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Abstract

Complex geological structures pose a challenge to domagreatization. In-
deed data are normally given as a set of intersecting sw;facenetimes with in-
complete data, from which one has to identify the computatidomain to build
a mesh suited for numerical simulations. In this paper weritss a set of tools
which have been developed for this purpose. Specializedstiatctures have been
developed to efficiently identify intersections of triateped surfaces and to con-
formally include these intersections in the starting meskshile improving the
mesh quality. Then, an effective algorithm has been impiegeteto detect the
different sub-regions forming the computational domdhis algorithm has been
properly enhanced to take into account the specific chaisiits involved in the
simulation of geological basins.

1 Introduction

In many applications the geometry of the computational domain comes from different
kind of tomography processes, acoustic, seismic and X-ray imaging bdingganex-
amples. In fact, these processes are usually able to give information orotineiyg of



the surfaces that bound the different parts of the domain of interestifi§geocedures
are then necessary to convert this information to a geometrical descriptioblsiia
the successive analyses, which typically involve the numerical solutionrt&lpdif-
ferential equations.

For example, data from seismic imaging offer a description of the horizons, $&t odi
three dimensional surfaces that represent the deposition of diffarehbk sediments
(see Figure 1, left). Moving from these data, we have to get a volumeetiization
representing the whole sedimentary basin (see Figure 1, right).

Figure 1: Surfaces that represent the horizons (left); the volume oésitéight).

We are indeed interested in the geometrical reconstruction of a sedimensamy ba
moving from the description of horizons, usually given in the form of a trdaigd
surfaces There is a sequence of operations that are required to fintlly abcom-
putational mesh representing the whole sedimentary basin on which one paowar
numerical simulations. We will focus on the following procedures:

a) identification of surface intersection;

b) detection of regions enclosed by this intersection and generation of arw@ifo
mesh which includes such intersection;

c) improvement of the mesh quality.

In geological applications, the data sets that represent the differeabhsrhave
large size; so an efficient implementation of the previous algorithms, especidhg of
surface intersection, becomes important. We have devised proper datarsstbased
on the combination of an Alternated Binary Tree with a Structured Space distietiz
to address this issue and to obtain an efficient code.

The intersections partition the surface into regions which have to be identfiexg

they represent the boundary of different portions of the computationalidotypically

with different characteristics. We propose here a simple algorithm for ttweredic
recognition of those regions. In this process we also remesh the suoftitat she new
triangulation is conformal with the intersections. This process is complemented by a
mesh enhancement procedure to avoid badly shaped triangles. Finalyewable to



identify the different portions of the three dimensional geometry automatically.
Another aspect peculiar to the target application is that data are often indemyle
thus need to reconstruct the missing parts. We present here two possitdgiss that
we have successfully implemented.

The paper is organized as follows. Section 2 deals with the problem of fitiokng
intersection between two triangulated surfaces and details the data stralcaireave
been used for this purpose. The localization of the intersection is a pratedarsthe
procedure we illustrate in Section 3, where we deal with the automatic detection of the
different regions composing our 3D model. The surface mesh providecehyritinal
data set and successively modified by the intersection finding procedufternsnmt
suitable for computations. The quality of the elements is usually poor. In Section 4 we
outline the mesh improvement strategies we have consequently adopted titm Sec
we describe some techniques specific for the application at hand, namedyrpketion
of defective geometrical data, the treatment of the so-called hard arbsizons, and
the construction of sub-volumes. Finally, Section 6 provides some more quastitativ
results about the algorithms proposed in Sections 2—3. Some conclusiomaareital
the last section.

