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Summary
A new mathematical model is developed for the macroscopic behaviour of a porous,
linear elastic solid, saturated with a slowly-flowing incompressible, viscous fluid, with
surface accretion of the solid phase. The derivation uses a formal two-scale asymptotic
expansion to exploit the well-separated length scales of the material: the pores are
small compared to the macroscale, with a spatially-periodic microstructure. Surface
accretion occurs at the interface between the solid and fluid phases, resulting in growth
of the solid phase through mass exchange from the fluid at a prescribed rate (and vice

versa). The averaging derives a new poroelastic model, which reduces to the classical
result of Burridge and Keller in the limit of no growth. The new model is of relevance
to a large range of applications including packed snow, tissue growth, biofilms and
subsurface rocks or soils.

1. Introduction

The theory of poroelasticity concerns the mechanics of porous elastic solids with fluid-filled
pores. The applications and motivations for this theory are far-reaching, and include the
seepage of liquid waste disposed of underground, oil and gas recovery, soil consolidation
and glaciers dynamics, as well as transport, mass exchange and solid stress in biological
tissues. Whereas poroelasticity concerns fluid-solid interactions in two-phase materials, it
lies within the broader field of mixture theory, which includes fluid and chemical transport
in multiphase systems.
The literature in poroelasticity develops according to two main approaches; volume-

averaging and homogenisation (the two are discussed in detail and compared in the review
paper (1)). Most authors state ab initio the mass, momentum and energy balance equations
for the individual phases on the basis of their “in bulk” mechanical behavior and utilize
dissipation inequalities to restrict the possible constitutive equations for the components in
the mixture (see (2) and (3)). While this approach allows for generality in the number of
components and their mechanical nature, including finite elastic strains, any information
on the microstructure of the material is suppressed by an implicit averaging procedure; as
a consequence, effective coefficients that appear in the equations (for example, the fluid
permeability) are at most characterized by their sign and are to be fitted by macroscopic
experiments only.
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The alternative homogenisation method exploits information on the geometry at the
microscale by a multiscale expansion of the fields. This approach yields macroscopic
equations with parameters that depend explicitly on the microscale geometry and physics;
these parameters are obtained by averaging suitable microscale cell problems (as for example
in (4), (5), (6) and (7)). The homogenisation technique is therefore powerful in retaining
microscopic information; the drawback is that periodicity of the microstructure and linearity
in the constitutive equations must be assumed. Moreover, the algebraic complexity of the
method has reduced de facto its application to physical systems.
From the point of view of continuum mechanics, a challenging peculiarity of soft biological

tissues is their ability to grow and remodel, a special characteristic of living matter that
poses a number of intriguing mathematical questions: how to account for the resulting
residual stress, which are the driving forces of growth, which are the corresponding
regulatory mechanisms and the inner energy balance, see, e.g. (8), (9) and (10). This
kind of questions has inspired a substantial body of literature in mathematical methods
that, starting from one–component continuum mechanics, move towards the inclusion of
multicomponent and microscale information in the model (11).
On the basis of the considerations above, it is not surprising that the specific issue of

poroelastic materials that exchange mass has been mainly addressed in terms of mixtures,
both for inert (see for example (12), (13) and (14)) and living matter (as in (15) and (16)).
In the current study we seek to extend the existing poroelastic literature by considering
mass exchange between elastic and fluid phases using a multiscale approach†. Although
poroelasticity exhibits a wide range of applicability and growth is a crucial issue to
address in a number of fields, the chief motivation for this work is biological. The growth
and remodelling of living tissues is driven by chemical stimuli as well as the mechanical
environment (alongside genetic cues) and the development of mathematical models that
couple fluid and chemical transport with mechanical properties is of fundamental interest
(as for example in (15) and (16)). A candidate system is a vascularised tissue, where the
elastic phase (comprised of cells, fluid and protein matrix) undergoes small strains and the
fluid phase (the blood supply) flows slowly. In this scenario, nutrients are delivered to the cell
population by diffusion across the blood vessel walls, and may induce cellular proliferation
and hence growth. In the context of drugs delivered through the blood supply, cellular death
and tissue regression may result (for example, tumour treatment by chemotherapeutics);
indeed, poroelastic frameworks have been used to model solid tumours (see (17), (18)) and
the discussions within) and to extract tissue-specific poroelastic parameters from biological
experiments (19). In a recent study (20), a combination of experiments and theory has
also been used to develop a poroelastic model for the cytoplasm of living cells. Alternative
scenarios of interest include tissue engineering applications, where tissue growth must be
tightly controlled by providing a biomechanical and biochemical environment that mimics
the physiological scenario. In many such situations surface growth of a cellular phase is a
key feature, for example, in tissue expansion in hollow fibre bioreactors (21) (among many
others). In (22), (23) and (24) mixture theory has been developed for such biological
applications, and the interplay between fluid and chemical transport and tissue growth
are explored; however, such models present challenges if the evolution of solid stresses are

† In this work we refer to interfacial mass exchange between the solid and the fluid phase as “growth”,
notwithstanding the sign of the mass flow that can actually indicate “resorption”.
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included (see (25) and (11) for examples and discussions). Also, a remarkable example of
surface growth modelling can be found in (26), where a rigorous thermomechanical theory
to account for the coupling between growth and mass transport phenomena across material
interfaces is developed and biological examples are provided.
Inevitably any modelling approach faces challenges for integration with specific biological

scenarios. Poroelastic materials (and, in general, multiphase frameworks) require the
prescription of constitutive relationships to describe the fluid and solid stresses within the
material of interest. In the case of linear elasticity, combined mathematical and experimental
approaches (for example (19), (20)) have been used to extract solid parameters and make
predictions around solid stress generation within living tissues. However, many biological
soft tissues and cell aggregates behave as complex nonlinear-elastic (and possibly visco-
plastic) materials, as in (27) and (28), so that the increased complexity of such models
has limited the extraction of relevant parameters from biological experiments. Indeed,
model parameterisation is a much broader issue given that mechanical, chemical and kinetic
properties are both tissue and species-specific, and this motivates collaboration between
biologists and mathematicians to close the data gap.
In the current study we derive a new poroelastic model that includes mass exchange

