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Abstract

Current crop growth models, whether process-based or data-driven, rarely in-
corporate spectral light composition, limiting their applicability in highly controlled
environments such as vertical farming. This work addresses this gap by adjusting
a well-established process-based model for lettuce growth with an explicit, data-
driven representation of light spectrum effects. Using explainable machine learning
techniques, we identify the most relevant spectral features, specifically the Blue:Red
and FarRed:Red ratios, and integrate them into a new model parameter, 𝛾, which
captures their physiological impact on plant development. The resulting adjusted
model (aVHopt) is then validated on an independent literature dataset, showing a
substantial reduction in prediction error compared to the reference state-of-the-art
model, with a more than 60% decrease in RMSE. The application of the aVHopt

model to a commercial dataset confirms its capability to capture key spectral effects,
but also reveals its sensitivity to environmental and biological variability not fully
accounted for in the current formulation.
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1 Introduction

Due to demographic, environmental, and economic factors, traditional farming systems
face an urgent need for innovative agricultural practices and technologies in order to
improve efficiency, sustainability, and resilience to changing global conditions [1, 2, 3, 4,
5].
Vertical farming, a branch of Controlled Environment Agriculture (CEA), has emerged
as an innovative approach to produce fresh vegetables year-round near metropolitan
areas. It ensures consistent quality and yield, regardless of weather or climate change,
offering a local solution to the food demands of growing urban populations. Vertical
farming involves cultivating crops in vertically stacked layers and relies on a range of
advanced technologies, including sensors, artificial intelligence, robotics, and automated
hydroponic systems [6]. Environmental parameters such as temperature, humidity, CO2

concentration, and light spectrum composition are precisely controlled using dedicated
systems [7, 8].
In particular, despite the technological aspects of vertical farming have advanced, the
effectiveness of crop production in such systems largely depends on understanding plant
growth in response to controllable environmental variables [9]. To this end, mathematical
models offer significant benefits by providing a structured approach to effectively describe
and quantify plant-environment interactions, for instance to forecast crop yields, simulate
the impact of environmental factors, understand the physiological processes driving plant
growth. Among the crop models available in the literature, we distinguish two main
categories:

• process-based models. These models use equations to represent crop physiological
processes and their interaction with the environment, incorporating principles like
photosynthesis, respiration, transpiration, and nutrient uptake. The main strength
of this kind of models is high interpretability, making them valuable for hypothesis
testing and assessing physiological responses to stressors. However, process-based
models demand detailed knowledge of the crop system, often filled in with empirical
parameters. As a result, they require calibration and validation, which can be
resource-intensive, and may miss unexpected behaviors not explicitly modeled.

• data-driven models. These models use statistical or machine learning methods to
predict crop growth from historical data, identifying patterns among factors like
light, temperature, humidity, and nutrients without modeling biological mecha-
nisms. The associated strengths lie in flexibility, rapid development once data is
available, and the ability to capture complex, non-linear relationships. However,
the “black box” nature of data-driven models reduces interpretability, limiting in-
sight into underlying causes. The performance of data-driven models also heavily
depends on data quality and may not generalize well to unseen conditions.

Most existing crop growth models are predominantly developed for open-field or green-
house cultivation, where environmental variables exhibit limited controllability. This
contrasts significantly with modeling approaches in highly controlled environments, such
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as vertical farming systems. As an example, in this context, light management critically
influences photosynthesis, plant morphology, and biomass accumulation, thereby affect-
ing yield, product quality, and the overall energy efficiency of the agricultural system.
With a specific focus on lettuce cultivation, recent research has extensively investigated
the effects of various light ratios on plant growth by precisely manipulating individual
spectral components. These include blue, green, and far-red light relative to red light,
which represents the primary driver of photosynthetic activity [10, 11, 12]. The literature
contributions specifically highlight the impact of Blue:Red (B:R), Green:Red (G:R), and
FarRed:Red (FR:R) ratios, often distinguishing between:

• B:R effect. Red light is responsible for the highest quantum yield, particularly at
low intensities [13], and is known to promote biomass accumulation, plant height,
leaf width, and leaf size [14, 15, 16]. In contrast, blue light can inhibit growth,
but plays a crucial role in ensuring normal plant morphology, promoting plant
compactness [17, 18, 19, 15]. Therefore, the identification of an optimal B:R light
ratio is essential to maximize crop performance, balancing rapid leaf expansion,
necessary to maximize radiation capture, with prevention of excessive stem elonga-
tion [20]. Several studies have addressed the B:R effect, consistently highlighting
that a minimum blue light threshold is necessary to support healthy develop-
ment [21, 18, 19, 22].

• G:R and FR:R effect. Although red and blue light are sufficient for plant produc-
tion, green and far-red light also play important roles, influencing pigment content,
plant morphology, and light capture [11, 23, 24].
Increasing the G:R ratio supports elongation and photon capture, slightly increas-
ing fresh weight although leading to a minimal impact on dry weight [25]. Its effects
are species-dependent, being beneficial for crops like lettuce and microgreens, while
less effective (or even detrimental) for others like basil and tomato [25].
Higher FR:R ratio values enhance photosynthetic efficiency by improving the use of
shorter wavelengths and triggering shade-avoidance responses. Additionally, FR:R
ratio has been shown to increase dry weight independently of the B:R ratio [26],
even though the benefits are reduced at high planting densities due to increased
competition [27, 28].

