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Abstract

This paper presents and analyzes a new multigrid framework to solve shape op-
timization problems governed by elliptic PDEs. The boundary of the domain, i.e.,
the control variable, is represented as the graph of a continuous function that is
approximated at various levels of discretization. The proposed multigrid shape opti-
mization scheme acts directly on the function describing the geometry of the domain
and it combines a single-grid shape gradient optimizer with a coarse-grid correction
(minimization) step, recursively within a hierarchy of levels. The convergence of
the proposed multigrid shape optimization method is proved and several numerical
experiments assess its effectiveness.

1 Introduction

Starting with the foundation of PDE-based optimization [21], shape design has been
one of the most frequent application in technologies and it is nowadays one main
focus of aerodynamics simulation. A central role in the formulation and devel-
opment of computational frameworks for shape optimization has been played by
elliptic shape optimization problems [26] that correspond to cases of potential flow
allowing simpler investigation. Nevertheless, these problems arise in many impor-
tant applications as nozzle and airfoil design [26, 33], and in the design of beams
and plates [28]. Along this development, one of the most remarkable advances
in shape design has been to replace the approach of parametric optimization with
the concept of continuous shape design. In fact, in the former approach the con-
trol variable (i.e., the shape) is restricted to belong to a finite dimensional space
spanned by suitable basis functions, while in the latter case it is an element of an
infinite-dimensional space. This second approach opens enormous perspective in
the formulation of more accurate and sophisticated shape optimization problems.
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The possibility of formulating the shape optimization problems at the infinite-
dimensional level poses new challenges to the design and implementation of nu-
merical optimization schemes that properly accommodate the infinite dimensional-
ity of the control function. In particular, a successful and effective algorithm must
allow the control function to be approximated and optimized to any desired degree
of accuracy. On the other hand, we notice that the shape optimization problems
under consideration are governed by partial differential equations where the issue
of solving up to a desired accuracy also arises. It is therefore reasonable to con-
sider a unique approximation framework for the PDE solution and for the shape
optimal design. This is readably possible with most discretization methods for PDEs
(e.g. based on finite elements, finite volumes or mimetic finite differences) by con-
sidering the underlying decomposition as an approximation of the optimal shape.
This point of view suggests that it could be advantageous to design efficient opti-
mization schemes based on principles that are successful in the formulation of fast
PDE solvers [3]. The purpose of this paper is to formulate and analyze a multigrid
shape optimization framework that extends principles and techniques of the multi-
grid strategy for PDE solvers and accommodates the infinite-dimensionality of the
control variables. We notice that an alternative approach to the framework pre-
sented in this paper is to include the geometric informations into the coefficients of
the governing equations and to apply to them the standard multigrid method. How-
ever, the novelty and the challenge of this work is to present a multigrid framework
that acts directly on the geometric variable.

In shape optimization processes a convenient approach to manage shape changes
is to model the control boundary as the graph of a continuous function [4, 26, 17,
19]. We observe that the resulting class of admissible configurations is typically
satisfactory for most of industrial applications. This approach is common in the
method of mapping where the physical domain is mapped onto a computational
domain that is easier to describe. On the other hand, modeling the boundary as the
graph of a function results very convenient to enforce the desired regularity to the
domain and to include additional geometrical constraints.

For these reasons, our multigrid shape optimization (MGSO) scheme hinges
upon the definition of the optimization boundary as a regular function that is dis-
cretized together with the domain by a hierarchy of finite-element grids. Our ap-
proach is in contrast to previous attempts [6, 9, 10, 11, 12, 8] to define a consis-
tent multigrid framework for shape optimization where the computational domain
is discretized by finite elements and the control boundary is represented through
parameterized shape functions. Therefore, within the hierarchy of levels defined
by the multigrid strategy, our approach makes possible to construct a coarse-grid
correction step that can be understood from the geometrical [31] and optimization
[2, 3, 20, 24, 32] point of views, whereas the idea in [6, 9] of coarsening by taking
a subset of shape parameters appears based on heuristic consideration.

As we focus on multigrid concepts, we need to define an iterative optimization
process that can be applied at any level of discretization with the aim of improving
the shape towards the optimum. In our case, this is a shape-gradient optimizer that
acts similarly to a Jacobi smoother in a classical multigrid scheme. For this purpose,
we need to evaluate the shape gradient at any point of the triangulation: this is
possible using the Hadamard representation of the shape gradient [28]. We also
choose to derive the shape gradient expression in the Hadamard form because it
enables a very efficient computation of the gradient without the need of computing
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the so called “mesh sensitivity” Jacobian. This is especially important for aerody-
namic quantities such as drag and lift coefficients and for matching a target surface
pressure distribution. Moreover, the Hadamard approach provides a continuous
representation of the gradient function that is required in a multigrid framework.
Indeed, as the mesh is refined the gradient function is required at increasingly many
points of the boundary. We notice that this framework is valid in any spatial dimen-
sion and can be also extended to deal with adaptive mesh refinement strategies for
shape optimization [23].

In addition to the iterative scheme mentioned above, the formulation of a multi-
grid scheme requires to define a coarse-grid correction step that complements the
action of the single-grid optimization procedure. To construct this step, suitable
intergrid transfer operators are required together with the formulation of a coarse
optimization problem that appropriately approximates the fine-level shape optimiza-
tion problem. In our approach, we exploit the fact that the optimization function is
the graph of a sufficiently regular function and choose the intergrid transfer opera-
tors as in the case of classical multigrid schemes defined on manifolds [18, 1], i.e.,
as geometric interpolation and restriction operators. On the other hand, to define
the coarse shape optimization problem, we extend the multigrid optimization frame-
work introduced in [20, 24] to the present case where the optimization variable is
a geometrical object.

Our multigrid shape optimization strategy appears very appealing since it al-
lows to prove convergence of the resulting algorithm to a local optimal solution by
requiring typical differentiability properties and local positiveness of the reduced
shape Hessian. For the purpose of this analysis, we extend the theoretical frame-
work introduced in [2, 32].

