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Abstract

In order to group objects, a wide literature of methods, the majority
of them known as clustering and biclustering methods, was created. In
the meanwhile, the scientific community tried to defy the curse of dimen-
sionality, dealing with problems characterized by data with one infinite
continuous dimension: functional data. Even if many old and new clus-
tering algorithms were generalized to these new types of data, biclustering
methods did not share the same destiny. This paper fills the literature gap
by defining the concept of bicluster for data described as a set of functions,
and by introducing funBI, the first biclustering algorithm that permits to
find functional biclusters, i.e. subsets of functions that exhibit similar
behaviour across the same continuous subsets of the domain. funBI is a
three-step algorithm based on DIANA, the most famous divisive hierar-
chical clustering method. The use of DIANA allows to visualize and to
guide the searching procedure using dendrograms and cutting thresholds.
Biclustering Clustering Functional data

1 Introduction

One of the fundamental need in data mining is to group a given set of objects
according to some measure of similarity or dissimilarity. In order to do so the
scientific community has created a wide number of algorithms and methods.
The most famous of them are known under the name of clustering methods,
usually applicable to data arranged in a data matrix. The main element of
clustering is the similarity between rows or columns of the data matrix. This
procedure leads to the discovery of some similarity groups at the expense of
obscuring other similarity groups: it is not possible to have row groups and
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column groups at the same time. Indeed, considering the two dimensions of
data matrices, rows and columns, observations and features, one can obtain
groups of similar observations according to all the features or, instead, groups
of similar features according to all the observations. Furthermore, most of these
algorithms seek a disjoint cover of the set of elements, i.e. they require that
two cluster groups can not overlap and that each element, row or column, must
be clustered into exactly one group. To overcome these limitations, a large
number of algorithms that perform simultaneous and overlapping clustering on
both the dimensions of the data matrix has been proposed under the name
of biclustering, co-clustering, bi-dimensional clustering or subspace clustering
(Pontes et al., 2015).

In the meanwhile, thanks to the augmented possibilities in collecting and
storing data, researchers started to deal with problems described by data having
a huge number of features. This is the case of functional data that are usually
represented as a set of random variables taking values in an infinite dimensional
functional space. In order to group them, the scientific community produced
a flourishing literature about clustering approaches suitable for functional data
(Jacques and Preda, 2014). Therefore, similarly to what it has been done with
clustering, (e.g. the d0 distance k-means by Tarpey and Kinateder, 2003 or
the d0 distance hierarchical clustering proposed by Ferraty and Vieu, 2006), it
would sound natural to generalize biclustering methods to functional data by
defining functional biclusters and by proposing algorithms able to detect them.
However, this was not the case. Therefore, this paper fills this notable fap in
the literature by giving a definition for functional biclusters and by proposing
the funBI algorithm, a three-step algorithm for functional data able to identify
biclusters, subsets of functions that exhibit similar behaviour across the same
continuous subset of the domain.

This article is structured as follows: Section 2 is the state of the art on
biclustering for multivariate data and on functional clustering literature ; our
proposal for the definition of a functional bicluster is presented in Section 3;
Section 4 gives an insight on the parameters introduced to define a functional
bicluster; in Section 5 the funBI algorithm is presented; finally, in order to
explain the practical usefulness of this new functional data analysis method,
two case studies are presented in Section 6.

2 State of the Art on Biclustering for Multi-
variate Data and on Custering for Functional
Data

Even if a very similar idea to modern biclustering was theoretically introduced
by Hartigan (1972) in the 1970s, Cheng and Church (2000) are recognized as
the first ones to propose a biclustering algorithm. Precisely, they developed
this method to analyze gene expression data, to find subgroups of genes (i.e.
columns) and subgroups of conditions (i.e. rows), where the genes exhibit highly

2



correlated activities for every condition, in order to understand the biological
functions associated to each gene. Due to the popularity of this kind of data,
building on this seminal paper, many new contributions were added to the
list of biclustering techniques. This explains why new algorithms are currently
still developed or old ones are improved, e.g. the recent biclustering based on
PAttern Mining Software (BicPAMS) (Henriques et al., 2017) .

In general, there are many different ways to classify the wide range of mul-
tivariate biclustering techniques. For instance, the famous survey by Madeira
and Oliveira (2004) proposes a biclustering taxonomy based on two dimensions:
the structure and the type of identified biclusters. The structure taxonomy is
about the number of results and overlapping strategies or, in general, in which
way rows and columns are incorporated in biclusters. On the other hand, the
type taxonomy aims at categorizing the results in terms of exhibited patterns
and values.