Current process-based and data-driven models in the literature related to greenhouse
cultivation rarely incorporate spectral variability, thus limiting their applicability in
modeling a finely tunable system, such as vertical farming. The aim of this work is thus
to introduce an explicit description of the impact of the light spectrum on lettuce growth
in a process-based model, supported by and successively improved through a data-driven
approach. The proposed enhanced model includes the following steps:

1. identification of the most important light-related features to describe the impact
of the light spectrum on the plant growth. This task is carried out by applying
explainable machine learning techniques either onto the well-established E.J. Van
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Henten dynamic lettuce growth model described in Section 2.1 and onto experi-
mental datasets (Section 2.2);

2. proposal of the adjusted model to include the prominent light-related features
identified in step 1 (Section 2.3);

3. optimization (Section 2.3) of the parameters characterizing the adjusted model
through the data in Section 2.2;

4. validation (Section 3) of the adjusted model on the dataset in [11];

5. analysis of potential limitations of the adjusted model through machine learning
algorithms onto more extensive commercial datasets (Section 4).

2 Materials and methods

This section presents the original model proposed in [29] to describe the dry weight
growth of a lettuce crop while highlighting the associated limitations when applied to
vertical farming systems. Then, we describe the experiments conducted to collect data
for adjusting this reference model to account for light spectrum effects. Finally, the
adjusted model is proposed and analyzed.

2.1 The original lettuce crop growth model

The Van Henten (VH) model presented in [29] assumes that, at a given time, a one
m2-lettuce crop is described by the non-structural, 𝑋𝑁𝑆𝐷𝑊 [gm−2], and the structural,
𝑋𝑆𝐷𝑊 [gm−2], dry weight, so that 𝑋𝐷𝑊 = 𝑋𝑁𝑆𝐷𝑊 + 𝑋𝑆𝐷𝑊 defines the total dry weight.

The dynamic behavior of the two state variables, 𝑋𝑁𝑆𝐷𝑊 and 𝑋𝑆𝐷𝑊 , is described by a
system of two coupled ordinary differential equations (ODEs), which takes into account
the intensity of the incident photosynthetically active radiation 𝑈PAR [𝜇molm−2s−1]
(i.e., the photon flux density)1, the carbon dioxide concentration 𝑈CO2 [ppm] and the
air temperature 𝑈𝑇 [◦C]. In particular, the reference VH model reads as

¤𝑋𝑁𝑆𝐷𝑊 = 𝑐𝛼 𝑓𝑝ℎ𝑜𝑡 − 𝑟𝑔𝑟𝑋𝑆𝐷𝑊 − 𝑓𝑟𝑒𝑠𝑝 −
1 − 𝑐𝛽

𝑐𝛽
𝑟𝑔𝑟𝑋𝑆𝐷𝑊

¤𝑋𝑆𝐷𝑊 = 𝑟𝑔𝑟𝑋𝑆𝐷𝑊 ,

(1)

where: 𝑐𝛼 𝑓𝑝ℎ𝑜𝑡 models the rate of conversion of assimilated CO2 into sugar CH2O by
means of light energy (i.e., the photosynthesis process), with 𝑐𝛼 the ratio (equal to
30/44 = 0.68) of the molecular weights of CH2O and CO2, and 𝑓𝑝ℎ𝑜𝑡 the gross canopy
photosynthesis; 𝑟𝑔𝑟𝑋𝑆𝐷𝑊 is related to the conversion rate from non-structural to struc-
tural dry weight (i.e., the SDW growth process), with 𝑟𝑔𝑟 the specific growth rate co-
efficient; 𝑓𝑟𝑒𝑠𝑝 coincides with the maintenance respiration rate, which provides energy

1To be consistent with the data involved in the experiments, we replace the standard unit measure
[Wm−2] with [𝜇molm−2s−1] following [30].
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Figure 1: Relational diagram for the lettuce crop growth model (1).

to preserve cells in terms of biostructure and ionic gradients; (1 − 𝑐𝛽)𝑟𝑔𝑟𝑋𝑆𝐷𝑊/𝑐𝛽 refers
to the synthesis and respiratory losses due to growth, with 𝑐𝛽 the associated coefficient.
Finally, system (1) is closed with appropriate initial conditions.
The relational diagram in Figure 1 provides a compact representation of system (1).
In more detail, the state variables 𝑋𝑁𝑆𝐷𝑊 and 𝑋𝑆𝐷𝑊 are highlighted in the boxes; the
model inputs are 𝑈𝑇 , 𝑈CO2 , 𝑈PAR; the main four growth rates involved in (1) are repre-
sented as valves, while the arrow direction depends on the income/outcome nature of the
contribution (i.e., on the corresponding sign in (1)); the leaf area represents an auxiliary
variable and is depicted in the circle.

The validation of equations (1) carried out in [29] corroborates the reliability of
the reference model in a greenhouse environment. Vice versa, the application of the
VH model in a vertical farming context immediately highlights two main issues, i.e.,
crops are grown under a single light quality (solar radiation) and geometric properties of
the canopy with respect to incident radiation are considered static. Indeed, in vertical
farming, seeding density can be considerably high and the intensity of each light band
can be modulated depending on the specific growth needs. In the following, we focus on
the latter issue with the aim to adapt the original model to vertical farming cultivation
systems.

2.2 Experiment description

This section details the experiment setting at the basis of the proposed adjusted Van
Henten (aVH) model.
The experiments were conducted at Agricola Moderna, a vertical farming company based
in Melzo (Milan), Italy. The company production facility consists of two 8-layer climate
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Figure 2: Lettuce plants (variety 62) under a red-blue spectrum at 180 [𝜇molm−2s−1]
with B:R= 0.5: lettuce growth at 6 (left), 15 (center), 27 (right) days after the germi-
nation, at a low (top) and high (bottom) planting density.

cells, characterized by different average temperature conditions. We study two planting
densities, low (one plant per pot) and high (two plants per pot)2, across three different
varieties of Lactuca sativa L., namely crispy, blond and green incised crispy below la-
beled as 62, 259, and 453, respectively.
All cultivation cycles are conducted in the same layer of the same cell to minimize the
effect of temperature variations across different areas, possibly resulting from proximity
to exit doors or to the ventilation system.
Day/night temperature is set to 26/22 [°C], with a CO2 concentration maintained at 750
[ppm]. The photoperiod is selected in order to provide a 20-hour light cycle with a total
light intensity equal to 180 [𝜇molm−2s−1], followed by a 4-hour dark cycle.
Each growing cycle starts with a three-day germination period in a dark chamber, fol-
lowed by a growth phase into an ebb and flow system lasting 27 days.
We refer to Figure 2 for some pictures detailing the experiments.