The outline of the paper is as follows. In Section 2, we introduce our framework
that identifies the geometric control variable with a continuous function belonging
to a Hilbert space. Based on this formulation, we illustrate the concepts of shape
derivative and shape gradient, and focus on a representative elliptic PDE shape op-
timization problem with the goal of minimizing a volume cost functional comple-
mented with suitable (area and perimeter) penalization terms. For this problem,
we compute the shape gradient and correspondingly define a globalized gradient-
based shape optimization procedure. In Section 3, we formulate the multigrid shape
optimization scheme based on a hierarchy of shape optimization problems. We de-
fine the intergrid transfer operators and illustrate the construction of the coarse-grid
shape optimization problem. We also investigate the optimization properties of the
multigrid components and prove that the coarse-grid correction provides a minimiz-
ing step. In Section 4, we numerically validate our multigrid shape optimization
scheme considering different test problems. In particular, we investigate the robust-
ness of the multigrid scheme with respect to the choice of the initial shape profile
and of the granularity of the mesh. A section of conclusion completes the exposition
of this work.

2 The Shape Optimization problem

Consider the class of domains

Ω = {(x, y) ∈ R2 : x ∈ I = (a, b) and y ∈ (φ(x), ψ(x) + u(x))} (1)
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where φ(x), ψ(x) and u(x) are given functions with φ(x) < min (ψ(x), ψ(x) + u(x))
and (x, ψ(x)), x ∈ I, represents the segment with end points A = (a, ψ(a)) and
B = (b, ψ(b)). In the following, for simplicity we choose φ(x) = −M and ψ(x) = 0.

The deformable boundary of Ω is denoted by Γ and it is parametrized by a
function u ∈ Uad (see Figure 0(a)), with

Uad = {u ∈ C0,1(I) : −M < β1 ≤ u(x) ≤ β2 and u(a) = u(b) = 0} . (2)

Hence, in the following shape optimization problem the boundary

Γ = {(x, u(x)) ∈ R2 : ∀x ∈ I and u ∈ Uad} (3)

is the geometric control variable while ΓF = ∂Ω \ Γ̄ is fixed.
The extension to the more general 2D situation depicted in Fig 0(b) or to analo-

gous 3D configurations is straightforward, but for the ease of reading it will not be
further considered.

(a)

Ω

A B

Γ

en

(b)

A

B

Γ en
Ω

Figure 1: The control boundary Γ as a function.

We now introduce our shape optimization problem. Let y = y(Ω) be the unique
solution to the following elliptic partial differential equation

−∆y = f in Ω (4)

y = yb on ∂Ω , (5)

where yb is a given function defined in R2. Let r be a given function and λ1, λ2, A, P >
0 be given positive parameters. We consider the following cost functional

J(y, Ω) :=
∫
Ω

r(y) dΩ +
λ1

2

(∫
∂Ω

dΓ − P
)2

+
λ2

2

(∫
Ω

dΩ − A
)2

, (6)

which depends on the solution y of the problem (4)-(5), on the difference between
the perimeter of ∂Ω and a given target value P and on the difference between the
area of Ω and a given target value A. In the following, we will denote by |Ω| and
|∂Ω| the area and the perimeter of Ω, respectively.
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It is clear that a perturbation of Γ corresponds to a perturbation of Ω which
results in a variation of the solution of the boundary value problem and hence of
the cost functional. Therefore, we can consider the following mapping

Γ → y(Ω) (7)

that we assume to be Fréchet differentiable. Using the mapping (7), we can define
the following reduced objective functional

Ĵ(Γ) = J(y(Ω), Ω). (8)

We are interested in solving the following shape optimization problem

Γ∗ = argminΓ∈Uad
Ĵ(Γ) ,

where by abuse of notation we identify Uad with the set of admissible boundaries.
In order to define the gradient of Ĵ(Γ) with respect to a variation of Γ, we intro-

duce a family of mappings Tt : x 7→ Tt(x) given by the perturbation of the identity

Tt(x) = x + t V(x),

where V ∈ R2 is a vector field of appropriate smoothness. Under this mapping, a
deformed domain Ωt is given by

Ωt := {Tt(x) : x ∈ Ω}

with boundary Γt = {Tt(x) : x ∈ Γ}. If yt denotes the solution of the constraint
equation (4)-(5) in the perturbed domain Ωt, we seek to derive a formula for the
shape derivative

dĴ(Γ)[V] := lim
t→0+

Ĵ(Γt)− Ĵ(Γ)

t
.

Using the so-called Hadamard representation formula (see e.g. [28]) , the shape
derivative dĴ reads as follows

dĴ(Γ)[V] =

∫
Γ
∇ Ĵ(Γ) v dS,

where ∇ Ĵ(Γ) is the reduced shape gradient and v = ⟨V, ν⟩ is the normal component
of the vector field V. It is easy to prove (see e.g. [28]) that the shape derivative for
the elliptic problem (4)-(5) is

dĴ(Γ)[V] :=
∫
Γ

(
r(y)− ∂p

∂ν

∂(yb − y)
∂ν

)
v dS+λ1 (|∂Ω| − P)

∫
Γ

Kv dS+λ2 (|Ω| − A)

∫
Γ

v dS

where K is the mean curvature of Γ, y is the solution to (4)-(5) and p is the solution
to the following adjoint problem

−∆p =
∂r(y)

∂y
in Ω

p = 0 on ∂Ω.
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As an example, for homogeneous yb = 0 we have ∂yb
∂ν = 0 on ∂Ω.

Based on the reduced gradient, we can define a preconditioned gradient-based
shape optimization (GSO) scheme (see e.g. [7, 13, 15]) that constructs a sequence
of optimization boundaries {Γℓ}ℓ∈N through the following update

Γℓ+1 = {x + tℓ S(∇ Ĵ(Γℓ)) en, x ∈ Γℓ},

where en denotes the unit vector oriented as the perpendicular to the segment AB
in the domain’s outwards direction (see Figure 1), S is a suitable preconditioner
(e.g., S = −∆Γ

−1, being ∆Γ the Laplace-Beltrami operator) and tℓ is a steplength
obtained by linesearch [25], such that

Ĵ(Γℓ+1) < Ĵ(Γℓ).

The GSO algorithm reads as follows

Algorithm 2.1 (Gradient-based shape optimization (GSO) scheme - m-steps). Let
Γ0 be the starting optimization boundary, set the index ℓ = 0. We have the following
intermediate steps.

Step 1. Solve the forward problem

−∆yℓ = f in Ωℓ

yℓ = yb on ∂Ωℓ.

Step 2. Solve the adjoint problem

−∆pℓ =
∂r(yℓ)

∂y
in Ωℓ

pℓ = 0 on ∂Ωℓ.

Step 3. Setup the gradient

∇ Ĵ(Γℓ)(x) =

(
r(yℓ)− ∂pℓ

∂ν

∂(yb − yℓ)
∂ν

+ λ1

(
|∂Ωℓ| − P

)
K

+λ2

(
|Ωℓ| − A

))
(x), x ∈ Γℓ.