Another classification is the one proposed by Pontes, Giraldez and Aguilar-
Ruiz (2015). In their recent review, they propose to classify a large number of
multivariate biclustering approaches existing in literature into two main cate-
gories: biclustering algorithms based on evaluation measures and non metric-
based biclustering ones. In this paper, the latter classification is the one to be
followed.

The first class of methods includes all those algorithms that are able to
identify biclusters according to a defined evaluation measure. Representatives
of this class are, for example, iterative greedy algorithms such as the Cheng and
Church Biclustering algorithm based on the Mean Squared Residue (MSR), the
Bimax (Prelić et al., 2006) and the Biclustering by Correlated and Large Number
of Individual Clustered seeds (BICLIC) (Yun and Yi, 2013) which uses the
Pearson correlation coefficient. In addition to these deterministic approaches,
some authors have proposed to use stochastic strategies in order to add some
randomness to the iterative greedy search they perform: Flexible Overlapped
biClustering (FLOC) (Yang et al., 2003) and Random Walk Biclustering (RWB)
(Angiulli et al., 2008) are two examples. There are also other procedures which
base their search on the combined use of traditional one-dimension clustering
and additional strategies in order to deal with the second dimension.

The second class of methods, instead, excludes the use of any evaluation
measure to guide the search, preferring to represent data and biclusters in
other ways. For instance, graph-based approaches, such as the Statistical-
Algorithmic Method for Bicluster Analysis (SAMBA) (Tanay et al., 2002), use
bipartite graphs or multi-graphs and then optimization techniques. Similar to
the metric-based approaches aforementioned, there exists also a group of meth-
ods founded on the use of traditional one-dimension clustering algorithm and
additional strategies to provide the second dimension analysis. It is important
to notice that, differently from conceptually-similar first class methods, no eval-
uation measures are allowed. It is the case of the Coupled Two-Way Clustering
(CTWC) (Getz et al., 2000). Plaid Models (Lazzeroni and Owen, 2002) and
Conserved gene expression Motifs (xMotifs) (Murali and Kasif, 2002) are two
of the most known approaches where biclusters are found thanks to the use of
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probabilistic models. It is also possible to find biclusters using linear algebra.
For example, Spectral Biclustering (Kluger et al., 2003) and the Iterative Sig-
nature Algorithm (ISA) (Bergmann et al., 2003), both based on Singular Value
Decomposition (SVD), belong to this kind of methods.

Starting from 2005, many researchers, inspired by the overwhelming success
of these techniques in the multivariate framework, developed new biclustering
methods for time-series data, that are able to consider all the temporal rela-
tionships among elements. The first work dealing with time-series data was the
Cheng and Church Time-Series Biclustering algorithm by Zhang et al. (2005),
an algorithm based on the greedy procedure presented by Cheng and Church
(2000) that is applied directly on the original data matrix. Instead, others meth-
ods, such as the one proposed by Ji and Tan (2004), the continuous coherent
evolution Biclustering model (CCC-Biclustering) and its updated version both
by Madeira and Oliveira (Madeira and Oliveira, 2007 and Madeira et al., 2010),
and the k-CCC algorithm by Xue et al. (2014), work on a discretized version
of the original matrix in different ways. This discretization is performed with
sequence alignment and suffix trees without or with an error bound.

In recent years, thanks to the possibility of collecting and storing increasingly
larger amount of information, the statistical community started to be interested
in solving problems whose data were characterized by a very large dimension p.
A special and extreme case of this type of data are functional data (i.e. data that
can be represented as curves, surfaces,. . . ). Functional datasets are modeled as
samples of random variables which take values in an infinite dimensional func-
tional space, e.g., a space of functions defined on some set T , for instance time
interval. Functional data clustering received particular attention from statisti-
cians in the last decade. According to their survey, Jacques and Preda (2014)
categorize all the different clustering approaches into four groups: raw-data
methods, filtering methods, adaptive methods, and distance-based methods.

The raw-data methods comprise all the techniques coming from the multi-
variate world. These methods cluster discretized ersions of functional data us-
ing multivariate clustering methods without reconstructing the functional form.
These early approaches are unable to take into account the typical functional
features such as continuity and derivatives.

In the filtering methods the high dimensionality of data is tamed by a filtering
step which approximates the curves by means of a finite basis of expansions.
After this first step, usually performed with B-splines or FPCA (see Ramsay and
Silverman, 2007 for a general framework), multivariate clustering algorithms are
used to define clusters of functional data. For instance, some algorithms propose
k-means clustering on b-splines coefficients or principal component scores, while
others apply unsupervised neural network to Gaussian coefficient’s basis.