2.2.1 Experimental design and light treatments

We investigate 8 different light treatments characterized by the same total light intensity,
comprising different proportions of Blue (400–500 [nm]), Green (500–600 [nm]), Red
(620–680 [nm]), FarRed (700–750 [nm]) light bands, as detailed in Table 1.

2.2.2 Data collection

For each light treatment, we randomly pick 12 plants retrieved from one tray per variety
containing either 24 (low density) or 48 (high density) individuals (see Figure 2). The
collected data do coincide with the values of average fresh and dry mass measured at

2The specific plant density [plants m−2] is not disclosed for confidentiality reasons.
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Table 1: Different light treatments involved in the data collection phase at Agricola
Moderna.

Treatment B G R FR B% G% R% FR% B:R G:R FR:R

1 90 0 90 0 50 0 50 0 1.00 0.00 0.00

2 0 0 180 0 0 0 100 0 0.00 0.00 0.00

3 15 0 165 0 8 0 92 0 0.09 0.00 0.00

4 30 0 150 0 17 0 83 0 0.20 0.00 0.00

5 60 0 120 0 33 0 67 0 0.50 0.00 0.00

6 22 34 110 14 12 19 61 8 0.20 0.31 0.14

7 22 34 122 2 12 19 68 1 0.18 0.28 0.02

8 22 0 144 14 12 0 80 8 0.15 0.00 0.10

day 7, 15, 21, and 27 (harvest time), where the dry mass is obtained by drying the leaves
in a ventilated oven at 130 [°C] for 7 hours.

2.2.3 Additional dataset

The data collected during the collaboration with Agricola Moderna include a wide va-
riety of treatments in terms of B:R ratio, while providing insufficient insight about the
effect of FR:R ratio. To address this limitation, an additional dataset is used with a
view to a reliable model calibration. We exploit the data associated with a set of exper-
iments carried out at the University of Bologna [12], under conditions similar to those
at Agricola Moderna.
All growth cycles are conducted for Lactuca sativa L., in particular the Canasta vari-
ety, at a planting density of 153 [plants m−2]. The light intensity is kept fixed at 200
[𝜇molm−2s−1] across five distinct treatments, by maintaining a constant B:R ratio while
varying the proportion of FR light in the spectrum. A summary of the light treatments
is provided in Table 2.
The photoperiod is set to a 16-hour light/8-hour dark cycle, with temperatures main-
tained between 21 [°C] and 24 [°C], and with a CO2 concentration equal to 850 [ppm].
The crops are sampled after 8, 15, 22, and 29 (harvest time) days, when the associated
fresh and dry weights are measured, along with additional quantities of interest.

2.3 The adjusted model

The adjustment of the original VH model moves from an analysis of the available lit-
erature. The impact of the light spectrum on plant growth and development has been
widely studied in plant physiology, resulting in numerous comparative experiments and
statistical analyses [18, 31, 32, 33]. These studies highlight how light quality impacts
the processes explicitly modeled in (1) (e.g., photosynthesis and respiration) and related
physiological responses (e.g., stomatal development, leaf expansion, plant morphology).

7



Table 2: Different light treatments involved in the data collection phase at University of
Bologna [12].

Treatment B G R FR B% G% R% FR% B:R G:R FR:R

1 50 0 150 0 0.25 0.00 0.75 0.00 0.33 0.00 0.00

2 47.5 0 142.5 10 0.23 0.00 0.71 0.05 0.33 0.00 0.07

3 42.5 0 127.5 30 0.21 0.00 0.63 0.15 0.33 0.00 0.23

4 37.5 0 112.5 50 0.18 0.00 0.56 0.25 0.33 0.00 0.44

5 32.5 0 97.5 70 0.16 0.00 0.48 0.35 0.33 0.00 0.72

We propose to introduce a parameter, 𝛾, to quantify how different light band combina-
tions influence non-structural dry weight production, so that we modify (1) into

¤𝑋𝑁𝑆𝐷𝑊 = 𝛾
(
𝑐𝛼 𝑓𝑝ℎ𝑜𝑡 − 𝑟𝑔𝑟𝑋𝑆𝐷𝑊 − 𝑓𝑟𝑒𝑠𝑝 −

1 − 𝑐𝛽

𝑐𝛽
𝑟𝑔𝑟𝑋𝑆𝐷𝑊

)
¤𝑋𝑆𝐷𝑊 = 𝑟𝑔𝑟𝑋𝑆𝐷𝑊 .

(2)

In the following, we define 𝛾 as a function of appropriately selected spectrum-dependent
features. To assess the impact of 𝛾 on crop growth prediction, we first analyze the
limitations of the calibrated version of the VH model (cVH) on the datasets presented
in Section 2.2, which markedly differ from the low-planting-density greenhouse conditions
for which the model was originally designed. The cVH model will be also instrumental
to carry out a reliable comparison with the aVH model. Notice that cVH and aVH
models do coincide for 𝛾 = 1, whereas 𝛾 > 1 (𝛾 < 1) corresponds to an underestimation
(overestimation) of the cVH model with respect to the adjusted one.
The complete workflow for the adjustment of model (1) is detailed in the following
sections.