Step 4. Update the boundary using linesearch

Γℓ+1 = {x + tℓ S(∇ Ĵ(Γℓ)) en, x ∈ Γℓ} .

Step 5. If ℓ < m, increment index ℓ = ℓ+ 1 and goto Step 1.

In the following, one step of the GSO scheme defined by Algorithm 2.1 is denoted
with Γℓ+1 = G(Γℓ).
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3 The multigrid shape optimization framework

This is the main section of the paper where we illustrate the elements of our multi-
grid shape optimization framework. In particular, in Section 3.1 we introduce the
hierarchy of discrete control boundaries, while in Section 3.2 we define the inter-
grid transfer operators acting between the different levels of this hierarchy. Finally,
in Section 3.3 we discuss the formulation and the properties of the key ingredients
of our multigrid shape optimization scheme, namely the coarse-grid shape optimiza-
tion problem and the resulting coarse-grid correction step. At the end of Section 3.3
the complete algorithm is reported.

3.1 The discrete setting

We first introduce the hierarchy of discrete control boundaries. Let Tk(I) be a tri-
angulation of the interval I. Let k ∈ N+ denote the level of discretization and
hk = b−a

Nk
(e.g., Nk = 2k+1) the associated mesh-size. We set xj = a + jhk with

j = 0, . . . , Nk and we denote by Ij = [ xj−1, xj ] the j-th element of Tk(I). The space
of discrete admissible configurations is defined as follows

U k
ad = {uk ∈ Uad : uk|Ij ∈ P1(Ij) for j = 1, . . . , Nk} ⊂ Uad ,

where P1(Ij) is the space of univariate polynomials on Ij with degree less than or
equal to one. According to this, Ωk will denote the domain parametrized by uk and
Γk the corresponding piecewise linear mobile boundary (see Figure 1(a)).

(a) Triangulations at k-th level of discretiza-
tion: Ij ∈ Tk(I), Îj ∈ Tk(Γk)

Ij

Îj

Ωk

A B

Γk

(b) The discrete control boundary at differ-
ent levels of discretization: Γk (dotted) and
Γk−1 = Ik−1

k Γk (solid).

Ωk−1

A B

Γk

Γk−1

Figure 2: The discrete setting at different levels of discretization.

Let us now introduce the finite element space to approximate the solution of the
PDE on Ωk. Let Tk(Ωk) be a conforming and shape-regular triangulation of Ωk,
where we assume that every node x̂j := u(xj) is a vertex of Tk(Ωk). We denote by
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hk be the diameter of an element T ∈ Tk(Ωk). Let V(Ωk) be the space of linear
finite elements

V(Ωk) = {v ∈ H1
0(Ωk) : v|T ∈ P1(T) ∀T ∈ Tk(Ωk)},

where P1(T) represents the space of polynomial functions on T of degree less or
equal than 1. Let us assume yb ∈ V(Ωk), we denote by yk ∈ V(Ωk)⊕ yb the finite
element approximation to the exact solution y of (4)-(5). Finally, if we define the
discrete reduced functional Ĵk(Γk) at k-level as

Ĵk(Γk) := J(yk(Ωk), Ωk) (9)

then the reduced discrete shape optimization problem at level k reads as follows:

Γ∗
k = argminΓk∈U k

ad
Ĵk(Γk) . (10)

3.2 Intergrid transfer operators

For multigrid purpose, we need to define intergrid transfer operators acting on

• functions in U k
ad;

• geometric boundaries Γk;

• functions defined on geometric boundaries (i.e., shape gradients).

We first deal with functions in U k
ad. In the spirit of [18], we define a restriction

operator Ik−1
k : U k

ad → U k−1
ad acting as sketched in Figure 1(b). The corresponding

prolongation operator Ik
k−1 : U k−1

ad → U k
ad is defined so that the following relation

holds
(Ik−1

k u, v)L2(I) = (u, Ik
k−1v)L2(I) (11)

for all u ∈ U k
ad and v ∈ U k−1

ad . Accordingly, we can define a geometric restriction
operator and a corresponding geometric prolongation operator. Let Γk be the mobile
part of the domain Ωk parametrized by uk ∈ U k

ad, we define by Γk−1 the boundary
parametrized by uk−1 = Ik−1

k uk. By abuse of notation, we write

Γk−1 = Ik−1
k Γk Γk = Ik

k−1Γk−1 .

We now introduce a pair of transfer operators acting on the functions defined on
discrete boundaries; this will be useful to restrict/prolongate shape gradients from
Γk to Γk−1 and viceversa. We build a triangulation Tk(Γk) of Γk as follows: the
function uk (which parametrizes Γk) induces a one-to-one correspondence between
elements Ij ∈ Tk(I) and elements Îj ∈ Tk(Γk) which results to be defined by

Îj = {(x, uk(x)) : x ∈ Ij}

(see Figure 1(a)). Let V(Γk) be the space of piecewise linear functions defined on
Tk(Γk). We define a functional restriction operator Ik−1

k : V(Γk) → V(Γk−1) and
a corresponding functional prolongation operator Ik

k−1 : V(Γk−1) → V(Γk). We
require that they satisfy the following

(Ik−1
k g, h)Γk−1 = (g, Ik

k−1h)Γk (12)
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for all g ∈ V(Γk) and h ∈ V(Γk−1), where (·, ·)Γk denotes the inner product in V(Γk)
to be defined later. Let g ∈ V(Γk), the functional restriction operator is defined as
follows

Ik−1
k g =

[
Ik−1
k ( g#

|I )
]#

|Γk−1
, (13)

where g# is the extension of g to I × R defined as

g#(x, y) = g(uk(x)) ∀x ∈ I, ∀y ∈ R , (14)

being uk the parametrization of Γk. The functional prolongation operator Ik
k−1 can

be defined in an analogous way. By introducing the inner product in V(Γk) as

( f , g)Γk := ( f #
|I , g#

|I )L2(I) for all f , g ∈ V(Γk) , (15)

it is easy to verify the validity of (12). Indeed, there holds

(g, Ik
k−1h)Γk = ( g#

|I , [Ik
k−1h]#|I )L2(I)

= ( g#
|I , Ik

k−1(h
#
|I) )L2(I)

= ( Ik−1
k (g#

|I) , h#
|I )L2(I)

= ( Ik−1
k g , h )Γk−1 ,

where we used (11), (13) and (15).