2 Intersection of horizons and faults

The goal of this section is to describe an efficient method to detect the intersec
between horizons and faults in a sedimentary basin. The latter are deduoyiliéan-
gulated surfaces.
For the sake of simplicity, we focus on a single intersection between a fau#t had-
zon, even though realistic geological configurations include multiple intersecgers (
Figure 2 for two examples). We can consequently formalize the detection lofasuc
intersection via the simple geometric configuration illustrated in Figure 3. Here, the
blue surfaceS” represents a fault which intersects the horizon given by the red surfac
SE. In particular, since we deal with two triangulated surfaces, we are lecetuify
the yellow piecewise linear curvé in Figure 3, right, i.e., to search the intersection
between couples of non-coplanar triangles. To get an efficient guoeewe need
a fast algorithm to identify the couples of triangles intersecting each othermblsé
straightforward approach, which consists in checking the intersectiomdtance, of
each triangle ofS” with each triangle o5*, is unavoidably ineffective when dealing
with large data sets.
A more efficient criterion consists in finding a fast procedure to selecgdoh triangle
T € SB, a subseD; C S* of triangles surrouding” and containing the possible
intersecting triangle(s) (see Figure 4). We can then check the actuakitiersonly
on the elements i®.

The availability of a proper search data structure becomes crucial fgck detec-
tion of Dr, which should enjoy the following properties:

i) to contain the intersectiofl N S%;



Figure 2: Examples of geological configurations where horizons areexldsy faults.
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»

Figure 3: Non-coplanar surfaces (left) and corresponding intéoseghe yellow line,
on the right).

i) to be as small as possible;
iif) to be found rapidly.

In Section 2.3 we propose an intersection algorithm particularly suited to deal with
the geological configurations we are interested in. It essentially merges tsveen-

tion procedures based on well-established data structures which we summé&dizc-
tions 2.1 and 2.2, respectively. Independently of the selected apptbadbea is first

to build a suitable data structure associated with one of the two surfaceseamntbth
look for the intersection with the other surface.

2.1 Anintersection algorithm based on a structured data seah

We refer to the approach proposed, e.g., in [6]. We associate the dattustrwith the
horizonS%. For this purpose, we denote B and7* the set of the nodes and of the



Figure 4: SeDr (the yellow area) associated with the triangles S&.

elements of the triangulated surfa&, respectively, and we indicate the generic 3D
coordinate system b{0, z, y, z). We build thebounding box B(S%) associated with
ST, i.e., the smallest box containing the whole surf&¢e identified by the two points
SWE = (Tgw, Ysw, 2sw) ANANE® = (Z,1¢, Yne, Zne ), Of coordinates

Tgpy = min Ysw = min vy Zew = min z )
penr penr penr

Tpe = Max T Yne = Max ¥y Zpne = mMax z (2)
peNi " peNh 7P peNi

whereP = (z,yp, 2p) IS the generic node @ (see Figure 5, left for an example).
We successively subdivid&(S*) into fixed-size sub-boxes, of dimensions

Figure 5: Bounding box (left) and corresponding hexahedral méegit)for the surface
SE,

L, = max drg, L,= max dyg, L,= max dzg, 3)
KeTE KeTE KeTE
where
derg = max |zg— x|, dyx = max |y, —yr|, dzx= max |z5— 2/,
4

are the dimensions of the bounding b8{/’) associated with the generic triangiec
T! (see Figure 7, left), whil€) = (x4, vy, z,) andR = (z,,yy, 2,) are chosen in the
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setN of the nodes ofx.

The 3D space is consequently organized insbractured cartesian hexahedral mesh
(see Figure 5, right). This spatial discretization is very flexible: it can be greglo
to organize any:-dimensional space after properly redefining the involved geometrical
elements. Itis also suited to parallelization since the hexahedral mesh cardbedad
into sub-blocks distributed among processors. Moreover, it allows usritfidéhe cell
containing a certain poinP € R” in a fast way. Let us exemplify this property in a
2D setting. As shown in Figure 6, the bounding box now coincides with thengleta
defined by the pointSW# = (24, ysw) aNdN E® = (2,6, yne), and it is subdivided,
for instance, intaV,(= 5) and N,(= 4) cells of lenghtL, and L, along thex-axis
and y-axis, respectively. The numbering of the cells follows a lexicographierord
This allows us to immediately find the identificator-ldf the cell containing the point
P = (zp,yp), via the formula

IdP - de + KdNiﬂv (5)
where
Tp — Tsw Yp — Ysw
Xum B2 = [t :
Id I id L, (6)

and wherg - | denotes the standard floor function. Formula (5) generalizes to
Idp = Xig + YiaNg + ZiaN, N, (7)

in the 3D case, with

Ty — T — Zm — X,
Xig = {pstJ Yig = {pryst’ Zig = {meJ’ 8)
x Yy z

P = (x,yp, 2p) and L, the size of the sub-boxes B{S*) along thez-axis.