2.3.1 Step 1: selection of light-dependent parameters for the VH model

This phase starts from the definition of the cVH model performed for each lettuce variety
separately, by using the data collected at Agricola Moderna and at University of Bologna.
The calibration underlying cVH focuses on the parameters related to light usage, for
which the original model exhibits a sensitivity greater than 35%. Here, the sensitivity
of the model output to a perturbation in parameter 𝑝𝑖 is defined as:

𝑆𝑖 =
𝛿𝑋𝐷𝑊 (𝑇𝐻)

𝛿𝑝𝑖
· 𝑝𝑖

𝑋𝐷𝑊 (𝑇𝐻)
, (3)

where 𝑋𝐷𝑊 (𝑇𝐻) is the simulated total dry weight at harvest time 𝑇𝐻 , 𝛿𝑝𝑖 denotes a
small variation in parameter 𝑝𝑖, and 𝛿𝑋𝐷𝑊 (𝑇𝐻) is the associated change in dry weight.
With reference to the values in Table 3, the criterion adopted for selecting the param-
eters to be calibrated leads to choose 𝑐𝜖 (i.e., the light use efficiency at very high CO2

concentration, originally set to 3.8 · 10−5 [g 𝜇mol−1]) and 𝑐𝑘 (i.e., the light extinction
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Table 3: Sensitivity of the VH model with respect to parameters used in [29], setting
𝛿𝑝𝑖 to 0.05 in (3). The highlighted parameters are selected for calibration.

𝑝𝑖 𝑆𝑖

𝑐𝛽 0.95
𝑐𝜖 0.83
𝑐𝑐𝑎𝑟,2 0.46
𝑐𝑙𝑎𝑟 0.38
𝑐𝑘 0.38
𝑐𝑐𝑎𝑟,1 0.20

𝑝𝑖 𝑆𝑖

𝑐Γ 0.19
𝑔𝑏𝑛𝑑 0.16
𝑐𝑄10𝑟𝑒𝑠𝑝 0.15
𝑐𝑐𝑎𝑟,3 0.14
𝑐𝑔𝑟,𝑚𝑎𝑥 0.14
𝑐𝑟𝑒𝑠𝑝,𝑠ℎ𝑡 0.13

𝑝𝑖 𝑆𝑖

𝑐𝑄10𝑟𝑔𝑟 0.11
𝑔𝑠𝑡𝑚 0.08
𝑐𝜏 0.06
𝑐𝑄10Γ 0.06
𝑐𝑟𝑒𝑠𝑝,𝑟𝑡 0.00

coefficient, originally set to 0.9). On the contrary, we neglect three quantities not re-
lated to light usage, namely 𝑐𝛽 since representing the respiratory and synthesis losses of
non-structural material due to growth, 𝑐𝑐𝑎𝑟,2 modeling the carboxylation conductance
and 𝑐𝑙𝑎𝑟 denoting the structural leaf area ratio.
We observe that parameters 𝑐𝜖 and 𝑐𝑘 are involved in the definition of the photosynthetic
rate,

𝑓𝑝ℎ𝑜𝑡 = 𝑓𝑝ℎ𝑜𝑡 (𝑐𝑘 , 𝑐𝜖 ;p) = (1 − 𝑒−𝑐𝑘LAI(p) ) 𝑓𝑝ℎ𝑜𝑡,𝑚𝑎𝑥 (𝑐𝜖 ;p), (4)

in system (1), where vector p gathers the parameters in Table 3 except for 𝑐𝜖 and 𝑐𝑘 ;

LAI = LAI(p) = 𝑐𝑙𝑎𝑟 (1 − 𝑐𝜏)𝑋𝑆𝐷𝑊 (5)

denotes the leaf area index, with 𝑐𝜏 the cultivation-dependent ratio of root to total plant
dry mass;

𝑓𝑝ℎ𝑜𝑡,𝑚𝑎𝑥 = 𝑓𝑝ℎ𝑜𝑡,𝑚𝑎𝑥 (𝑐𝜖 ; p) =
𝜖 (𝑐𝜖 )𝑈PAR 𝑔CO2 𝑐𝑤 (𝑈CO2 − Γ)
𝜖 (𝑐𝜖 )𝑈PAR + 𝑔CO2 𝑐𝑤 (𝑈CO2 − Γ) (6)

the canopy gross CO2 assimilation rate, assuming full soil coverage and an effective leaf
area of 1 m2 per m2 soil, with

𝜖 = 𝜖 (𝑐𝜖 ) = 𝑐𝜖
𝑈CO2 − Γ

𝑈CO2 + 2Γ
[g 𝜇mol−1] (7)

the light-use efficiency, computed considering light level impact on CO2 compensation
point and photorespiration, Γ [ppm] being CO2 compensation point, with 𝑔CO2 [m s−1]
the conductance to CO2 diffusion, and 𝑐𝑤 [g m−3] the density of CO2.

For each lettuce variety in the Agricola Moderna and University of Bologna datasets,
the parameter calibration is performed using a grid search method to evaluate different
combinations of 𝑐𝜖 , 𝑐𝑘 . The goal is to minimize the root mean squared error,

RMSE =

√√√
1

𝑁

𝑁∑︁
𝑖=1

(𝑋𝐷𝑊, pred − 𝑋𝐷𝑊, obs)2, (8)

between the 𝑁 predicted (𝑋𝐷𝑊, pred) and observed (𝑋𝐷𝑊, obs) dry weights. In particular,
to compute 𝑋𝐷𝑊, pred, we endow problem (1) with initial values for the two state variables

9



based on the total crop dry weight measured at planting. Following [29], we assume that
75% of the total dry weight is structural. To estimate the dry weight of a single shoot, a
sample of shoots from different varieties is measured just after germination, before being
transplanted. Thus, it turns out that the average shoot dry weight is about 0.0002 [g].
Multiplying this value by the planting density of each growth cycle gives us the initial
total dry weight.

