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Abstract

The role of the microvascular network geometry on transport phenomena in solid tumors and its interplay with the

leakage and pressure drop across the vessels is qualitatively and quantitatively discussed. Our starting point is a mul-

tiscale homogenization, suggested by the sharp length scale separation that exists between the characteristic vessels

and tumor tissue spatial scales, referred to as the microscale and the macroscale, respectively. The coupling between

interstitial and capillary compartment is described by a double Darcy model on the macroscale, whereas the geometric

information on the microvascular structure is encoded in the effective hydraulic conductivities, which are numerically

computed solving classical differential problems on the microscale representative cell. Then, microscale information

is injected into the macroscopic model, which is analytically solved in a prototypical geometry and compared with

previous experimentally validated, phenomenological models. In this way, we are able to capture the role of the

standard blood flow determinants in the tumor, such as the tumor radius, tissue hydraulic conductivity and vessels

permeability, as well as the influence of the vascular tortuosity on fluid convection. The results quantitatively confirm

that transport of blood (and, as a consequence, of any advected anti-cancer drug) can be dramatically impaired by in-

creasing the geometrical complexity of the microvasculature. Hence, our quantitative analysis supports the argument

that geometric regularization of the capillary network improve blood transport and drug delivery in the tumor mass.

Keywords: Multiscale Homogenization, Blood Transport, Tumor Microvasculature, Anti-cancer therapies

1. Introduction

The bio-physical mechanisms that drive solute and blood transport through a vascularized tissue have inspired a

large literature in the last decades, both from an experimental and from a mathematical modelling viewpoint. The

clinical motivations can reside in the optimization of oxygen transport in surgical tissue transfer (Matzavinos et al.,

2009) or in the in the determination of the main factors in vascular arrangement (Ambrosi et al., 2004). Several

mathematical and numerical techniques have been adopted to explore the behavior of a system where the relatively

small number of involved cells makes a cellular automata approach attractive (Alarcón et al., 2003; Powathil et al.,

2012). Here we focus on malignant vascular networks and on the specific geometrical and hydraulic properties of

this network. The ability of an injected anti-cancer or tracker molecule to reach the target cancer cells depends on

several key mechanisms which can be regarded as transport barriers: advection in the blood vessels, leakage from the

microvascular walls, transport in the interstitial space and interactions with the tumor cells membrane (Jain, 1987).

Experimental measurements, as well as validated mathematical models which highlight the determinants of tumor

blood convection, can therefore play a role in the improvement of anti-cancer therapies.

The tumor system is characterized by several abnormal features, including a leaking and tortuous microvascu-

lar network (Hashizume, 2000), the lack of a functional lymphatic drainage, elevated and heterogeneous interstitial

pressure through the tumor volume. Jain and Baxter (1988) developed a phenomenological mathematical model to

describe the blood transport in the tumor mass. The authors considered an isotropic spherical solid tumor, where
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the blood leakage through the vessels is modeled as an effective source for the interstitial Darcian fluid. As a re-

sult, they can track significant spatial variations in the interstitial pressure profile, which rapidly increases from the

tumor boundary to the center, so that the pressure difference between blood vessels and tumor interstitium decreases

accordingly. The blood convection is improved (i.e. the interstitial pressure is damped) by decreasing the tumor

radius, the vascular hydraulic conductivity and the exchange surface-to-volume ratio as well as increasing the tumor

hydraulic conductivity. The model by Jain and Baxter (1988) has been experimentally validated in Boucher et al.

(1990), while the role of the revelant measured blood flow determinants, as well as a discussion regarding recently

developed normalization therapies, is highlighted in Jain et al. (2007).

In this work, we start from the multiscale double Darcy model developed by Shipley and Chapman (2010) for

interstitial and capillary fluid transport, which is derived exploiting the sharp length scale separation between the

intercapillary distance and the tumor characteristic dimensions. The model accounts for both the interstitial and blood

vessels flow and the effective hydraulic conductivities are computed numerically solving the classical Laplace and

Stokes’ problem in a reference prototypical cell. We numerically solve the isotropic tissue scale model for several

cell geometries in order to capture the tortuosity impact on blood convection in the tumor mass. The model formally

resembles Jain and Baxter (1988), but spatial variations of the microvascular pressure are now allowed and new

parameters which describe the capillary network hydraulic properties arise. For increasing vascular tortuosity, we

predict a dramatic capillary hydraulic conductivity damp which highly compromises the fluid flow within the tumor.

The novel contribution of this work is the qualitative and quantitative evaluation of the vascular geometric complexity

on the blood transport process. On the basis of our analysis, we suggest that anti-cancer therapies related to a blood

flow improvement should focus on geometric vessels regularization.

The work is organized as follows:

• In Section 2 we introduce the multiscale homogenized model by Shipley and Chapman (2010), which is starting

point of the present analysis.

• In section 3 we present and discuss the 3D numerical solution of the capillary and interstitial microscale cell

problems for the macroscale isotropic setting.

• In section 4 we present and discuss the macroscopic model solution and the impact of the microvascular tortu-

osity on tumor blood convection is pointed out.

• In section 5 we compare our results with those obtained by Jain and Baxter (1988) and discuss the role of the

key blood flow determinants.

• In section 6 we apply our results to a sample drug transport problem.

• In secton 7 concluding remarks are presented.

2. Mathematical Model

In a recent paper Shipley and Chapman (2010) derive a mathematical model to describe the fluid dynamics in a

vascularized tumor at the tissue scale, on the basis of the multiscale homogenization technique (Sanchez-Palencia,

1983; Holmes, 1995; Mei and Vernescu, 2010). They define the interstitial and capillary phases as two individual

compartments on the microscale, where Darcy and Stokes regimes apply, respectively. The coupling between the two

compartments is provided by continuity of the blood flux, which is prescribed by means of the Starling’s law, i.e. it

is assumed proportional to the fluid pressure drop across the vessels walls. Then, the multiple scales technique is

exploited, under assumption of local periodicity, to derive a double Darcy model. The geometric information on the

microvasculature turns out to be encoded in the hydraulic conductivity tensors, which are to be computed solving

classical microscale differential problems on the representative periodic cell. The final set of equations comprises

effective mass sources, accounting for the blood leakage on the macroscale, and the macroscopic fluid dynamics

of both the tumor interstitium and the capillary network. The crucial assumption underneath the homogenization

technique is the sharp length scale separation between the local scale, where distinct microscopic features of the

physical system can be identified, and the macroscale, where only global variations of the relevant field of interest can

be captured, as shown in Figure 1.
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Figure 1: A schematic representation of the micro and macro scales. On the left hand side, the microscale cell Ω is shown and the difference

between the interstitial and capillary compartment Ωt and Ωc is pointed out. On the right hand side, the homogenized domain ΩH , where the

microstructure is smoothed out, is shown.

Parameter Description Value Physiological range (Reference) Value in S.I. units

Lp [cm/(mm Hg · s)] Normalized Vessel hydraulic permeability 2.38 ·10−7 3.6 ·10−8 −1.8 ·10−6 (Jain et al., 2007) 1.79 ·10−11 [m/(Pa · s)]
κ [cm2/(mm Hg · s)] Tumor hydraulic conductivity 2.8 ·10−7 1.7−3.2 ·10−7 (Boucher et al., 1998) 2.10 ·10−13 [m2/(Pa · s)]
µ [Pa · s] Blood viscosity 4.0 ·10−3 4.0 ·10−3 (Rand et al., 1964) 4 ·10−3 [Pa · s]
q [Dimensionless] Slip coefficient 1 1 (Shipley and Chapman, 2010)

rc [Dimensionless] Capillary radius 0.07

l [Dimensionless] One-side branch length 0.8
h [Dimensionless] Cylindrical link height 0.24

lc [Dimensionless] Total branch length (2l +h) 1.84

|Ω| [Dimensionless] Cell volume ((2l +h)3) 6.23

R [Dimensionless] Tumor radius 0.5
d [µm] Reference micro-scale 40 4 ·10−5[m]
L [cm] Reference macro-scale 1 10−2[m]
i.c.d. [µm] Intercapillary distance ((2l +h) ·d) 73.6 61.9−93.7 (Yoshii and Sugiyama, 1988) 7.36 ·10−5[m]
S/V [cm−1] Surface-to-volume ratio (S/|Ω| ·d−1) 92.3−130.4 50−250 (Jain et al., 2007) 9.23−13.04 ·103[m−1]
D [µm] Capillary diameter (2rc ·d) 5.6 4.4−15 (Asaishi et al., 1981) 5.6 ·10−6[m]
R [cm] Tumor radius (RL) 0.5 0.5−2.2 (Hahnfeldt et al., 1999) 5 ·10−3[m]

