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Abstract

In this work we propose a new numerical procedure for the simulation of time-
dependent problems based on the coupling between the finite element method
and the lattice Boltzmann method. The two methods are regarded as macroscale
and mesoscale solvers, respectively.
The procedure is based on the Parareal paradigm and allows for a truly mul-
tiscale coupling between two numerical methods having optimal efficiency at
different space and time scales. The motivations behind this approach are man-
ifold. Among others, we have that one technique may be more efficient, or
physically more appropriate or less memory consuming than the other depend-
ing on the target of the simulation and/or on the sub-region of the computational
domain.
The theoretical and numerical framework is presented for parabolic equations
even though its potential applicability is much wider (e.g. Navier-Stokes equa-
tions). Various numerical examples on the heat equation will validate the pro-
posed procedure and illustrate its multiple advantages.

Keywords: finite element method, lattice Boltzmann method, multiscale
coupling, Parareal, parallel-in-time domain decomposition.

1. Introduction

Despite the advances in computer technology and breakthroughs in numerical
methods, still there are important challenges in the modeling and simulation of
systems that exhibit a degree of complexity and diversity spanning across many
spatiotemporal scales (e.g. macroscopic, mesoscopic and microcopic scales).
Example of these multiscale problems can be found in diverse fields such as
thermodynamics [46], material science [60], fluid flows [18], biology [22] and
biomechanics [59], just to mention a few.
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The challenges related to the development of multiscale frameworks are essen-
tially twofold. On the one hand, the different equations and variables describ-
ing the process over the various scales must be consistently coupled (by e.g.
weighted averages or homogenization techniques [43]). On the other hand, nu-
merical procedures that take systematically into account all the scales have
to be developed. This last point is often hardly achievable adopting a single
numerical approach over all the spatiotemporal scales, either for lack of com-
putational efficiency or for lack of physical relevance. For instance, molecular
dynamics modeling is suitable for microscale problems but experience limita-
tions in problems with computational domains larger than a few millimeters in
size [30, 33, 58, 53].
Therefore none of the existing numerical method is currently acknowledged to
be suited and optimally efficient for all the physical scales; but for each scale
a number of suitable methods can be identified. For example, it is widely
accepted that classical continuum methods such as the finite difference method
(FDM) [50], the finite element method (FEM) [45] and the finite volume method
(FVM) [16] are suited for macroscale problems. Similarly the lattice Boltzmann
method (LBM) [51], the dissipative particle dynamics (DPD) [42] and the direct
simulation Monte Carlo method (DSMC) [7] belong to the class of mesoscopic
methods, while numerical approaches like molecular dynamics (MD) [25] and
quantum dynamics (QD) [34, 56] can be regarded as microscopic methods.
A number of works dealing with multiscale problems proposed hybrid approaches
based on a combination of various numerical techniques in order to overcome the
above mentioned difficulty. These frameworks, also named composite computa-
tional methods, employ on each scale a different numerical method, aiming at the
best numerical efficiency and physical accuracy. Examples of these approaches
are numerous. Among others we recall the bridging scale method presented
in [57, 54] for the atomistic-continuum coupling of MD and FEM. A similar
technique adopted in [33] couples the mesoscopic and macroscopic scales using
DPD and FEM. A full micro-meso-macro coupling, the so-called triple-decker,
has been investigated in [18] with MD, DPD and FEM.
In the field of the lattice Boltzmann method, the general multiscale theory has
been covered in [52]. For this mesoscopic method different hybrid approaches
have been considered in various micro-meso applications. Results have been
presented for instance in nanoflows through disordered media [47], DNA translo-
cation [22, 41] and dense fluids [12, 13]. On the contrary, the coupling between
LBM and macroscale methods has been addressed only in a few works. In [2, 3] a
FDM-LBM coupling has been presented for the heat equation, the same coupling
is applied also to reaction-diffusion problems in [55] and to the Navier-Stokes
equations in [35, Chapter 7]. For the same fluid equations a FVM-LBM coupling
has been considered in [38, 61].
Neglecting the differences related to the physical problem and to the macroscopic
method considered, the cited works have two main elements in common, specifi-
cally the derivation of the coupling conditions and the coupling technique. The
meso-macro coupling conditions have been obtained by means of a Chapman-
Enskog expansion (up to the appropriate order) of the lattice Boltzmann equa-

2



tion (see for example [2, 61]). For the coupling an overlapping Schwarz domain
decomposition technique is adopted: the computational domain is decomposed
in two subregions, one for the LBM, the other for the macroscale method. An
overlapping interface region is used to exchange the coupling information be-
tween the two methods (see Figure 1). Moreover, only the case of uniform
structured meshes with a constant ratio (of 1 or 2) between the two mesh sizes
has been considered (see e.g. [3]).

FDM/FVM LBM

Figure 1: Sketch of the overlapping Schwarz method for the existing meso-macro coupling
with LBM. Squares and circles identify the degrees of freedom (DOF) for the two methods,
that are separately applied on the two regions. The filled squares and circles are the respective
interface DOF.

In this work, we still consider a macro-meso coupling, but using FEM and LBM.
The choice of FEM at a macroscale level is motivated by its well-assessed math-
ematical framework [45, 15] and by its flexibility in the treatment of complex
boundary and interface conditions. As in the previous literature, our approach
is also based on the Chapman-Enskog expansion to derive the transmission con-
ditions between LBM and FEM, but the overall coupling algorithm is different
and introduces new features, namely:

1. the LBM is applied on a subregion of the whole computational domain
where the problem is solved with FEM (Figure 2). In this perspective
the LBM can be truly reinterpreted as a fine grain solver applied in a
localized patch, whereas the FEM is a coarse grain solver applied globally.
Additionally, the two spatial discretizations can be chosen independently
(yielding non-conforming grids of arbitrary sizes). These characteristics
are shared with numerical zoom methods, e.g. [24, 4, 27].

2. the coupling strategy relies on a time domain decomposition approach
given by the Parareal algorithm [37, 17, 39, 23]. This naturally fits our
multiscale evolutive problem and enhances the computational performance
through parallelization in time. Different time discretizations may be cho-
sen for the two scales provided that the timestep of FEM is a multiple of
the LBM one.
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FEM

LBM

Figure 2: Example of the spatial discretization in our meso-macro coupling between LBM and
FEM.