We now store all the triangles ifi”t into the hexahedral mesh defined by (3)-(4): a
priori, each sub-box may contain any number of elements, including noa€iere 7,
right for an example, where different elements share the same hexbbedraFor any
triangle K € 7%, we introduce the centelx = (xcy» Yox » 2cy ) Of the bounding
box B(K) as representative df , where

K K K K K K
LT T Tne _ Ysw t Yne _ Rsw 1 Zne

xCK = 2 ) yCK 2 )

while SWE = (2B & 2E)yandNEX = (X yXK 2E) are the two points identi-
fying B(K), with cartesian coordinates defined according to (1)-(2)Ha N (see
Figure 7, left). Then, the triangl& is stored in the hexahedral cell where its repre-
sentativeC falls, according to criterion (7). At this point it is rather easy to detect
all the triangles close to a certain poiRt since they are stored in the hexahedral cell
containingP, whose identificator is given by (7).

Now, by exploting this data structure, it is possible to construct, for each ateme

T € SB, the setDy ¢ ST of the triangles inS% close toT ([6]). We consider the
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Figure 6: Example of direct addressing associated with structured datdicase.

bounding box3(T); then, we build the sé of the hexahedral cells & intersecting
B(T) moving from the identificators Ig,~ and Idy zr of the hexahedral cells &%
containingSW” andN ET. The setDr is thus defined by the union of all the triangles
contained inH. Finally, the segment representing the intersecfion Dy is found
by resorting to a standard triangle-trianger section test; in particular, following [1],
we have adopted the one proposed in [5].

We remark that the séd; does not satisfy the requirement of minimal possible
extension since it may include triangles that do not actually intersect thalinguibox
B(T) (we refer to Figure 8 for an example of non optimal detectio®g). Useless
triangle-triangle intersection tests are consequently performed. The alga@hrhe
improved by performing a bounding-box intersection test before chec¢kimgctual
triangle-triangle intersection.

2.2 Anintersection algorithm based on an AB search

We present here an alternative data structure for the hofZoased on a binary tree.
More precisely, we resort to an alternate binary (AB) search treg(§é¢ Figure 9 for
an example).

Let us explain how an eleme®f ¢ S% is stored in an AB data structure. At the
beginning of the storage procedure, the tree data structure is empty, foetivdngle
first considered is stored in the radt Afterwards, each elemeliif is stored, starting
from the root, in the first available node identified via a precise criterium.

Namely, we consider the vectof, = (2%, 25 & yK K 2K) ¢ RS associated

sw’ Une’ ysw? yne’ ZS’LU’ ne

with the bounding boX3(K) of the elementy, i.e., collecting the coordinates of the

pointsSWHE = (2B o EyandNEX = (X, yK 2E) (see Figure 7, left), as well
as the vectol; = (27, X ., Yl Unes 2wy #me) @SSOCIated with the triangle stored at



Figure 7: Bounding box3( K)with the representative'c (left); surfaceS? stored in
the corresponding hexahedral mesh (right).

Figure 8: Detection of the s@ (the orange area) via the structured-data approach.

the generic node of the tree. Triangle/’ finds a location in the tree by properly
comparing vectors’x andv,. In particular, letj_ denote the depth of the node
and letvg ; be thei-th component of the vectary. Then, we apply the following
algorithm:

T < root; j, = 0;

if 7is enmpty,
T < K, return;

a = ]-(nmod 6);

i f VK,a < Ura
T+ 1.left;
el se
T < T.right;
end



Figure 9: Example of AB search tree.

=111

wherer. | ef t andr. ri ght is the child at the left and at the right of respectively.
The comparison test in the algorithm depends on the depth of the tree: thelitiegjua
alternate both the extremes of the bounding boxes and the coordinatggndz. This
justifies the name of the algorithm as well as it makes this approach suited tazergan
data in any dimension.