αJ [Dimensionless] R

√

LpS

κV
3.5−17 (Jain et al., 2007)

Dg [cm2/s] Diffusion coefficient 1 ·10−7 1.9 ·10−8 −1.87 ·10−6 (Shipley and Chapman, 2010) 1 ·10−11[m2/s]
r [cm/s] Vessels walls permeability 1.7 ·10−5 1.4 ·10−4 −2.5 ·10−5 (Modok et al., 2006, 2007) 1.7 ·10−7[m/s]
U [µm/s] Characteristic capillary velocity 200 (Shipley and Chapman, 2010) 2 ·10−4[m/s]
PV [mm Hg] Microvasculature pressure 20 5.5-34 (Jain et al., 2007) 2.66 ·103[Pa]
τp [h] Plasma clearance time constant 6 3-103.8 (Jain and Baxter, 1988) 2.16 ·104[s]

p̄ [Dimensionless] Microvasculature pressure

(

PV d2

µLU

)

532 143.6−904.4

τ [Dimensionless] Plasma clearance time constant

(

τpU

L

)

432 216−7473.6

T [h] Time period 96 3.456 ·105[s]

T [Dimensionless] Time period

(

TU

L

)

6192

Table 1: Parameters values exploited for analytical analysis and numerical computing. We set non-dimensional microscale and macroscale param-

eters such that, once the representative lengths are chosen, their dimensional counterparts values belong to the physiological range reported in the

literature. We enforced the characteristic time scale L
U

and pressure
µLU

d2 exploited in Shipley and Chapman (2010) to obtain the corresponding

non-dimensional quantities.
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Following Shipley and Chapman (2010), we relate the characteristic local scale d to the intercapillary distance

among vessels, whereas we identify the macroscale with a representative average tumor length L. Their ratio is

ε =
d

L
≪ 1 (1)

so that we can define two independent spatial variables x and y,

y =
x

ε
, (2)

spanning the macro and micro scale, respectively. Since y-periodicity applies on the microscale, the domain Ω is a

single cell, which is composed by the interstitial compartment Ωt , the capillary compartment Ωc and the interface

Γ = ∂Ωt ∩∂Ωc.

In this paper we assume periodicity in y of the fields in the representative cell, which is supposed to be the same in

every x, as it is frequently done in multiscale homogenization (examples of generalization in the context of the multiple

scales technique can be found, for example, in Burridge and Keller (1981); Penta et al. (2014b)) . This assumption

does not strictly apply to a vascular network, which has a tree–like rather than a periodic structure, therefore, it should

be relaxed (see, e.g. Penta et al. (2014a)). However, the hierarchy in size that is apparent in healthy capillary networks

can be more difficult to identify (or even completely fail) in a malignant tissue . Hence, we do not consider extra terms

that would arise in absence of periodicity and, for the sake of simplicity, we focus on a single representative cell as a

first step towards gaining a better understanding on the blood transport problem in vascularized tumors.

This analysis focuses on the impact of the geometric properties of the capillary network on blood convection in

tumors. We adopt the same modelling assumptions as Shipley and Chapman (2010), i.e. the blood flow phase is

Newtonian, the osmotic pressure due to possible differences in drug concentration is neglected and macroscopic vari-

ations of the microstructure are ignored. At this stage the classical steps of multiscale homogenization are performed:

representation of every field in terms of two independent spatial varibles (also referred to as the ”slow” and the ”fast”

one in the literature), series expansion of the solution in terms of the small parameter ε , determination of a macroscale

equation for every zeroth order component, which rigorously represents the homogenized solution for vanishing ε .

Thus, denoting the homogenized domain by ΩH ⊂ R
3 , the non-dimensional governing macroscale system of partial

differential equations which describes the fluid-dynamics of a vascularized tumor for every x ∈ ΩH reads:



































∇x · (K∇x pc) =
S

|Ωc|
L̄p(pc − pt) in ΩH (3)

∇x · (κ̄E∇x pt) =− S

|Ωt |
L̄p(pc − pt) in ΩH (4)

uc =−K∇x pc (5)

ut =−κ̄E∇x pt , (6)

where pc, pt are the zeroth order macroscopic capillary and interstitial pressure fields, respectively, and uc, ut are the

corresponding zeroth order average Darcy velocities, which describe the tissue scale fluid flow. The non-dimensional

numbers L̄p and κ̄ are defined by:

L̄p =
LpµL2

d3
; κ̄ =

κµ

d2
, (7)

where Lp and κ are the physiological vascular hydraulic permeability and tumor hydraulic conductivity, respectively

(see Table 1). The cell exchange surface S and subvolumes size |Ωt | and |Ωc| are

|Ωm|=
∫

Ωm

dy m = t,c, S =
∫

Γ

dSy. (8)

The tensors K and κ̄E play the role of effective capillary and interstitial hydraulic conductivity and they are defined

by:

K = 〈W 〉c , E = I−
〈

(∇yPt)
T
〉

t
, (9)
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where the brackets 〈 r〉m denote the cell integral average operator

〈 r〉m =
1

|Ωm|

∫

Ωm

rdy m = t,c. (10)

The auxiliary tensor W(y) and vector Pt(y) satisfy the following cell problems:























∇
2
yW

T −∇yPc + I = 0 in Ωc (11)

∇y ·WT = 0 in Ωc (12)

W
Tn = 0 on Γ (13)

W
Tτ =−φ [(∇yW

T)n]τ on Γ, (14)

{

∇
2
yPt = 0 in Ωt (15)

(∇yPt)n = n on Γ, (16)

where n represents the outward unit vector normal to the interface, pointing out of the capillary region and into the

tissue region, and τ is any vector tangent to Γ.

Suitable uniqueness conditions for the auxiliary vectors Pt and Pc are to be enforced. For example

〈Pc〉c = 0 in Ωc and
〈

Pt
〉

t
= 0 in Ωt .

Exploiting the y-periodicity, the problems for (W(y),Pc(y)) and Pt(y) are then closed by periodic conditions on the

cell boundaries ∂Ωc \Γ and ∂Ωt \Γ, respectively. The differential problem (15-16) is an inhomogeneous Laplace

problem for each component of the vector Pt , whereas (11-14) is a Stokes’ type boundary value problem, which is

equipped with the Beavers-Joseph (Beavers and Joseph, 1967; Jones, 1973) interface conditions (14) via the non-

dimensional number

φ =

√
κ̄

q
, (17)

which accounts for the slip over a porous surface, where q is a non dimensional parameter. According to the physio-

logical data reported in Table 1

φ ≪ 1 (18)

so that the cell problems given by (11-14) and (15-16), rewrite, componentwise:



























∂ 2Wji

∂yk∂yk

+
∂Pc

i

∂y j

+δi j = 0 in Ωc (19)

∂Wji

∂y j

= 0 in Ωc (20)

Wi j = 0 on Γ, (21)















∂ 2Pt
i

∂yk∂yk

= 0 in Ωt (22)

∂Pt
i

∂y j

n j = ni on Γ, (23)

where i, j,k = 1...3 and summation over repeated indices is understood. It is worth to remark that, even though

(W(y),Pc(y)) and Pt(y) formally satisfy classical Stokes’ and Laplace type boundary value problems, they merely

play the role of auxiliary variables which are to be computed to obtain the physically meaningful quantities, which

are the effective conductivity tensors given by the relationships (9).
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Figure 2: An example of the microscale representative capillary cell portion Ωc and its geometric features are depicted. On the left hand side,

the tortuous geometry is shown, whereas rc and l correspond to the capillary radius and the one-sided branch length, respectively. The difference

between the capillary (dirichlet) walls Γ and the (periodic) outer faces ∂Ωc \Γ is pointed out. On the right hand side, the corresponding 3D

computational mesh is shown and the analytic parametrization of the geometry is highlighted.