between the solid and the fluid phase. The focus is on the accretion (or appositional growth)
that occurs at the interface between solid and fluid in the pores. The mass exchange at
the microscale interface modifies the mechanical properties of the elastic phase (which may
be anisotropic) and the hydraulic characterization of the flow in the microstructure. While
the small strains assumption applies to ensure linearity in the equations, finite growth
(finite advancement of the fluid-solid interphase) is retained. This regime of infinitesimal
displacement of the solid phase with respect to a finite evolution of the geometry rules out
applicability of the model to questions of emergence of residual stress, an issue that should
be addressed in the framework of nonlinear elasticity (8).
The model is derived using a two-scale asymptotic expansion, which exploits the

separation between the length scale of the pores and the macroscale of the material. Such an
approach has already been developed in the literature. In (29) Burridge and Keller present a
rigorous derivation of Biot’s equations of poroelasticity (see (30) and (31)) via the multiple
scales method, whereas in (32) the interface law between a deformable porous medium
containing a viscous fluid and an elastic body is derived using rigorous homogenisation and
the two-scale convergence approach. In (33), Shipley and Chapman derive a dual porous
medium model for vascular and interstitial fluid transport, and chemical transport, in a
vascularised tissue. Here the averaging procedure is applied to a pore-scale description of
coupled fluid transport and linear elasticity, with solid accretion at the interface between
the two phases.
The paper is organized as follows. In section 2, we formulate the mechanical model

description in both the fluid and solid phases of the material. The solid phase is described
using a linear elastic model, and is coupled to Stokes’ flow for the fluid phase via the
normal component of stress on the interface between the two. Continuity of the mass
flux is also imposed on the fluid-solid moving interface (16), alongside a growth law to
describe its temporal evolution. In section 3 non-dimensionalisation of the equations is
performed. Section 4 is devoted to the multiple scales analysis and, in particular, the
assumptions of length scale separation and local periodicity are highlighted. Under these
assumptions, a formal two-scale asymptotic expansion is used to decouple micro and macro
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spatial variations, and thus derive the effective equations for a poroelastic growing material
in section 5. The results are discussed in section 6, while in section 7 key limiting cases are
highlighted; in particular the poroelastic equations of (29) are recovered in the limit of no
growth, as well as the specific form of the model in the isotropic case. Finally, conclusions
are presented in section 8.

2. The governing equations for a poroelastic growing medium

We consider a set Ω ∈ R
3, such that Ω = Ωs ∪ Ωf , where Ωs and Ωf represent the porous

solid and fluid compartment, respectively. At this stage, every field of interest is a function
of space x and time t. We assume the typical length scale r of the pores to be small
compared to the characteristic size d of the domain (see Fig. 1), so that their ratio

r

d
= ǫ≪ 1. (2.1)

We consider an incompressible Newtonian fluid, so that, assuming that body forces and
inertial effects can be neglected, the Stokes’ problem holds in the fluid domain Ωf :

∇ · σ = 0 (2.2)

∇ · v = 0,

where σ denotes the fluid stress tensor defined by

σ = −pI+ µ
(

∇v + (∇v)
T
)

(2.3)

and v, p, µ are the fluid velocity, pressure and viscosity respectively.
The solid phase is modelled as a linear, elastic solid, with inertia and body forces

neglected, through
∇ · τ = 0 (2.4)

in Ωs, where the solid stress tensor τ is given by

τ = C∇u. (2.5)

Here, u is the displacement vector for the solid compartment and C is the fourth rank
elasticity tensor (with components denoted Cijkl for i, j, k, l = 1, 2, 3), completely defined
by its action on the symmetric part of ∇u (see, e.g. (34)), through:

C∇u = Ce, (2.6)

e: =
∇u+ (∇u)

T

2
.

In other words, the skew component of ∇u is in the kernel of C. Note that if C∇u = Ce = 0
then u is a rigid body motion.

Interface conditions for the fluid-structure interaction apply between the fluid and the
solid phase. Following (16), the boundary Γ: = ∂Ωs ∩ ∂Ωf is represented as a moving
interface with velocity vΓ. Enforcing global mass conservation in Ω we define:

ρf (v − vΓ) · n = ρs(u̇− vΓ) · n = g̃ on Γ, (2.7)
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where u̇, ρf and ρs are the solid phase velocity and the fluid and solid densities, respectively.
Here n is the unit vector normal to the interface pointing into the solid region, and g̃ is the
mass transfer rate per unit of surface area, which is assumed to be prescribed and strictly
positive in the case of solid phase growth. Equation (2.7) accounts for mass exchange
between the solid and fluid phase, and is equivalent to the following two scalar conditions:

ρs(u̇− vΓ) · n = g̃ on Γ, (2.8)

ρf (v − vΓ) · n = g̃ on Γ. (2.9)

Equations (2.8, 2.9) relate the interface velocity to the mass transfer rate g̃ and to the solid
and fluid velocities and densities, respectively. From (2.8) we obtain:

vΓ · n = u̇ · n−
g̃

ρs
on Γ. (2.10)

Substituting (2.10) into equation (2.9) gives:

ρfv · n− ρf u̇ · n+ ρf
g̃

ρs
= g̃ on Γ. (2.11)

Finally, dividing by ρf and rearranging terms, equation (2.11) yields the following jump
condition for the fluid and solid velocities at the interface:

(v − u̇) · n = g̃

(

1

ρf
−

1

ρs

)

on Γ. (2.12)

In order to simplify notation, we denote by g the right hand side of (2.12), so that

g := g̃

(

1

ρf
−

1

ρs

)

. (2.13)

The tangential components of the velocity and all components of the stress on Γ are
continuous across the interface, such that

τn = σn on Γ (2.14)

u̇ · t = v · t on Γ, (2.15)

where t is any unit vector tangent to the interface.