Once an AB data structure is built for the horiz8fi, we proceed with the intersection
with the faultS?. For any elemeni’ € S?, we find the seDr of the triangles in
ST nearT. In particular, we build the bounding bd(T') associated witil”; we go
through the binary tree &**, moving from the root. The nodeof the tree is included
in Dr if the corresponding bounding ba(7) intersectsB(7'). Then, we proceed
recursively by examining the children ef We can summarize this procedure via the
algorithm below:

let . and @k be defined as above; I&andQ be two stacksinitially empty (Sis a
temporary stack, whil@will contain the list of the triangles constitutiri@;). Then

S. push(root)

Until S is enpty
T = S.pop;
jr = depth(7);
a = j.(nmod 6);
if ais even,
k = o + 1;
if vrx < vra,
S. push(7.left);

"We remind that a stack is characterized by two standard operations, gaiédandpop: thepush
operation adds a new item to the top of the stack; viceversadpeoperation removes an item from the
top of the stack



el se
Q push(7);
S. push(r.left);
S. push(7.right);
end
el se
k = o - 1;
if UT > Ur,as
S.push(7.right);
el se
Q push(7);
S.push(r.left);
S. push(7.right);
end
end
end

The regionDy identified via an AB data structure is, in general, different than the
one obtained via a structured data search. The AB approach allows uigcta lbeally
confined seD7, where only the triangles & whose bounding box actually intersects
B(T) are included. This property is not a priori guaranteed by the structladbased
approach, as shown in Figure 8.

Moreover, at each step of the procedure, one of the two childreni®excluded
from the search. To maximize the benefits due to this “cutting of branchesShagd
have a tree as balanced as possible (like the one in Figure 9). To exemplifgghtve
effect of unbalancing, let us consider the AB data structure assoacidtiedhe mesh
in Figure 10. If we assign the triangle numbeto the root, we get a tree completely
unbalanced since all the elements of the mesh are stored at the right obthéNim
elimination criterion is consequently exploited at depth

It is possible to extend the data structure to achieve automatically a goodibglanc
(see [6]); yet in our case a good balancing may be obtained by suitablyyimagihe
strategy for the insertion of the elements in the tree structure. We have ctiesen
following approach: for a certain surface we first define the six vectoiSW,,, SW,,
SW., NE,, NE,, NE. that collect, for each elemei{ € S, the coordinates, y, z
of the pointsSW X and N EX defining the bounding bo® (k). We sort the elements
in each vector into the ascending order. Then, we build the binary treesulatiure
following a dichotomic principle. At depth, as root of the tree, we select the triangle
coinciding with the median of the vect§iV,; the two nodes at depthare represented
by the two4-quantiles of the vecta$V,, of order1/4 and3/4; the four nodes at depth
2 are provided by the fous-quantiles of the vecto§W, of order1/8, 3/8, 5/8, 7/8,
and so on. Table 1 formalizes this idea level by level, wigre: {22 < 1,j € N},
with ¢t = 2**! andi the considered depth of the tree. Of course, the triafglis
removed from the six vectors as soon as it is stored in the binary tree. \ldtiemee to
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Figure 10: A 2D planar surfacg: two possible choices for the root, leading to a com-
pletely unbalanced (triangle and to a balanced (triang® binary tree data structure.

Figure 10, the choice, e.g., of the trianglas root leads to a balanced binary tree.

2.3 Coupling structured and AB data search

The two algorithms in Sections 2.1 and 2.2 have complementary characteristics with
respect to properties i)-iii) itemized at the beginning of this section. Both th@appes
guarantee the first property. The algorithm based on a structured dath sketects the
setDy very rapidly, in practice each search @gl) complexity. But this set can be
rather large, thus violating requirement ii). On the contrary, the algorithmdbase

the AB search builds a s with a rather small number of elements. However, this
procedure is, in general, less efficient, the complexity of a single seansh fer a
balanced tree) of ord&?(logN), with N the number of elements in the tree.