In the aforementioned works, the time-coupling strategy is purely sequential.
For simulations on long time intervals, this may be time-consuming, even more
considering the restriction on the timestep of the LBM due to a CFL-type condi-
tion. This computational difficulty also appears in current numerical zoom tech-
niques when applied to evolution equations, since multiple Schwarz iterations
are required at each time step. Conversely, our method takes full advantage of
the Parareal algorithm to overcome this problem. Indeed, the macroscopic prob-
lem is considered as a coarse prediction of the solution on the whole space/time
domain, whereas the mesoscopic problem serves as a fine description (in space
and time) which locally improves the coarse one. The Parareal algorithm pre-
dicts first sequentially an approximation of the solution with the coarse FEM
solver. Then, a precise computation with the fine LBM solver is carried out in
parallel on each coarse time interval, in order to correct iteratively the first inac-
curate prediction. In comparison to the previous approaches, this configuration
reduces the size of the time interval for LBM computations. Instead of applying
the LBM solver sequentially on the total time interval, we solve in parallel a
finite number of mesoscopic problems over smaller time intervals, each one of
length equal to the coarse timestep.
In this study, for the sake of simplicity, we consider a simplified model problem:
the two-dimensional heat equation. Extension to more complex cases will be ob-
ject of future works. The outline of the paper is as follows. The model problem,
its finite element and lattice Boltzmann approximations are described in Sec-
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tion 2. Section 3 presents the derivation of the spatial coupling between FEM
and LBM, and defines the coarse and fine propagators as well as the required
transmission operators between the two scales. In Section 4, we describe our
version of the Parareal algorithm for coupling in time. Section 5 is dedicated to
numerical experiments. Finally, concluding remarks and perspectives are drawn
in Section 6.

2. Model problem and setting

Let Ωc be an open bounded domain of R2, with a Lipschitz-continuous boundary
Γ := ∂Ωc. In the time interval (0, T ) (T > 0), let us consider the following model
problem on Ωc:
Find u : Ωc × (0, T )→ R such that:

∂u

∂t
− µ∆u = F in Ωc × (0, T ),

u = g on Γ× (0, T ),

u(·, 0) = u0 in Ωc,

(1)

where ∆ is the Laplace operator, F : Ω × (0, T ) → R, g : Γ × (0, T ) → R are
given functions, u0 is the initial condition and µ > 0 is the diffusion coefficient.
Note that the problem is formulated here with a Dirichlet boundary condition,
for the sake of simplicity, but other kind of boundary conditions can be taken
into account (see §5.4 for such an example).
Let now Ωf be a subset of Ωc (see Figure 3). In the larger domain Ωc the model
problem (1) will be solved with FEM using a coarse mesh, while in the smaller
domain Ωf with LBM. In the following subsections 2.1 and 2.2, we recall the
basics of each numerical method for problem (1).

Figure 3: The two domains for FEM and LBM solving.
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2.1. Finite element approximation

We first semi-discretize the problem (1) in space using finite elements. We note
T H a coarse mesh of the domain Ωc (H = maxK∈T H HK , with HK being the
diameter of the mesh element K). The mesh is supposed regular, i.e. there
exists σ > 0 such that ∀K ∈ T H , HK/ρK ≤ σ where ρK denotes the radius of
the inscribed circle in K. We choose standard continuous and piecewise affine
finite element spaces:

V H =
{
vH ∈ C(Ωc) : vH |K ∈ P1(K), ∀K ∈ T H

}
,

V H
0 =

{
vH ∈ V H : vH = 0 on Γ

}
.

The semi-discretized FEM problem reads, for all t ∈ (0, T ):







Find uH(t) ∈ V H , uH(t) = gH(t) on Γ, such that:

d

dt

∫

Ωc

uH(t)vH + µ

∫

Ωc

∇uH(t) · ∇vH =

∫

Ωc

F (t)vH , ∀ vH ∈ V H
0 ,

uH(0) = u0
H ,

(2)

where u0
H (resp. gH) is a FE approximation (e.g, the interpolant) of u0 (resp.

g) on V H .
For the complete discretization in space and time, let ∆t > 0 be the time-step
for the macroscale problem, and consider a uniform discretization of the time
interval (0, T ): (t0, . . . , tN ), with tn = n∆t, n = 0, . . . , N . We choose for the
sake of simplicity to semi-discretize in time the problem (2) using a backward
Euler scheme (however this is not resctrictive). We note un−1

H the resulting
discretized solution of (2) at time step tn−1. For n ≥ 1, the fully discretized
FEM problem reads:







Find un
H ∈ V H , un

H = gnH on Γ, such that:
∫

Ωc

un
H − un−1

H

∆t
vH + µ

∫

Ωc

∇un
H · ∇vH =

∫

Ωc

FnvH , ∀ vH ∈ V H
0 ,

(3)

where Fn = F (tn) and gnH = gH(tn) are values of source term F and boundary
term gH at time tn.

2.2. Lattice Boltzmann approximation

The lattice Boltzmann formulation of problem (1) is a particular case of the
lattice Boltzmann advection-diffusion model [11, 29], that can be retrieved from
an appropriate discretization of the Boltzmann-Maxwell equation

(
∂t + e ·∇x + F ·∇e

)
f(e,x, t) = J(f)(x, t), x ∈ Ωf , t > 0. (4)

Equation (4) is a mesoscopic conservation equation for the particle distribution
function f(e,x, t), so that f(e,x, t)dedx is the total mass of particles inside the
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infinitesimal volume element dedx at a fixed time, position and velocity. The
quantity F represents the external force while the term J , also called collision
operator, takes into account the effects of inter-particle collisions.
In order to derive the lattice Boltzmann approximation of (1) from (4), a proce-
dure similar to that presented in [48] can be adopted. First the velocity space is
approximated by projecting the distribution function f onto a Hilbert subspace
HN spanned by the first N Hermite polynomials, where the order N is dictated
by the macroscopic behavior one wants to recover. Then the resulting discrete
velocity equation is integrated along the characteristics. An approximation with
finite differences leads to the following lattice Boltzmann equation

fi(x+ eiδx, t+ δt)− fi(x, t) = Ji(f)(x, t) + δtFi ∀i = 0, ..., Q, (5)

where δx and δt are respectively the mesoscopic space- and time-step, while
E = {e0, ..., eQ} denotes the discrete velocity set obtained by the projection
onto HN . Note that the discrete distribution function fi(x; t) represents an
approximation in space and time of f(e,x, t), for a given velocity ei ∈ E, i.e.
fi(x, t) ≡ f(ei,x, t). The discrete transport of the particles is balanced on
the right hand side by the discrete forcing term Fi and by Ji(f), a discrete
approximation for the collision operator J .
Depending on the choice of the discrete collision operator Ji(f), of the discrete
force Fi and of the discrete velocity set E, different physical behaviors can be
recovered from (5) [9, 35]. In the specific case of Equation (1), one can show
that Ji(f) and Fi take respectively the forms:

Ji(f) = JBGK
i (f) = −

1

τ
(fi − feq

i ) ∀i = 0, ..., Q, (6)

Fi = wiF ∀i = 0, ..., Q, (7)

with F being the forcing term given in (1).
The term JBGK

i (f) is an approximation of the well-known single relaxation
time Bhatnagar-Gross-Krook (BGK) collision operator [44], τ is the so-called
relaxation time and feq

i is an appropriate discrete approximation of the Maxwell-
Boltzmann equilibrium distribution [48]. For problem (1) this is given by

feq
i = wiuLB(x, t) ∀i = 0, ..., Q, (8)

where uLB is the lattice Boltzmann approximation of the exact solution of
problem (1) on the discrete lattice, while the weights wi are suitable constants
that depend on the choice of the discrete velocity set E.

Remark 2.1. Equation (8), requires the knowledge of uLB to compute the as-
sociated feq

i . From a computational point of view, this evaluation is straightfor-
ward with the adoption of an explicit time-advancing scheme (see also Equation
(13)).

For problem (1) a common choice for E is the five-velocity square lattice struc-
ture represented in Figure 4. This structure, also referred as D2Q5 model, is
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characterized by the following lattice velocities ei

[e0, e1, e2, e3, e4] =

[
0 1 0 −1 0
0 0 1 0 −1

]

, (9)

and by the weights wi:

{

w0 = (1− 2η),

wi = 0.5η, ∀i = 0, ..., 4,
(10)

where η = (0, 0.5] is a free positive parameter [31].

Remark 2.2. The particular case η = 0.5 leads to a model in which the dis-
tribution function f0 is neglected (w0 = 0). The resulting velocity structure is
therefore sometimes indicated as the D2Q4 model. This model is adopted in the
following sections.

0 1

2

3

4
Figure 4: D2Q5 model. Dots represent the lattice nodes xi, ∀i = 0, ..., 4 in the unit cell. The
arrows identify the links ei, ∀i = 0, ..., 4 in the lattice structure, their lengths are given by
‖x0 − xi‖, ∀i = 0, ..., 4.

It can be shown that the numerical model defined by Equations (5)-(10) re-
covers asymptotically problem (1) with the unknown and the viscosity given
respectively by

uLB(x, t) =

4∑

i=0

fi(x, t) =

4∑

i=0

feq
i (x, t), (11)

and
µ = η(τ − 0.5)δx2/δt. (12)

Remark 2.3. Property (11) is issued from the collision invariant
∑4

i=0 Ji(f) =
0, which ensures the conservation of the zero-th order moment in the macro-
scopic system.
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From a computational point of view, one can think of Equation (5) being splitted
into two parts:

collision step : f̃i(x, t) = fi(x, t) + Ji(f)(x, t) + δtFi ∀i = 0, ..., Q, (13)

streaming step : fi(x+ eiδx, t+ δt) = f̃i(x, t) ∀i = 0, ..., Q. (14)

The collision step is a local update of the distribution functions on each lattice
node, while the streaming step moves the data across the lattice. This set
of equations is eventually supplemented with appropriate initial and boundary
conditions for the distribution functions, for which multiple formulations exist
(see [40, 32, 36] and references therein). The treatment and implementation of
complex initial and boundary conditions goes beyond the scope of this work.
An accurate description and analysis of various boundary conditions for LBM
can be found in [10].

3. Spatial coupling between FEM and LBM

In this section, we detail our methodological approach for the spatial coupling
between the macroscale (FEM) and mesoscale (LBM). First the continuous cou-
pling conditions are derived following the approach presented in [2, 3]. Then the
notions of coarse and fine propagators are specified. Finally the transmission
(interpolation) operators between the two spatial discretizations are introduced.

3.1. Derivation of the coupling conditions

As observed in [2, 61] the spatial coupling of the macro and meso processes relies
on the definition of compression (C) and reconstruction (R) operations between
the state variables of the two scales, respectively uLB for the macroscale and
fi|i=0,...,Q for the mesoscale:

uLB(x, t) = C(fi|i=0,...,Q(x, t)), (15)

fi|i=0,...,Q(x, t) = R(uLB(x, t)). (16)

While the compression operation is unique and defined by the local-ensemble
average (11), the reconstruction operation is not. Note in fact that the mesoscale
problem contains more information than the macroscale problem. Thus the
reconstruction procedure leads to a one-to-many mapping.
The derivation of an analytic expression for (16) follows the approach proposed
in [2, 61] and is reported below for the case of the D2Q4 lattice model, with
zero external forces. For other models, the derivation is similar.

Theorem 3.1. Let us consider the following lattice Bolzmann approximation
of problem (1) (with F = 0):

fi(x+ eiδx, t+ δt)− fi(x, t) = −
1

τ
(fi(x, t)− feq

i (x, t)) ∀i = 1, ..., 4, (17)
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with uLB(x, t) =
∑4

1 fi(x, t) =
∑4

1 f
eq
i (x, t) and feq

i (x, t) = 1
4uLB(x, t). The

associated zero-th order and first-order accurate reconstruction operator are re-
spectively given by:

fi|i=0,...,4(x, t) =
1

4
uLB(x, t), ∀i = 0, ..., 4. (18)

and by

fi|i=0,...,4(x, t) =
1

4
(uLB − δtτei ·∇uLB)(x, t), ∀i = 1, ..., 4. (19)

Proof. In (17) let us assume δt small and let us Taylor expand fi(x+eiδx, t+δt)
around fi(x, t) up to the second order. This yelds:

δtDifi(x, t) + δt2D2
i fi(x, t) = −

1

τ
(fi − feq

i ) ∀i = 1, ..., 4, (20)

being Di = ( ∂
∂t + ei ·∇).

We now use in (20) the multiscale Chapman-Enskog expansion [21], that is we
expand fi in powers of the small parameter ε (also referred as the Knudsen
number):

fi(x, t) = f
[0]
i (x, t) + εf

[1]
i (x, t) + ε2f

[2]
i (x, t) + ... ∀i = 1, ..., 4. (21)

In a similar way, let us introduce the expansions in time and space:

∂

∂t
= ε

∂

∂t[1]
+ ε2

∂

∂t[2]
and ∇ = ε∇[1]. (22)

Plugging (21) and (22) in (20) and keeping all the terms up to second order in ε
we obtain

εei ·∇
[1]f

[0]
i + ε2∇[1]f

[1]
i + ε2

∂f
[0]
i

∂t[1]
+

δt

2
ε2e2i∆

[1]f
[0]
i

=−
1

δtτ
(f

[0]
i + εf

[1]
i + ε2f

[2]
i − feq

i ) ∀i = 1, ..., 4.