2.1 Kinematics of the moving interface

The interface velocity (which is directed along n), satisfies

vΓ · n = v · n−
g̃

ρf
= u̇ · n−

g̃

ρs
, (2.16)

where equations (2.8, 2.9) have been used for the simplification. The function g̃ accounts
for surface growth and should be constitutively specified according to the physical system
at hand. We further note that, as the interface is moving, the fluid and solid subdomains
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Ωs(t) and Ωf (t) change in time †. The assumptions underlying the material descriptions of
the solid and fluid phases (small deformation of the solid elastic phase, negligible inertia) do
not affect surface growth. The present framework allows for finite growth at a pore scale;
the position of the fluid-solid interface evolves in time according to the interface velocity
condition (2.16), and global mass conservation in Ω is ensured by the jump condition (2.12).
Assuming that the moving interface is described by F (x, t) = 0, its kinematics are described
by:

∂F

∂t
+∇F · vΓ = 0. (2.17)

Equations (2.2-2.5) describing the mechanics of the fluid and solid phases, together with the
interface conditions (2.12, 2.14, 2.15) and the kinematic relationships for the evolution of the
interface (2.16–2.17), represent the system of partial differential equations to be solved for
every x ∈ Ω and for every t ∈ (0, T ), T ∈ R

+, (subject to appropriate initial and boundary
conditions). When g̃ = 0, there is no growth and the normal components of the fluid and
solid velocities are equal and are the velocity of the interface itself. In this particular case
the problem reduces to a standard linearized fluid-structure interaction problem as in (29).

3. Non-dimensionalisation

Next we formulate the model in non-dimensional form in order to clarify the mutual weight
of the relevant physical mechanisms. The model derived in this paper does not aim to
be application-specific; as such, we do not motivate the non-dimensionalisation via specific
parameter values (see, e.g. (33) and (35) for biological tissues), but instead we perform a
formal non-dimensionalisation to highlight the proper asymptotic behaviour of the relevant
fields. We rescale

x = dx′, v =
Cr2

µc

v′, vΓ =
Cr2

µc

v′
Γ p = Cdp′, u = du′, t =

dµc

Cr2
t′,

g̃ = ρc
Cr2

µc

g̃′, µ = µcµ
′, ρs = ρcρ

′
s, ρf = ρcρ

′
f , C = CdC′,

g =
Cr2

µc

g′, g′ = g̃′

(

1

ρ′f
−

1

ρ′s

)

, τ = Cdτ ′, σ = Cdσ′, (3.1)

where C, ρc, µc denote the characteristic pressure gradient, density and viscosity,
respectively. Here, we scale the spatial coordinate and the elastic displacement by the
characteristic length scale of the domain d, whereas the non–dimensional form of the velocity
is suggested by the parabolic profile of a viscous fluid flowing in a straight channel of radius
r

V =
Cr2

µc

. (3.2)

Further, we scale pressure and stresses by adopting the same reference pressure gradient
exploited in (3.2), (multiplied by the reference length scale d) and time assuming d/V
as a reference time scale for slow flow of the fluid phase (which is analogous to that for
deformation of the elastic material).

† We avoid denoting this time dependence explicitly in the following sections for simplicity of notation
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Thus, exploiting (3.1) and dropping the prime notation for the sake of simplicity,
equations (2.2-2.5), (2.12, 2.14, 2.15) become:

∇ · σ = 0 in Ωf (3.3)

−pI+ ǫ2µ
(

∇v + (∇v)
T
)

= σ in Ωf (3.4)

∇ · v = 0 in Ωf (3.5)

τn = σn on Γ (3.6)

(v − u̇) · n = g on Γ (3.7)

u̇ · t = v · t on Γ (3.8)

∇ · τ = 0 in Ωs (3.9)

C∇u = τ in Ωs. (3.10)

The ǫ2 coefficient that appears in (3.4) follows when assuming a reference velocity of the
type (3.2) and is the standard scaling for Stokes’ flow in porous media (see for example
(4), (6), (29), and (36)), which reflects the asymptotic behaviour of the characteristic fluid
velocity in the pores, that scales with ǫ2 as ǫ→ 0, as noted in (5).
The kinematic condition is rewritten in non–dimensional form using the pore spatial scale

r, so that the relevant time scale is

Tg =
r

V
= ǫ

dµc

Cr2
. (3.11)

The interface kinematic equations (2.16, 2.17) with the time scale (3.11) yields, in non–
dimensional form

1

ǫ

∂F

∂t
+∇F · vΓ = 0, (3.12)

vΓ · n = v · n−
g̃

ρf
= u̇ · n−

g̃

ρs
, (3.13)

where the prime notation has again been neglected, and the ǫ−1 term appearing at the
left hand side of (3.12) accounts for the time scale separation between finite growth and
linearized motion of the material.

4. Multiple scales formulation

In this section we employ a formal two-scales asymptotic expansion widely exploited in the
literature (for example (4), (5), (6), (7) and (37)) to derive a continuum macroscale model
for the system of equations (3.3-3.10, 3.12-3.13). Since ǫ ≪ 1, we enforce a sharp length
scale separation between r (the microscale) and d (the macroscale), defining:

y: =
x

ǫ
. (4.1)

Following the usual approach in multiscale analysis, from now on x and y denote
independent variables, representing the macro and micro spatial scale, respectively. In
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the analysis that follows, all the fields (denoted collectively by ψ) and the elasticity tensor
C are functions of these independent spatial variables:

ψ = ψ(x,y, t), C = C(x,y),

and the differential operators transform accordingly,

∇ → ∇x +
1

ǫ
∇y. (4.2)

Now we formally perform the following multiple scales expansion in power series of ǫ for
every field ψ:

ψǫ(x,y, t) =

∞
∑

l=0

ψ(l)(x,y, t)ǫl. (4.3)

The components ψ(l) are defined for every x belonging to the macroscale domain, whereas
y spans only the specific portion of the microscale where ψ is defined. We further assume
regularity of the microstructure, so that every ψ(l) and C are y-periodic. This means
that local periodicity only is assumed, such that any (regular enough) macroscale variation
in any field ψ is in principle allowed. Furthermore, since the surface description F can
macroscopically vary, macroscale variations in the interface Γ are also permitted. A
schematic of the setup is shown in Figure 1.