To ensure comparability between the calibration carried out on the University of
Bologna and Agricola Moderna datasets, we select a common light treatment as baseline.
In particular, the data collected at Bologna University are calibrated using Treatment
1 in Table 2, corresponding to an optimized blue and red spectrum (i.e., B:R = 0.33)
according to [12]. Concerning the data collected at Agricola Moderna, we opt for a
calibration based on Treatments 4 and 5 in Table 1, which feature a B:R ratio equal
to 0.2 and 0.5, respectively. This step provides a calibrated version cVH of the original
VH model for each analyzed variety, the associated optimal parameters being collected
in Table 4. It can be checked that, on average, RMSE is reduced from 34.6 to 18.5
across all the available growth cycle data. Finally, the left panel in Figure 3 shows the
time evolution of 𝑋𝐷𝑊 for the VH (dashed line) and cVH (solid line) models together
with the available experimental data for lettuce variety 62, low planting density, and
the two light treatments B:R= 0.2 and B:R= 0.5. The enhancement resulting from the
calibration phase becomes particularly evident during the later stages of crop growth. It
is worth noting that the stepwise behavior of the 𝑋𝐷𝑊 curves results from the light being
turned off during the night phase, modeled by assigning a piecewise constant profile to
𝑈PAR.

Figure 3: The aVH model: the light spectrum-dependent feature selection step (left);
the optimization of parameter 𝛾 step (right).

2.3.2 Step 2: optimization of parameter 𝛾 for the aVH model

We determine the optimal parameter 𝛾 characterizing the adjusted model for each com-
bination of lettuce variety, planting density and light treatment in the two considered
datasets. This amounts to consider a total of 53 growth scenarios, namely 3 varieties,
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Table 4: Parameter calibration for the cVH model.

Variety 𝑐𝑘 c𝜖 Dataset

Canasta 0.90 5.2 ·10−5 University of Bologna

62 0.78 3.6·10−5 Agricola Moderna

259 0.69 4.8 ·10−5 Agricola Moderna

453 0.87 3.9 ·10−5 Agricola Moderna

2 planting densities, 8 light treatments for the experiments at Agricola Moderna and
1 variety, 1 planting density, 5 light treatments for the experiments at University of
Bologna. The optimal value of 𝛾 is obtained by minimizing the value of the RMSE in
(8) with respect to the observed data for each growth setting.
The right panel of Figure 3 shows how 𝑋𝐷𝑊 evolves over time according to the aVH
model for lettuce variety 62 at low planting density. The predictions use the optimal 𝛾
values for Treatments 1, 2, and 5, and are compared with the corresponding experimen-
tal data. The three model predictions are also compared with the cVH model (dashed
line), where no treatment-specific adjustment is applied (i.e., when 𝛾 is set to 1). The
results show that, unlike the cVH model, the aVH variant more accurately captures
the experimental trends across all light treatments. In particular, the three values of 𝛾
strictly less than one effectively correct the overestimation observed in the cVH model.

2.3.3 Step 3: identification of high-impact light spectrum components for 𝛾

To better understand the relationship between the light spectrum and the parameter
𝛾 in (2), we train a predictive model using a XGBoost regressor [34] and resort to
SHAP (SHapley Additive exPlanations) method [35] to quantify the contribution of
each spectral feature to the model output 𝛾. To train XGBoost, we relate each of the
53 light spectrum compositions in Section 2.3.2 (i.e., the B:R, G:R, FR:R ratios and the
B, G, R, FR percentage with respect to the total light intensity) with the optimal value
for coefficient 𝛾, thus taken as target variable.

Figure 4 shows the SHAP values computed for the trained model, thus identify-
ing the light spectrum features that most strongly influence the predicted crop growth
response. The 𝑥-axis represents the SHAP value associated with each feature of the
light spectrum composition. Positive (negative) values indicate how much the feature
increases (decreases) the predicted value of 𝛾, quantifying the associated impact on the
model output for each of the 53 samples. Each dot highlights a single observation (i.e.,
one specific combination of lighting condition, density and variety) where the associated
color encodes the SHAP value (i.e., from low (blue) to high (red)) of the corresponding
feature. We notice that these feature importance analysis results are coherent with cur-
rent literature [36, 11], demonstrating the relevance of the B:R and FR:R ratios over the
other considered light features in explaining lettuce growth dynamics.
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Figure 4: The aVH model: SHAP values associated with the considered features of the
light-spectrum composition.

Figure 5: Experimental histograms and corresponding trend of the crop dry weight
measured at week 4 as a function of the B:R ratio for lettuce varieties 62, 256 and 453.

2.3.4 Step 4: modeling of the parameter 𝛾

Following the identification of the B:R and FR:R ratios as the most influential compo-
nents of the light spectrum for determining 𝛾, we model 𝛾 as a function of these two
ratios, namely

𝛾 = 𝑎B:R · 𝑎FR:R, (9)

where 𝑎B:R = 𝑎B:R(B:R) and 𝑎FR:R = 𝑎FR:R(FR:R) are functions to be appropriately de-
fined. To this aim, we rely on both the experimental data at our disposal and on state-of-
the-art literature concerning the effects of light spectrum on crop growth. In particular,
we select studies that align with our reference crop growth conditions, where total pho-
ton flux density, photoperiod, CO2 concentration, and humidity are kept constant while
varying the contributions of the light spectrum bands [37, 11, 36, 38, 18, 26, 19, 22, 39].
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Figure 6: The aVH model: trend of 𝑎B:R as a function of the B:R ratio when varying 𝑎

for 𝑘 = 8 (left) and when varying 𝑘 for 𝑎 = 2 (center); trend of 𝑎FR:R as a function of
the B:R ratio when varying 𝛼 for 𝑏 = ℎ = 4 (right).