The adaptive methods collect contributes that consider the basis expansion
as random variable having a cluster-specific probability distribution, instead
that simple parameters. For this reason most of these methods are based on
probabilistic modelling of basis expansion or of some FPCA scores.

Finally, distance-based methods try to adapt popular geometric clustering
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algorithms, such as k-means and hierarchical clustering, to the functional set-
ting. For these techniques it is necessary to define new specific distances or
dissimilarities between functions. Depending on the definition and computation
of these measures, the methods belonging to the last group can be also related
to either raw-data or filtering methods.

Out of the taxonomy proposed by Jacques and Preda, one can find the re-
cent sparse functional clustering methods that are capable of clustering the data
while also selecting their most relevant features for classification. In Floriello et
al. (2017) the functional sparse clustering is analytically defined as a variational
problem with a hard thresholding constraint ensuring the sparsity of the solu-
tion. The ability to focus on subsets of the domain is a common characteristics
between these algorithms and the one here proposed.

While researchers proposed a great number of clustering approaches suit-
able for functional data, the same fortune did not happen in the case of bi-
clustering: precisely, to the best of our knowledge, the only works dedicated
to such data are the proposals by Slimen et al. (2018) and Bouveyron et al.
(2018). Their model-based procedures, taking inspiration from the multivariate
model-based co-clustering world, are strongly funded on the latent block model
and on its extension to the functional framework, called functional latent block
model (funLBM). However, these two proposals deal with a particular type of
functional data that can be described as a matrix whose entries are functions.
Therefore, due to the presence of the matrix form, these two works could be
interpreted as classical multivariate biclustering with the difference that the ob-
jects they deal with are functions and not numerical values. On the contrary,
the procedure introduced in this paper deals with input data that a set of func-
tions, with a single function corresponding to each observation. The difference
between these two types of functional data is explained in Figure 1. Therefore
the work here proposed analyses different problems and declines biclustering in
a different ways from the aforementioned contributions. It is then possible to
talk about two visions of functional biclustering: the one proposed by Slimen et
al. and Bouveyron et al. performing a multivariate biclustering on matrices of
functions, and the vision here explained. When the functional dataset presents
a natural discrete structure, e.g. the curves of electrical use of different users
day by day, the first strategies can easily define subgroups of users with simi-
lar electrical consumption in a subgroup of days. When there is no structure
and the functional dataset is just a collection of functions, e.g. the curves of
temperatures registered in different weather stations, the method here proposed
can identify subgroups of stations having same temperature profiles in a defined
interval of time. Depending to the problem, one strategy could be better suited
than the other.

3 Definitions of Functional Bicluster

In the general multivariate biclustering framework, data are arranged in a matrix
called A composed by n rows and m columns. A can also be expressed in
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Figure 1: Functional data types used in this paper and in the works by Slime
et al. and Bouveyron et al.

terms of its rows and columns as the couple (X,Y) where X = {x1, x2, . . . , xn}
is its set of rows and Y = {y1, y2, . . . , ym} is its set of columns. It is then
possible to identify any sub-matrix of the data matrix A as (I, J) where I and
J are respectively subsets of X and Y. Therefore (I, J) denotes the sub-matrix
containing only the elements aij belonging to the sub-matrix with set of rows I
and set of columns J .

Differently from clusters, which is a subset of rows (columns) that exhibit
similar behaviour across all columns (rows), a multivariate bicluster is a subset
of rows that exhibits similar behaviour across a subset of columns, and vice-
versa. Therefore, it can be expressed as a sub-matrix (I, J) of the original data
matrix A whose elements aij are similar to each others according to a defined
evaluation measure. It is difficult to give a unique and perfectly fitting definition
especially considering the importance of the measure used to define the result.
However, as expressed in Madeira and Oliveira (2004) and in previous sections,
biclusters can be categorized in terms of exhibited patterns.

The most natural version of ideal multivariate bicluster is the constant values
bicluster: a submatrix (I, J) where all values are equal for all i ∈ I and for all
j ∈ J . This situation may be expressed by aij = µ.