3.3 The multigrid shape optimization algorithm

At k-level of discretization, we consider a function gk : I × R → R to be defined
iteratively in terms of gk+1, where we set gK = 0, being K the finest level of dis-
cretization. Let us introduce the following ”perturbed” shape optimization problem

min
Γk∈U k

ad

Fk(Γk) := Ĵk(Γk)−
∫

Ωk

gk dΩ , (16)

where Ĵk represents the discrete reduced objective functional at k-level defined in
(9). It is clear that at the finest level K, the problem (16) corresponds to the original
discrete shape optimization problem. Our aim is to formulate a multigrid shape
optimization scheme for solving the minimization problem (16) for all levels k. In
the following we will work under the following natural regularity assumption on
differentiability and local positivity of the shape Hessian. For a discussion on the
shape Hessian see Section 6.

Assumption 3.1. The functional Ĵk is twice shape differentiable and the shape Hessian
is locally positive definite.

Under the previous assumption, solving (16) is equivalent to solve the following
gradient equation

∇ Ĵk(Γk)− gk |Γk
= 0 on Γk , (17)

where it is easy to show that gk |Γk
is the shape gradient of the functional

∫
Ωk

gkdΩ,
as the integrand does not depend on the domain Ωk.
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Next, we illustrate our multigrid optimization scheme. At level k, let a starting
boundary Γ0

k be given. To solve (16), we apply m1-steps of the one-grid GSO scheme
as follows

Γℓ+1
k = Gk(Γℓ

k ), ℓ = 0, 1, . . . , m1 − 1.

Now, denote with γk ∈ U k
ad the shape-deformation error such that the solution Γk to

(17) can be written as Γk := Γm1
k +γken and γk is solution to the following equation:

∇ Ĵk(Γm1
k + γken)− gk |Γk

= 0 on Γk := Γm1
k + γken .

The above equation is equivalent to the following

∇ Ĵk(Γm1
k + γken)− [∇ Ĵk(Γm1

k )]#|Γm1
k +γken

= gk |Γm1
k +γken

− [∇ Ĵk(Γm1
k )]#|Γm1

k +γken
,

(18)
where we remark that ∇ Ĵk(Γm1

k + γken) is defined on the boundary Γm1
k + γken.

Equation (18) is the starting point in order to construct a coarse-grid optimization
problem. The general approach is to represent the operators and the functions on
the left-hand side of (18) at the (k − 1)-level, while the right-hand side is obtained
by restriction. In particular, we define

Γk−1 = Ik−1
k Γm1

k + γk−1en, (19)

where γk−1 ∈ U k−1
ad denotes a coarse representation of the k-level shape-deformation

error γk. Starting from (18), prolongating and restricting in a proper way, we define
the following coarse-grid gradient problem on Γk−1

∇ Ĵk−1(Γk−1)− [∇ Ĵk−1(Ik−1
k Γm1

k )]#|Γk−1
= Ik−1

k

(
gk |Γm1

k
− [∇ Ĵk(Γm1

k )]#|Γm1
k

)
. (20)

We note that the shape gradient ∇ Ĵk−1(Ik−1
k Γ

m1
k ) is defined on Ik−1

k Γ
m1
k ; hence it

needs to be properly prolongated and restricted in order to be defined on Γk−1. The
above equation for Γk−1 can be written in the following form

∇ Ĵk−1(Γk−1)− gk−1|Γk−1
= 0, (21)

where

gk−1 =
[
Ik−1

k

(
gk |Γm1

k
− [∇ Ĵk(Γm1

k )]#|Γm1
k

)
+∇ Ĵk−1(Ik−1

k Γm1
k )

]#
.

Equivalently, by using the functional restriction operator defined in (13), we have

gk−1 =
[

Ik−1
k (gk |I − [∇ Ĵk(Γm1

k )]#|I ) +∇ Ĵk−1(Ik−1
k Γm1

k )
]#

. (22)

Notice that the term

τk−1 = ∇ Ĵk−1(Ik−1
k Γm1

k )− Ik−1
k ∇ Ĵk(Γm1

k )

plays the role of a defect-correction term.
We are ready to introduce the ”perturbed” shape optimization problem at (k− 1)-

level which reads as follows

min
Γk−1∈U k−1

ad

Fk−1(Γk−1) := Ĵk−1(Γk−1)−
∫

Ωk−1

gk−1 dΩ , (23)
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with gk−1 : I ×R → R defined as in (22). For clarity, it is convenient to collect some
crucial properties of the coarse-grid optimization problem (21)-(22). The first result
shows that, at convergence, all levels share the same solution which represents the
fixed point of our multigrid scheme.

Proposition 3.1. Suppose that Γm1
k = Γk solves the fine-grid gradient equation ∇ Ĵk(Γk)−

gk |Γk
= 0, then γk−1 = 0.

Proof. If Γm1
k = Γk solves the fine-grid gradient equation ∇ Ĵk(Γk)− gk |Γk

= 0, then

Ik−1
k (∇ Ĵk(Γk)− gk |Γk

) = 0 and the coarse-grid gradient equation (20) becomes

∇ Ĵk−1(Γk−1) = [∇ Ĵk−1(Ik−1
k Γk)]

#
|Γk−1

whose solution is Γk−1 = Ik−1
k Γk. That is, the coarse-grid solution is the restriction

of the fine-grid solution. Then, from (19) we obtain γk−1 = 0.

The second result compares the shape gradient of the functional Fk at any Γk with
the shape gradient of Fk−1 at Γk−1 = Ik−1

k Γk.

Proposition 3.2. The shape gradient of the coarse-grid functional Fk−1 at Γk−1 =

Ik−1
k Γk coincides with the restriction of the shape gradient of the fine-grid functional Fk

at Γk.

Proof. By using (22), we have the following result

∇Fk−1(Γk−1) = ∇ Ĵk−1(Γk−1)− gk−1|Γk−1

= ∇ Ĵk−1(Γk−1)−
[

Ik−1
k (gk |I − [∇ Ĵk(Γk)]

#
|I ) +∇ Ĵk−1(Ik−1

k Γk )
]#

|Γk−1

=
[

Ik−1
k ( [∇ Ĵk(Γk)]

#
|I − gk |I )

]#

|Γk−1

= Ik−1
k ∇Fk(Γk), (24)

where in the last step we used (13).

