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Abstract

Many methods exist for one dimensional curve registration, and
how methods compare has not been made clear in the literature. This
special section is a summary of a detailed comparison of a number
of major methods, done during a recent workshop. The basis of the
comparison was simultaneous analysis of a set of four real data sets,
which engendered a high level of informative discussion. Most research
groups in this area were represented, and many insights were gained,
which are discussed here. The format of this special section is four
papers introducing the data, each accompanied by a number of analyses
by different groups, plus a discussion summary of the lessons learned.

1 Introduction

Functional Data Analysis (FDA) is a popular statistical area that is matur-
ing in both practice and theory. An important challenge to the analysis of a
sample of functions or curves is to separate amplitude variation from phase
variation. Amplitude variation is sometimes called “vertical variation”, and
phase variation is then referred to as “horizontal variation,” or in the case of
time, “tempo.” These concepts are illustrated using a simulated example in
Figure 1. The left panel shows a sample of curves, each having two peaks,
with both types of variation, as seen from the peak locations and heights.
The amplitude variation is shown in the center panel, which shows the same
peaks after an alignment or registration process. The right panel displays

1



Figure 1: A simulated example, based on a sample of curves (left panel),
decomposed into amplitude variation (center panel) and phase variation
(right panel).

the phase variation in this example in terms of a mean curve plotted against
warps or strictly monotonic transformations of the horizontal axis.

While most approaches to FDA ignore this amplitude/phase decompo-
sition, it has become clear in range of real data analysis contexts, including
growth curves, motion tracking data, chemical spectra, anatomical data
and neuroscience data, that such ignorance can entail very substantial loss
in statistical efficiency and interpretation. This realization has motivated a
number of efforts to extract separate phase and amplitude modes of varia-
tion.

Note that there are often quite different statistical contexts where such
registration of curves is useful. In some phase variation is a nuisance. This
happens, for example, chemical spectral data, where peak locations repre-
senting given substances need to be aligned; but it is the amounts of sub-
stances, reflected by the heights of the peaks, that is the main focus of the
analysis. In other situations, both amplitude and phase modes of variation
are substantively interesting, and should be studied in terms of each type
of variation separately and also in terms of joint variation. Human growth
and movement data are generally of this type.

Each of the previous efforts at decomposing amplitude and phase varia-
tion typically involves the analysis of a challenging real data set where curve
registration is important, and good results from use of the proposed method
on that data set are shown. While that format is typical for publication in
the statistical literature, it fails to provide useful comparison of methods,
in particular not elucidating their relative strengths and weaknesses. This
need for comparison could be met by requiring authors to do comparisons
themselves, but this is generally a difficult request due to lack of availability
of general purpose software implementations of existing methods and to the
need for expert-level tuning that is often needed to get a good result.

In response to the need for a more global and useful comparison of these
methods, the Mathematical Biosciences Institute at the University of Ohio
hosted a workshop in 2012 with representation from most of the principal
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research groups in this area of curve registration. The initial basis of the
workshop was for each group to do some analysis on a common set of four
real data sets. The results from the various groups then formed the basis
extensive discussion, which led in turn to many new insights. This special
section aims to convey the important lessons learned at this workshop to
the larger statistical community.

Following the data–centric orientation of the workshop, this special sec-
tion is oriented around these four data sets:

• Proteomic data: spectral data collected for the study of Acute Myeloid
Leukemia by the Adelaide Proteomics Center.

• Juggling data: records of forefinger motion during a juggling exercise,
recorded from infra-red emitting diodes at McGill University.

• Spike train data: records of the electrical activity of a movement-
encoded neuron in the primary motor cortex, collected in the Hat-
sopoulos Lab at the University of Chicago.

• AneuRisk65 data: sets of three-dimensional vascular geometries, ob-
tained from 3D angiographies collected within the AneuRisk project
for the study of cerebral aneurysms pathogenesis.

All data sets are available at the MBI website:
http://mbi.osu.edu/2012/stwdescription.html.

The main ideas behind each of these data sets, as well as data analytic
goals of interest and the preprocessing that was required, is presented in the
four main papers in this special section. The analyses presented by the var-
ious research groups are included in a format similar to discussions in other
contexts. Next, additional relevant comments together with a summary of
insights gained, are given by the original providers of the data.

2 Review

This section contains a brief discussion of a few highlights of the curve regis-
tration literature. This is not intended to be comprehensive, but instead to
eliminate the need for (perhaps too repetitive) re-discussion of these papers
in several of the contributions to this special section.

The classic paper is Sakoe and Chiba (1978), who developed the dynamic
time warping registration algorithm for registering sequences of phonemes
to a template phrase as an aid to automatic speech recognition. Time in this
case was discrete, and the time points of the sequence to be aligned were
transformed by a monotonic step function. These warping functions resem-
ble in both shape and algorithm the isotonic regression functions developed
at about the same time by Barlow et al. (1972).
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The fact that these transformations of discrete time do not exclude ei-
ther horizontal or vertical jumps renders their use problematical in func-
tional data contexts where curves are required to be differentiable. There
is now a large statistical literature on families of smooth strictly monotone
curves, including basis function expansions of their log-derivatives proposed
in Ramsay (1996) and used for registration in Ramsay and Silverman (2005).

Landmark registration, where a few anchor points which correspond
across the family of curves are aligned, employs a monotone smoothing
of the candidate curve’s landmark times plotted against the correspond-
ing template curve times. See Gasser and Kneip (1995) and Ramsay and
Silverman (2005) for recent results of this type, and for access to the earlier
literature.

While landmarks are useful when they exist in a natural way, in many
situations these cannot be found or unambiguously located. Hence, various
landmark–free approaches, which treat curves as continuous data objects,
have been subject of more recent studies. Important recent results (con-
taining many earlier references) include: Ramsay and Li (1998); Wang and
Gasser (1999); Gervini and Gasser (2004); Ramsay and Silverman (2005);
Kaziska and Srivastava (2007); Sangalli et al. (2009), Kneip et al. (2000);
Liu and Müller (2004); James (2007).

Registration can be performed jointly with modelling and analysis of
data, as in the registration to principal components method described in
Kneip and Ramsay (2008).

The issue of registration can also be combined with the one of cluster-
ing functional data. Some works considering this aspect are Sangalli et al.
(2010); Tang and Müller (2009); Liu and Yang (2009); Boudaoud et al.
(2010).

Research providing insightful theoretical frameworks can be found in
Srivastava et al. (2011b); Vantini (2012).

Important related work can also be found in the context of longitudinal
data, where semiparametric non-linear mixed-effects models are proven to
be useful Lawton et al. (1972); Lindstrom and Bates (1990); Ke and Wang
(2001); Altman and Villarreal (2004); Brumback and Lindstrom (2004).

The issue of registration has been considered also in the shape analysis
field. In particular, the earliest work on elastic shape analysis of planar
curves is by Younes Younes (1999) who introduced an elastic metric and a
complex square-root representation for enabling Euclidean analysis. This
was followed by more elaborate studies of such representations, including
Younes et al. (2008); Michor and Mumford (2006); Mio et al. (2007) and
Srivastava et al. (2011a). The last paper extended this elastic shape analysis
from planar curves to curves in arbitrary Euclidean spaces.

Finally, although the workshop focus has been on the registration of
curves, possibly multidimensional, it is important to cite the work on regis-
tration of surfaces, in imaging. For refer the interested reader to the book
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of Modersitzki (2003), and references therein.
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