3. The microscale cell problems

3.1. The macroscopic isotropic setting

The macroscopic double-Darcy problem (3-6) is isotropic when the microscale geometry satisfies the following

identities:

K = KcI, Kc: = 〈W11〉c = 〈W22〉c = 〈W33〉c (24)

E = Et I, Et : = 〈E11〉t = 〈E22〉t = 〈E33〉t . (25)

This spherical characterization of the microvascular conductivity has no physiological meaning per se: it enables us

to account for a range of significant variations in the microstructure geometry and highlights the physical contribution

of the homogenized model via a reduced number of parameters. This way, it provides quantitative results which can

be compared to previous, experimentally validated isotropic models (Jain and Baxter, 1988; Boucher et al., 1990). In

order to verify identities (24-25), we choose a prototypical microstructure composed of three orthogonal branches,

which is invariant under permutations of the three coordinate axes (preserving right-handedness) by construction, as

shown in figure 2 and 3. The differential problems for W (19-21) and Pt (22-23), are three standard Stokes’ and

Laplace problems for i = 1,2,3 respectively and we can enforce rotation invariance to compute the solution for W and

Pt by solving one Stokes’ and Laplace problem only. In fact we can fix, for example, i = 3 in (19-21) and (22-23)

without loss of generality, obtaining the following cell problems:











∇
2
yw−∇yPc + e3 = 0 in Ωc (26)

∇y ·w = 0 in Ωc (27)

w = 0 on Γ, (28)

{

∇
2
yPt = 0 in Ωt (29)

∇yPt ·n = n3 on Γ, (30)
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Figure 3: An example of the microscale representative interstitial cell portion Ωt =Ω\Ωc. On the left hand side, the tortuous geometry is shown and

the difference between the (Neumann) inner walls Γ and the (periodic) outer faces ∂Ωt \Γ is pointed out. On the right hand side, the corresponding

3D computational mesh is shown.

〈Pc〉c = 0 in Ωc and
〈

Pt
〉

t
= 0 in Ωt .

where we explicitly set, by components:

w1 =W13, w2 =W23, w3 =W33, Pc = Pc
3 , Pt = Pt

3. (31)

Then, enforcing rotation invariance of the geometry with respect to the three orthogonal axes, we get

w1 =W13 =W21 =W32

w2 =W23 =W31 =W12

w3 =W33 =W11 =W22, (32)

∂Pt

∂y1
=

∂Pt
3

∂y1
=

∂Pt
1

∂y2
=

∂Pt
2

∂y3

∂Pt

∂y2
=

∂Pt
3

∂y2
=

∂Pt
1

∂y3
=

∂Pt
2

∂y1

∂Pt

∂y3
=

∂Pt
3

∂y3
=

∂Pt
1

∂y1
=

∂Pt
2

∂y2
(33)

and the full solution for K and E can be recovered once definitions (9) are exploited.

In order to test the impact of the microvasculature tortuosity on the blood flow, we perform our analysis varying

the geometrical configuration of Ωc (and Ωt accordingly). In particular, we design the center line of every branch by

an analytical parametrization of the type:

f (s) = Asin(2πωs/l), (34)
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ω A |Ωc| |Ωt |(|Ω|− |Ωc|) S Kc (〈w3〉c) 〈w1〉c 〈w2〉c Kozeny constant

0 0 8.1 ·10−2 6.149 2.30 2.20 ·10−4 2.83 ·10−9 2.89 ·10−10 5.6
1 0.25rc 8.0 ·10−2 6.15 2.30 2.17 ·10−4 3.81 ·10−8 3.53 ·10−8 5.6

1 0.5rc 7.9 ·10−2 6.151 2.30 2.06 ·10−4 6.57 ·10−8 6.22 ·10−8 5.7
1 0.75rc 7.8 ·10−2 6.152 2.31 1.90 ·10−4 8.17 ·10−8 7.86 ·10−8 6.0

1 rc 7.6 ·10−2 6.154 2.32 1.69 ·10−4 8.42 ·10−8 8.22 ·10−8 6.3
2 0.25rc 7.9 ·10−2 6.151 2.30 2.05 ·10−4 6.26 ·10−8 5.85 ·10−8 5.7

2 0.5rc 7.6 ·10−2 6.154 2.33 1.63 ·10−4 8.52 ·10−8 8.02 ·10−8 6.5
2 0.75rc 7.2 ·10−2 6.158 2.42 1.08 ·10−4 4.64 ·10−8 4.85 ·10−8 8.2

2 rc 6.9 ·10−2 6.161 2.57 6.24 ·10−5 2.17 ·10−8 2.30 ·10−8 11.5

3 0.25rc 7.8 ·10−2 6.152 2.32 1.84 ·10−4 7.54 ·10−8 7.39 ·10−8 6.1

3 0.5rc 7.2 ·10−2 6.158 2.53 7.71 ·10−5 3.66 ·10−8 4.51 ·10−8 10.5

3 0.75rc 6.8 ·10−2 6.162 2.82 2.02 ·10−5 −2.64 ·10−9 3.60 ·10−9 29.0

3 rc 6.5 ·10−2 6.165 3.25 4.89 ·10−6 −2.63 ·10−8 6.82 ·10−9 80.0

Table 2: Computational results for the non-dimensional capillary hydraulic conductivity Kc, cell exchange surface S and capillary cell volume

portion |Ωc| for thirteen cells of increasing tortuosity. Non-diagonal values of K are negligible with respect to Kc.

where A represents the amplitude, ω the spatial frequency, l the one-sided branch length and s the local parametrization

of the spatial coordinate, such that

0 ≤ s ≤ l,

as depicted in Figure 2. We identify the geometrical tortuosity by the two parameters ω and A.

Next we numerically solve the capillary and interstitial periodic cell problems (26-28) and (29-30) via the com-

mercial library COMSOL Multiphysics. Spatial discretization is carried out by the standard Taylor–Hood (P2/P1)

finite element pair for the Stokes’ problem (26-28), whereas a P2 finite element discretization is used for the Laplace

problem (29-30). Then, exploiting the macroscopic isotropy (24-25), the analytical solution of the macroscale model

(3-6) is provided for an isolated spherical tumor.

3.2. The capillary cell problem

We vary the geometrical tortuosity parameters ω and A of the reference cell and numerically compute the corre-

sponding values of K (in particular the diagonal component Kc), S, |Ωc|. The results are reported in Table 2.

The numerical solution of the Stokes’ problem (26-28) applied to the straight cylindrical reference geometry yields

a classical parabolic–type profile (Figure 4 a). In this case, the solution is non-zero in the branch directed along e3

only (the direction of the unit vector in the equation (26)), and it is a small perturbation of the Poiseille–type solution

which is obtained analytically solving the Stokes’ problem (26-28) in a single cylindrical tube, with periodic boundary

conditions on the inlet and outlet, namely:

w3 =
r2

c − r2
l

4
, w1 = w2 = Pc = 0, 0 ≤ rl ≤ rc, (35)

where rl denote the local radial coordinate. As a consequence, the maximum value |w|= w3 is reached in the center

of the tube:

|w|rl=0 =
r2

c

4
≈ 1.22 ·10−3, (36)

and its average reads:

Kr = Kc|ω=0 = 〈w3〉c |ω=0 =
1

|Ωc|

∫ lc

0
dz

∫ 2π

0
dθ

∫ rc

0

r2
c − r2

l

4
rl drl =

πlcr4
c

8|Ωc|
= 2.13 ·10−4, (37)
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Figure 4: Color maps of |w| for representative geometries of increasing tortuosity. The solution retains a pseudo-parabolic profile for small

pertubation in ω and A of the reference configuration, whereas a sharp non-linear decrease with respect to geometrical tortuosity is observed at

higher frequency.
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Figure 5: Relative hydraulic conductivity profile as a function of relative amplitude. The black dots represent the results of the numerical simula-

tions, whereas dashed lines emphasize the difference in the non-linear drop of the hydraulic conductivity at increasing frequency.

where the values reported in Tables 1 and 2 have been used. In the non-tortuous case, the solution then agrees with

the analytical solution (35), up to a small deviation in the central region of Ωc, where branches cross each other. 1

The numerical solution for the computed tortuous geometric configurations deviates from a merely parabolic

profile, as far as the frequency ω increases. Nevertheless, the cell average of the (non-zero) transversal components

remain negligible with respect to Kc (see Table 2), so that the condition (24) for macroscopic isotropy is satisfied, as

Ki j ≪ Kc, ∀ i , j, i, j = 1,2,3. (38)

The plot of the normalized Kc versus A/rc exhibits a non-linear monotonic decrease which is more marked at higher

frequency ω (see Figure 5). The hydraulic conductivity Kc dramatically reduces at large tortuosity and an up to 45-fold

Kc drop is observed.