Inspired by the trend of dry weight as a function of the B:R ratio shown in Figure 5,
we choose a Beta probability distribution as a possible profile for 𝑎B:R, being

𝛽(𝑥; 𝑎, 𝑘) = Γ(𝑎 + 𝑘)𝑥𝑎−1(1 − 𝑥)𝑘−1
Γ(𝑎)Γ(𝑘) with Γ(𝑧) =

∫ ∞

0
𝑡𝑧−1𝑒−𝑡 d𝑡, (10)

and 𝑎 and 𝑘 the distribution shape parameters. In particular, we rescale the Beta
distribution to model a sharp decline in biomass accumulation as the B:R ratio increases,
with a peak at an intermediate value. We set

𝑎B:R = 𝛽(B:R; 𝑎, 𝑘;𝑚, 𝑀), (11)

where 𝑚 and 𝑀 define the rescaling range, representing the minimum and maximum
impact of the B:R ratio on biomass production.
The first two plots in Figure 6 show the behavior of 𝑎B:R as a function of B:R. Specifically,
the first panel illustrates the effect of varying 𝑎 (with 𝑘 = 8 fixed), while the second panel
shows the effect of varying 𝑘 (with 𝑎 = 2 fixed), when using 𝑚 = 0.8 and 𝑀 = 1.1. It is
evident that the main effect of parameter 𝑎 is to shift the peak of the curve along the
𝑥-axis, while parameter 𝑘 primarily controls the width of the peak.

Let us consider now the definition of function 𝑎FR:R in (9). Consistently with the
bell-shaped trend of the data collected in [12], where the impact of FR:R ratio on lettuce
growth is tested while keeping the total light intensity and the B:R ratio constant, we
model the FR:R effect by resorting again to the rescaled Beta distribution 𝛽, so that

𝑎FR:R = 1 + 𝛽(FR:R; 𝑏, ℎ; 0, 𝛼), (12)

where 𝑏, ℎ and 0, 𝛼 retain the same meaning as 𝑎, 𝑘 and 𝑚, 𝑀 in (11), respectively (we
refer to the third panel in Figure 6 for a sensitivity of the 𝑎FR:R trend with respect to
𝛼). Definition (12) requires that 𝑎FR:R takes values greater than or equal to 1, in line
with observations from the analyzed growth cycles, where increasing the FR:R ratio had
either a positive or negligible effect on plant development3.

3It is important to highlight that the definition of 𝑎FR:R is applicable only under low planting densities
or during early growth stages (i.e., before week 4). This limitation stems from the lack of reliable data in
the literature concerning the impact of FR light at high planting densities and in later phases of growth.
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Figure 7: The aVH model: trend of parameter 𝛾 in (9) as a function of B:R and FR:R
ratios.

The joint effect played by the B:R and FR:R ratios onto the definition of parameter 𝛾

according to (9), (11) and (12) is represented by the plot in Figure 7, after setting the
aVH model parameters as 𝑎 = 1.9, 𝑘 = 4.6, 𝑚 = 0.9, 𝑀 = 1.05, 𝑏 = 4, ℎ = 4, 𝛼 = 0.35.
The three-dimensional surface shows a distinct peak at low B:R ratios (around 0.2) and
intermediate FR:R ratios (approximately 0.5), suggesting that this spectral combination
maximizes the lettuce biomass growth rate. In contrast, both very high and very low
values of either ratio lead to a decrease in 𝛾, indicating a reduced effectiveness of the
light spectrum in promoting growth, as predicted by the model.

2.3.5 Step 5: definition of the aVHopt model

This phase is performed by using the dry weight measurements during the first three
weeks and for all the analyzed varieties, density conditions and light treatment, with the
goal of determining the optimal values for the parameters 𝑎, 𝑘, 𝑚, 𝑀, 𝑏, ℎ, 𝛼 in (11)
and (12). This optimization is carried out in two separate stages:

1. determination of parameters 𝑏, ℎ, and 𝛼: the computation of these pa-
rameters is based exclusively on the experiments conducted at the University of
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Bologna, which specifically examine how varying the FR:R ratio affects the growth
of Canasta lettuce, while keeping the B:R ratio constant [12]. The optimization of
parameters 𝑏, ℎ, and 𝛼 is carried out after fixing 𝑐𝜖 and 𝑐𝑘 in (4) to the correspond-
ing values in Table 4, and by setting 𝑎B:R = 1 in (11), since this quantity depends
on parameters that will be found in the subsequent stage. Under these assump-
tions, the optimal values of parameters 𝑏, ℎ, and 𝛼 are computed by minimizing
the RMSE in (8) across the observed data for each light treatment in Table 2,
covering a total of 5 growth cycles.

2. determination of parameters 𝑎, 𝑘, 𝑚, and 𝑀: the computation of these
parameters is undertaken on the dataset collected at Agricola Moderna, since in-
cluding sufficient variability for the B:R ratio. The optimization of 𝑎, 𝑘, 𝑚, and 𝑀

assumes for parameters 𝑏, ℎ, and 𝛼 the values yielded by the previous stage, and
aims at minimizing the RMSE in (8) across the observed data for all lettuce vari-
eties, density conditions, and light treatments in Table 1, for a total of 48 growth
cycles.

The optimal values obtained from these two stages are

𝑎 = 1.9, 𝑘 = 4.6, 𝑚 = 0.9, 𝑀 = 1.05, 𝑏 = 4, ℎ = 4, 𝛼 = 0.35 (13)

(these values are the same as those used in Figure 7). In the following, we refer to the
optimized aVH model as the aVHopt model.