Considering the fact that there exists great practical interest in discovering
if there are coherent variations on the rows or on the columns of the data
matrix, the second type of ideal multivariate bicluster is the constant values on
rows/columns one. In this case, for instance, a bicluster with constant values in
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the rows identifies a subset of columns with the same behaviour across a subset of
rows. This situation results in a sub-matrix (I, J) having all the values following
the equation aij = µ+αi where µ is the mean value within the bicluster and αi

is an additive adjustment for row i ∈ I. The same formulations above explained
can be also used to explain the ideal bicluster (I, J) with constant columns by
substituting αi with βj , the additive adjustment for column j ∈ J . This leads to
the identification of a subset of rows with the same behaviour across a subset of
columns. It is important to notice how the duality of formulations is mandatory
to express the fact that biclusters can follow a shifting pattern, represented by
adding constant number (αi or βj). Visually representing rows as lines, shifting
pattern gives a parallel (overlapping) behaviour among rows.

A more general case is represented by biclusters with coherent values both on
rows and columns. A bicluster with coherent values both on rows and columns
identifies a subset of rows showing a similar behaviour across a subset of columns
up to a constant term and viceversa. Therefore, an ideal bicluster (I, J) with
coherent values is defined as a subset of rows and a subset of columns, whose
values are given by the expression aij = µ+αi+βj . Differently from the types of
bicluster previously explained, there are two adjustments and not only one. By
managing these adjustments it is possible to consider the two above situations
as special cases of this last bicluster typology.

Moving to the functional framework, a revision of the concept of bicluster is
mandatory. Indeed, from a theoretical point of view, when there is no matricial
structure, it is not correct to talk about rows and columns as it has been done
before in the multivariate setting. Functional data, at least in the L2(t)∩C(t),
as explained in Section 2, can be imagined as data matrix composed by rows
and a continuous infinity of columns. This would leave space for applying the
majority of biclustering algorithms existing in the multivariate literature to a
discretised version of the functional set. However this would be a false start:
shuffling the columns, as every multivariate biclustering method does, it is not
possible and actually meaningless with functional data. Differently from the
multivariate framework where the order of the columns/variables has generally
no meaning, allowing us to shuffle them, in functional data this approach would
virtually destroy the intrinsic ordered and smooth nature of data. Therefore,
we define a functional bicluster as a subset of functions, or curves, that exhibits
similar behaviour across the same continuous subset of the domain T . For
instance, when T is a time interval, an ideal bicluster is a subset of functions
showing the same behaviour across a defined time sub-interval belonging to the
domain T . Consistently with the existing literature, the concept of similarity
has a central role in defining biclusters.

Taking inspiration from the most comprehensive formulation of multivariate
bicluster, the coherent values on both rows and columns bicluster, it is possible
to give the following definition of ideal functional bicluster:

Definition 1. The ideal functional bicluster is a subset I of functions paired
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Figure 2: The four types of biclusters

with a sub-interval S of the domain T s.t.

fi(t) = µ+ αi + β(t) ∀i ∈ I and t ∈ S, (1)

where fi(t) is a general curve belonging to the bicluster, µ is the mean, αi is the
function-specific adjustment and β(t) is the t-varying pattern of the bicluster.

To define uniquely the model parameters in order to make them identifiable,
it is customary to impose the following constraints:

∑
i∈I αi = 0 and

∫
S
β(t)dt =

0.
Starting from Equation 1 one can define simpler kinds of biclusters. For in-

stance, setting αi = 0 and β(t) = 0, the aforementioned expression is simplified
in fi(t) = µ. This means that the bicluster is composed only by functions con-
stantly equal to a given value µ on a sub-interval S of the time domain (top-left
panel of Figure 2 ).

Setting αi 6= 0 and β(t) = 0, the obtained bicluster, expressed by fi(t) = µ+
αi, is composed by parallel constant functions on S, sub-interval of T (bottom-
left panel of Figure 2). On the other hand, setting β(t) = 0 instead of αi,
the found biclusters based on fi(t) = µ + β(t), consists of functions behaving
similarly as one can see in the top-right panel of Figure 2.

Therefore, the complete formulation expressed in Equation 1 identifies group
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Figure 3: Differences in clustering and biclustering between multivariate and
functional data.

of parallel non-necessarily constant functions on a sub-interval of the domain
(bottom-right panel of Figure 2).

Therefore, coherently with the functional data considered in this paper and
with our functional bicluster definition, the scheme in Figure 3 visually summa-
rizes the main differences in data representation, clustering by one dimension,
clustering by the other dimension and biclustering between the multivariate and
the functional settings. Referring to the aforementioned Figure, it is important
to consider how the nomenclature might change passing from one framework to
another. While a multivariate cluster by rows (i.e., by observations) has its cor-
responding functional version in the functional cluster, the multivariate cluster
by columns (i.e., by features) can be interpreted and named as domain selection
in the functional setting. Instead, while the result of multivariate biclustering
is a submatrix (produced after a rearrangement of the matrix itself), the result
of functional biclustering is a selection of functions in a defined sub-interval,
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as expressed by Equation 1 . However, this interpretation is not alien to the
multivariate setting, where biclustering is often named subspace clustering.