(23)

This equation holds for each order separately. Equating the zero-th and first

order contributions, f
[0]
i and f

[1]
i can be rewritten as

f
[0]
i = feq

i =
uLB

4
, (24)

εf
[1]
i = −δtτeiε ·∇

[1]f
[0]
i = −

δtτ

4
ei ·∇uLB . (25)

Therefore the particle distribution functions can be reconstructed at the zero-th
order with

fi(x, t) = f
[0]
i (x, t) =

1

4
uLB(x, t) ∀i = 1, ..., 4, (26)

and at the first order with

fi(x, t) = f
[0]
i (x, t) + εf

[1]
i (x, t) =

1

4
(uLB − δtτei ·∇uLB)(x, t) ∀i = 1, ..., 4.

(27)

2
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3.2. Coarse and fine propagators

For evolution problems, it is useful to reinterpret our solvers as propagators, i.e.
semigroup operators that compute the solution at time t + ∆t given an initial
condition at time t.
For the FEM, we define a coarse propagator G∆t(t) from time t to time t+∆t
as follows:

G∆t(t) :

{
V H → V H

uH(t) 7→ uH(t+∆t),
(28)

where uH(t +∆t) is the solution of (2) on time interval (t, t +∆t) with uH(t)
as initial condition.
For the LBM, we define also a fine propagator F∆t(t) from time t to time t+∆t:

F∆t(t) :

{
V h × V h → V h

(uh(t), u
∗
h(t+∆t)) 7→ uh(t+∆t),

(29)

where V h is the finite element space of piecewise linear continuous functions

V h =
{
vh ∈ C(Ωf) : vh|K ∈ P1(K), ∀K ∈ T h

}
.

built on a mesh T h whose nodes are those of the lattice Boltzmann grid. This
allows to introduce a discrete fine solution uh(t) ∈ V h which is directly obtained
from uLB(t) through linear interpolation (note that the Lattice Boltzmann so-
lution uLB(t) is only defined at the nodes of the lattice Boltzmann grid). There-
fore, the output uh(t + ∆t) of this fine propagator is obtained from the LBM
solver described in Section 2.2. There are in fact two inputs: uh(t) is the initial
condition given at time t, and u∗

h(t + ∆t) is a (possibly inaccurate) prediction
of the solution at time t +∆t extracted from the coarse propagator. This last
input is of interest for interpolation of the boundary conditions on ∂Ωf . This
point as well as other major features of F∆t(t) are detailed below.
The fine propagator F∆t(t) results from the composition of three operators
issued from equations (18) (or (19)), (5) and (11). For the sake of clarity, the
algorithm associated to (29) is given in Figure 5.
In Figure 5, the parameter α (α = 0, 1) allows to consider the two possible
orders for the reconstruction operation. Remember that for the LBM solver,
the choice of the time-step is restricted by a CFL-type condition, while this is
not necessarily the case for the FEM solver, so we need to allow different time
scales between FEM and LBM. For this reason, we introduced the parameter p
which quantifies the ratio between the coarse time step ∆t and the small time-
step δt associated to LBM. This results in a loop in order to carry out p LBM
computations during the fine propagation.
One critical point concerns the boundary conditions on ∂Ωf , which are unknown
a-priori since the LBM domain is only a portion included into the FEM domain.
To this purpose, we first interpolate linearly in time the numerical solution
between uh(t) and u∗

h(t + ∆t), for better accuracy. From this interpolation uj
b

of the physical quantity, the reconstruction operation is carried out once again
for obtention of the distribution functions fi on the boundary.
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Fine propagator F∆t(uh(t), u
∗
h(t+∆t)):

1. Initialization: u0
h = uh(t).

2. From physical quantities to distribution functions:

• Reconstruction operation

fi|i=0,...,4(x, t) =
1
4 (u

0
h(x)− α δtτci ·∇u0

h(x)),

for grid points x ∈ Ωf and for i = 1, ..., 4.

3. Loop on small time steps δt = ∆t/p:
j = 1, . . . , p; tj = t+ jδt.

(a) Linear interpolation in time:

uj
b = (1−

j

p
)uh(t) +

j

p
u∗
h(t+∆t).

(b) Reconstruction of distribution functions on the boundary:

• Reconstruction operation
fi|i=0,...,4(x, t

j) = 1
4 (u

j
b(x)− α δtτci ·∇uj

b(x)),
for grid points x ∈ ∂Ωf and for i = 1, ..., 4.

(c) Evolution of the distribution functions according to:

• Collision step:
f̃i(x, t

j) = fi(x, t
j−1) + Ji(f)(x, t

j−1) + δtFi,

• Streaming step:
fi(x+ eiδx, t

j) = f̃i(x, t
j),

for grid points x ∈ Ωf and for i = 1, ..., 4.

4. End loop.

5. Back from distribution functions to physical quantities:

• Compression: uh(x, t+∆t) =
∑4

i=0 fi(x, t
p).

Figure 5: The algorithm for F∆t(t) in pseudo-code.

3.3. Transmission operators

Since the two spatial discretizations (for FEM and LBM) are different, two
transmission operators are needed in order to transfer the discrete solution from
one mesh to the other. We denote by ΠL

F the operator that transfers the FEM
solution to the lattice Boltzmann space. Reciprocally, the operator ΠF

L transfers
the LBM solution to the finite element space. In practice, ΠL

F (resp. ΠF
L)

is simply a linear interpolation operator from V H to V h (resp. from V h to
V H) [28]. Due to the inclusion of the domains (Ωf ⊂ Ωc), the interpolation
ΠF

Lv ∈ V H of a function v ∈ V h is in fact the interpolation of the zero-extension
of v on Ωc.
As a result, with the choice of linear interpolation, the transmission operation
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between meshes involves only a matrix multiplication. Moreover a direct calcu-
lation shows that the coefficients the matrix ΠL

F can be expressed as follows

ΠL
Fij = ϕj(xi),

where xi is the node number i of the mesh T h and ϕj is the shape function as-
sociated to the node of number j of V H (an identical formula can be derived for
ΠF

L). Algorithms for construction of such rectangular matrices are now imple-
mented in numerous finite element librairies (see e.g. the function interpolate

in FreeFEM++ [28]).