3.2.1. Comparison with the perturbation theory

The observed non-linearity of the hydraulic conductivity versus tortuosity reflects the characteristics of Stokes’

flow in wavy channels, where the solution can significantly deviate from the parabolic one. Nevertheless, under a

number of simplifying assumptions, analytical solutions can be found by perturbative methods. Kitanidis and Dykaar

(1997); Di Federico et al. (2002) developed an analytic method to determine the solution of the Stokes’ problem for a

2D, axis symmmetric, periodic, waving channel, in terms of a power series expansion, under the assumption that the

width is much smaller than the wavelength. They report a non-linear decrease of the flow discharge with respect to

the channel amplitude at leading order whereas, to track variations with respect to the frequency, higher order terms

in their asymptotic expansion should be taken into account. A 3D generalization of their theory can be found in

Malevich et al. (2006), where perturbation analysis is used to calculate the waving channels permeability via power

series in terms of a small asymptotic parameter, which measures the deviation of the channel with respect to a straight

reference configuration. Also in that work, the authors exploit axial symmetry of the channel (which is not assumed

here) and their procedure is only valid up to a critical value for their asymptotic parameter. Their result is a non-linear

decrease of the channel permeability as far as its perturbation with respect to the symmetry axis increases.

The most widely exploited assumption to derive the flow field in slowly waving channels rely on the so called

lubrication approximation (see e.g. Batchelor (2000); Malevich et al. (2006)). In such a framework, the flow is

1In this region, the solution in the branch directed along z is not subject to homogeneous Dirichlet boundary conditions, rather, it smoothly

approaches zero to match that in the orthogonal branches and, as a result, we obtain a slightly higher value for the maximum |w|rl=0 ≈ 1.26 ·10−3

and Kr = 2.2 · 10−4. Furthermore, the components w1 and w2 reduce to zero up to numerical errors, namely |w1/w3| ≪ 1 and |w2/w3| ≪ 1

everywhere in Ωc.
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Figure 6: Numerical results showing the linear relationship between the hydraulic conductivity and the reciprocal branch center line length, in

qualitative agreement with Shipley (2008).

supposed to be parabolic as long as the characteristic length of the channel (i.e. the wavelength for periodic geometry)

is much larger than the channel height (radius) and relative variations with respect a straight reference configuration

are small. For example, in Shipley (2008), curvilinear coordinates are exploited to compute the permeability of the

capillary compartment; when specialized to the isotropic and non-slippery case the capillary hydraulic conductivity

reads:

Kc =
πr4

c l2
c

8|Ωc|γ
, (39)

where γ denotes the branch center line length (see Figure 2). In our case, the total branch center line length is

γ = 2| f |+h, where | f | denotes the one-sided branch center line length and h the linking cylinder height (see Table 1).

Therefore, in our reference configuration, γ = lc and (39) matches the analytic profile provided in (37). Notice that,

for a tortuous geometrical setting, γ > lc and hence (39) predicts a permeability drop of the type:

Kc ∝
1

γ
. (40)

In the high frequency regime, the lubrication approximation does not apply and the solution exhibits large deviations

from the parabolic profile (see Figure 4 d). However, when ω = 1, the perturbation of the geometry with respect to

the reference configuration is small enough that the numerical results agree with (40) (see Figure 6).

Also the capillary network formed by the cell portions Ωc can be viewed as a porous medium, with unit porosity

and hydraulic conductivity given by the Kozeny-Carman formula (Kozeny (1927); Carman (1937); Heijs and Lowe

(1995)), which in our notation reads:

Kc =
1

c0S2
c

; Sc =
S

|Ωc|
, (41)

where Sc is the capillary surface-to-volume ratio and c0 is the so called Kozeny constant. According to the relationship

(41), the hydraulic conductivity should therefore exhibit a quadratic decrease with respect to the surface-to-volume

ratio of the porous medium. Nevertheless, c0 itself can be shown to increase with the geometrical tortuosity. Matyka

et al. (2008) show that the Kozeny constant exhibits a quadratic dependence on the representative path length, which is

in turn related to the geometrical tortuosity. We have numerically computed the Kozeny constant for several prototype

geometries (see Table 2). Whenever deviations from the reference configurations are small (i.e ω = 1), a relationship

of the type (41) is sufficient to describe the dependence of the capillary hydraulic conductivity on the geometrical

properties of the network. Nevertheless, as the tortuosity increases, a quadratic decrease of Kc with respect to the

surface-to-volume ratio S/|Ωc| is not anymore observed, as a dramatic increase of c0, which is not constant any

longer, is observed.
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Figure 7: Color maps of Pt for different representative geometries. The solution gradients only weakly contributes to the effective hydraulic

conductivity E and no significant changes are observed by varying the geometrical tortuosity (see Table 3).
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ω A Et

(

1−
〈

∂Pt

∂y3

〉

t

) 〈

∂Pt

∂y1

〉

t

〈

∂Pt

∂y2

〉

t

0 0 0.991 1.23 ·10−8 −6.55 ·10−8

1 0.25rc 0.991 −2.25 ·10−5 −7.35 ·10−5

1 0.5rc 0.991 −1.40 ·10−5 −1.49 ·10−5

1 0.75rc 0.991 −1.98 ·10−5 −2.02 ·10−5

1 rc 0.991 −2.76 ·10−5 −2.71 ·10−5

2 0.25rc 0.991 −6.36 ·10−6 −5.83 ·10−6

2 0.5rc 0.991 −1.63 ·10−5 −1.50 ·10−5

2 0.75rc 0.992 −3.30 ·10−5 −3.09 ·10−5

2 rc 0.992 −5.46 ·10−5 −5.23 ·10−5

3 0.25rc 0.991 −1.00 ·10−5 −6.89 ·10−6

3 0.5rc 0.992 −5.09 ·10−5 −5.24 ·10−6

3 0.75rc 0.992 −5.48 ·10−5 −3.47 ·10−5

3 rc 0.992 1.00 ·10−5 1.00 ·10−5

Table 3: Computational results for the non-dimensional conductivity tensor E. Et ≈ 0.99 for every tortuosity regime explored. Non diagonal values

of E are negligible with respect to Et .

Figure 8: Color maps of Pt for two non-tortuous geometries, with different
|Ωt |
|Ω| ratio. On the left hand side, the reference geometry (which

corresponds to the reference capillary compartment radius rc) is characterized by small and localized spatial variation of the solution ∂Pt

∂y3
. On the

right hand side, the solution for
|Ωt |
|Ω| ≈ 0.64 (which corresponds to a 6rc capillary compartment radius) is shown. In the latter case, the interstitial

volume fraction decreases and the spatial gradient of Pt increases, thus leading to a corresponding decrease in Et (see definition (9) and Figure 9).
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Figure 9: A linear relationship between Et and the interstitial volume fraction
|Ωt |
|Ω| . Black dots represent the numerical results which correspond to

the various interstitial configurations obtained by varying the radius of each complementary capillary compartment branch from rc to 6rc.

3.3. The interstitial cell problem

We perform numerical simulations to compute Pt and hence capture variations of the interstitial conductivity E

(in particular the diagonal component Et ) with respect to tortuosity, in the complementary geometry Ωt = Ω\Ωc (see

Figure 7). The numerical solution of the problem (29-30) is weakly affected by tortuosity. According to Table 3,

accounting for definition (9) and identifications (33), we deduce:

Ei j ≪ Et ∀ i , j, i, j = 1,2,3, (42)

that is, the macroscopic isotropy condition (25) is satisfied. We further notice that, even though integral average

variations of Pt along e3 are more relevant than those in the other directions, they are however much smaller than

1, such that, in the explored regimes, E slightly deviates from the identity tensor. The geometric role of Et can be

pointed out by decreasing the interstitial volume |Ωt | (see Figure 8). We perform numerical tests for sample interstitial

geometries Ωt . We find an almost linear relationship between Et and interstitial volume fraction (see Figure 9). We

recall that according to (6) and (25) the non-dimensional interstitial velocity is given by:

ut =−κ̄Et∇x pt , (43)

where the non-dimensional conductivity κ̄ is directly related to the physiological value κ , which is obtained via

experimental measurements over the whole tumor mass (without distinction between interstitial and capillary com-

partment). On the basis of our numerical tests (see Figure 9), Et reads as a correction factor (0 < Et < 1), which

reduces the average measured conductivity value according to the actual interstitial volume portion perfused by the

fluid.