Fig. 1 A 2D cartoon of the pore scale (left), depicting the porous structure of the medium on the
microscale and the corresponding homogenised one on the macroscale (right), where the geometry
of the microstructure is smoothed out.
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Under the transformation (4.2), equations (3.3-3.10, 3.12-3.13) become:

∇y · σǫ + ǫ∇x · σǫ = 0 in Ωf (4.4)

pǫI− ǫµ
(

∇yvǫ + (∇yvǫ)
T
)

− ǫ2µ
(

∇xvǫ + (∇xvǫ)
T
)

= σǫ in Ωf (4.5)

∇y · vǫ + ǫ∇x · vǫ = 0 in Ωf (4.6)

τǫn = σǫn on Γ (4.7)

u̇ǫ · t = vǫ · t on Γ (4.8)

vǫ · n− u̇ǫ · n = gǫ on Γ (4.9)

∇y · τǫ + ǫ∇x · τǫ = 0 in Ωs (4.10)

1

ǫ
C∇yuǫ + C∇xuǫ = τǫ in Ωs (4.11)

∂Fǫ

∂t
+∇yFǫ · vΓǫ + ǫ∇xFǫ · vΓǫ = 0 (4.12)

vΓǫ · n = vǫ · n−
g̃ǫ
ρf

= u̇ǫ · n−
g̃ǫ
ρs

on Γ, (4.13)

where pǫ, vǫ, uǫ, σǫ, τǫ, vΓǫ, g̃ǫ, gǫ, Fǫ are the representation in the power series form (4.3)
of the corresponding fields. Next we substitute power series expansions of the form (4.3)
into the relevant fields in (4.4-4.13); by equating coefficients of ǫl for l = 0, 1, ..., we derive
the macroscale model for the poroelastic growing medium in terms of the leading (zero-th)
order relevant fields.

5. The macroscopic model

In this section we derive a closed system of partial differential equations for the macroscopic
behaviour of the leading order fields p(0), v(0), u(0), by averaging over the zero-th and first
order systems corresponding to (4.4–4.13) .
Whenever a component of the asymptotic expansion retains a dependence on the

microscale y, we can take its integral average, defined as follows:

〈ψ〉k =
1

|Ω|

∫

Ωk

ψ(x,y, t) dy k = f, s, (5.1)

where |Ω| represents the volume of the domain and integration is performed over the
microscale y. Because of y-periodicity, the integral average can be performed over one
representative cell only (see Figure 1): from now on, (5.1) should be understood as a cell
average, where |Ω| is replaced by the cell volume and Ωk by the corresponding k-phase
subvolume.
Equating coefficients of ǫ0 in the system (4.4-4.13) yields:
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∇y · σ(0) = 0 in Ωf (5.2)

σ(0) = −p(0)I in Ωf (5.3)

∇y · v(0) = 0 in Ωf (5.4)

τ (0)n = σ(0)n on Γ (5.5)

u̇(0) · t = v(0) · t on Γ (5.6)

v(0) · n− u̇(0) · n = g(0) on Γ (5.7)

∇y · τ (0) = 0 in Ωs (5.8)

C∇yu
(0) = 0 in Ωs (5.9)

∂F (0)

∂t
+∇yF

(0) · v
(0)
Γ = 0 (5.10)

v
(0)
Γ · n = v(0) · n−

g̃(0)

ρf
= u̇(0) · n−

g̃(0)

ρs
on Γ, (5.11)

whereas equating coefficients of ǫ1 in equations (4.4-4.11) yields

∇y · σ(1) +∇x · σ(0) = 0 in Ωf (5.12)

−p(1)I+ µ
(

∇yv
(0) + (∇yv

(0))
T
)

= σ(1) in Ωf (5.13)

∇y · v(1) +∇x · v(0) = 0 in Ωf (5.14)

τ (1)n = σ(1)n on Γ (5.15)

u̇(1) · t = v(1) · t on Γ (5.16)

v(1) · n− u̇(1) · n = g(1) on Γ (5.17)

∇y · τ (1) +∇x · τ (0) = 0 in Ωs (5.18)

C

(

∇yu
(1) +∇xu

(0)
)

= τ (0) in Ωs. (5.19)

Equations (5.2-5.3) infer that p(0) does not depend on the microscale y, hence

p(0) = p(0)(x, t). (5.20)

Equation (5.9) implies, together with the elasticity tensor property (2.6), that u(0) must
correspond to a rigid body motion. Since the only y-periodic solution of this type is y-
constant, we see that:

u(0) = u(0)(x, t). (5.21)

Hence the leading order solid displacement field is also locally constant.

5.1 Macroscale fluid flow

In order to obtain information on the leading order velocity of the fluid v(0), we note that,
enforcing (5.3), equations (5.6-5.7,5.12-5.13) form a Stokes-type boundary value problem
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for (v(0), p(1)) which can be rewritten in terms of the relative fluid-solid displacement w

defined by:
ẇ(x,y, t): = v(0)(x,y, t)− u̇(0)(x, t), (5.22)

as follows:

µ∇2
y
ẇ −∇yp

(1) −∇xp
(0) = 0 in Ωf (5.23)

∇y · ẇ = 0 in Ωf (5.24)

ẇ · t = 0 on Γ (5.25)

ẇ · n = g(0) on Γ, (5.26)

where the knowledge that u(0) is locally constant has been explicitly used. Now we exploit
linearity together with (5.20) and propose the following ansatz for the solution (ẇ, p(1)):

ẇ = −W̃∇xp
(0) + h, (5.27)

p(1) = −P · ∇xp
(0) + ph, (5.28)

where p(1) is defined up to an arbitrary y-constant function and the quantities (W̃, P ),
(h, ph) satisfy the following differential cell problems, to be solved on the single
representative cell

µ∇2
y
W̃T −∇yP + I = 0 in Ωf (5.29)

∇y · W̃T = 0 in Ωf (5.30)

W̃ = 0 on Γ, (5.31)

µ∇2
y
h−∇yph = 0 in Ωf (5.32)

∇y · h = 0 in Ωf (5.33)

h · t = 0 on Γ (5.34)

h · n = g(0) on Γ. (5.35)

The above system of equations (5.29–5.31) and (5.32–5.35) are supplemented by periodicity
conditions on the unit cell in y, together with suitable uniqueness conditions for P , ph.
Example conditions are

〈P 〉f = 0, 〈ph〉f = 0. (5.36)

Exploiting definition (5.22) and equation (5.27), we notice that v(0), and hence its cell
average, can be recovered in terms of p(0) and u(0) as follows:

〈ẇ〉f =
〈

v(0)
〉

f
− φu̇(0) = −

〈

W̃

〉

f
∇xp

(0) + 〈h〉f , (5.37)

where

φ(x, t): =
|Ωf |

|Ω|
(5.38)

is the porosity of the material.
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Remark 5.1. Exploiting the local incompressibility constraint (5.33) together with interface
condition (5.35) and y-periodicity, we note that:

0 =

∫

Ωf

∇y · h dy =

∫

∂Ωf

h · n dSy =

∫

Γ

h · n dSy =

∫

Γ

g(0) dSy. (5.39)

Hence, the cell problem (5.32-5.35) has a solution if and only if the compatibility condition
∫

Γ

g(0) dSy = 0 (5.40)

is satisfied. Given that

g(0) = g̃(0)
(

1

ρf
−

1

ρs

)

, (5.41)

and g̃(0) 6= 0 when surface growth is occurring, condition (5.40) is automatically satisfied
whenever the density difference between the fluid and solid compartment is negligible,

ρf = ρs. (5.42)

In this case, every g(l) for l = 0, 1, ... and in particular g(0) reduces to zero and the unique
solution of the cell problem (5.32-5.35) is h = 0. This is not surprising, as the interface
condition (5.35) is directly related to the jump condition (5.26), that arises from mass
conservation for a moving interface. Indeed, if ρf = ρs, then mass conservation is automatic,
the fluid and solid velocities on the interface are equal, and as a consequence h ·n = 0 on Γ.
It is worth remarking that, g(0) = 0 does not imply g̃(0) = 0: the interface moves in
absence of a density difference, with leading-order velocity driven by g̃(0) and provided by
equation (5.11). The assumption (5.42) applies in most applications of interest, for example
interstitial fluid versus cells in biological tissues, or water versus ice in glaciers.
Whenever (5.42) does not apply and there is a density jump between the solid and fluid

phases, possible choices for the growth law g̃(0) are restricted by the compatibility condition
(5.40). For example, any functional form of g̃(0) that takes the form

g̃(0) = v∗ · n (5.43)

satisfies the compatibility condition (5.40) provided that v∗ is a locally divergence-free
vector field,

∇y · v∗ = 0 in Ωf . (5.44)

Clearly, a prescription of the type (5.43) is in general time-dependent because n evolves
in time while the interface is moving. In practice in this scenario, given a suitable initial
condition on the interface position, it suffices to prescribe the velocity field v∗ (satisfying
(5.44)); from here the updated interface normal vector n may be calculated using the
leading-order kinematics of the interface (5.10) for every t ∈ (0, T ).

5.2 Effective poroelasticity

Finally, we require a set of macroscale equations to close the system for the solid
displacement u(0) and the fluid pressure p(0). Taking the integral average of the sum of
(5.12) and (5.18) and using the divergence theorem yields

1

|Ω|

∫

Γ

(

σ(1)n− τ (1)n
)

dSy =
〈

∇x · τ (0)
〉

s
− φ∇xp

(0), (5.45)
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where the contributions from the periodic boundaries cancel and the knowledge that p(0)

is locally constant has been exploited. Given the normal stress condition on internal
boundaries (5.15), (5.45) reduces to:

〈

∇x · τ (0)
〉

s
− φ∇xp

(0) = 0. (5.46)

Equation (5.46) can be rewritten in terms of
〈

τ (0)
〉

s
by means of the Reynolds transport

theorem (see for example (6)) and using y-periodicity, namely:

∫

Ωs

∇x · τ (0) dy = ∇x ·

∫

Ωs

τ (0) dy +

∫

Γ

τ (0)q dSy, (5.47)

where the vector q, which accounts for macroscale variations in the interface Γ, is defined
by

q: = (∇xr(x,y, t))
T
n. (5.48)

Here the fact that the unit outward normal vector to ∂Ωs is −n has been used in the
simplification. The vector r (see Figure 2), which spans the interface Γ, should be recovered
by integration of the interface descriptor (5.10). When each Ωk is independent of the
macroscale, q = 0 and we say that the medium is macroscopically uniform. Using (5.46)
together with (5.47) we obtain:

∇x ·
〈

τ (0)
〉

s
− φ∇xp

(0) + sτ = 0, (5.49)

where

sτ : =
1

|Ω|

∫

Γ

τ (0)q dSy (5.50)

is the momentum production due to macroscopic changes in the solid-fluid interface.
Now we notice that (5.5, 5.8, 5.19) form a linear Neumann-type differential problem for

u(1) which can be written, enforcing (5.20, 5.21), as follows:

∇y ·
(

C∇yu
(1)
)

= 0 in Ωs (5.51)
(

C∇yu
(1) + C∇xu

(0)
)

n = −p(0)n on Γ, (5.52)

equipped with y-periodicity in Ωs. Since u
(1) is guaranteed to be a bounded vector function

of y by local periodicity, then the solution is found to be unique up to an arbitrary y-constant
vector field and can be expressed, exploiting linearity of the problem, as:

u(1) = A∇xu
(0) + ap(0), (5.53)

where A is a rank three tensor, with components denoted Aijk for i, j, k = 1, 2, 3.
The cell problem for the vector a is given by:

∇y · (C∇ya) = 0 in Ωs (5.54)

(C∇ya)n = −n on Γ, (5.55)
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Fig. 2 2D schematic of a non-macroscopically uniform medium. In this case, the model supports
macroscale variations of the microstructure so that, for every fixed t ∈ (0, T ), the interface position
vector r related to the same (homologous by y-periodicity) local point is varying with respect to x,
that is r(xa,y, t) 6= r(xb,y, t). Whenever the medium exhibits such variations, one cell problem
for every x of the homogenised domain needs to be solved.

whereas A satisfies, in component notation:

∂

∂yj

(

Cijkl

∂Akνγ

∂yl

)

= 0 in Ωs (5.56)

Cijkl

∂Akνγ

∂yl
nj + Cijνγnj = 0 on Γ, (5.57)

where i, j, k, l, ν, γ = 1...3 and summation over repeated notation indices is used.
As previously, a further condition for a and each Aijk is required to ensure uniqueness;
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example conditions are:

〈a〉s = 0, 〈Aijk〉s = 0 ∀ i, j, k = 1...3. (5.58)

