In particular, we con-
sider a first test in an ideal domain to check the validity of the code (Test I) and a second
one in a real computational domain of human coronaries and myocardial ventricles to
test the robustness and validity of the method when operating on physiological data
(Test II).

In all the numerical simulations of the coupled problem given by iterations (7)-(8) in
Algorithm 2, we used the following parameters: ρ = 1.06 g/cm3, µ = 0.035 dyne/cm2,
γ = 10−4 1/(Pa · s), Niso−epi = 3, Niso = 300, ∆t = 0.1 s, εtol = 10−5, the scalar perme-
ability K3 is chosen equal to 10−3 cm2 · (Pa · s)−1 according to [25], whereas the scalar
permeabilities K1 and K2 are estimated as described in Section 2.4.3. We consider in all
the cases three Darcy compartments and we set pveins = 22.5 mmHg [33].

In order to ensure that blood flow reaches the myocardium despite using a rigid
model of the heart, we prescribe at the inlet of the 3D coronaries a Dirichlet boundary
condition for the 3D NS. Such condition enforces a flow rate that is mainly active during
the diastole, as expected in the physiological conditions. Such model input partially
compensates the absence of heart contraction.

All the numerical simulations of the coupled problem (3) are performed using the FE
library LifeV
(https://bitbucket.org/lifev-dev/lifev-release/wiki/Home). The numerical simulations of
both the eikonal problem (4) and the Laplace equation (5) are instead obtained using a
numerical solver implemented in FEniCS [3, 30].

4.1 Test I: Idealized geometry

In the first numerical test, we consider the computational domain given by an idealized
cylindrical coronary ΩC and by a cube ΩM representing a portion of the myocardium,
see Figure 7.

At the inlet section Γin of the coronary vessel, we prescribe the following flow rate
condition:

ρ

∫
Γin

uC · ndγ = Qin,
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Figure 7: Computational meshes of domains ΩC and ΩM . Test I.

where Qin(t) = qPoiseuillesin(2πt) cm3/s for t ≤ 0.5 s and null elsewhere, and qPoiseuille is
the flow rate at the inlet of the intramural vascular network obtained by the Poiseuille
flow model. In particular, we obtain qPoiseuille = 8.68 · 10−3 cm3/s.

In this test we want to check the mass conservation in the implementation of Algo-
rithm 2 and the performance of Algorithm 1. To this aim, we build a network in ΩM with
Algorithm 1, we solve the coupled problem with Algorithm 2, and we compare the aver-
age pressure gradient between the first and the second compartments with the average
pressure gradient obtained by the Poiseuille flow model used to estimate the parameters
of the model. The intramural network is shown in Figure 8 and the estimation of the
parameters of the coupled problem leads the values reported in Table 1.

Figure 8: Intramural network generated inside the domain ΩM (the cylinder ΩC is on
the left). Test I.
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Table 1: Estimated parameters of the coupled problem. Test I.

β1,2 [(Pa · s)−1] β2,3 [(Pa · s)−1] α [cm3 · (Pa · s)−1] K1 [cm2 · (Pa · s)−1] K2 [cm2 · (Pa · s)−1]

2.60 · 10−6 3.62 · 10−6 2.98 · 10−6 5.85 · 10−5 8.40 · 10−6

In Figure 9a we show the results of the simulation for t = 0.25s (peak value of inlet
velocity). We observe a pressure gradient going from the domain ΩC to the domain ΩM ,
according to the direction of the flow imposed at the inlet surface.

(a) (b)

Figure 9: (a) Pressure solution at the peak value of inlet flow rate (t = 0.25) (the legend
is the same for pC , pM,1, pM,2, pM,3); (b) inlet flow rate Qin and the outlet flow rate Qout .
Test I.

In Figure 9b we report the inlet flow rate Qin and the outlet flow rate Qout = γ(pM,3−pveins).
We notice that the two profiles are in excellent agreement, so we can conclude that the
mass conservation is respected.

Finally, the jump of the average-in-space pressure obtained by the Poiseuille solution
between inlet and outlet of the intramural vessels and computed using (6) is compared
in Table 2 with the jump of average-in-space pressures between the first and the second
compartments in the multi-compartment Darcy model. The difference is about 1.4%. We
conclude that the estimation of the parameters in the multi-compartment Darcy model,
which is based only on the first and second compartments, is consistent and accurate.