4. Time coupling between FEM and LBM using Parareal

In this part, we first explain the idea of our coupling strategy, and then describe
the complete algorithm of coupling between FEM and LBM with Parareal. This
section is ended with some considerations on speed-up and system efficiency.

4.1. Coupling in time between coarse and fine propagators

To solve Problem (1), we first compute a coarse FEM approximation of the
solution u on the whole time inteval (0, T ). We keep the notations already
introduced in Section 2.1. From the initial condition u0

H at time t0 = 0, we
iterate as follows:

un+1,0
H := G∆t(t

n)(un,0
H ), n = 0, . . . , N − 1,

where un,0
H is a first coarse approximation of u(tn). Then, from the sequel

(un,0
H )n of these coarse approximations, a fine computation on each time interval

(tn, tn+1) with LBM is done:

un+1,0
h := F∆t(t

n)(ΠL
Fu

n,0
H ,ΠL

Fu
n+1,0
H ), n = 0, . . . , N − 1.

One first fundamental observation is that these fine LBM computations allow to
correct the first coarse prediction, in order to obtain a better approximation of
u(tn). Indeed, the initial value which serves for each coarse computation with
G∆t can be updated taking into account the LBM solution on the small domain
Ωf . This requires a prediction-correction (or defect-correction [49]) procedure
[37, 23]:

un+1,1
h := ΠL

FG∆t(t
n)

(

χ(ΠF
Lu

n,0
h ) + (1− χ)un,1

H

)

︸ ︷︷ ︸

Prediction

+un+1,0
h −ΠL

Fu
n+1,0
H

︸ ︷︷ ︸

Correction

,

for n = 0, . . . , N − 1. In this step, the new coarse prediction is corrected by
the difference between the previous fine prediction and the previous coarse pre-
diction. The new coarse prediction takes into account the previous fine compu-
tation un,0

h as initial condition at each time tn. The characteristic function of
the LBM domain Ωf is denoted by the symbol χ, and is introduced due to the
relationship Ωf ( Ωc. Outside of the sub-domain Ωf the coarse solution un,1

H at
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time tn is used. Note that in this step the transmission operators ΠF
L and ΠL

F

(see Section 3.3) are also needed due to the difference of discretization between
FEM and LBM.
The second fundamental observation is that, as in the Parareal algorithm, the
fine computations with LBM on each time interval (tn, tn+1) can be parallelized.
As a result, it is possible to define a Parareal-type algorithm for efficient coupling
in time of FEM and LBM, which produces at each iteration k a sequence of
solutions (un,k

h )n. Increasing k enhances the coupling degree between the two
methods.

4.2. An adaptation of the Parareal algorithm for FEM-LBM coupling

Suppose that, at iteration k, we dispose of a sequence of couples of coarse and
fine solutions on the whole time interval: (un,k

H , un,k
h )n. Let us introduce the

following abbreviated notation for the composed FEM-LBM solution on the
whole domain Ωc:

ũn,k
h/H := χ(ΠF

Lu
n,k−1
h ) + (1− χ)un,k

H .

The key ingredient of our Parareal FEM-LBM coupling procedure is then the
following prediction-correction iteration:

un+1,k+1
h := ΠL

FG∆t(t
n)

(

ũn,k+1
h/H

)

︸ ︷︷ ︸

Prediction

+ F∆t(t
n)(un,k

h , un+1,k
h )−ΠL

FG∆t(t
n)

(

ũn,k
h/H

)

︸ ︷︷ ︸

Correction

,
(30)

for 0 ≤ n ≤ N−1. The complete Parareal FEM-LBM algorithm in pseudo-code
is given Figure 6.
Once the initial values have been computed with the coarse propagator G∆T , the
main loop starts until the coupled FEM-LBM solution is approximated with a
sufficient accuracy ε∗. During each step of the main loop, the fine computations
are first effectuated in parallel. Then, the prediction-correction formula (30) is
applied sequentially.
At each step, the fine solution is recovered with required accuracy on the first
0, . . . , n0− 1 intervals, with n0 ≥ 1. As a result, and as in the version presented
in [17], only the n0, . . . , N intervals in which convergence has not been reached
are integrated into the computations. The algorithm stops when convergence
has been attained for all the coarse time intervals.

Remark 4.1. As the algorithm 6 involves two distinct spatial discretizations
and associated transmission operators, it follows the work originally proposed
in [19] where a Parareal method with two spatial grids is applied to solve the
Navier-Stokes equations.
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Parareal FEM-LBM coupling:

1. Initialization step (–):

• First coarse prediction:

u0,0
H = u0

H ; un+1,0
H := G∆t(t

n)(un,0
H ), n = 0, . . . , N − 1,

ũn,0
h/H := un,0

H , n = 0, . . . , N,

un,0
h := ΠL

Fu
n,0
H , n = 0, . . . , N.

• Init the index of the first time interval for solving: n0 = 0.

• Init the index of the Parareal iteration: k = 0.

2. While (n0 < N) :

(a) Fine computation (//):

ûn+1,k
h := F∆t(t

n)(un,k
h , un+1,k

h ), n = n0, . . . , N − 1.

(b) Error evaluation (//):

εkn = ‖ûn+1,k
h − un+1,k

h ‖/‖un+1,k
h ‖, n = n0, . . . , N − 1.

(c) Update n0 : n∗ → n0 with n∗ computed as:

n∗ = min{n | n0 ≤ n < N ; εkn > ε∗}.

(d) Prediction-correction (–):

compute the new values (un,k+1
h )n, n = n0, . . . , N − 1.

ũn,k+1
h/H := χ(ΠF

Lu
n,k
h ) + (1− χ)un,k+1

H ,

un+1,k+1
H := G∆t(t

n)(ũn,k+1
h/H ),

un+1,k+1
h := ΠL

F(u
n+1,k+1
H − un+1,k

H ) + ûn+1,k
h .

(e) Update the index of the Parareal iteration: k ← k + 1.

3. End while.

Figure 6: The Parareal algorithm for FEM-LBM coupling in pseudo-code. The symbol (//)
means that the step can be processed in parallel, while the symbol (–) means that the step
needs to be processed sequentially.