3 Results and discussion

This section focuses on the aVHopt model in order to measure the improvement over the
cVH model and to test how accurately it reproduces lettuce dry weight dynamics under
varying light conditions, based on a new dataset.

Figure 8 shows the RMSE values defined for the four lettuce varieties described in
Section 2.2, considering both low and high planting densities for varieties 62, 259 and
453, across all light treatments listed in Tables 1 and 2. The colorbars highlight that the
aVHopt model achieves an average RMSE reduction of 31% compared to the cVH model.
This confirms that light spectrum composition plays a significant role in crop growth
prediction, and that aVHopt effectively accounts for this influence. It is also noteworthy
that planting density affects RMSE values, sometimes significantly. In particular, the
cVH model tends to perform worse when moving from low to high planting density. In
contrast, the aVHopt model shows no clear trend in response to this change. Overall,
incorporating sensitivity to plant competition can be beneficial for enhancing predictive
capability of the selected crop growth model.

We now evaluate the performance of the aVHopt model on a different dataset, which,
however, corresponds to experimental conditions comparable to those described in Sec-
tion 2.2. Specifically, we use the data from [11], where the authors report crop growth
measurements for Lactuca sativa L., cultivars Rex and Rouxai, grown at a planting
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Figure 8: Comparison between the cVH and the aVHopt model in terms of RMSE for
different lettuce varieties and planting densities (labeled as variety density).

density of 200 [plants m−2], under a fixed light intensity of 180 [𝜇molm−2s−1], with a
20-hour light/4-hour dark photoperiod. Temperature is maintained at approximately 20
[°C], with a CO2 concentration of 450 [ppm].

In the experiments described in [11], lettuce plants are initially grown under warm-
white LED light at 180 [𝜇molm−2s−1] for 9 to 11 days before being transferred to hydro-
ponic systems with various lighting treatments. This preliminary phase helps prevent
the negative effects of immediate exposure to pure red light after germination, such as
excessive stem elongation and weakened structure (the first three bins in Figure 6 show
this problematic trend for the dataset in Section 2.2, consistently with the findings in
[40]). Since the optimal values in (13) involve plants grown under pure red light from
day one, without a warm-white light phase, the full-red treatments from [11] are not
directly comparable and are therefore excluded from the validation process (see Table 5
for details on the specific light treatments considered).
For this dataset, in Table 6, we compare the dry weight predictions obtained from the
cVH model (recalibrated on the new data) and from the aVHopt model with the exper-
imental measurements at harvest time, evaluating the RMSE as a function of both the
B:R and FR:R ratios. The values in the table highlight that, despite calibration, the
cVH model remains unresponsive to changes in light spectrum composition in contrast
to the aVHopt model. Across all lighting treatments, aVHopt consistently delivers more
accurate predictions of dry weight, reducing the average RMSE from 44.53 to 16.63.
Finally, it is worth noting that the B:R and FR:R ratios used in Treatment 3 fall within
the region where the surface in Figure 7 reaches its peak. This is reflected in the highest
observed dry weight value, which is accurately captured by the aVHopt model. The asso-
ciated RMSE is significantly lower than that of the cVH model, confirming the improved
predictive performance.
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Table 5: Different light treatments involved in the data in [11].

Treatment B G R FR B% G% R% FR% B:R G:R FR:R

1 20 40 120 0 11 22 67 0 0.17 0.33 0.00

2 20 20 120 20 11 11 67 11 0.17 0.17 0.17

3 20 0 120 40 11 0 67 22 0.17 0.00 0.33

4 40 20 120 0 22 11 67 0 0.33 0.17 0.00

5 40 0 120 20 22 0 67 11 0.33 0.000 0.167

6 60 0 120 0 33 0 67 0 0.50 0.00 0.00

Table 6: Comparison between the cVH and the aVHopt model in terms of dry weight
and RMSE for the light treatments in Table 5.

Treatment B:R FR:R 𝑋𝐷𝑊,obs 𝑋𝐷𝑊,cVH 𝑋𝐷𝑊,aVHopt RMSEcVH RMSEaVHopt

1 0.17 0.00 269.6 213.6 253.9 56.0 15.7

2 0.17 0.17 283.4 213.6 247.9 69.8 35.5

3 0.17 0.33 287.6 213.6 312.6 74.0 25.0

4 0.33 0.00 237.4 213.6 227.6 23.8 9.8

5 0.33 0.17 246.4 213.6 241.3 32.8 5.1

6 0.50 0.00 202.8 213.6 211.5 10.8 8.7

4 Application to a commercial dataset: insights and chal-
lenges

In this section, we evaluate the performance of the aVHopt model on a dataset that
differs substantially in characteristics from the one used previously, namely we focus
on a commercial dataset. In general, there is a clear distinction between research and
commercial data. While the former offer detailed trait measurements under controlled
or even extreme conditions, they are limited in scale due to the cost and destructiveness
of sampling. In contrast, commercial datasets cover many more growth cycles and reflect
real production environments, but include fewer measurements per cycle and often rely
on indirect, non-destructive methods, which may introduce additional uncertainty.