Table 2: Jump of average-in-space pressures between compartments 1 and 2 estimated
by the Poiseuille solution and in the multi-compartment Darcy model (t = 0.25). Test I.

∆P12 [mmHg ]

Poiseuille 25.02

multi-compartment Darcy 24.66
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4.2 Test II: Realistic geometry

4.2.1 Simulation set up and parameter estimation

In the second numerical test, we apply the proposed multiscale computational model to a
realistic 3D human heart geometry. To this purpose the geometries of the computational
domains ΩC and ΩM , describing the arterial epicardial vessels and the myocardium of the
left and right ventricles are defined starting from the 3D Human Heart Model provided by
Zygote [1] (see Figure 10). We remark that similar input data for the morphology of both
the ventricles and the coronaries could be reconstructed by clinical data, for example
CTA. The corresponding computational meshes are composed by 417,969 tetrahedral
elements for ΩC and 365,142 tetrahedral elements for ΩM .

Figure 10: Computational domains ΩC and ΩM . Test II.

Following the procedure described in Sect. 2.4.1, we performed the partitioning of
the domain ΩM and we obtained 17 perfusion regions, starting from 17 outflow sections.
The results are shown in Figure 11.

The surrogate intramural network generated by means of Algorithm 1 inside these
perfusion regions is composed by 71,179 vessels (see Figure 12) and the parameter es-
timated by using this network are shown in Figure 13. Notice that in this figure, for
visualization purposes, we have plotted the global conductance function α =

∑
j α

jχ
Ωj

M

and the global porosity function φ =
∑3

i=1

∑
j φ

j
iχΩj

M
obtained as sum over the three

compartments.
Introducing the average-in-space porosity φM =

∑N
i=1 φi , φi =

∑J
j=1 φ

j
iVΩj

M
/VΩM

,

from these results we obtain φM = 0.095, a value in accordance with the literature [25].
At the inlet sections Γin,β, with β = l , r , of the epicardial vessels, we prescribe the
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Figure 11: Perfusion regions obtained in the domain ΩM . Test II.

Figure 12: Intramural vascular network generated inside the domain ΩM . Test II.

following flow rate condition:

ρ

∫
Γin,β

uC · ndγ = Qin,β, β = l , r ,

where Qin,l = 0.57Qin, Qin,r = 0.43Qin and Qin being the inlet coronary flow rate with a
physiological profile shown in Figure 14 [37]. The subdivision of Qin in Qin,l and Qin,r

accounts for percentage of volume perfused by each branch.

4.2.2 Comparison between implicit and explicit strategies for Algorithm 2

The aim of this section is twofold. First, we want to investigate whether the explicit
version of Algorithm 2 (obtained by performing just 1 iteration per time step) is usable
for applications, i.e. if it is stable and accurate with respect to the implicit version.
Secondly, we want to quantify the convergence properties of the implicit version, i.e. the
average number of iterations needed to converge.

Regarding the first aim, we first notice that the explicit version of Algorithm 2 is stable
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Figure 13: Parameters estimated inside ΩM . Test II.

Figure 14: Total physiological inlet coronary flow rate. Test II.

and produces meaningful results. Moreover, in Figure 15 we plot for three different time
steps the coronary pressure pC and an average (over the three compartments) myocardial
pressure pM , defined as follows:

pM =

∑3
i=1 φipM,i

φM
,

where φi and φM are the average porosities defined above.
We notice an excellent agreement between the solutions obtained by the two strate-

gies, apart from the systole in the coronaries, where slight differences could be noticed
which however disappear in the following instants.

To better evaluate the differences between implicit and the explicit strategies (that
is the error of the explicit strategy with respect to the implicit one), we compute at
each time step the relative differences diffpC and diffpM in the L2 norms for the pressure
solutions, see Figure 16. Regarding the coronary pressure, the error is bigger in the first
half of the heartbeat (mean percentage equal to 8.4%) where the flow rate experiences
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Figure 15: Pressure field for t = 0.06, t = 0.44 and t = 0.70 (the legend is the same for
pC and pM). Test II.

significant variations, whereas it is quite negligible in the second half of the period (mean
percentage equal to 0.47%). Instead, for the myocardial pressure the error is always
negligible, being at most equal to 0.05%.

Figure 16: Relative differences in L2 norm between explicit and implicit strategies of
Algorithm 2. Left: coronary pressure; Right: myocardial pressure. Test II.