Remark 4.2. Our formulation differs from the standard Parareal strategy in
that the fine solver needs the coarse solver for boundary conditions, whence a
reference solution can not be obtained by running the fine solver sequentially. It
results that our solution can indeed be regarded as a multiscale coupled solution,
with a fine LBM prediction on the required sub-region.
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Remark 4.3. When the evolution equation is non-linear the last equation of
step 2 (d) in Figure 6 should be rewritten as

un+1,k+1
h := ΠL

Fu
n+1,k+1
H + ûn+1,k

h −ΠL
Fu

n+1,k
H .

In Figure 6 we took advantage of the linearity of our model problem (1) to
factorize the transmission operator, which involves less computations.

4.3. Speed-up due to parallelization

This section is dedicated to the estimation of the speed-up, which quantifies the
gain provided by parallelization. The speed-up is defined as the ratio between
the computational cost of a sequential FEM-LBM coupling and that of paral-
lelized FEM-LBM coupling (the computational cost being the total number of
elementary operations carried out when the whole algorithm is run one time).
For this purpose, let us first use the notation CFEM for the cost of one coarse
computation G∆t with FEM, on an interval of length ∆t. This is supposed to be
a known constant, which of course depends on the number of degrees of freedom
induced by the FEM discretization (mesh size and finite element type) and on
the type of the time-marching scheme that is chosen for one coarse propagation.
Since the structure of the fine propagator F∆t is more complex (see Section 3.2
and Figure 5), we detail the cost of one fine computation, that we note CLBM:

CLBM = CRC + p CLBMS, (31)

where CRC stands for the cost of reconstruction and compression operations
(steps 2 and 5 of Figure 5) and CLBMS is the combined cost of steps (a)-(b)-(c)
in the loop 3 of Figure 5, particulary of the collision step and streaming step
needed for the evolution of distribution functions. As in the FEM case, the cost
CLBM is supposed to be known, and is also highly dependent on the number of
degrees of freedom (type of cells and resolution of the Lattice-Boltzmann grid).
In this following study, for the sake of simplicity, we will neglect the compu-
tational cost associated to the transmission operators ΠL

F and ΠF
L. We first

evaluate the computational cost of a sequential FEM-LBM coupling, denoted
by Cseq and which can be expressed as follows:

Cseq ≃ ksN(CFEM +CLBM). (32)

The above formula simply states that for each of the N coarse time-steps of
length ∆t, ks iterations are carried out to couple the FEM and LBM solvers.
We supposed that the number of iterations needed is approximatively the same
at each time-step.
Instead, for the Parareal FEM-LBM coupling algorithm of Figure 6, the com-
putational cost can be estimated as:

Cpar ≃ NCFEM + kp(CLBM +NCFEM) = kpCLBM +N(1 + kp)CFEM. (33)
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This formula is obtained observing that the initialization implies N coarse com-
putations, and then, at each of the kp correction iterations of Parareal, the LBM
computations are done in parallel, while the prediction-correction step implies
again N coarse computations with FEM.
From equations (32) and (33), the speed-up SP is obtained in a straightforward
way:

SP =
Cseq

Cpar

≃
ksN(CFEM +CLBM)

kpCLBM +N(1 + kp)CFEM

≃
ksN(CFEM +CRC + p CLBMS)

kp(CRC + p CLBMS) +N(1 + kp)CFEM
,

(34)

where in the last inequality we used (31). At this stage, one reasonable assump-
tion we can make is that the numbers ks, kp (and kp+1) are approximatively the
same. Indeed, in practice, only a few iterations are needed for both sequential
and parallel versions. So if the number of coarse iterations N is moderate, this
assumption may hold. Conversely, this assumption may be unreasonable if N
is too high. In the case the above assumption ks ≃ kp ≃ kp+1 holds, we obtain
the following simplified formula:

SP ≃
N(CFEM +CLBM)

CLBM +NCFEM
≃

N(CFEM +CRC + p CLBMS)

CRC + p CLBMS +NCFEM
. (35)

One interesting case that can be considered for practical purposes is when p
is sufficently big so as to neglect the cost of reconstruction and compression
operations CRC and we then obtain:

SP ≃
NCFEM +Np CLBMS

NCFEM + p CLBMS
. (36)

This case is realistic since an implicit scheme in the FEM solver (Euler implicit
for instance) allows large time-steps ∆t. The above formula (36) highlights
the gain rate due to parallelism: the cost associated to LBM computations is
reduced from Np to p.
At last, another asymptotic formula can be obtained from (34) for long-time
simulations, which corresponds to the case N → +∞:

SP ≃
ks(CFEM +CLBM)

(1 + kp)CFEM

≃
ks(CFEM +CRC + p CLBMS)

(1 + kp)CFEM
.

(37)

In this situation, one could speculate that the maximal speed-up is obtained by
taking p as large as possible and the FEM solver as fast as possible, but this is
balanced by the fact that this may strongly increase the number of iterations
kp necessary for convergence. Note that furthermore, kp is also increased when
N is large.
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4.4. System efficiency

The system efficiency SE is the ratio between the speed-up and the number of
processors involved in the parallel computation. Ideally this number must be
close to 1, while maintening a speed-up as high as possible. From formula (34),
it is given by:

SE =
SP
N
≃

ks(CFEM +CLBM)

kpCLBM +N(1 + kp)CFEM
. (38)

Note that the algorithm becomes less efficient if N is too big, which is due to
the sequential correction step involving FEM. However if N is moderate and
the FEM solver very cheap (CFEM ≪ CLBM), the system efficiency is quite
preserved.

5. Numerical results

The FEM-LBM coupling algorithm of Figure 6 is implemented with help of
FreeFEM++, an open-source finite element library [28]. For the FEM method,
standard P1 continuous finite elements have been used and the backward Euler
time-marching scheme given in (3) is implemented. For the LBM method, the
D2Q4 lattice structure is always considered (see §2.2).