Note that, since u(1) is directly related to the leading order solid stress tensor via (5.19),
the form of u(1) given by (5.53) indicates that τ (0) (and also its cell average) is a function of
both the gradient of the leading order solid displacement and the macroscopic fluid pressure
p(0), as expected for a poroelastic material. In fact, enforcing equation (5.53), we can exploit
equation (5.19), which relates the leading order solid stress tensor to ∇xu

(0) and ∇yu
(1),

to provide an explicit relationship for τ (0) as a function of ∇xu
(0) and p(0), namely:

τ (0) = (CM+ C)∇xu
(0) + CQp(0), (5.59)

where the fourth rank tensor M and the second rank tensor Q are defined as follows:

M: = ∇yA, Q: = ∇ya. (5.60)

Now, (5.49-5.50) can be regarded as the effective macroscale stress equilibrium equations
for the poroelastic medium.
A final scalar equation is required to close the macroscale model for the zeroth order

variables u(0),
〈

v(0)
〉

f
, p(0) and this is provided by averaging the incompressibility condition

(5.14) to give:
〈

∇y · v(1)
〉

f
+
〈

∇x · v(0)
〉

f
= 0. (5.61)

Applying the divergence theorem in the y variable, y-periodicity together with equation
(5.17), and the Reynolds theorem in x gives:

1

|Ω|

∫

Γ

u̇(1) · n dSy +∇x ·
〈

v(0)
〉

f
− sv = 0 (5.62)

where

sv: =
1

|Ω|

∫

Γ

(v(0) · q − g(1)) dSy (5.63)

is an effective mass source which is related to both the lack of macroscopic uniformity and
to surface accretion (through g(1)). Since

∫

Γ

u̇(1) · n dSy = −

∫

Ωs

∇y · u̇(1) dy = −

∫

Ωs

Tr (∇yu̇
(1)) dy, (5.64)

equation (5.62) can be rewritten by means of (5.53) and (5.60), accounting for (5.20, 5.21),
as follows:

∇x ·
〈

v(0)
〉

=
〈

Tr Ṁ
〉

s
: ∇xu

(0)+〈TrM〉s : ∇xu̇
(0)+

〈

Tr Q̇
〉

s
p(0)+〈TrQ〉s ṗ

(0)+sv (5.65)

Having derived the new effective model on the macroscale, in the next sections we discuss the
physical relevance of the various terms before comparing it against traditional poroelastic
frameworks in the literature.
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6. Discussion of the results

We have derived the homogenised macroscale model for the mechanical behaviour of a
poroelastic medium, incorporating surface growth of the solid phase (provided that a
suitable growth law is imposed constitutively). Equations (5.37, 5.49, 5.65) form the
effective macroscale differential system to be solved for a growing poroelastic medium,
provided that the time evolution of the microstructure is updated by (5.10-5.11). It is a
closed system for the leading order fields

〈

v(0)
〉

f
, u(0), p(0), which are functions of x and

t only; substituting (5.27) and (5.59) into (5.49), (5.65) yields a self-consistent system of
partial differential equations for the leading order displacement and pressure fields u(0) and
p(0), so that the average fluid velocity

〈

v(0)
〉

f
can be finally recovered by means of (5.37).

The macroscale behavior of the fluid flow is given by an effective Darcy-type law for the
relative average velocity 〈ẇ〉f =

〈

v(0)
〉

f
−φu̇(0) given by (5.37). The effective permeability

tensor
〈

W̃

〉

f
(x, t) provides the link between macroscale fluid transport and the pore-scale

geometry and dynamics. The correction velocity 〈h〉f on the left hand side of (5.37)
comes from global mass conservation (the solid and fluid phases exchange mass without
any surface source), and vanishes whenever there is no density difference between the two
compartments.

The effective stress equilibrium equations (5.49) can be written in the form:

∇x · τE = −sτ , (6.1)

where

τE : =
〈

τ (0)
〉

s
− φp(0)I = 〈CM+ C〉s ∇xu

(0) + (〈CQ〉s − φI) p(0). (6.2)

Equations (6.1) and (6.2) can be formally viewed as the average force balance equations
for the poroelastic medium.

The scalar equation (5.65), which in standard poroelasticity directly relates the pressure
to the fluid and solid phases motion, here encodes instead both the surface growth and the
movement of the material. The two terms on the right hand side, including time derivatives
of the fields p(0) and u(0), are related to the small displacement of the structure. The two
terms including the time derivatives of the coefficients (Tr Ṁ, Tr Q̇) account for the interplay
between the elastic movement of the structure and surface growth. In fact, they reduce to
zero both in the no growth limit (the coefficients are no longer varying in time) and in the
rigid limit (every u(l) for l = 0, 1, . . . reduces to zero, implying that, through (5.53) and
(5.60), Q = 0).

Remark 6.1. Since the interface Γ is moving, it should be understood that every cell
problem must be solved in the evolving geometry, described by the leading-order equation
for transport of the interface (5.10). As a result, the cell variables W̃, P , h, ph, A, a are
microscale variables, and depend on t as well as x. Hence, although the effect of growth
is purely geometrical at the microscale, it impacts on the macroscale model through the
dependence of such variables on the microscale geometry. This represents a crucial difference
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compared to previous works, where the cell problems and the related macroscale coefficients
do not involve any time dependence (see for example (33) and (36)).

Remark 6.2. When the elasticity tensor C is y-constant, the unique (up to a y-constant
vector field) solution of (5.51-5.52) can be written in the form:

u(1) = A∇xu
(0) + ap(0) = ÃC∇xu

(0) + ap(0), (6.3)

where the three-rank tensor Ã solves, componentwise:

∂

∂yj

(

Cijkl

∂Ãkνγ

∂yl

)

= 0 in Ωs (6.4)

Cijkl

∂Ãkνγ

∂yl
nj + δiνδjγnj = 0 on Γ. (6.5)

Hence, defining the tensor:
L: = ∇yÃ (6.6)

yields
∇yu

(1) = M∇xu
(0) + Qp(0) = LC∇xu

(0) + Qp(0), (6.7)

so that M = LC. Furthermore, comparing (6.4-6.5) with the cell problem for a given by
(5.54-5.55), we deduce that

Tr Ã = a, (6.8)

or, in component notation,
Ãikk = ai, i = 1...3, (6.9)

up to an y-constant vector.
In summary, in the simplified scenario of a locally constant elasticity tensor, once Ã is

calculated solving the cell problem (6.4-6.5), it suffices to exploit (6.9) to obtain the vector
a and hence the tensors Q and L via (5.60) and (6.6).