In Figure 17 we report the number of iterations needed by the implicit iterative
strategy. We observe that the number of iterations strongly depends on the instant
of the heartbeat: during the first part of the heart cycle, when the flow features large
variations, the number of iterations is quite high, up to 7, whereas in the second part,
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when the flow is almost constant, the number of iterations significantly decreases (average
along all the heartbeat equal to 3.3 iterations). This is in accordance with the trend of
the explicit algorithm error discussed above.

Figure 17: Number of iterations needed by the implicit strategy to reach convergence.
Test II.

We conclude that the explicit version of Algorithm 2 is an effective alternative to
the implicit one since it allows to reduce the computational effort (1 vs 3.3 iterations
per time step). However, it produces an error for the coronary pressure which could be
significant for some applications (average error 4% along all the heartbeat). Thus, if one
needs a better accuracy, then the implicit method should be preferred.

4.2.3 Analysis of the pressure and flow fields

We discuss in what follows the physiological significance of the results. We refer to the
implicit solution since from the accuracy point of view is our gold-standard.

From Figure 15 we notice that the pressure in both ΩC and ΩM is in the physiological
range. This is also highlighted by Figure 18 where we plot the average-in-space pressure
profiles in the three compartments of the multi-compartment Darcy model. Notice also
that, unlike the first and the second compartments, in the third compartment the pressure
profile is subject to a damping effect due to the sink term. This is consistent with the
loss of pulsatility inside the capillary vessels.

In Figure 19 we plot the flow rate entering in the third compartment, normalized over
100 ml of tissue. This is the amount of blood entering in the myocardial tissue, which is
computed as:

Q2,3 = β2,3(pM,2 − pM,3) ∗ 60s/min ∗ 100ml ,

where the factor 60s/min is used to express the perfusion rate in minutes. From these
results, it is possible to notice an heterogeneous distribution of perfusion rate inside the
domain ΩM due to the heterogeneity of the parameters and consequently to the different
resistance of the vessels inside each perfusion region.
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Figure 18: Average-in-space pressure profiles in the three compartments of the multi-
compartment Darcy model. Left: pM,1; Middle: pM,2; Right: pM,3. Test II.

Computing an average-in-space perfusion rate at t = 0.44 s (when the inlet velocity is
maximum in time), we obtain about 62 ml/min /100ml , which is less than the physiolog-
ical perfusion rate which is about 130 ml/min /100ml [32]. However, locally, our model
is able to recover physiological values (see Figure 19). We believe that this discrepancy
can be mitigated when we will extend model of the coronary tree with the action of
transversal branches and the corresponding outlets. Indeed, this improvement of the
model will allow to increase the inlet flow rate and accordingly the average perfusion
rate. With a more detailed coronary reconstruction and including transversal vessels, it
will be also possible to obtain more homogeneous parameters for the multi-compartment
Darcy model and significant values of perfusion in all the myocardium. This issue is
under study for future investigations.

Figure 19: Perfusion rate into the third compartment at t = 0.06 s, t = 0.44 s and
t = 0.70 s. Test II.
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5 Conclusions, limitations and perspectives

We developed a multiscale model for the cardiac perfusion. This is based on coupling
the 3D Navier-Stokes equations for the epicardial coronaries and a multi-compartment
Darcy model for the intramural vessels. To estimate the parameters in the latter model,
we proposed an algorithm to generate an intramural vascular network starting from
the epicardial coronaries. We also addressed the numerical solution of this coupled
problem, by proposing a splitting algorithm and a suitable preconditioner for the multi-
compartment Darcy model. The application of our framework to a realistic human heart
including both the ventricles lead to accurate results for the pressures and for the local
perfusion rate, which agreed with the physiological values. An advantage of the proposed
model is that it can be set up using only in-vivo clinical images, such as a CT scan of
heart, in particular CT angiography. Indeed, the geometry of both epicardial coronaries
and ventricles can be reconstructed from this kind of medical images. Conversely, for the
best of our knowledge, more accurate multi-compartment perfusion models, previously
proposed in [27, 25, 12, 28], need detailed information on microvascular structure that is
only available from ex-vivo data.

Several limitations affect the present study.
First, we are aware that a mismatch between the anatomical and physiological assess-

ments is unavoidable [5] and that it is necessary to impose physiological flow constraints
to the whole network to ensure realistic geometric reconstruction [35].