4 Estimating the parameters of a functional bi-
cluster

Real data usually present noise. The noise makes hard to identify perfect biclus-
ters. For this reason, as already explained in Section 3, the concept of similarity
has a central role in the definition of bicluster which is strongly related to the
evaluation measure used. In the case of the seminal paper written by Cheng and
Church (2000), the algorithm returns biclusters having the maximal dimension
in terms of number of rows and columns according to the minimization of a score
called the mean squared residue score. However, changing the framework from
multivariate to functional, it is mandatory to coherently redefine the score used
to validate biclusters. The mean squared residue score for a functional bicluster
(I, S) can be written in accordance with the general functional additive model
expressed in Equation 1, in the following way:

H(I, S) =
1

| I |
1

| S |
∑
i∈I

∫
S

(fi(t)− (µ̂+ α̂i + β̂(t)))2. (2)

In details, fi(t) is the value of function i at instant t, while µ̂, α̂i and β̂(t),
the estimates of µ, αi and β(t), are respectively defined as:

µ̂ = fIS =
1

| I |
1

| S |
∑
i∈I

∫
S

fi(t)dt (3)

α̂i = fiS − µ̂ =
1

| S |

∫
S

fi(t)dt − µ̂ (4)

β̂(t) = fI(t) − µ̂ =
1

| I |
∑
i∈I

fi(t) − µ̂ (5)

where fiS is the integral mean of the function i in the sub-interval S, fI(t)
is the sample mean of all the functions in I at the time instant t and fIS is the
general mean of all the curves in I in the whole sub-interval S (sample mean of
the integral means).

Considering the relationships between µ̂, α̂i, β̂(t) and fI(t), fIS , fiS , it is
possible to write Equation 2 as follows:

H(I, S) =
1

| I |
1

| S |
∑
i∈I

∫
S

(fi(t)− fiS − fI(t) + fIS)2. (6)

The mean squared residue score for functional biclusters is a measure of
coherence used to validate biclusters. The optimum is given by the lowest score
H(I, S) = 0, a situation that is visually represented by perfect parallel curves.
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Modifying the model expressed in Equation 1 obliges to also modify the mean
squared score for functional bicluster. Setting α = 0, β = 0 or both, the changes
are trivial and, in all the cases, the optimum is still represented by the lowest
score H(I, S) = 0. Figure 2 shows the resulting perfect biclusters in all the
possible situations.

5 Looking for a functional bicluster

Using the mean squared residue score for functional biclustering it is possible to
estimate the parameters of a functional bicluster and to validate it. However,
the main issue is to find the bicluster within the data. Many clustering and
biclustering algorithms in the multivariate setting had to face the same problem
that can be solved by using a brute-force approach. This approach is NP-hard
in the worst case, but easily parallelizable.

Similarly, funBI, the algorithm here proposed, follows a brute-force strat-
egy when dealing with the continuous dimension. Precisely, it is a three-step
iterative procedure (Figure 4). Each step has to perform a particular task.

Figure 4: Synthesis of the proposed algorithm

The first step, named Lotting, aims at dividing the whole time interval T in
sub-intervals Sw. It permits to reduce the computational complexity of taking
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into account all the possible sub-intervals of the domain T . In the second
step, called Flowering, a hierarchical clustering algorithm based on the mean
squared score is performed on every sub-interval Sw in order to get a hierarchy
of candidate biclusters. In the Harvesting step, the last one, all the candidate
biclusters are collected. We propose the following routine.

Step 1 - Lotting Starting from a discrete grid based on the continuous di-
mension, the user decides the minimum length c of the continuous interval to
analyze. Due to the computational complexity of considering all the possible
sub-intervals, the Lotting procedure works as follows. Firstly, the continuous
dimension is uniformly split into non-overlapping sub-intervals whose length is
c. This creates the sub-intervals Sw ∈ T : | Sw |= c. Then all the sub-intervals
Sw : | Sw |> c are obtained by enlarging the first sub-intervals by multiples of
c until covering the whole domain T .