For this analysis, we rely on an extensive commercial dataset provided by Agricola
Moderna, which documents multiple growth cycles of a specific lettuce variety cultivated
under a range of environmental conditions. These include some of the scenarios used
to optimize the aVH model, as well as additional growth conditions not previously
considered. The dataset contains detailed records for 424 growth cycles of variety 62,
all conducted at high planting density. Each cycle was carried out under the same
photoperiod (20-hour light/4-hour dark) and identical light conditions, with a total
intensity of 225 [𝜇molm−2s−1] and spectral composition of 12% Blue, 19% Green, 61%
Red, and 8% FarRed. The CO2 concentration was kept constant at 750 [ppm] throughout
the facility.
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For each cycle, the dataset includes the following measurements: dry weight at harvest,
growth cycle duration, time series of temperature and relative humidity (sampled every
30 minutes), available substrate per plant, and the crop’s location within the vertical
farming cell (i.e., layer and table position). This makes the dataset a valuable source of
real-world production data, capturing both biological performance and environmental
context. It is important to note, however, that the dataset exhibits a degree of spatial
heterogeneity. Due to the fixed position of ventilation systems and air inlets, variations
in temperature, humidity, and airflow can occur depending on the crop’s position within
the growing chamber.

Figure 9: Commercial dataset: scatter plot comparing the predicted dry weight with the
experimental measures.

We apply the aVHopt model to the commercial dataset provided by Agricola Mod-
erna, despite the substantial difference between this dataset and the research-oriented
ones in Section 2.2, which suggests that suboptimal results may be expected.
Figure 9 compares the dry weight predictions with the corresponding experimental mea-
surements. While the model successfully captures the overall trend of the observed data,
it tends to predict the same value for several groups of data points, even when the corre-
sponding experimental values show considerable variation. As a result, the performance
of the model remains modest, with RMSE = 21.42 and

𝑅2 = 1 −
∑𝑁

𝑖=1(𝑋 𝑖
𝐷𝑊,obs

− 𝑋 𝑖
𝐷𝑊,pred

)2∑𝑁
𝑖=1(𝑋 𝑖

𝐷𝑊,obs
− 𝑋𝐷𝑊,obs)2

= 0.5,

indicating that a significant portion of the target variance is still unaccounted for. This
limited performance may be due to the variability of certain environmental factors within
the vertical farming facility that are not explicitly included in the model.

Motivated by the performance assessment in Figure 9, we further investigate which
features most influence the mismatch between predicted and observed dry weight values.
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To this end, consistently with Section 2.3.3, we employ a XGBoost regressor to estimate
the prediction error and apply a Shapley value analysis to identify the environmental
variables in the dataset that most contribute to the detected mismatch.
For training the XGBoost model, we consider as input features the duration of the
growth cycle, detailed environmental data (temperature and relative humidity measured
every 30 minutes), the substrate per plant, and the spatial position of the crop within the
vertical farming unit. The output variable is the error between 𝑋𝐷𝑊,obs and 𝑋𝐷𝑊,aVHopt .
Since temperature and relative humidity are time-dependent variables, we extract a set
of statistical descriptors to track their general behavior over the whole growth period.
These include: daily and nightly means and standard deviations, the daily range (i.e.,
the difference between maximum and minimum values over 24 hours), and the slope
of the daily trend to measure how quickly temperature or humidity drop during the
20-hour LED light phase. In addition, we quantify the number of abrupt and moderate
day-to-day variations in temperature and humidity. For temperature, variations between
1 [°C] and 2 [°C] are classified as moderate, while changes above 2 [°C] are considered
significant. For relative humidity, moderate changes fall between 5% and 10%, and
significant ones exceed 10%.
We optimize the hyperparameters of the regressor by dividing the dataset into three
parts: 75% for training, 12.5% for validation, and the remaining 12.5% for testing.
During this process, through stratification techniques, we ensure that the target variable
distribution is balanced across all parts, so that the model learns and is evaluated fairly.
The predictive performance of the trained model is characterized by 𝑅2 = 0.61 and RMSE
= 18.72. The results of the SHAP analysis are shown in Figure 10. It turns out that the
three most influential factors affecting the prediction error of the aVHopt model are all
related to relative humidity, namely the daily variability, significant fluctuations during
the growth cycle, and the overall range within 24 hours. This suggests that changes
in relative humidity play a crucial role in crop development. Additionally, although to
a lesser extent, the nightly mean and variability of temperature as well as substrate
availability also impact the model. As a consequence, explicitly accounting for these
three features in the aVHopt model may lead to better prediction performance.

5 Conclusions

This paper proposes an approach to modeling plant growth by integrating the effects
of light spectrum composition into a process-based model, making it suitable for verti-
cal farming environments where light quality, among other environmental parameters,
can be precisely regulated. Building on the crop growth model in [29], we introduce a
data-driven adjustment that incorporates spectral information, i.e., the B:R and FR:R
ratios, through a new parameter, 𝛾, which captures how spectral composition influences
growth. The optimization of parameter 𝛾 is performed jointly across multiple lettuce
cultivars of Lactuca sativa L., enabling a general characterization of the light spectrum
role.
The aVHopt model achieves a substantial improvement in predictive accuracy, consider-

19



Figure 10: Commercial dataset: SHAP values associated with the key features driving
the error between 𝑋𝐷𝑊,obs and 𝑋𝐷𝑊,aVHopt .

ably reducing RMSE on the validation set compared to the calibrated original formula-
tion. These results underscore the importance of accounting for spectral quality when
modeling plant growth and optimizing lighting strategies in vertical farming.

The application of the aVHopt model to a commercial dataset highlights the impact
of various biological and environmental features onto the plant development, beyond
the light spectrum composition. For instance, different cultivars exhibit slightly dif-
ferent reactions to the same spectral ratios, and prediction accuracy decreases under
more variable environmental conditions. These observations point to directions for fu-
ture refinement. Further developments should include dedicated calibration for specific
cultivars, as well as the incorporation of more biophysical knowledge (for instance, in-
teractions between spectrum response and planting density via the Leaf Area Index).
The analysis also suggests that additional variables, such as relative humidity and sub-
strate availability, could significantly enhance model performance in commercial settings.
Finally, coupling the model with real-time sensor data would enable continuous environ-
mental optimization, supporting both crop performance and operational efficiency in
vertical farming systems.
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