5.1. A preliminary test case

The main purpose of this experiment is to illustrate the solution of Problem
(1) with the proposed FEM-LBM multiscale solver on a relatively simple con-
figuration. The same problem will be used in the following section to analyze
the convergence properties of our multiscale approach. The solutions in the
coarse and fine domains are reported for different timesteps. The geometry con-
sidered is given in Figure 7 (a). For the FEM-LBM solver, the FEM domain
is given by Ωc = (− 1

4 ;
3
4 ) × (− 1

4 ;
3
4 ) whereas the LBM domain is defined by

Ωf = (0; 1
2 )× (0; 1

2 ). For the reference FEM solution only Ωc is considered.
For Problem (1) the value of the diffusion coefficient is µ = 1 and the source term
F is equal to 0. On Ωc we impose two Dirichlet boundary conditions: u = 100
on Γ1

d and u = 0 on Γ2
d. On the remaining boundaries, Γn, a zero Neumann

condition is imposed. The whole time interval is (0, T ) - with T = 0.05.
For the fine solver (LBM) Equation (19) of Theorem 3.1 is adopted to recon-
struct the distribution functions. The fine domain is discretized with 20 × 20
cells. For the coarse solver (FEM) the coarse domain is discretized with 942
triangular elements. Note that the fine and coarse discretizations are non-
conforming, see Figure 7 (b).
For the mesoscopic and macroscopic solvers the timesteps are δt = 10−5 and
∆t = 10−3, respectively. For this test case, the number of processors of the
Parareal algorithm of Figure 6 is N = 50 (corresponding to the total number of
coarse timesteps) and the convergence criterion is ε∗ = 10−5.
The multiscale algorithm converges in 3 iterations. The evolution of the fine
and coarse solutions at different timesteps is given for each multiscale iteration
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(a) (b)

Figure 7: (a) Geometry for FEM domain Ωc and LBM patch Ωf . (b) Spatial discretization of
the computational domain: coarse mesh for FEM and LB cells on a patch.

in Figures 8, 9 and 10. The converged coarse solution is reported in Figure 11
for the same timesteps. Note on Figure 9 the effect of the coupling due to the
first prediction-correction iteration.

5.2. Convergence behavior for the FEM-LBM coupling

In this experiment, we solve the same physical problem considered in §5.1. For
this test case the right end of time interval is T = 0.04. For the LBM, both
order 0 (equation (18)) and 1 (equation (19)) formulas of Theorem 3.1 have
been considered for the reconstruction of the distribution functions. The FEM
domain Ωc has been meshed with an unstructured mesh, the number of mesh
nodes on each edge of the boundary ∂Ω being nc = 20. The number of LB cells
on each row of the LB domain Ωf is nf = 40.
The parameters of the Parareal FEM-LBM coupling algorithm 6 are as follows:
number of coarse time-steps N = 50, ratio coarse/fine time-steps p = ∆t/δt =
50, time-step for the fine solver δt = 10−5.
We carry out a simulation with a very small convergence criterion (ε∗ = 10−10)
in order to assess the convergence properties of the algorithm. For order 0
reconstruction, the residuals εkn are depicted in Figure 12. For a given value of
the correction iteration k, the residuals first increase with n, which is due to
the correction process that gives a better approximation on the first time-steps.
Then it attains a maximum and decreases, which may be due to the diffusive
process. When k is increased, the residuals are decreased monotonically, and
the algorithm stops when all the residuals εkn are below the value ε∗ = 10−10.
For order 1 reconstruction, the residuals are depicted in Figure 13. The global
convergence behaviour is comparable to that of order 0 reconstruction, but the
whole algorithm converges much faster than with order 0 reconstruction (13
iterations instead of 18), which confirms the interest of taking into account the
gradient of the FEM solution in the reconstruction formula. Note also that, for
small values of n, the behaviour of the curves is slightly more complex.
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Figure 8: Coarse and fine solution at different timesteps for iteration 0 of the multiscale
coupling.
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Figure 9: Coarse and fine solution at different timesteps for iteration 1 of the multiscale
coupling.
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Figure 10: Coarse and fine solution at different timesteps for iteration 2 of the multiscale
coupling.
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Figure 11: Converged coarse solution at different timesteps.
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Figure 12: Order 0 reconstruction. The residuals εkn (in log-scale) as a function of the coarse
time-steps n for various values of k. Colors from red to blue correspond to increasing values
of k.
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Figure 13: Order 1 reconstruction. The residuals εkn (in log-scale) as a function of the coarse
time-steps n for various values of k. Colors from red to blue correspond to increasing values
of k.

The computed fine solution u(t, xc, yc) at the center of the domain xc =
1
4 , yc =

1
4 in function of time t and for various correction iterations k is depicted in
Figure 14. The first observation is that the final coupled FEM-LBM solution is
really different from the first coarse prediction (k = 0) which involved only the
coarse FEM solver. The other observation is that a few correction iterations (2
in this case) are sufficent to obtain a good approximation of the final coupled
solution.
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Figure 14: Evolution of the fine solution at the center of the domain, for various values of k.

5.3. Influence of discretization in space and time

In this section we study the influence of some important discrezation parameters,
namely the ratio between the coarse and fine meshes nc/nf and the ratio between
the coarse and fine time-steps p (= ∆t/δt). We start from the same configuration
as in the previous section 5.2. Since results are better with the reconstruction
formula of order 1, we keep this choice. The mesh of the FEM domain Ωc is
unstructured and is kept unchanged, with also nc = 20. The other parameters
are as follows: number of coarse time-steps N = 50, time-step for the fine solver
δt = 10−5 and convergence criterion ε∗ = 10−5.
The number of total iterations kp (starting from k = 0) to reach convergence
for different values of the couple (p, nf) is given in Table 1.

H
H
H
H
H

p
nf

10 20 30 40 60 80 100

30 8 7 5 4 3 3 4
50 6 5 4 4 3 2 4
100 5 4 4 3 3 3 3
150 4 3 3 3 3 3 3
200 4 3 3 3 2 2 3
250 5 4 3 2 2 2 2
300 4 4 3 2 2 2 2

Table 1: Influence of numerical parameters nf and p on the total number kp of correction
iterations necessary for convergence (ε∗ = 10−5).

The first observation is that the algorithm converges after a few iterations:
eight iterations are needed in the worst case (p = 30, nf = 10) and this number
is lower for other values of the parameters. The number of iterations is not

23



subjected to significant variations for a wide range of the parameters. Note
that the convergence is very good for high values of p and nf : only two or three
iterations are needed. For values of nf greater than 100, the CFL in the LBM
solver is not respected anymore with the choice of the fine time-step δt = 10−5,
which prevents the algorithm to converge.