The key feature of our multigrid approach is to construct an effective descent direc-
tion using an approximate minimizer of the coarse-grid problem. To illustrate this
fact, assume that Γ̃k−1 ∈ U k−1

ad is an approximate minimizer on the coarse grid such
that

Fk−1(Γ̃k−1) < Fk−1(Ik−1
k Γm1

k ). (25)

We can obtain Γ̃k−1 by using the one-grid GSO scheme or by recursive application of
the present multigrid scheme. Therefore, using (19) yields an approximation to the
shape-deformation error given by

γk−1en = Γ̃k−1 − Ik−1
k Γm1

k . (26)

Further, the prolongation of this function on the finer grid provides an approxima-
tion to the shape-deformation error γk at the k-level, as follows

γk = Ik
k−1γk−1. (27)
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We next prove that γken, with γk given by (27), provides a descent direction for Fk
at Γm1

k . We remark that γken needs to be prolongated to build a proper vector field
γ#

k en defined in I × R (see (14) for the definition of γ#).

Proposition 3.3. There holds

dFk(Γm1
k , γk

#en) =

∫
Γ

m1
k

∇Fk(Γm1
k )γk

#en · ν dS < 0 , (28)

where ν is the outward normal vector to Ωm1
k .

Proof. To prove (28), denote with Γ̂k−1 = Ik−1
k Γm1

k , then by using (25) we have

Fk−1(Γ̃k−1) < Fk−1(Γ̂k−1). (29)

Now, using local positiveness of the Shape Hessian ∇2Fk−1 (see Assumption 3.1)
and employing Taylor’s expansion yield for any γ ∈ U k−1

ad

Fk−1(Γ̂k−1 + γen) > Fk−1(Γ̂k−1) +

∫
Γ̂k−1

∇Fk−1(Γ̂k−1)γ
#en · ν dS (30)

being ν the normal to Ω̂k−1.
Let γ = γk−1 with γk−1 given by (26), i.e., Γ̃k−1 = Γ̂k−1 + γk−1en, from (30) and

(29) we obtain

0 > Fk−1(Γ̂k−1 + γk−1en)− Fk−1(Γ̂k−1) >

∫
Γ̂k−1

∇Fk−1(Γ̂k−1)γ
#
k−1 en · ν dS . (31)

Now we can prove (28). By using (27), (13) and (12) we have∫
Γ

m1
k

∇Fk(Γ
m1
k )γ#

k en · ν dS =

∫
Γ

m1
k

∇Fk(Γ
m1
k )Ik

k−1γ#
k−1 en · ν dS

=

∫
Ik−1
k Γ

m1
k

Ik−1
k ∇Fk(Γm1

k )γ#
k−1 en · ν dS

=

∫
Ik−1
k Γ

m1
k

∇Fk−1(Ik
k−1Γm1

k )γ#
k−1 en · ν dS < 0

where in the last step we used (24) and (31).

Since γken, with γk given by (27), provides a descent direction, we define the coarse-
to-fine minimization step as follows

Γm1+1
k = Γm1

k + α γken,

where α is a steplength to be determined by a linesearch algorithm. Our multigrid
optimization step is completed by applying m2-steps of the one-grid GSO scheme as
follows

Γℓ+1
k = Gk(Γℓ

k ), ℓ = m1 + 1, . . . , m1 + m2.

Summarizing, a minimizing sequence for the problem

min Fk(Γk)
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is obtained with the following multigrid optimization scheme.

Let Γ0
k be the initial optimization boundary at level k and gk be given. The follow-

ing steps define one multigrid V-cycle that will be denoted by Γnew
k = MGSO(Γold

k , k, gk).

Algorithm 3.1 (Multigrid shape optimization (MGSO) scheme).
If k = 1 (coarsest resolution) then the minimization problem (23) is solved exactly.

Else if k > 1:

Step 1. Apply one-grid optimization

Γℓ+1
k = Gk(Γℓ

k ), ℓ = 0, 1, . . . , m1 − 1.

Step 2. Compute the gradient residual

rk = gk |I − [∇ Ĵk(Γm1
k )]#|I .

Step 3. Restrict the residual and the approximate solution to coarse levels

rk−1 = Ik−1
k rk, Γ̂k−1 = Ik−1

k Γm1
k .

Step 4. Setup the coarse-grid problem

gk−1 = [∇ Ĵk−1(Γ̂k−1) + rk−1]
#.

Step 5. Call the MGSO scheme to compute the coarse-grid minimizer for min Fk−1(Γk−1):
Γ̃k−1 = MGSO(Γ̂k−1, k − 1, gk−1) such that

Γ̃k−1 ≈ argminFk−1(Γk−1).

Step 6. Construct the multigrid coarse-to-fine descent direction

γken = Ik
k−1
(
Γ̃k−1 − Γ̂k−1

)
.

Step 7. Optimize along γk with α-linesearch

Γm1+1
k = Γm1

k + α γken

Step 8. Apply one-grid optimization

Γℓ+1
k = Gk(Γℓ

k ), ℓ = m1 + 1, . . . , m1 + m2.

Step 8. End.

It should be clear that the MGSO scheme given above will be applied iteratively,
thus resulting in a sequence of V-cycles with finest level K and gK = 0. Therefore,
we also refer to the following algorithm as the MGSO scheme.

Algorithm 3.2 (MGSO Scheme).
Input: Finest level K, initial Γ0

K, gK = 0, Tolerance ϵ, iteration counter ℓ = 0, max
number iterations ℓmax.

Step 1. Compute Γℓ+1
K = MGSO(Γℓ

K, K, gK).
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Step 2. Check convergence: if ∥S(∇ Ĵ(Γℓ))∥ > ϵ and ℓ < ℓmax go to Step 1.

Step 3. End.

We remark that the MGSO scheme can be used as a standalone optimizer or it
can be used as a preconditioner [34, 3] for another optimization scheme. Specifi-
cally, we notice that the use of different grids in the MGSO scheme result in better
globalization properties that allow to start the MGSO scheme far away from the opti-
mal solution. On the other hand, as in the multigrid scheme to solve PDE problems,
the MGSO scheme should be applied to reach a solution error that is proportional
to the truncation error of the problem being solved. Once this level of accuracy is
reached, the computational cost of the MGSO scheme increases compared to the
improvement obtained in the solution.

4 Numerical experiments

In this section, we aim at validating the numerical performance of our MGSO scheme
defined by Algorithm 3.2. In the first example, we investigate the robustness of the
MGSO algorithm and we compare it with a nonlinear conjugate gradient (NLCG)
scheme. In particular, we consider different levels of discretization, different starting
configurations and different choices of the optimization parameters. In the second
example, we further test the numerical efficacy of the MGSO algorithm.