Step 2 - Flowering Focusing on a defined sub-interval Sw of the domain T
a mean squared score based DIANA (DIvisive ANAlysis Clustering) algorithm
is performed Kaufman and Rousseeuw, 2009. The DIANA algorithm is the
most famous divisive hierarchical clustering algorithm. Initially all data are in
one cluster; an iterative procedure is then used to split the largest cluster in
two parts, until each cluster contains only a single observation. The splitting
procedure is performed in the following way: DIANA chooses the cluster with
largest diameter, i.e., the maximum average dissimilarity; it initiates a new
group called “splinter group” with the observation having the largest average
dissimilarity from the other ones of the selected cluster; it reassigns to the
splinter group all observations that are more similar to the new cluster than to
the original one. The result is a division of the selected cluster into two new
clusters. This procedure is then performed until each group counts only one
observation.

In our case the dissimilarity matrix used by DIANA is based on the Hscore.
For each couple of curves i, j ∈ I, the dissimilarity dij between i and j is
H(
{
i, j
}
, Sw), i.e., the Hscore of (

{
i, j
}
, Sw), that is the matrix composed only

by the two curves i and j evaluated in Sw:

dij = H(
{
i, j
}
, Sw). (7)

Therefore, dij = 0 means that H(
{
i, j
}
, Sw) = 0 i.e. the curves i and j

together compose a perfect bicluster in accordance to the additive model one is
using.

The result of this step is presented in a dendrogram that synthesizes the DI-
ANA top-down splitting procedure. Considering the fact that the dissimilarity
matrix is based on the mean squared score, the height of the dendrogram used
in the visualization is the Hscore. The procedure aforementioned is performed
for every sub-intervals Sw.
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Step 3 - Harvesting All the candidate biclusters are collected. The collection
can be perfomed according to two different strategies: the first one is user-driven
and it needs a threshold for the Hscore in a δ-biclustering fashion, while the
second one is automatic and it is based on the gap statistic (Tibshirani et al.,
2001).

According to the first strategy, the user decides a threshold for the Hscore

called δ-threshold. The value δ is then used to cut the dendrograms and, con-
sequently, to identify δ-biclusters, i.e., biclusters having Hscore ≤ δ. Cutting
dendrograms in this way can generate a different number of biclusters for each
sub-interval Sw.

The second strategy does not require any user intervention and is based
on the automatic estimation of the number of clusters by the gap statistic.
Using the output of the Flowering procedure, it compares the change in within-
cluster dispersion with the one expected under an appropriate reference null
distribution. However, in a multivariate situation we will not be able to choose
a generally applicable and useful reference distribution: the geometry of the
particular null distribution matters. Therefore, the main idea is to exploit the
shape information in the principal components instead of using the MLE. The
reference null distribution is then selected: (a) by generating each reference
feature uniformly over the range of the observed values for that feature; (b)
generate the reference features from a uniform distribution over a box aligned
with the principal components of the data. In both cases the computation is
possible thanks to a Monte Carlo sample drawn from the selected reference
distribution.

For both strategies, it has been decided to use the Hscore as height and
vertical axis of the dendrogram, in order to have an immediate visual idea of
the cutting result.

The three steps aforementioned, the Lotting, the Flowering and the Harvest-
ing are extremely customizable. This makes the whole algorithm very flexible
and easily modifiable based on the problem under exam.

However, after the Harvesting step a set of candidate biclusters is created.
Even if it the best strategy would be to check them one by one with the advise of
a problem domain expert, when the minimum length c is particularly small, this
could be impossible because of the overwhelming number of results. Therefore,
it could be useful to provide a way to order the results by importance and to
reduce the number of biclusters: this is performed by the optional step of the
Tasting. In order to analyze the main characteristics of the results, it has been
decided to plot the resulting biclusters in a two axis plot as the one shown in
Figure 5.

In this plot every dot is a bicluster whose sub-interval length is represented
by the x-axis, numbers of functions by the y-axis and Hscore by the dimension
of the dot. In accordance with the existence multivariate literature, the most
interesting biclusters are the ones having the lowest Hscore and the maximum
dimension (typically in terms of the number of rows and columns, while here
in terms of the sub-interval lenght and the number of curves), although in
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Figure 5: Plot of the resulting biclusters
before reduction
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Figure 6: Plot of the resulting biclusters
after reduction

some applications one could be interested in small and punctual phenomena
considering low dimensions. Therefore, the most relevant results are usually the
ones in the top-right corner whose dots are small.

In order to reduce even more the number of biclusters one can consider
the fact that some of them are nested into some others. Given two biclusters
(K,Sw1

) and (Y, Sw2
), if K ⊆ Y and Sw1

⊆ Sw2
, then the bicluster (K,Sw1

)
can be removed since it is totally included in the bicluster (Y, Sw2) and hence
not informative. Figure 6 displays the resulting biclusters already presented in
Figure 5 after performing the Tasting step. This strategy, of course, simplifies
the revision of the results by reducing the number of the biclusters to minimal.