Our actual goal is to combine these two procedures into a new algorithm able to
merge the respective advantages. The basic idea consists of redwisigetof the
problemS* N S, by confining the intersection to suitable subsgfsandS? of S*
and SB, respectively (see Figure 11 for a sketch of the procedure). In metaild
the reduction step, that is the generation of the sub-meSfieendS?Z, is performed
via the quick (but rough) algorithm; the intersection phase is assigned to the sha
AB-algorithm: the slower speed of the AB approach is balanced by the edduem-
ber of mesh elements now involved in the intersection. We can think about afsort
predictor-corrector approach, where the structured data searah setictor and the
AB-algorithm is the corrector.

To itemize the main steps of the proposed procedure, we refer to the geometric
configuration in Figure 11 (the same as in Figure 3).

1. we associate anique data structure to the uniaf” U S” of the two intersecting
surfaces, following the approach in Section 2.1: the hexahedral mesborains
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depth of the tree reference vector quantile orders
0 SW, T
1 SWy 7,
2 SW, T
3 NE, Tis
4 NE, I3
5 NE, o
6 SW, Zy2s
7 SW, Tose

Table 1: Vectors and quantile orders associated with the different depths tree to
build a balanced binary tree.

Figure 11: Reduction of the intersectié N S? to the problemS? N S5.

both the surfaces” andS? (Figure 11, left);

2. starting from this data structure, we extract the two sub-meSfendS’: we first
build the selC, of the hexaedral cells where both the red and the blue triangles are
stored together (Figure 11, middle); then we deffideandS’ as the union of the
trianglesT” € C, N SP andK € C, N S%, respectively;

3. we apply the intersection algorithm in Section 2.2 to the reduced configufion
SB to detect the intersection liné (see in Figure 11, right). Thus, the binary tree
data structure is built for the sub-meSH only.

Before considering realistic geological configurations, we assess tf@mances of

this algorithm on the setting in Figure 12. The horiz8R is characterized by a non
uniform sizing, i.e., we distinguish a portion, the one on the left, where the mesh is
rather coarse, in contrast to the part on the right where the triangleathes refined.
Formulas (3)-(4) lead to a hexahedral mesh with huge cells, containingeariargber
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Figure 12: Intersecting non-coplanar horizons.

of elements wher&” is fine. Nevertheless, the reduction step yields the sub-meshes
SItand SP consisting of1415 and 2614 triangles in contrast witd368 and 15519
elements forS® andS?, respectively. As a consequence, the intersecfifm S2
based on the AB algorithm turns out to be quick: less than one secongksuéfiidetect

the intersection, to be compared with a timing3oand 74 seconds demanded by the
AB and by the structured data search algorithm, respecfiveten applied to the whole
configuration.

Let us apply now the proposed algorithm to more realistic geological configura
tions: the presence of faults intersecting the geological horizons very lefeis to
really complex configurations (see Figures 13, left for two examples). licp&r, a
single fault may intersect an arbitrary number of horizons: the correlpgrintersec-
tion lines assume any shape, depending on the displacement of the interseizedsh
(compare the straight with the irregular yellow lines in Figure 13, right).

Figure 13 shows that the proposed algorithm works extremely well in pradeéspite
the possible highly complex configurations. Notice, for instance, the capabitistéat
the intersection between the green horizon and the brown fault in Figuted-8ft,
despite the fault slightly overcomes the horizon. The reduction step allows p&to o
ate with a leaner data structure thus saving computational costs: about twolsece
demanded to identify the intersection for both the geological configurations. Dbe to
size of the problem, an approach based on a full data structure mightripeitationally
prohibitive.

3 Detection of regions on a horizon

As shown in Figure 13, the complexity of the geological configurations we &se-in
ested in often leads tcomposite intersections, represented by the union of different
piecewise linear curves (see Figure 14, left for an example). At this stiagdrian-
gulated surface and the output of the intersection procedure are stitasspantities,
i.e., the intersection curve does not necessarily follow the edges of theuiadiog

2Throughout the paper, all the computations have been carried ounotebook with an Intel dual
core CPU at 2.26 GHz with a 3 GB RAM.
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Figure 13: Possible geological configurations, where horizons and iiatdtsect (left);
corresponding intersection lines identified on the fault surfaces (right).

but it may cross the mesh elements. Furthermore, the intersection curve idetigifies
tinct regions on the horizon at hand (e.g., in Figure 14, right we recogimzedistinct
areas).