6.1 Macroscopic uniformity

The momentum source sτ and the mass source sv are both related to variations of the
interface position vector r with respect to x; these contributions arise when a poroelastic
growing medium is not macroscopically uniform, so that Ωk = Ωk(x,y) and in particular
q 6= 0. The vector q reduces to zero whenever r = r(y, t) only and this implies, in turn, that
both the initial value for the interface position and the interface velocity are x-constant, so
that:

F
(0)
0 = F

(0)
0 (y), (6.10)

v
(0)
Γ = v

(0)
Γ (y, t), ∀t ∈ (0, T ), (6.11)

where F
(0)
0 = F (0)|t=0. However, the interface velocity is directly related to the growth law

g̃ (see equation 2.16), so that, since we have assumed that movement of the interface is
dominated by surface accretion, condition (6.11) is equivalent to:

g̃(0) = g̃(0)(y, t) ∀t ∈ (0, T ). (6.12)
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Whenever the medium is macroscopically uniform sτ and sv simplify to:

sτ = 0, (6.13)

sv = −
1

|Ω|

∫

Γ

g(1)(y, t) dSy, (6.14)

and the macroscale model to be solved becomes



















〈

v(0)
〉

f
− φu̇(0) = −

〈

W̃

〉

f
∇xp

(0) + 〈h〉f , (6.15)

∇x · τE = 0,

∇x ·
〈

v(0)
〉

f
=
〈

Tr Ṁ
〉

s
: ∇xu

(0) + 〈TrM〉s : ∇xu̇
(0) +

〈

Tr Q̇
〉

s
p(0) + 〈TrQ〉s ṗ

(0) + sv,

where (6.2) represents the effective constitutive relationship for the poroelastic growing
medium.
Whenever macroscopic uniformity applies, the following solution scheme for the

macroscale model applies:

1. Fix material properties of the medium ρs, ρf , µ, and elastic moduli C.
2. Fix a microscale structure, including a unit cell definition together with an initial value

for the interface position F
(0)
0 (y).

3. Prescribe constitutively a growth law g̃, so that every g̃(l) for l = 0, 1... is defined. In
particular, g(0) must satisfy the compatibility condition (5.40). Whenever the densities
of the solid and fluid phases are equal (ρs = ρf ), every g

(l) = 0 for l = 0, 1, . . . so the
compatibility condition (5.40) is automatic and h = 0.

4. Fix a macroscale geometry and corresponding boundary conditions.
5. Solve the cell problems (5.29-5.30), (5.32-5.33), (5.54-5.55), (5.56-5.57) and calculate

the corresponding macroscale model coefficients exploiting (5.1) and (5.60).
6. Solve the macroscale model (6.15), using (6.2) as the effective constitutive relationship

for the material.
7. Update the interface position by means of equation (5.10), where the leading-order

interface velocity is recovered by relationship (5.11).
8. Repeat the calculations explained in (5,6,7) for every t ∈ (0, T ).

It is worth remarking that, whenever the medium is not macroscopically uniform, additional
momentum and mass sources of the form (5.50, 5.63) must be taken into account. Further,
the interface position would depend on the macroscale variable x, so that, in principle,
every cell problem should be solved for each x belonging to the macroscale domain (see
Figure 2). Hence, in this scenario, computational feasibility may be compromised.

7. Particular cases

In this section we focus on specific physical regimes, namely the no-growth limit and the
macroscopic isotropy of the poroelastic material. These particular cases are chosen as they
coincide with traditional literature results, namely the standard poroelasticity models of
Burridge and Keller (29), and also a physically-relevant special case.
In order to avoid unessential technicalities and to better highlight the results, in the

following we assume that C is y-constant, so that the considerations in Remark 6.2 apply.
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7.1 No growth limit and comparison with standard poroelasticity

In the limiting case of no growth, we compare our model to the classical poroelasticity
results. In particular, we refer to (29), where the authors derive a set of equations for a
poroelastic medium by means of a multiscale approach, that matches the classical Biot’s
system of equations, reported in (30) and (31), in the case of macroscopic uniformity.

Thus, setting g̃ = 0 and q = 0 our results, written for the average relative fluid-solid
velocity 〈ẇ〉f , the leading order elastic displacement u(0) and the leading order pressure

p(0), reduce to:











































〈ẇ〉f = −
〈

W̃

〉

f
∇xp

(0) (7.1)

∇x ·
〈

τ (0)
〉

s
− φ∇xp

(0) = 0 (7.2)

ṗ(0) =
1

〈TrQ〉s

[

Tr
(

φ∇xu̇
(0) −

〈

LC∇xu̇
(0)
〉

s

)

+∇x · 〈ẇ〉f

]

(7.3)

〈

τ (0)
〉

s
= 〈CLC+ C〉s ∇xu

(0) + 〈CQ〉s p
(0), (7.4)

where in (7.3) terms have been rearranged and the interface is assumed fixed, so that the
coefficients are no longer varying in time. Since we are in a linearized motion context
and the subdomains Ωf and Ωs are no longer time dependent, following (29), we focus on
linearized dynamics. We consider time harmonic motion with angular frequency ω, such
that for every field ψ we have:

ψ̇ = iωψ. (7.5)

Then (7.1-7.3) become























〈w〉f = −〈 W〉f ∇xp
(0) (7.6)

∇x ·
〈

τ (0)
〉

s
− φ∇xp

(0) = 0 (7.7)

p(0) =
1

〈TrQ〉s

[

φ∇x · u(0) − Tr 〈LC〉s : ∇xu
(0) +∇x · 〈w〉f

]

, (7.8)

where W =
1

iω
W̃ solves

iωµ∇2
y
WT −∇yP + I = 0 in Ωf (7.9)

∇y ·WT = 0 in Ωf (7.10)

W = 0 on Γ. (7.11)