4.1 Example 1

In the first example, we consider the following model problem

min
(y,Ω)

J(y, Ω) :=
1
2
∥y − ȳ∥2

0,Ω +
λ

2
(|∂Ω| − P)2,

where y is the solution of the following Poisson problem

−∆y = 20(x1 − x2
1 + x2 − x2

2) in Ω,
y = 0 on ∂Ω,

(32)

being ȳ a given target function and λ > 0 a parameter penalizing the difference
between the perimeter |∂Ω| of Ω and a given target perimeter value P. We assume
that the minimization is performed among the set of domains Ω with ∂Ω := ΓF ∪ Γ,
where ΓF := {0} × (0, 1) ∪ (0, 1)× {0} ∪ {0} × (0, 1) is fixed and Γ is the only part
of the boundary that is free to move. We choose ȳ(x1, x2) = 10(x1 − x2

1)(x2 − x2
2)

and P = 4 such that the exact solution of the above minimization problem is given
by Ω = (0, 1)× (0, 1) and y = ȳ.

Throughout the section we have employed a stopping criterium based on the
value of the normalized preconditioned gradient at the finest level of discretization.
We have tested our MGSO scheme on a sequence of successively finer triangulations
of two different initial domains and we have employed a stopping test based on
the value of the normalized gradient at the finest level of discretization. We have
considered two initial configurations: a first test case where an initial symmetric
domain configuration is chosen (cf. Figure 2(a)), and a second test case with an
initial unsymmetric domain configuration (cf. Figure 2(b)). We denote by h0 the
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corresponding coarsest initial mesh sizes (see Figure 3, left column). We have tested
our MGSO scheme considering K = 0, 1, 2, . . . successive uniform refinements of
these initial grids (see Figure 3, middle and right columns for K = 1, 2, respectively).
In Figure 3, the degrees of freedom that are free to move are highlighted with black
bullets. To approximate the solution of (32) we have employed piecewise linear

(a) Symmetric initial configuration: levels of refinement K = 0, 1, 2.
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(b) Unsymmetric initial configuration: levels of refinement K = 0, 1, 2.
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Figure 3: Initial domains and corresponding first two levels of refinement. The degrees
of freedom that are free to move are highlighted with black bullets.

finite elements.
We have initially set λ = 100 and we have run our MGSO scheme with a relative

tolerance for the normalized preconditoned residual set equal to 10−4, employing
m1 = m2 = 2 presmoothing and postsmoothing steps In Figure 4 we report some
snapshots of the domains obtained by MGSO algorithm for K=1 and K=3 and the
unsymmetric initial configuration shown in Figure 2(b). It is remarkable that af-
ter the first iteration the current geometry is already almost optimal (cf. Figures
3(a) (middle) and 3(b) (middle)) and the functional value has decreased in a sub-
stantial way (see Figure 6). Figure 6 also shows the quantity 1

2∥y − yh∥2
0,Ω that

measures the accuracy of the finite element approximation yh on the current finest
level of discretization. The analogous results obtained with the NLCG algorithm are
collected in Figure 5. We note that, opposite to what observed for the MGSO scheme,
the approximate domain obtained with one iteration of the NLCG algorithm is far
from the optimal one (cf. Figure 5 (middle column) and the corresponding ones
in Figure 4). Finally, we observe that the sequence of domains converges towards
the optimal one slower than in the case of the MGSO scheme (see Figure 6 for a
comparison between the corresponding histories of convergence). Concerning these
results, our numerical experience is that the MGSO scheme defines an optimization
direction that is superior to that obtained in the NLCG scheme. We remark that the
computational cost of a MGSO V-cycle is larger than a NLCG step. However, the
MGSO scheme is more efficient in the first phase of the optimization procedure. A
similar result is obtained in [34] where a multigrid optimization scheme is used to
solve variational problems.
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(a) Finest level of discretization K = 1. Initial configuration (left), after 1
iteration (middle) and 12 iterations (right).
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(b) Finest level of discretization K = 3. Initial configuration (left), after 1
iteration (middle) and 9 iterations (right).
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Figure 4: Performance of the MGSO scheme (see Algorithm 3.1) for different values of
the finest level K of discretization. Unsymmetric initial configuration.

(a) Finest level of discretization K = 1. Initial configuration (left), after 1
iteration (middle) and 6 iterations (right).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

(b) Finest level of discretization K = 3. Initial configuration (left), after 1
iteration (middle) and 9 iterations (right).
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Figure 5: Performance of the NLCG scheme for different values of the finest level K of
discretization. Unsymmetric initial configuration.
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(a) History of convergence of functional value for different finest level of discretization: K = 1
(left) and K = 3 (right). The horizontal lines refer to the the quantity 1

2∥y − yh∥2
0,Ω, which mea-

sures the accuracy of the finite element approximation yh on the current finest level of discretiza-
tion.
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(b) History of convergence of normalized preconditioned residual for different finest level of dis-
cretization: K = 1 (left) and K = 3 (right). The horizontal lines refer to the stopping test tolerance.
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Figure 6: Histories of convergence of MGSO (circle) and NLCG (diamond) schemes:
functional value (top) and normalized preconditioned residual (bottom). Unsymmet-
ric initial configuration and different values of the finest level of discretization K are
considered. The iteration number refers to a complete MGSO (or NLCG) iteration.
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To test the robustness of our algorithm, we have run the MGSO scheme starting
from a different initial configuration, namely a symmetric one (see Figure 7) and we
have compared its performance with the one of the NLCG algorithm (see Figure 8).
Finally, in Figure 9 we report the associated histories of convergence. As above,
we note that our MGSO scheme is more effective in building descent directions for
the cost functional, whose convergence towards the minimum value results to be
remarkably fast.

(a) Finest level of discretization K = 1. Initial configuration (left), after 1
iteration (middle) and 3 iterations (right).
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(b) Finest level of discretization K = 3. Initial configuration (left), after 1
iteration (middle) and 3 iterations (right).
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Figure 7: Performance of the MGSO scheme (see Algorithm 3.1) for different values of
the finest level K of discretization. Symmetric initial configuration.

In Figure 10 (unsymmetric initial configuration) and in Figure 11 (symmetric
initial configuration) we report the details of the grids and the directions obtained
in Steps 1 − 8 of MGSO scheme (see Algorithm 3.1) during the first iteration.
Finally, we have tested the robustness of our algorithm with respect to the value
of the perimeter penalization parameter λ. We have run the MGSO scheme with
λ = 20 and λ = 50 for unsymmetric and symmetric initial configurations and K = 3.
In Figure 12 we report the histories of convergence (functional value, normalized
preconditioned residual and the limiter 1

2∥y − yh∥2
0,Ω). We note, as expected, that

the iteration counts needed for convergence increases as λ decreases (see Figures 6
and 9 for a comparison).