In the following section, we present and discuss the analytical solution of the isotropic fluid transport problem (3-

6). Since we focus on the consequences of increased geometrical tortuosity, we exploit the numerical values reported

in Table 1, 2 and 3 in the analysis that follows.

4. The macroscopic model

The macroscale differential problem (3-6), under isotropic conditions (24-25), reads:



















∇
2
x pc = Mc(pc − pt) in ΩH (44)

∇
2
x pt =−Mt(pc − pt) in ΩH (45)

uc =−Kc∇x pc (46)

ut =−Kt∇x pt , (47)
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where

Kt = Et κ̄, Mc =
L̄pS

Kc|Ωc|
, Mt =

L̄pS

Kt |Ωt |
. (48)

We consider a spherical macroscale domain ΩH with radius R representing the tumor. We enforce radial symmetry:

all the fields depend on the radial coordinate r only and the problem (44-45) rewrites







































1

r

d2

dr2
(rpc) = Mc(pc − pt) 0 < r < R (49)

1

r

d2

dr2
(rpt) =−Mt(pc − pt) 0 < r < R (50)

d pc

dr
|r=0 =

d pt

dr
|r=0 = 0 (51)

pc|r=R = p̄ > 0, pt |r=R = 0. (52)

The tumor is supposed to be isolated (Jain and Baxter, 1988; Jain et al., 2007): a malignant (possibly vascularized)

mass such that the interaction with th environment occurs only through possible drugs transported by the microvascu-

lature. This system is therefore isolated with respect to surrounding organs, both from a biomolecular (degradation)

and from a mechanical (stress) point of view. Hence, we prescribe the pressures on the tumor boundary (52), while

symmetry in r = 0 implies null flux in the tumor center, corresponding to homogeneous Neumann boundary condi-

tions (51). The choice (52) accounts for experimental observations (Boucher et al., 1990): the interstial fluid pressure

is constant and smaller than the microvasculature pressure on the tumor surface. The flow driving force is the pressure

difference pc − pt and pt can be set to zero on the tumor surface without loss of generality (Jain and Baxter, 1988;

Jain et al., 2007). The radial components of the Darcy’s velocities uc(r) and ut(r) are

uc(r) =−Kc

d pc

dr
, ut(r) =−Kt

d pt

dr
. (53)

The solution of the problem (49-52) can be obtained via direct integration (see Appendix A):

p̂c =
1

Mc +Mt

(

Mt +
Mc sinh(α r̂)

r̂ sinh(α)

)

, (54)

p̂t =
Mt

Mc +Mt

(

1− sinh(α r̂)

r̂ sinh(α)

)

, (55)

where p̂c = pc/ p̄, p̂t = pt/p̄ are the relative capillary and interstitial pressure, respectively and r̂ = r/R is the relative

radial position, while

α = R
√

(Mc +Mt). (56)

The capillary and interstitial velocities can be written in terms of

ûc =
ucR

Kr p̄
, ût =

utR

Kt p̄
(57)

by direct derivation:

ûc =− KcMc

Kr(Mc +Mt)

(

α r̂ cosh(α r̂)− sinh(α r̂)

sinh(α)r̂2

)

, (58)

ût =
Mt

Mc +Mt

(

α r̂ cosh(α r̂)− sinh(α r̂)

sinh(α)r̂2

)

. (59)

Finally, we define the relative pressure difference between the capillary and interstitial pressure as

ψ̂ = p̂c − p̂t =
sinh(α r̂)

r̂ sinh(α)
. (60)
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Figure 10: The macroscopic pressure difference is plotted versus the relative radial position. The results are plotted for the tortuous microvascula-

tures b, c and d (see Figure 4). The solution exhibits a sharp non-linear decreasing profile at increased tortuosity (the latter implying an increase in

α), such that, for high geometrical complexity, no pressure difference and hence no convection of blood is observable in the tumor inner regions.

4.1. The impact of tortuosity on tumor blood convection

The relative pressure difference is plotted versus the relative radial position (see Figure 10). The relative pressure

jump ψ̂ is the driving force of the blood flow (see Figure 11 and 12) and exponentially decays versus 1/α , where

α = R

√

L̄pS

|Ωc|Kc

+
L̄pS

|Ωt |Kt

. (61)

As far as the tortuosity of the microvasculature grows, the surface to capillary volume ratio S/|Ωc| increases, while

the hydraulic conductivity Kc decreases (see Table 2), both contributing to an increase in α . In fact, for low tortuosity

(i.e in the α < 5 regime, see Figure 10), a non-zero pressure difference is observed even in the tumor center whereas,

for higher values of α blood and possible injected anti-cancer drugs cannot permeate the whole tumor mass. For

example, in the most tortuous regime that we explore, no blood flow can permeate the tumor mass for r̂ ≃ 0.7.

The main feature of our multiscale formulation is to account for the hydraulic and geometric properties of the

tissue interstitium and capillary compartment separately, such that, under fixed physiological conditions (see Table

1), we can quantitatively evaluate the role of the geometrical tortuosity in tumor blood convection. Even though we

perform the present analysis accounting for a specific microscale configuration, we argue that our results are robust

with respect to different geometric settings, provided that conditions (24-25) are met. Given the physiological set

of parameters encoded in the number α (the tumor radius R, vascular hydraulic permeability Lp and tumor tissue

conductivity κ), we thus predict a strong dependence of the tumor blood convection with respect to tortuosity, such

that geometrical regularization of the microvasculature network can improve blood flow within the tumor. Next, we

compare the results of our model with the relevant literature and perform an analysis of the blood flow determinants

which are captured by these different formulations.

5. Comparison with Jain and Baxter (1988)

The model for fluid flow in a spherical solid tumor developed by Jain and Baxter (1988) and experimentally

validated by Boucher et al. (1990) is based on a single compartment for the interstitial flow, which exchange fluid

through the blood vessels walls. i In particular, the interstitial velocity uI is given by the isotropic Darcy law:

uI =−κ∇pI , (62)

where pI is the interstitial pressure. The fluid leakage from the blood vessels is an effective source for the interstitial

flow:

∇ ·uI =
JV

V
, (63)

16



Figure 11: The relative capillary velocity is plotted versus the relative radial coordinate for the reference (Figure 4 a) and most tortuous configuration

(Figure 4 d).The blood flow, driven by the pressure difference ψ̂ , is impaired by tortuosity and rapidly approaches zero.

Figure 12: The relative interstitial velocity is plotted versus the relative radial coordinate for the reference (Figure 4 a) and most tortuous configu-

ration (Figure 4 d).The blood flow, driven by the pressure difference ψ̂ , is impaired by tortuosity and rapidly approaches zero.
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where V is the tumor volume and JV is the vessels blood flux:

JV = LpS(pV − pI) , (64)

pV being the constant microvascular pressure and S the exchange surface. The relationship (64) rules out the contri-

bution due to the osmotic pressure driven by the plasma proteins difference in concentration, which is negligible in

tumors (Jain et al., 2007). Thus, substituting (62) and (64) into (63), they obtain, in dimensional form:

∇
2 pI =−LpS

κV
(pV − pI) . (65)

When assuming spherical symmetry with null interstitial pressure on the tumor boundary, the analytical solution of

the model (65) for the relative interstitial pressure pI/pV in terms of the radial coordinate r̂ is:

pI

pV

= 1− sinh(αJ r̂)

r̂ sinh(αJ)
, (66)

where

αJ = R

√

LpS

κV
. (67)

Jain and Baxter (1988) do not address the fluid dynamics in the vessels. Nevertheless, a comparison with the model

proposed in this paper in terms of relative pressure difference is possible, in fact:

pV − pI

pV

=
sinh(αJ r̂)

r̂ sinh(αJ)
. (68)