This system recovers the results of (29) †, when they are simplified to the quasistatic
scenario. Furthermore, the scalar coefficient multiplying the square brackets in (7.8), which
is, in the present framework, directly related to the geometric and mechanical properties of

† Equations (7.4,7.6-7.8) are equivalent to (36a, 39a, 39b, 36b), page 1443, (29), where average quantities
are represented by the superscript ¯ instead of brackets 〈 〉 and the porosity is denoted by Vf instead of φ.
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the elastic phase only, should be compared to the one in (29)‡ given, in our notation, by

−
κ

φ− κ 〈TrQ〉s
, (7.12)

where κ denotes the bulk modulus. Since incompressibility of the fluid phase is assumed
here,

lim
κ→∞

(

−
κ

φ− κ 〈TrQ〉s

)

=
1

〈TrQ〉s
, (7.13)

and hence standard poroelasticity is recovered. Note that, as in (29), if the solid matrix is
rigid, u(l) = 0 for every l, ẇ = v(0) and Q = 0. Thus rearranging terms, equations (7.6,7.8)
are sufficient to close the system for (v(0), p(0)), which reduces to:











〈

v(0)
〉

f
= −

〈

W̃

〉

f
∇xp

(0) (7.14)

∇x ·
〈

v(0)
〉

f
= 0, (7.15)

so that we recover the simple incompressible Darcy’s flow when a rigid, non-growing solid
phase is assumed.

Remark 7.1. In this work we assume quasistatic dynamical conditions and incompressibility
of the fluid phase, a restriction with respect to the regime addressed in (29). These
assumptions can be easily relaxed but add no increased physical insight. Moreover, we
assume local periodicity, whereas in (29) every field is simply a bounded function of y.
Our formulation can nevertheless be generalized to local boundness, when assuming that
Γ = ∂Ωs = ∂Ωf . In this case, the results would be formally equivalent, but substantially
different, because the resulting microscale differential problems would not be cell -decoupled
problems and they would have to be solved on the whole microscale domain. It is worth
remarking that the present formulation allows us to account for arbitrary macroscale
boundary conditions, the latter prescribed, for example, by another mechanical system
interacting with the poroelastic growing medium.

7.2 Macroscopically isotropic medium

When the poroelastic medium is macroscopically isotropic, we obtain

〈

W̃

〉

f
=

k

µ
I (7.16)

〈TrLC〉s = αI (7.17)

〈Q〉s = βI → 〈TrQ〉s = 3β (7.18)

〈CLC+ C〉s ∇xu
(0) = λ∇x · u(0)I+ 2µ̂e(0), (7.19)

‡ We refer to equations (36b,37), page 1443, (29)
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where

e(0): =
1

2

[

∇xu
(0) + (∇xu

(0))
T
]

,

and k, λ, µ̂ formally play the role of an effective permeability and Lamé constants
respectively, whereas α and β are poroelastic parameters. Note that α, λ, β and µ̂ depend
both on the evolving microstructure and on the microscale elastic properties of the medium,
whereas k is purely geometric and, in general, all of them are functions of x and t. Following
Remark 6.2, we adapt results (5.37,5.49,5.65) accordingly and exploit (7.16-7.19), so that,
for a macroscopically isotropic poroelastic growing medium, the system of equations to be
solved reads:























〈

v(0)
〉

f
− φu̇(0) = −

k

µ
∇xp

(0) + 〈h〉f (7.20)

∇x · τE = −sτ (7.21)

∇x ·
〈

v(0)
〉

f
= α̇∇x · u(0) + α∇x · u̇(0) + 3β̇p(0) + 3βṗ(0) + sv, (7.22)

while the effective isotropic constitutive relationship is:

τE : =
[

λ∇x · u(0) + (α− φ)p(0)
]

I+ 2µ̂e(0). (7.23)

8. Conclusions

We have developed a theoretical model which describes the macroscopic behaviour of a
poroelastic medium, when surface mass exchange occurs in the pores. The starting point
is a coupled description of linear elasticity and Stokes’ flow of the solid and fluid phases
at the pore-scale. The solid and fluid mechanics are coupled through continuity of stress
and mass flow on the displacing solid-fluid interface. Next, homogenisation via multiple
scales yields the effective model on the macroscale. The result is a new system of equations
for a poroelastic medium where time-dependent growth is encoded in the coefficients of
the model; these coefficients can be computed by solving cell problems on the evolving
microstructure.
The fluid flow is described through a Darcy-type law (5.37) for the relative average

velocity of the fluid and solid phase, with an associated permeability tensor that captures
the dependence on the pore-scale structure. A correction velocity 〈h〉f appears as a
consequence of the global transfer of mass between the solid and fluid phases. The
mechanical properties of the poroelastic growing medium are directly encoded in a new
effective constitutive relationship (5.59) which accounts for the fluid pressure in the pore,
small elastic displacement of the structure and surface accretion of the solid phase. The
interplay between the strain of the structure and appositional growth resides in the effective
mass source contributions.
When macroscopic uniformity applies, the model simplifies and a solution strategy is

provided. Limiting cases of the model are explored: in absence of growth, the model reduces
to the classical result of Burridge and Keller (29), while the assumption of isotropic growth
leads to a much simpler set of equations. In the latter scenario, hydraulic and mechanical
parameters are recovered, which formally play the role of effective permeability and Lamé
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moduli, respectively. A distinction can be made between parameters which depend purely
on the evolving microstructure and pore scale elastic properties of the medium, and those
which are purely geometric.
The homogenised set of equations has been obtained under assumption of periodic

microstructure, infinitesimal strain and slow flow. While a slow modulation of the
periodicity could be introduced without affecting the main results, the physical assumptions
underlying the use of linear elasticity and Stokes’ equations cannot be relaxed.
There are numerous opportunities for extension and application of the model presented

here to specific mechanical systems. A natural development is to compare predictions of
our new model to the classical description of Biot in the context of specific pore-scale
structures. (In (38) the authors account for surface growth of a rigid solid porous medium,
and numerical solutions of the resulting model are explored). In general, a critical next step
in the application of the models derived here is to introduce constitutive equations for the
mass exchange rate g̃, motivated by the specific application under consideration. This will
enable simulations to be performed, model testing and prediction.
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