Second, we neglected the heart movement, despite the well know dynamic myocardium-
vessel interaction. This is a significant limitation since changes of resistances in the in-
tramural vessels due to the heart contraction and relaxation affect the perfusion rate.
To overcome this limitation, we have prescribed the flow rate at the coronary inflow.
The inclusion of the heart movement by means of a multi-compartment poro-mechanics
model is under investigation. This extension of the model should allow us to prescribe the
pressure at the coronary inflow and the right perfusion rate should be obtained directly
by the model.

A third limitation consists in the absence of transversal vessels arising from the main
coronaries. The inclusion of such vessels should allow us to obtain more homogeneous
parameters for the multi-compartment Darcy model and a more uniform perfusion for
the healthy case. This limit was partially compensated by our inclusion of all vessels,
including the smallest capillaries, by means of the Darcy model based on the fact that the
blood flow in the myocardium is supplied in outside-in fashion, from the large epicardial
coronary arteries to the myocardial and endocardial vessels [20].
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F. Saremi. Anatomical Basis for the Cardiac Interventional Electrophysiologist.
BioMed Research International, 2015(Figure 1):1–24, 2015.

34



[45] S. Sankaran, M. Esmaily Moghadam, A.M. Kahn, E.E. Tseng, J.M. Guccione, and
A.L. Marsden. Patient-Specific Multiscale Modeling of Blood Flow for Coronary
Artery Bypass Graft Surgery. Annals of Biomedical Engineering, 40(10):2228–2242,
oct 2012.

[46] M. Sankaranarayanan, D.N. Ghista, C.L. Poh, T.Y. Seng, and G.S. Kassab. Analysis
of blood flow in an out-of-plane CABG model. American Journal of Physiology-Heart
and Circulatory Physiology, 291(1):H283–H295, 2006.

[47] Wolfgang Schreiner, Rudolf Karch, Martin Neumann, Friederike Neumann, Paul
Szawlowski, and Susanne Roedler. Optimized arterial trees supplying hollow organs.
Medical Engineering and Physics, 28(5):416–429, 2006.

[48] N. P. Smith, A. J. Pullan, and P. J. Hunter. An Anatomically Based Model of Tran-
sient Coronary Blood Flow in the Heart. SIAM Journal on Applied Mathematics,
62(3):990–1018, jan 2002.

[49] J. Spaan, C. Kolyva, J. Van Den Wijngaard, R. Ter Wee, P. Van Horssen, J. Piek,
and M. Siebes. Coronary structure and perfusion in health and disease. Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 366(1878):3137–3153, 2008.

[50] J.A.E. Spaan, M. Siebes, R. ter Wee, C. Kolyva, J. W.G.E. van Teeffelen, H. Vink,
D. S. Fokkema, G. Streekstra, and E. VanBavel. Visualisation of intramural coro-
nary vasculature by an imaging cryomicrotome suggests compartmentalisation of
myocardial perfusion areas. Medical and Biological Engineering and Computing,
43(4):431–435, 2005.

[51] C.D. Steadman, M. Jerosch-Herold, B. Grundy, S. Rafelt, L.L. Ng, I.B. Squire, N.J.
Samani, and G.P. McCann. Determinants and functional significance of myocardial
perfusion reserve in severe aortic stenosis. JACC: Cardiovascular Imaging, 5(2):182–
189, 2012.

[52] M. Howatson Tawhai, A. J. Pullan, and P. J. Hunter. Generation of an Anatomically
Based Three-Dimensional Model of the Conducting Airways. Annals of Biomedical
Engineering, 28(7):793–802, 2000.

[53] T.E. Tezduyar. Stabilized finite element formulations for incompressible flow com-
putations. volume 28 of Advances in Applied Mechanics, pages 1 – 44. Elsevier,
1991.

[54] L. Thomas, T. Marwick, A. P. Bogdan, E. Donal, and L. P. Badano. Left atrial
structure and function, and left ventricular diastolic dysfunction: Jacc state-of-the-
art review. Journal of the American College of Cardiology, 73(15):1961 – 1977,
2019.

[55] L. Tobiska and G. Lube. A modified streamline diffusion method for solving the
stationary navier-stokes equation. Numerische Mathematik, 59(1):13–29, Dec 1991.

35



[56] C. Vergara. Nitsche’s method for defective boundary value problems in incompress-
ibile fluid-dynamics. J Sci Comp, 46(1):100–123, 2011.
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