The pressure drop in (60) and (68) have the same functional form; however, the non dimensional coefficients α and

αJ are different, as in this work we explicitly account for variations in the capillary pressure and for the role of the

specific geometric and hydraulic vessels properties, such as their volume and hydraulic conductivity. In particular, the

model by Jain and Baxter (1988) can be recovered when assuming that the capillary pressure is constant and

|Ωc|Kc ≫ |Ωt |Kt , |Ωt | ≈ |Ω| → Et ≈ 1, (69)

i.e. when accounting for a geometrically regular, low density, vascular network. For example, according to Tables

1, 2 and 3, we obtain |Ωc|Kc ≈ 5|Ωt |Kt and |Ωt | ≈ |Ω| with Et ≈ 1 for our reference configuration. Whenever the

conditions (69) apply, we obtain

α ≈ R

√

L̄pS

κ̄|Ω| = R

√

LpSL2

κd|Ω| , (70)

where definitions (7) are exploited. The dimensional exchange surface to volume ratio and tumor radius read:

S

V
=

S

d|Ω| , R = RL, (71)

respectively, where R is the non-dimensional macroscale tumor radius, while the non-dimensional surface-to-volume

ratio S/|Ω| is calculated over the microscale periodic cell. Thus, substituting (71) into (70) yields

α ≈ R

√

LpS

κV
= αJ , (72)

in agreement with relationship (67). The mathematical model by Jain and Baxter (1988) thus coincides with the

homogenized model by Shipley and Chapman (2010) under the specific assumptions (69).

The main difference between the two models is represented by the additional information we are able to capture

about the geometric and hydraulic properties of the microvascular network, as well as the spatial dependence of the

capillary flow in the vessels. As the same functional form for the problem solution is obtained (see equations (60)

and (68)) in both approaches, then an experimental datum fit by a relationship of the type (68) necessarily involves a

dependence on the vascular microstructure, although not explicitly encoded in their non-dimensional number αJ .

We conclude the section discussing the role of the tumor blood convection determinants captured by the two

models.
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• The Tumor growth stage, identified by the tumor radius R, can significantly affect fluid convection in tumors.

Normalization therapies able to reduce the tumor radius can therefore strongly improve transport of blood,

and, as a consequence, anti-cancer drugs within the tumor mass, thus possibly increasing medical therapies

effectiveness. The tumor radius has exactly the same impact on the tumor fluid dynamics in both models.

• The Tumor hydraulic conductivity κ regulates the amount of fluid that can actually permeate the tissue, hence,

as expected, an increase in the tumor conductivity yields a decrease in α , which in turn drives a convection im-

provement. It plays a similar quantitative role in both models, as we did not observe a significant dependence on

tortuosity (see Table 3). Nevertheless, we remark that the hydraulic conductivity values are obtained by experi-

mental measurements (see e.g. Boucher et al. (1998)) and they intrinsically refer to the whole tumor tissue. Our

Kt (see definitions (48)) corresponds, instead, to the interstitial conductivity only and it is in general a fraction

of the average tumor conductivity value that can be experimentally measured. According to Jain et al. (2007), it

is an open issue whether normalization therapies can play a role in increasing the tumor hydraulic conductivity;

recently developed techniques do not highlight a significant increase of the tumor hydraulic conductivity, which

is instead proved to strongly depend on the interstitial matrix constituents and hydration (Swabb et al., 1974;

Jain, 1987).

• The vascular hydraulic permeability Lp is the key determinant of the blood leakage from the capillary vessels

to the tissue. It provides an averaged information on the fenestrations of the membrane, which, especially in

tumors, exhibits openings and defects among the endothelial cells (Hashizume, 2000). Our model leads to the

same, at a first sight counterintuitive, conclusion by Jain et al. (2007): an increase in vascular permeability

does not the improve blood convection within the tumor, because leakage rapidly damps the pressure gradient

across the vessels walls, which is the driving force of the blood convection process. The vascular hydraulic

permeability is found to be up to two orders of magnitude greater in tumors than in healthy vascularized tissue

and, according to Jain et al. (2007), vascular normalization therapies should significantly lower it.

• The exchange surface-to-volume ratios, here denoted by S/|Ωt | and S/|Ωc|, play an important role in driving

the fluid transport process. In the double compartment model we started from, we are able to track both the

interstitial and the capillary surface-to-volume ratios. As expected, for fixed interstitial and capillary volume,

a greater vascular surface leads to an increase in leakage, thus producing the same net effect of an increase

in the vascular hydraulic permeability Lp. In Jain and Baxter (1988), the global surface-to-volume ratio plays

a similar role, even though it refers to the volume of the whole tumor, instead of the interstitial portion only.

According to Jain et al. (2007), vascular normalization therapies should decrease the global surface-to-volume

ratio.

• The capillary hydraulic conductivity, here denoted by Kc, accounts for the hydraulic properties of the capillary

network. It is a main feature captured by the homogenized model by Shipley and Chapman (2010) and ne-

glected in the previous literature. The capillary hydraulic conductivity is strongly affected by the geometrical

complexity of the network (see Figure 5). A decrease in Kc corresponds to an increase in α (see Table 4), result-

ing in a compromised blood flow within the tissue. Thus, geometric regularization of the vascular network can

improve both directly (through the exchange surface-to-volume ratios) and indirectly (through Kc, see Table 2)

the fluid transport process in the malignant mass.

6. Tracer transport

We now aim to show that impaired tumor blood flow can significantly affect the drug delivery process. We

exploit the more general drug transport model derived by Shipley (2008); Shipley and Chapman (2010), which is

based on a non-dimensional double advection-diffusion-reaction model for the zeroth order interstitial and capillary

concentrations ct and cc. We focus on the general consequences of (possibly impaired) blood convection on the

amount of drug that can penetrate the tumor mass. Therefore, an agent-specific drug transport analysis is beyond the
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ω A α

0 0 4.86

1 0.25rc 4.87

1 0.5rc 4.9
1 0.75rc 4.96

1 rc 5.02

2 0.25rc 4.90

2 0.5rc 5.05

2 0.75rc 5.45

2 rc 6.25

3 0.25rc 4.97

3 0.5rc 5.89

3 0.75rc 9.05

3 rc 17.72

Table 4: Computed values of α for thirteen sample microvasculature geometries. At increasing tortuosity, a typical tumor pressure difference

profile is obtained, even accounting for a normalized value of the vascular hydraulic permability Lp.

Figure 13: A comparison between the models by Jain and Baxter (1988), displayed for a tipical tumor value of Lp and Shipley and Chapman (2010),

displayed for a typical normalized value of Lp, at high tortuosity (Figure 4 d). According to Jain et al. (2007), the characteristic tumor pressure

difference, which is fit approximately in the range 7 < αJ < 17 (see Table 1 for the definition of αJ , which does not include any information

about the capillaries hydraulic properties), can be the result of both increased vascular hydraulic permeability Lp and of increased microvascular

tortuosity.
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scope of this work, so that we account for tracer molecules transport only, that is, uptake rates (which strongly depend

on the specific anti-cancer agent) are ignored. Hence, for every x ∈ ΩH and for every t ∈ (0,T ), we have















∂cc

∂ t
+∇x · (ccuc) =− Sϒ̄

|Ωn|
(cc − ct) (73)

∂ct

∂ t
+∇x · (ctut) =

Sϒ̄

|Ωt |
(cc − ct), (74)

where (0,T ) is a suitable time interval, whereas uc and ut are the capillary and interstitial velocities given by (5) and

(6), respectively. Here

ϒ̄ =
PL

Ud
, (75)

where P is the vessel walls diffusive permeability and U the characteristic capillary velocity. The system of differential

equations (73-74) describes the homogenized advection of drugs and the effective role of the solute transfer between

the interstitial and capillary compartment, which is proportional to the concentration drop. According to Shipley and

Chapman (2010), diffusion is an higher order term. Nevertheless, even though the drug transport problem is in general

dominated by advection on the tissue scale, diffusion does play a physiological role (Jain and Baxter, 1988) and, as

also suggested in Shipley (2008), it is convenient to include a constant diffusivity to stabilize the system of equations

(73-74), provided that advection dominates over diffusion on the macroscale, i.e. the macroscale diffusion coefficient

Dg satisfies:

Peg =
UL

Dg

≫ 1, (76)

where Peg is the global Péclet number.