6 Case Studies

In this section two different case studies are presented, in order to highlight the
practical usefulness of the introduction of funBI to the functional data analysis..
Both the examples show how funBI works and how it can detect important
portions of the continuous domain leading to a segmentation of the functions
that classical clustering techniques lack.

6.1 Case Study 1 - Aneurisk Project

The AneuRisk65 data have been collected within the AneuRisk project, a multi
disciplinary scientific endeavour aiming at investigating the role of vessel mor-
phology, blood fluid dynamics, and biomechanical properties of the vascular
wall, on the pathogenesis of cerebral aneurysms. The data present, for each
of the 65 subjects who took part to the project, both raw and preprocessed
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information about the Inner Carotid Artery (ICA), described in terms of vessel
centerline and radius profile. All data are available at https://statistics.

mox.polimi.it/aneurisk/, the official website of the project. In this case
study, according to the paper by Passerini et al. (2012), 50 z-first derivative
curves of vessel centerlines after registration, defined in the last portion of the
ICA and shown in Figure 7, are considered. The aim of this example is to high-
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Figure 7: The 50 z-first derivative curves of the ICA vessel centerlines after
registration

light how the functional biclustering algorithm here presented works, showing
how it is able to identify grouping changes in the patter evolution of the con-
sidered functions. Precisely, funBI can perform regular functional clustering,
resulting in similar results to the ones obtained by other clustering procedures.
Indeed, if in the Lotting step c =| T | is chosen then the algorithm performs
mean squared residue score-based DIANA to the whole domain.
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Figure 8: δ = 0.04 cuts the dendrogram in 3 groups

Figure 9: S shape vessels Figure 10: Ω shape vessels
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Figure 11: Single Outlier
Group

Setting for instance δ = 0.04, 3 biclusters/clusters are identified, as one can
see from the dendrogram in Figure 8. These results identify the typical S and
Ω shape groups of the vessel centerline of the inner carotid artery (Figure 9 and
10 ), two groups that are coherent with the medical literature (Huber, 1982)
and previous works (Sangalli et al., 2009 and Sangalli et al., 2012), and a cluster
composed by a single outlier (Figure 11).

However, the main scope of funBI is to find functional biclusters in order to
discover interesting dynamics that clustering is not able to highlight. Mantain-
ing δ = 0.04 but setting c to a value different than | T |, it is possible to obtain
some useful new information. Precisely, in the case here presented, funBI was
able to detect 2212 biclusters, a great number of cases to consider. The Tast-
ing procedure reduces the number of biclusters from 2212 to 158, performing
a reduction of the 92.86%. Three biclusters which show the potential of the
method are here reported. Figure 12 shows that in the considered sub-interval,
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representing approximately the second half of the domain T , all the 50 func-
tions, exception due for one, belong to the same group, meaning that the reason
behind the identification of the S and Ω shape groups is not to be accounted
for this particular portion of the vessels.

Figure 12: 49 z-first derivative curves of the ICA vessel centerlines composing
one single bicluster

By focusing on the first half of T , the algorithm finds two biclusters (Figures
13 and 14) presenting two different shapes that might be connected to the results
found by clustering: the first group present all the curves with a typical S-type
vessels profile, while the second group is characterized by those curves with a Ω
vessels profile.

6.2 Case Study 2 - Berkeley Growth Data

In this section, the results obtained by applying funBI on the growth curves
included in the Berkeley Growth Study are illustrated. The dataset is one of
the benchmark datasets for functional data analysis and it is also included in
the R package fda (Ramsay et al., 2010). The study that collected these data,
conducted by the California Institute of Child Welfare, is one of several long-
term developmental investigations on children and it includes the heights (in
cm) of 93 children, 54 girls and 39 boys, measured quarterly from 1 to 2 years,
annually from 2 to 8 years and then biannually from 8 to 18 years. Therefore,
even if the data are discrete observations, it is reasonable to consider them in
the functional framework as realizations of a continuous process.