4.2 Example 2

Having already compared the efficiency of the MGSO scheme with the NLCG opti-
mization algorithm, in this section we focus on the MGSO algorithm only. Let y be
the solution of the following Poisson problem

−∆y = −16 exp
{

4(x1 − 1/2)2 + 4(x2 − 1/2)2
}
(4x2

1 − 4x1 + 4x2
2 − 4x2 + 3) in Ω,

y = 0 on ∂Ω.
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(a) Finest level of discretization K = 1. Initial configuration (left), after 1
iteration (middle) and 15 iterations (right).
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(b) Finest level of discretization K = 3. Initial configuration (left), after 1
iteration (middle) and 17 iterations (right).
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Figure 8: Performance of the NLCG scheme for different values of the finest level K of
discretization. Symmetric initial configuration.

We consider the following model problem:

min
(y,Ω)

J(y, Ω) :=
1
2
∥y − ȳ∥2

0,Ω +
λP
2
(|∂Ω| − P)2 +

λA
2
(|Ω| − A)2,

where ȳ is a target function, and λP, λA > 0 are parameters penalizing the differ-
ence between the perimeter |∂Ω| of Ω and a given target perimeter value P, and the
difference between the area |Ω| of Ω and a given target area value A, respectively.
As before, we assume that the minimization is performed among the set of domains
Ω with ∂Ω := ΓF ∪ Γ, where ΓF := {0}× (0, 1)∪ (0, 1)×{0} ∪ {0}× (0, 1) is fixed
and Γ is the only part of the boundary that is free to move. We choose ȳ(x1, x2) =

exp
{

4(x1 − 1/2)2 + 4(x2 − /2)2}− exp {2}, P = 3 +
√

2π/4 and A = (π + 6)/8
such that the exact solution of the above minimization problem is given by

Ω =

{
(x1, x2) ∈ R2 s.t. 0 < x1 < 1 and 0 < x2 < 1/2 +

√
1/2 − (x1 − 1/2)2

}
,

(33)
and y = ȳ (cf. Figure 13). We have set λA = 100 and λP = 10, and we have
run our MGSO scheme with two presmoothing and postsmoothing steps, and a
relative tolerance for the normalized preconditoned residual set equal to 10−2.
Figure 14 shows the final mesh configurations obtained with the MGSO scheme;
it can be seen that the optimal shape is clearly reached. Next, let xΓ

2 (x1) :=
1/2 +

√
1/2 − (x1 − 1/2)2, x1 ∈ [0, 1], i.e., (x1, xΓ

2 (x1)) defines the exact (curved)
domain boundary Γ. We have measured the magnitude of the pointwise error
ek = xΓ

2 (xk
1) − xk

2, for any discretization point Pk = (xk
1, xk

2) of the (polygonal)
optimization boundary. Here Pk stands for the MGSO computed domain coordinate
corresponding to the point xk (at the final configuration). For different values of
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(a) History of convergence of functional value for different finest level of discretization: K = 1
(left) and K = 3 (right). The horizontal lines refer to the the quantity 1

2∥y − yh∥2
0,Ω, which mea-

sures the accuracy of the finite element approximation yh on the current finest level of discretiza-
tion.
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(b) History of convergence of normalized preconditioned residual for different finest level of dis-
cretization: K = 1 (left) and K = 3 (right). The horizontal lines refer to the stopping test tolerance.
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Figure 9: Histories of convergence of MGSO (circle) and NLCG (diamond) schemes:
functional value (top) and normalized preconditioned residual (bottom). Symmetric
initial configuration and different values of the finest level of discretization K are con-
sidered. The iteration number refers to a complete MGSO (or NLCG) iteration.
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(a) K=1: initial grid
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(b) K=1: grid after 2 pres-
moothing steps
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(c) K=0: restricted grid
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(d) K=0: movement direc-
tion after 2 smoothing steps
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(e) K=1: multigrid coarse-
to-fine descent direction
γ1en (normalized)
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postsmoothing steps

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

Figure 10: Unsymmetric initial configuration and K = 1: grids and directions obtained
in Steps 1 − 8 of the MGSO scheme (iteration number 1).

(a) K=1: initial grid
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(b) K=1: grid after 2 pres-
moothing steps
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(c) K=0: restricted grid
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(d) K=0: movement direc-
tion after 2 smoothing steps
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(e) K=1: multigrid coarse-
to-fine descent direction
γ1en (normalized)
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Figure 11: Symmetric initial configuration and K = 1: grids and directions obtained in
Steps 1 − 8 of the MGSO scheme (iteration number 1).
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(a) Unsymmetric initial configuration and K = 3

(b) Symmetric initial configuration and K = 3

Figure 12: Histories of convergence of MGSO scheme for different values of the perime-
ter penalization parameter: λ = 50 (left) and λ = 20 (right). Functional values (circle)
and normalized preconditioned residuals (square) are reported in the same plot together
with the horizontal line indicating the level of accuracy of the finite element approxima-
tion. Unsymmetric (top) and symmetric (bottom) initial configurations and finest level
of discretization K = 3 are considered.
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Figure 13: Exact solution of the minimization problem of Example 2.
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(a) Initial mesh configurations for the discretization levels K = 4, 5, 6
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(b) Final mesh configurations of the MGSO scheme for the discretization
levels K = 4, 5, 6
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Figure 14: Initial (top) and final (bottom) mesh configurations of the MGSO scheme
(see Algorithm 3.1) for different values of the finest level K of discretization (from left
to right: K = 4, 5, 6.). The degrees of freedom that are free to move are highlighted with
black bullets. The red line represents the boundary of the exact domain Ω, cf. (33).
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the discretization level K = 4, 5, 6, the computed pointwise errors are shown in Fig-
ure 15. It can be seen that, as the mesh size goes to zero, the MGSO algorithm
provides better and better approximations of Γ.
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(c) K = 6
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Figure 15: Pointwise error at the final MGSO configuration for different values of the
discretization level K = 4, 5, 6.

5 Conclusion

A new multigrid shape optimization framework to solve elliptic PDE shape opti-
mization problems was presented. This framework employs the Hadamard repre-
sentation formula and defines the control boundary as the graph of a continuous
function that can be approximated at various discretization levels. The multigrid
shape optimization scheme was constructed based on

• the recursive application of geometrical intergrid transfer operators acting on
the space of control boundaries;

• a coarse-grid correction resulting from the formulation of coarse shape opti-
mization problems.