Enforcing spherical symmetry, the problem (73-74), when setting diffusion according to (76), reads, for every

t ∈ (0,T ):























































∂cc

∂ t
+

1

r2

∂

∂ r

(

r2

(

ccuc −
1

Peg

∂cc

∂ r

))

=− Sϒ̄

|Ωn|
(cc − ct) 0 < r < R (77)

∂ct

∂ t
+

1

r2

∂

∂ r

(

r2

(

ctut −
1

Peg

∂ct

∂ r

))

=
Sϒ̄

|Ωt |
(cc − ct) 0 < r < R (78)

(

ccuc −
1

Peg

∂cc

∂ r

)

|r=0 =

(

ctut −
1

Peg

∂ct

∂ r

)

|r=0 = 0 (79)

cc|r=R = ct |r=R = exp(−t/τ) (80)

cc|t=0 = ct |t=0 = 0, (81)

where the radial components of the interstitial and capillary velocities ut and uc are given by the solution of the

fluid transport problem and follow from the relationships (57-59). We assume that the interstitial concentration is

driven by a drug capillary concentration of the type (80), which represents a bolus injection in the vessels, i.e. the

capillary concentration decreases exponentially according to a plasma clearance time costant (Jain and Baxter, 1988).

Symmetry in r = 0 implies null drug flux in the tumor center, corresponding to the homogeneous Neumann boundary

conditions (79).

We perform numerical simulations of the system (77-81) by means of the commercial library COMSOL Multi-

physics, using a P2 finite element discretization in space, together with the BDF (Backward differentiation formula)

time integration method, initialized according to conditions (81). The solutions for cc and ct are computed for two

limit cases, to emphasize the role of the microvascular tortuosity in the drug delivery process, namely the reference

configuration (Figure 4, microvasculature a) and the most tortuous configuration (Figure 4, microvasculature d). We

therefore exploit the computational data reported in tables 2 and 3 for the reference (ω = 0, A = 0) and tortuous

(ω = 3, A = rc) configurations, whereas we refer to Table 1 for quantities that are not affected by tortuosity.

The numerical results cleary show that both the capillary and the interstitial drug dynamics are strongly affected by

the microvascular tortuosity within the chosen time interval, which corresponds to 96 hours (see Figures 14 and 15).

Setting the plasma clearance time equal to 6 hours, after 24 hours the drug concentration on the boundary approaches
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zero, whereas it is still possible to track the advection of drug that enters the tumor mass, from the boundary to the

tumor center. For a geometrically regular microvasculature, a significant fraction of the injected drug concentration

can actually reach the tumor center before being washed out from the tissue (in the presented example ≈ 40% after 48

hours and ≈ 25% after 96 hours). For a highly tortuous microvasculature, fluid convection is dramatically impaired

and most of the injected drug is washed out before reaching the tumor inner regions (in the presented example, after

48 hours the concentration in the center is ≈ 10% of the injected one).

As our work is mainly focused on the fluid transport analysis, we presented this example to simply show that

compromised blood convection can dramatically decrease the amount of drug that can actually penetrate the tumor

mass. However, it is worth remarking that physiological parameters can greatly vary, depending on the specific

injected molecule. Therefore, a thorough analysis of the drug transport problem itself should explore a wide range of

the relevant parameters, as well as account for drug comsumption and more realistic drug transfer conditions across

the vessels, which are here merely related to the concentration drop (see, e.g. Jain and Baxter (1988) and Penta et al.

(2014a), where both the diffusive component, which is proportional to the concentration difference and the convective

component, which is related to the fluid flux filtered from the blood vessels to the tissue, are taken into account, from

a biophysical and mathematical modelling viewpoint, respectively).

Figure 14: Capillary drug concentration profile for a regular microvasculature (left) (see Figure 4 a) and a highly tortuous one (see Figure 4 d)

(right). Both solutions are plotted as functions of the relative radial position at 24, 48, 72 and 96 hours.

7. Concluding remarks

In this work we have performed a qualitative and quantitative analysis of the impact of microvascular tortuosity

on blood convection in solid isolated tumors. We start from the double Darcy homogenized model by Shipley and

Chapman (2010), to describe the tissue scale fluid dynamics of both the interstitial and capillary compartments.

Although this model neglects important features of the blood flow in the capillaries, such as non-Newtonian effects

(see e.g. Fahareus and Lindqvist (1931), Pries et al. (1990)), structural adaptation, remodeling of the network (see for

example Pries et al. (1998); Owen et al. (2008)) and macroscopic changes of the microstructure (Penta et al., 2014a),

it represents a robust starting point to account for the net effect of the tortuosity on blood transport phenomena, as

it allows to track the interstitial and capillary compartment separately, as well as their hydraulic properties and their

dependence on the microstructure. In this work, the geometric information encoded in the hydraulic conductivities of

the model is obtained via 3D numerical simulations on a single representative microscale cell. Then, the computed

values are injected in the tissue scale homogenized model, which we solve analytically in the case of macroscopic
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Figure 15: Interstitial drug concentration profile for a regular microvasculature (see Figure 4 a) (left) and a highly tortuous one (see Figure 4 d)

(right). Both solutions are plotted as functions of the relative radial position at 24, 48, 72 and 96 hours.

isotropy. As a result, we predict a dramatically impaired blood convection for increasing tortuosity, which can be

properly quantified as a function of the specific microvasculature geometry (see Table 4).

According to Jain et al. (2007), vascular normalization therapies regularize the exchange surface of the vascular

network. However, our analysis suggests that modifications in the microvascular geometry strongly affect the blood

flow in the capillaries and hence the hydraulic properties of the vessels compartment. In Figure 13 we show a com-

parison between the Jain and Baxter (1988) and Shipley and Chapman (2010) relative pressure difference profile,

obtained using different values for the vascular hydraulic permeability. Curves are plotted using a Lp value associated

to tumor vessels (Jain et al., 2007) for Jain and Baxter (1988), whereas we use a lower Lp value (corresponding to

the range for normalized microvasculature, see Table 1) for Shipley and Chapman (2010), using the more tortuous

configuration displayed in Figure 4d. Observing that Lp is experimentally evaluated as the ratio between the average

blood flux and pressure difference (both assumed constant, see e.g. Sevick and Jain (1991)), we argue that its decrease

observed after normalization therapies by means of the single compartment model of Jain and Baxter (1988) actually

encloses an increase in the capillary hydraulic conductivity. In other words, the same profile for the convection of

blood in the tumor is obtained either accounting for a higher value of Lp, neglecting an explicit contribution of the

microvascular properties, or accounting for a normalized Lp, accounting for a highly tortuous microvasculature.

Our analysis suggests that recent normalization techniques (Jain et al., 2007) affect both these crucial blood flow

determinants. The observed decrease of the surface-to-volume ratio does affect the fluid-dynamics in the blood cap-

illaries, whereas a reduction of the vessel wall openings and defects lowers Lp. We suggest that novel normalization

therapies that rely on blood convection improvement via vascular network regularization, should focus both on struc-

tural (i.e. Lp) and geometrical (i.e. Kc, S/|Ωc|, S/|Ωt |) vessel properties.

The present model is certainly open to improvement. The assumption of a periodic vascular network, which is

necessary to actually compute the microstructural problems that arise from the multiple scales homogenization, should

be relaxed in future work. Although there has been some effort to address this issue, some (local) regularity of the

microstructure is intrinsically required, in general, to develop a multiscale homogenized model whose coefficients ex-

plicitly comprise geometrical information. In particular, the microstructure cannot be randomly distributed in space,

although the representative cell could vary with respect to every point of the homogenized domain (Holmes, 1995;

Penta et al., 2014a,b). However, alternative techniques which are more flexible in this respect, such as volume aver-

aging (see, e.g. Davit et al. (2013)), do not typically encode geometrical information in the homogenized coeffcients,

which are therefore to be experimentally fitted.

From a biophysical viewpoint, the current version of the model should be also improved by explicitly taking
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into account the mechanical behavior of the tumor mass and its interplay with the surrounding (healthy) organs and

vasculature.

A very important development of the theory resides in a detailed analysis of the drug transport problem with

respect to various anti-cancer agents (as also remarked in section 6), as well as nanomolecule (Taffetani et al., 2014),

which would also help to clarify the range of clinical applicability of vessels normalization therapies.