The purpose of this case study is to find out how funBI can detect particular
patterns defined in some intervals of the domain that the standard techniques
cannot identify. Precisely, after preprocessing and reconstructing the curves
monotonically (no alignment), one can notice that all the children, regardless
of their sex, present the same feature, in particular a sharp peak of growth
velocity between 10 and 16 year medically known as pubertal spurt. However
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Figure 13: Group 1 in the first half of TFigure 14: Group 2 in the first half of T

every children follows its own biological clock and this fact generates differences
among the curves. Perfoming funBI on the growth curves explains that the
pubertal spurt is effectively the main source of differences among children. In
order to do so, c, the minimum selected length of the sub-intervals, was set
to cover the minimum gap among two registrations, and the Harvesting step
was performed automatically using the gap statistic. In this way, the resulting
biclusters displayed in Figure 15 shows that in general, without considering the
whole pubertal spurt, but just what happens before and after this moment,
there is only one unique pattern.

In addition, the main differences between girls and boys are connected with
the pubertal spurt as shown in Figures 16, 17, 18 and 19 where the respective
biclusters display a sexual partition based on different biological clocks.

In details, the bicluster presented in Figure 16 counts 22 functions, 19 boys
and 3 girls, i.e., “girl25”, “girl49” and “girl51”. Therefore it is principally com-
posed by those boys who experienced puberty before the others. The other male
bicluster is displayed in Figure 17. It has 19 functions, 18 boys, who are the
ones presenting the spurt after the others, and 1 girl, i.e., “girl33”. Therefore,
in these two biclusters there are two boys that are unaccounted for: “boy02”
and “boy27” that both appear in the bicluster shown in Figure 18. It counts
23 observations, 2 boys (“boy02” and “boy27”) and 21 girls having the puber-
tal spurt later then the others, that are all composing the remaining bicluster
presented in Figure 19. Of course, as seen before, the two girls biclusters are
missing of four girls belonging, instead, to the two boys groups.
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Figure 15: Considering what happens before or after the pubertal spurt, there
is only one unique pattern
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Figure 16: Boys bicluster 1
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Figure 17: Boys bicluster 2
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Figure 18: Girls bicluster 1
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Figure 19: Girls bicluster 2

7 Discussion

This paper fills the literature gap concerning functional Biclustering by giving
a first definition of bicluster for data whose observations are functions. Taking
inspiration from the most comprehensive formulation of multivariate bicluster,
the definition is based on an additive model that comprises, as special cases,
easier kinds of biclusters.Then, being the definition strongly related to the used
evaluation measure, the functional mean squared score, a measure of coher-
ence in the validation of biclusters, was introduced in order to be used by
funBI. funBI is three-step algorithm that uses a brute-force approach and it
is characterized by an high flexibility. All the three steps are, indeed, easily
generalizable and they are easy to be visually represented, due to the use of
dendrograms. A package running the algorithm proposed in this paper is avail-
able at https://github.com/JacopoDior/funBI. Nonetheless, there are still
open points, which we did not fully discuss in details since they are beyond the
scope of the present paper.

The computational complexity to deal with all possible sub-intervals in case
of larger domain T , forced us to develop a Lotting step that could be improved
by employing computationally cheaper strategies, mandatory when performing
extreme types of lotting such as the one considering all the possible combinations
of equally long sub-intervals. Using this latter approach corresponds to give to
our functional data a fictional matricial structure, identical to the one considered
by Bouveyron et al. 2018 and by Slimen et al. 2018. In this way, all the resulting
candidate biclusters will count functions belonging not only to the same sub-
intervals but also to different ones.

The structure of funBI could be modified not only in the Flowering step,
where different hierarchical clustering algorithms can be used, but also in the
Harvesting, where one can use different collection strategies. Focusing on the
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Harvesting step, it is important to notice that the two proposed alternatives to
“harvest” biclustes answer to two defined needs. Knowing that the interesting
results are all those below a defined mean squared score, it is better to define a
δ-threshold; instead, when there are no available information about the Hscore,
an automatic selection by gap statistic is recommended. However, tuning the
parameter δ for a δ-threshold Harvesting strategy can be an issue, especially
when there is lack of guidance from the domain expert or when HSw , the Hscore

of all the functions defined in a particular sub-interval, largely changes from
one sub-interval Sw to another. The alternative of using the gap statistic can
solve the aforementioned problem but, being automatic, it fails in finding all
the smaller biclusters having very small Hscore.

As already observed, it could be really difficult to identify the most interest-
ing biclusters when the amount of candidates is overwhelming. For this reason
the Tasting procedure was introduced. This step could be further improved by
adding some more visual and interactive tools to help in the selection.

In addition, funBI can only discover subsets of functions with similar be-
haviour across the same continuous subsets of the domain. Consequently, it
can not find similarity across different sub-intervals. Therefore, the use of an
alignment strategy could be a possible direction of generalization in order to
detect similar functions across different sub-intervals.
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