Our actual goal is to detect such regions automatically. In particulaf k-
note the intersection curve on a certain surf&ceNe aim at finding a partitio®® =
{w1, wa, ... wy} of S such that:

o Uiwi=S§;

o GiNG =0 Vi#jij=1,..mn
¢ dw; C T Yi=12,...n;

e w;,NZT=0 Vi=1,2,...n.

The subdomaing; are assumed to be closed set andtands for the internal part
of w;.
The approach we propose here consists of two distinct phases:

e we include the intersection curnZeinto the surface mesh via a suitable remesh-
ing: the information of these two, a priori distinct, geometrical entities, is thus
properly linked;

e we subdivide the triangulated surface into regianso that to define a partition
P of S matching the properties above.

In the two next sections we deal with these two phases, separately.
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Figure 14: Example of composite intersectibiithe yellow line on the left); inclusion
of Z into the mesh (middle); region detection (right).

3.1 Inclusion of the intersection curve

This step is quite complex since we cannot make any a-priori assumption on pgee sha
of the intersection curvé. We only know that the segments constituting the intersection
line lie in some triangle of the surface.

The proposed method aims at properly remeshing each triangle crosgeditly
the constraint of including the intersection segments in the new mesh. Fortthaspy
as first step, we have to find the elements crosseft lof course, no problem is yielded
by the intersection segments coinciding with an edge of a triangle (or with a poftion
it). Successively, we have to properly remesh each crossed elentbiat smguarantee
the global conformity of the new mesh.

To detect the crossed triangles we can resort to the data structure akpméthms
of Section 2: in particular, we employ the coupled approach of Section 2.3. To illus-

Figure 15: Example of inclusion of an intersection curve.

trate the procedure which creates a new triangulation conforming with thedotienss,
let us consider the four elements in Figure 15, left. We aim at adding the sheda
segments to the existing mesh to get a new mesh that includes them. As sketched in
Figure 15, we process separately each of the four elements: the regisshénformed
first by including the intersection segments among the edges of the new mesh (Fig-
ure 15, ¢)) and then by adding additional edges to locally preserve tfigrooty of the
mesh (Figure 15, d)). The conformity is inherited by the global mesh (Figjbre)).
In Figure 14, middle we show the final result of the inclusion of the intersectiove
procedure applied to the configuration on the left.

We remark that the quality of the elements thus generated is not necessadly go
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(really thin triangles might appear after the remeshing as shown in Figureiddle).
We come back to this important issue in Section 4.

3.2 Subdivision of a horizon into regions

The inclusion of the intersection curZeinto the mesh of the horizon at hadmnakes
the detection of the different regions a straightforward task. We assumiretag simple
configuration in Figure 15 as reference to explain the approach forgiardetection.

We apply a sort ofliffusive procedure. We assign a source to a certain triangle of
the mesh; then we follow the diffusion of this source in the adjacent elemeaivsnd
by the triangle connectivity and by these simple rules:

1) each triangle spreads the source into the adjacent triangles acrakgeiss e
2) the diffusion stops at the intersection segments.

In particular, we mean that two triangles are adjacent if they share an @figeurse,

at the end of the procedure, all the triangles of the mesh have to be aktigneertain
regionw;. This means that we need to restart the procedure until we have partitioned
the whole surface. We formalize this procedure via the following algorithm:

n=0 i =0 U_w =0
until Ji_jwi == S
i =i + 1
choose K e S\{Ui_jwi};
w; = K;
until 3 7 :90TN0w; #0 & OT N (dws NT) =0
wi =wi UT]
end
n=n+1;
end

RelationdT N (0w; NZ) = () essentially checks if trianglE is on the correct part df.
Figure 16 exemplifies the region subdivision algorithm on the intersected mésty-of
ure 15, s). Three diffusive processess take place in such a aagégure 14, right
we show the result associated with the horizon of interest: nine regipase now
detected.