The convergence of the proposed multigrid shape optimization method was proved
and validated through various numerical experiments that demonstrated the ef-
fectiveness of this methodology. Finally, it is useful to remark that the presented
framework may be extended to treat possibly non-elliptic PDE shape optimization
problems.
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6 Appendix. Shape Hessian of a simple test problem

Let y = y(Ω) be the unique solution to the following elliptic partial differential
equation

−∆y = f in Ω (34)

y = yb on ∂Ω . (35)

We consider the following cost functional depending on the solution y of the prob-
lem (34)-(35)

J(y, Ω) :=
1
2

∫
Ω

(y − ȳ)2 dΩ + λ

∫
∂Ω

dS,

with λ > 0.
We set Ĵ(Γ) = J(y(Ω), Ω) . Let V be a given vector field and v = ⟨V, ν⟩ . It is

easy to check that the shape derivative of the functional Ĵ reads as follows

dĴ(Γ)[V] :=
∫
Γ

(
1
2
(y − ȳ)2 + ∂ν p ∂ν(y − yb) + λK

)
v dS ,

where K is the mean curvature, y is the solution to (34)-(35) and p is the solution
to the following adjoint equation

−∆p = y − ȳ in Ω

p = 0 on Γ.

By following [5] the shape Hessian reads as follows

d2 Ĵ(Γ)[V][W] =

∫
Γ

(
∂ν p′[W] ∂ν(y − yb) + ∂ν p ∂νy′[W]

)
v dS + λ

∫
Γ

∇Γv∇Γw dS

+

∫
Γ

∇ ·
[(

1
2
(y − ȳ)2 + ∂ν p ∂ν(y − yb)

)
V dS

]
w .

where p′[W] solves

−∆p′[W] = y′[W] in Ω

p′[W] = −∂ν p W · ν on ∂Ω .

If we assume that Γ is such that dĴ(Γ)[V] = 0 for all V, then the shape Hessian
reduces to

d2 Ĵ(Γ)[V][W] =

∫
Γ

(
∂ν p′[W] ∂ν(y − yb) + ∂ν p ∂νy′[W]

)
v dS + λ

∫
Γ

∇Γv∇Γw dS .

(36)
In view of the study of the positive definiteness of the shape Hessian of Ĵ, we

focus on the first term on the right-hand side of (36), as the contribution of the
second term is clear. In doing this, we closely follow [27] and we analyze the
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symbol of the shape Hessian of the functional Ĵ = 1
2
∫
Ω

(y − ȳ)2 dΩ, where y solves

(34)-(35). Let us recall that

dĴ(Γ)[V] :=
∫
Γ

G v dS with G =
1
2
(y − ȳ)2 + ∂ν p ∂ν(y − yb) . (37)

Let φ(s) be a parametrization of Γ, i.e., Γ = {φ(s) : s ∈ [0, L]}. Given a function
α(s), we consider a domain deformation of the type Γε(α) = {φ(s) + εα(s)ν(s) : s ∈ [0, L]}.
The shape Hessian of Ĵ(Γ) in direction W = αν is the limit

d2 Ĵ(Γ)[V][W] = lim
ε→0

dĴ(Γε)[V]− dĴ(Γ)[V]

ε
.

In the following we denote by G̃[α] the perturbation of the shape gradient G when
the vector filed W = αν is applied to the boundary Γ. By using (37), we get

G̃[α] = (y − ȳ)y′[α] + ∂ν p′[α] ∂ν(y − yb) + ∂ν p ∂νy′[α]

where the shape derivatives p′[α] := p′[W] and y′[α] := y′[W] solve respectively

−∆p′[α] = y′[α] in Ω, p′[α] = −∂ν p α on Γ,
−∆y′[α] = 0 in Ω, y′[α] = −∂ν(y − yb) α on Γ.

In the following, we assume that Ω = {(x1, x2) : x1 ∈ R, x2 > 0} is the upper-
half plane, which means that the normal to the boundary Γ = {(x1, 0) : x ∈ R} is
directed as the x2-axis and the perturbed gradient reads as follows

G̃[α] = (y − ȳ)y′[α] + ∂x2 p′[α] ∂x2(y − yb) + ∂x2 p ∂x2 y′[α] .

We set α = eiω1x1 and we also assume that the output perturbations of the primal
and adjoint variables are of the form

y′[α] = ŷeiω1x1 eω2x2

p′[α] = p̂eiω1x1 eω2x2 .

Due to the boundary conditions of the perturbed states y′[α] and p′[α] we have
that

ŷ = −∂x2(y − yb) p̂ = −∂x2 p . (38)

Now we perform a local analysis of the Hessian. The coefficients ŷ and p̂ satisfy
the linear system(

−(−ω2
1 + ω2

2) 0
−1 −(−ω2

1 + ω2
2)

) (
ŷ
p̂

)
=

(
0
0

)
(39)

which can be thought as Laplace problems for y′ and p′ in the Fourier space. The
two equations (38) and (39) are non-contradicting, if the above matrix has not full
rank, i.e., if

ω1 = |ω2| .
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Thus we have

∂x2 y′[α]|x2=0 = −(∂2
x2x2

(y − yb) + ∂x2(y − yb)|ω1|)α
∂x2 p′[α]|x2=0 = −(∂2

x2x2
p + ∂x2 p|ω1|)α

with α = eiω1x1 . Hence,

G̃[α] = −
[
(y − ȳ)∂x2(y − yb) + ∂x2(y − yb)(∂

2
x2x2

p + ∂x2 p|ω1|)

+∂x2 p(∂2
x2x2

(y − yb) + ∂x2(y − yb)|ω1|)
]

α .

This means that the shape Hessian is a pseudo-differential operator of order one.
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problèmes approchś Appl. Math. Optim. 2 (2) (1975/76), pp. 130–169.

[5] D. BUCUR AND J.P. ZOLÉSIO, Anatomy of the shape Hessian via Lie Brackets,
Annali di Matematica pura e applicata, 173 (1) (1997), pp. 127–143.

[6] F. BEUX AND A. DERVIEUX, A hierarchical approach for shape optimization, En-
grg. Comput. 11 (1) (1994), pp. 25–48.

[7] M. BURGER, A framework for the construction of level set methods for shape
optimization and reconstruction, Interfaces Free Bound. 5 (2003) 301-329.
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