Finally, although the aim of this work is to elucidate the connection between blood convection and vascular

struscture, a next crucial and challenging step is to identify a realistic representative microscale network starting from

medical images. Then, model predictions would enable clinical validation and highlight additional structure-specific

blood flow features, related to possible microvascular anisotropy and heterogeneities.
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Appendix A. Analytical solution of the macroscale model

The problem to be solved is the following coupled system of second order differential equations of the form:







































1

r

d2

dr2
(rpc) = Mc(pc − pt) 0 < r < R (A.1)

1

r

d2

dr2
(rpt) =−Mt(pc − pt) 0 < r < R (A.2)

d pc

dr
|r=0 =

d pt

dr
|r=0 = 0 (A.3)

pc|r=R = p̄ > 0, pt |r=R = 0, (A.4)

where

Mc =
L̄pS

Kc|Ωc|
, Mt =

L̄pS

Kt |Ωt |
. (A.5)

We rewrite the problem (A.1-A.4) in terms of relative pressures and radial coordinate

p̂c = pc/p̄; p̂t = pt/p̄; r̂ = r/R, (A.6)

thus we obtain:







































1

r̂

d2

dr̂2
(r̂ p̂c) = R2Mc( p̂c − p̂t) 0 < r̂ < 1 (A.7)

1

r̂

d2

dr̂2
(r̂ p̂t) =−R2Mt( p̂c − p̂t) 0 < r̂ < 1 (A.8)

d p̂c

dr̂
|r̂=0 =

d p̂t

dr̂
|r̂=0 = 0 (A.9)

p̂c|r̂=1 = 1, p̂t |r̂=1 = 0. (A.10)

We first derive the solution for the relative pressure difference defined as

ψ̂ = p̂c − p̂t , (A.11)

so that, subtracting equation (A.8) from equation (A.7) and rearranging boundary conditions, yields the following

differential problem for ψ̂:
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





















1

r̂

d2

dr̂2
(r̂ψ̂) = α2ψ̂ 0 < r̂ < 1 (A.12)

dψ̂

dr̂
|r̂=0 = 0 (A.13)

ψ̂|r̂=1 = 1, (A.14)

where we set

α = R
√

Mc +Mt . (A.15)

We set

ψ̂ =
ϕ

r̂
, (A.16)

so that, substitution of (A.16) into (A.12) yields:

d2ϕ

dr̂2
−α2ϕ = 0. (A.17)

The general solution of the linear second order homogeneous differential equation (A.17) reads:

ϕ = Ãexp(α r̂)+ B̃exp(−α r̂), (A.18)

and, enforcing (A.16)

ψ̂ =
Ãexp(α r̂)+ B̃exp(−α r̂)

r̂
, (A.19)

where Ã and B̃ are integration constants to be determined exploiting boundary conditions (A.13-A.14). In order to

exploit (A.13) we first compute:

dψ̂

dr̂
=

α r̂Ãexp(α r̂)−α r̂B̃exp(−α r̂)− Ãexp(α r̂)− B̃exp(−α r̂)

r̂2
, (A.20)

then we observe that

exp(α r̂) = 1+α r̂+
α2r̂2

2
+O(α3r̂3), (A.21)

exp(−α r̂) = 1−α r̂+
α2r̂2

2
+O(α3r̂3), (A.22)

by means of Taylor expansions around α r̂ = 0, where, for simplicity of notation, we use the same symbol O(α3r̂3)
to denote any sum of power series terms which approach 0 faster or equal to r̂3 as r̂ → 0. Substituting expansions

(A.21-A.22) into (A.20) and rearranging terms yields:

dψ̂

dr̂
=

(

Ã+ B̃
)

(

α2 r̂2

2
−1

)

+O(α3r̂3)

r̂2
(A.23)

Imposing boundary condition (A.13) yields:

dψ̂

dr̂
|r̂=0 = lim

r̂→0

dψ̂

dr̂
= 0 ⇒ lim

r̂→0

(

Ã+ B̃
)

(

α2 r̂2

2
−1

)

+O(α3r̂3)

r̂2
= 0, (A.24)

which holds if and only if

B̃ =−Ã. (A.25)

Starting from (A.19), we can find the solution for ψ̂ via (A.25) and exploiting Dirichlet boundary condition (A.14),

namely:

ψ̂|r̂=1 = 1 ⇒ 2Ãsinh(α r̂)

r̂
|r̂=1 = 1 ⇒ Ã =

1

2sinh(α)
, (A.26)
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hence the soultion for the relative pressure difference ψ̂ reads:

ψ̂ =
sinh(α r̂)

r̂ sinh(α)
. (A.27)

We point out that the function ψ̂ must be finite in the limit r̂ → 0, in fact:

lim
r̂→0

sinh(α r̂)

r̂ sinh(α)
=

α

sinh(α)
<+∞. (A.28)

In order to compute the complete solution for p̂c and p̂t , we can rewrite (A.7) and (A.8) as follows:























1

r̂

d2

dr̂2
(r̂ p̂c) = R2Mcψ̂ 0 < r̂ < 1 (A.29)

d p̂c

dr̂
|r̂=0 = 0 (A.30)

p̂c|r̂=1 = 1, (A.31)























1

r̂

d2

dr̂2
(r̂ p̂t) =−R2Mtψ̂ 0 < r̂ < 1 (A.32)

d p̂t

dr̂
|r̂=0 = 0 (A.33)

p̂t |r̂=1 = 0, (A.34)

where ψ̂ is understood to be the known function given by (A.27), so that the problems (A.29-A.31), (A.32-A.34) are

formally decoupled. Setting

p̂c =
ϕc

r̂
; p̂t =

ϕt

r̂
, (A.35)

equations (A.29) and (A.32) reduce to

d2ϕc

dr̂2
= R2Mcϕ, (A.36)

d2ϕt

dr̂2
=−R2Mtϕ, (A.37)

and the general solutions read

ϕc =
R2Mc

α2
ϕ +C̃r̂+ D̃, (A.38)

ϕt =−R2Mt

α2
ϕ + Ẽr̂+ F̃ , (A.39)

and, exploiting (A.16), (A.35)

p̂c =
R2Mc

α2
ψ̂ +C̃+

D̃

r̂
, (A.40)

p̂t =−R2Mt

α2
ψ̂ + Ẽ +

F̃

r̂
, (A.41)

where C̃, D̃, Ẽ, F̃ are integration constants to be determined exploiting the proper boundary conditions for p̂c and p̂t .

We impose that p̂c and p̂t are finite in the limit r̂ → 0 i.e, since (A.28) holds for ψ̂:

D̃ = F̃ = 0. (A.42)
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Furthermore, when accounting for (A.42) and (A.24) in (A.40-A.41), p̂c and p̂t automatically satisfy the Neumann

boundary conditions (A.30) and (A.33), respcetively. Exploiting the Dirichlet boundary conditions (A.31-A.34) we

can find C̃ and Ẽ, namely:

p̂c|r̂=1 = 1 ⇒ C̃ = 1− R2Mc

α2
; p̂t |r̂=1 = 0 ⇒ Ẽ =

R2Mt

α2
. (A.43)

Enforcing definition (A.15) in (A.43) we deduce:

C̃ = Ẽ, (A.44)

so that the solutions for p̂c and p̂t rewrite:

p̂c =
R2Mc

α2
ψ̂ +

R2Mt

α2
, (A.45)

p̂t =−R2Mt

α2
ψ̂ +

R2Mt

α2
, (A.46)

respectively. We check that the solutions given by (A.45-A.46) satisfy (A.11), namely

p̂c − p̂t =
R2Mc

α2
ψ̂ +

R2Mt

α2
+

R2Mt

α2
ψ̂ − R2Mt

α2
= ψ̂, (A.47)

where we enforced definition (A.15).

We finally explicitly state the solution of the coupled problem (A.7-A.10) by means of (A.27) and rearranging

terms:

p̂c =
1

Mc +Mt

(

Mt +
Mc sinh(α r̂)

r̂ sinh(α)

)

, (A.48)

p̂t =
Mt

Mc +Mt

(

1− sinh(α r̂)

r̂ sinh(α)

)

. (A.49)
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