We highlight that the algorithm above as well as the approach proposed iin Se
tion 3.1 can be extended, in a straighforward way, to more general frakewag.,
to quadrilateral meshes as well as to a higher dimension (for instance, t thete
volumes identified by a set of surfaces in a tetrahedral mesh).
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Figure 16: Example of region subdivision (the yellow curve marks

4 Mesh quality improvement

The operations among surfaces in Sections 2 and 3 might lead to bad quality meshes
with distorted elements. In particular, the inclusion of the intersection curve yiftéds
really thin triangles. With a view to the approximation of a partial differential €qoa
model (e.g., the Darcy equation) in a sedimentary basin of interest via a finite ele-
ment scheme, the shape of the mesh elements may strongly affect the conditibning
the corresponding stiffness matrix. Meshes constituted by equilaterallasangually
guarantee reliable numerical results, while thin triangles often lead to baalijtmmed
matrices (see, e.g., [9]). For this reason, the geological reconstructioagure pro-
posed in this paper includes, as last step, suitable mesh modification modules teeimprov
the shape of the mesh elements constituting the detected horizons and faults.

We resort essentially to the following four geometric operations (see Figuierl
a corresponding schematic representation):

e node smoothing: we use the trapezium drawing (TD) approach proposed in [8],
suited to deal with any not necessarily smooth surface;

e edge swapping: we choose the best diagonal for the quadrilateral formed by two
adjiacent triangles, in order to minimize the maximum angle of such a quadri-
lateral; of course, the quadrilateral must be convex for edge swapplrey per-
formed;

e edge collapsing: we remove vertices or edges (and also triangles via successive
edge collapses) to avoid excessively short edges;

e edge splitting: a node is inserted at the midpoint of the longest edges to minimize
the maximum angle of the mesh.

To quantify the shape of a generic triangle we resort to the so-calleguality
index ¢(T) = 2r/R ([9, 10, 8, 4]), where and R are the radius of the circumference

17



Figure 17: Geometric operations to improve the quality of the mesh: node smoothing,
edge swapping, edge collapsing, edge splitting (top-bottom, left-right).

inscribed and circuscribed B, respectively. Ifl" is an equilateral triangley(7") = 1;
viceversag(T) < 1if T is a very stretched triangle.
Figure 18 shows the benefits led by the four mesh operations when appliezl to th

surface in Figure 14, right. The number of the mesh elements is significantbasex

(the original mesh hasl136 elements while the regularized mesh consist87@b6 tri-
angles) but now all the triangles are very regular. The improvement ohésh quality

is confirmed by the hystograms in Figure 19, which represent the distributitdreo
quality indexq(T") on the mesh elements before and after the mesh regularization.

Figure 18: Instance of mesh quality improvement: original mesh (left) and wegdro
mesh (right).

5 Generation of a geological geometry of interest

This section covers some other fundamental aspects that may be releesndedling
with the geometrical modeling of geological basins. Namely, the requirementof co
pleting possible missing data, the treatment of the so-called hard and sofiis@and
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Figure 19: Distribution of(7") before (left) and after (right) the mesh quality improve-
ment.

the construction of subvolumes.

5.1 Lack of data

The seismic data used for the simulations are often incomplete or non reliable due to
either a lack of existing coverage or inadequate and old measurements.nidwisg
from the available information, it is sometimes necessary to reconstruct tizemsin
the geological basin of interest before generating a correspondinedtel mesh.
In particular, we investigate two different techniques to deal with a poskible of
data. As first approach, we have resorted to a well-known geo-stdtistaamique,
i.e., thekriging ([2]). It is a regression method to recover the value of a certain field
at unobserved locations starting from observations of the same field in r&EtebyIn
this case, the field of interest is the location of a horizon characterizedyblaek of
information (for instance, a hole). To apply this technique, we need to asthahe
the surface may be described explicitlyas- f(z,y). We refer to Figure 20, left or
Figure 22, left for possible examples.