5.4. A more complex test-case
In this last test we take advantage of the flexibility of FEM to illustrate the
use of our macro-meso coupling in a more complex computational problem. Let
us consider the multiscale simulation of temperature evolution of a steel airfoil
such as the one represented in Figure 15. The inner squared domain represents
the region where the mesoscopic method is applied. The airfoil domain Ω is
characterized by an initial temperature u0 = 298.15◦K and surrounded by air
at us = 253.15◦K on ΓR. An imposed temperature ud = 348.15◦K is applied
on a small portion ΓD of the boundary, at the bottom of the airfoil (∂Ω =

ΓR ∪ ΓD). The steel is characterized by a density ρ = 7860 kg/m
3
, a specific

heat c = 502 J/KgK and a thermal conductivity κ = 60W/mK. For the air
a convection heat transfer coefficient α = 45 W/m2 K is assumed. The total
simulation time is T = 1000 s. The length L of the airfoil is 0.8 m.
This problem is described by the following equations:

ρc
∂u

∂t
− κ∆u = 0 in Ω× (0, T ),

u(·, 0) = u0 in Ω,

κ
∂u

∂n
+ αu = αus on ΓR,

u = ud on ΓD.

(39)

Figure 15: Computational domain for the airfoil test case.

The Parareal FEM-LBM coupling algorithm is applied with the following pa-
rameters: mesh sizes nc = 20 and nf = 20, number of coarse time-steps N = 50,
ratio coarse/fine time-steps p = 100, time-step for the fine solver δt = 0.2 and
convergence criterion ε∗ = 10−5. The number of correction iterations necessary
for convergence is kp = 2. The final FEM and LBM solutions are displayed in
Figures 16 and 17.

6. Discussion

6.1. Summary on the method and numerical experiments
We proposed an efficient multiscale method for time-dependent problems based
on the coupling of FEM and LBM. Its efficiency derive mostly from the Parareal
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Figure 16: Final FEM solution (temperature in K) for the airfoil test case.
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Figure 17: Final LBM solution (temperature in K) for the airfoil test case.

framework where the FEM solver is adopted as a coarse predictor (macro) for
the LBM fine solver (meso). Although other numerical methods can be cho-
sen, in this work we have considered the FEM and the LBM for their intrinsic
properties. The LBM, derived from the Boltzmann equation, naturally fits the
mesoscopic scale. The FEM, strengthened by the variational framework, is ex-
tremely flexible for macroscopic problems characterized by complex geometries
and boundary conditions. The Parareal framework for the multiscale coupling
between FEM and LBM leads to a simple approach, very attractive from the
computational point of view. On the one hand, the fine computations are par-
allelized in time, therefore the use of a small time-step, typically needed in
LBM computations, is limited to smaller time-slab. On the other hand for the
FEM one can use larger time-step if an implicit time-marching scheme is imple-
mented. Additionally the LBM is highly parallelizable in space [5], therefore a
fine mesh in the mesoscopic scale can be foreseen. For the FEM, a coarser space
discretization is sufficient since it only serves to provide a coarse prediction. For
the spatial coupling between both methods, the Chapman-Enskog expansion
provides a satisfactory technique for the derivation of the transmission condi-
tions.
In previous works the multiscale coupling is operational but it lacks of effec-
tive full overlap typically needed in multiscale problems (see numerical zoom).
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Moreover the previous methods are inspired from classical Schwarz iterations,
that are purely sequential and well-fitted for stationary problems. Yet, they
may be less natural and interesting for time-evolution problems.
Numerical experiments confirm the good behavior of the overall algorithm on
a simple model problem (the heat equation) and illustrate its flexibility. For
a wide range of the physical parameters, the convergence is attained within a
few iterations (less than 4). This point is important since the speed-up due
to parallelization is strongly dependent on the number of correction iterations,
which should be the lowest possible. Nevertheless, increasing too much the
critical variables for spatial and temporal discretization (namely p and the ratio
nf/nc) will end up with a decrease of the speed-up since it will also increase the
cost of the fine computations.
As a final remark, it is important to note that our coupling approach can also
be considered as a valid alternative among the multiple techniques proposed
in the LBM literature for the imposition of macroscopic boundary conditions.
As can be observed from the last experiment, the implementation of complex
boundary conditions finds a natural formulation in the FEM. On the contrary
the application of similar boundary conditions to the LBM would have been
more challenging.

6.2. Some remarks on Parareal and the numerical zoom

The Parareal algorithm thanks to its versatility and genericity is very suitable
for time-parallel time-integration of a wide class of evolution problems described
by ODE’s/PDE’s [37, 17, 23]. It involves a fine propagator and a coarse prop-
agator. The latter serves to predict quickly an inaccurate solution during the
(sequential) correction iterations. An interesting feature is that the choice of
this coarse propagator is left completely free to the user, it should only serve
the purpose of providing a suitable approximation of the fine solution.
The most obvious and simple choice for the coarse propagator is thus to imple-
ment the same method as in the fine solver, but with a coarser spatio-temporal
discretization to obtain a cheaper resolution. An alternative choice consists of
using a different, and simpler, mathematical model than in the fine solver: for
instance a simpler differential equation or a reduced set of equations. After an
earlier remark in this direction (see e.g. [6]), this possibility has not been so
extensively explored until now, apart from a few exceptions. In [14], Parareal is
applied to multiscale stochastics chemical kinetics, and while the fine solver uses
stochastic simulation at mesoscopic scales, the coarse predictor uses a reaction
rate equation at macroscopic scale. Also in the context of chemical kinetics,
the authors of [8] design a coarse propagator using a reduction method: a re-
duced set of chemical reactions is considered for the coarse prediction. At last,
in reference [26] the possibility of using reduced basis methods for design of a
cheapest coarse solver is explored. Our present work also goes into this direction
and tends to confirm that the Parareal methodology is well suited for coupled
multiscale problems such as FEM/LBM coupling.
From the point of view of numerical zoom, as pointed out in the introduction,
most of the existing techniques are devoted to stationary problems to the best

26



of our knowledge. In this work we extended the framework of classical Parareal
so that it can be fitted for numerical zoom purposes. In its original version, the
coarse and fine solvers must work on the same domain, whereas the Algorithm
6 allows a coarse solver on a larger domain.

6.3. Some perspectives

The model problem (1) in a two-dimensional domain has been chosen for sim-
plicity reasons and in order to focus on methodological aspects. Of course, the
proposed method can be extended quite easily to more general (linear) elliptic
operators and to three-dimensional domains. It only requires an appropriate
derivation of the lattice Boltzmann approximation and of associated transmis-
sion conditions.
In future works, application of the proposed method to more realistic prob-
lems may be considered: for instance reaction-diffusion equations in biological
systems and Navier-Stokes equations in the context of blood flows [20]. Also,
the method could be object of parallel implementation on GPU’s architectures,
following the work in [5].
Extension to other type of couplings may be also an interesting - and challenging
- perspective: for instance in a recent work [1] a coupling between full Botzmann
equations, BGK-ES equations and Euler equations has been realized using a
domain decomposition framework.
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