In more detail, moving from a sét, } of z-coordinates associated with a 3ét=
{Q} of points on the horizon with the lack of data, we recover#femordinatezp of a
point P located inside a hole as

=) Aexq, ©)

QeEN

with A\ a suitable weight associated with the poipte A. The type of kriging
determines the choice for the unknown weights: we resort to a stanahneugr kriging
where the weights essentially depend on the variogram associated withrtimg stata

[2]. Moreover, the points in\ are not necessarily spread on the whole horizon but
they might be located only in a neighborhood of the pdmtThe computation of the
weights )\ is not always an easy task: we resort to several searching pesctst

lead to the solution of several linear systems. Details on kriging may be found in the
cited bibliography.

19



As an alternative approach we employ an implicit representation of the horizons
based on radial basis functions ([3]): a horiz8ris identified as the zero-level iso-
surface of a suitable functiofi: R?* — R, i.e.,S = {P € R3: f(P) = 0} with

F(P) =" cqo(r), (10)
QeN
wherer = ||P — Q|| is the standard Euclidean distance betwéeand Q, ¢ is a

radial basis function (in our simulations we choege) = r3), andcg are unknown
coefficients determined by imposing interpolation constraints. This usually teads
solve an ill-conditioned full linear system of dimensiaird(\), which, therefore, has
to be properly solved; yet we have eventually an implicit representationhvidimore
flexible than the one provided by the previous strategy.

Figure 20: Original horizoi® with a hole (left); the recovered pa$tec overlapped to
S (middle); the seSigjoin (right).

Thanks to the numerical validation, we believe that the approach based on an im-
plicit representation of the non complete horizon is more suited to deal with any kind
of surfaces. In particular, this method allows us to treat in a more straiglafdway
also complex surfaces that cannot be expressed via a single-valwidfuh

Now, independently of the technique adopted to recover the missing datdmwe
at properly joining the recovered paS$ec of the horizon with the original horizo&§

(see Figure 20, middle). We remark that the boundary of the hole is appated via a
piecewise-linear function constituted by the edges of the elemegtsiund the hole
itself. The goal is consequently twofold: first, we have to identify the elen@ng.
inside the hole; then, we have to add them to the triangles constitSiting do this,
we proceed in such a way:
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1. we build an auxiliary mes&poungaround the hole and overlappeddothe ideais to
consider, for each node ¢f along the hole, the direction normal to the surface and
to fix two points along it, at a certain distantel, respectively. These points along
the normal directions allow us to build a strip constituted of couples of triangles,
which representSpoung (see Figure 21);

2. we find the intersection curnéoundN Srec Via the mixed structured-AB data search
algorithm;

3. we add this intersection curve & following the approach in Section 3.1,

4. we identify the seSoin Of the elements ofe. strictly cointained in the hole (see
Figure 20, right) by employing a suitable variant of thiusive procedure described
in Section 3.2;

5. we join the mesheSoin andS, by properly connecting the outer rows of the trian-
gles inSijoin andS so that to guarantee the conformity of the recovered mesh.

1 7
! 7 Sbound
-’
v

Figure 21: The auxiliary mesbyoungassociated with the hole & (left); a zoom (right).

Figure 22: Reconstruction of four holes on a horizon of interest.

Figure 22 shows the result of this approach when several holes onauicertain
horizon. The approach based on an implicit representation of the holtiemnbeen
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employed to build the surfacgec. As we shall see in the next sections, the management
of geological horizons demands additional care in some circumstances.

5.2 Hard and soft rocks

Different kinds of rock do exist in nature. As a possible classificationgnag distin-
guish them in hard and soft rocks. The hardness of a rock essentggnds on the
nature of the grains constituting the rock as well as on what kind of naturaltgilds
them together: rocks baked in the deep underground are usually atyrharble, for
instance), while mudstones and shales are examples of soft rocks. Trermiffiature
of the geological layers overlapping in the basin of interest has to beepyojaken
into account when generating the corresponding geometry. If, for icestanlayer of
marble stands above a layer of clay, we expect that the layer below is cgsagdrby
the layer above. Of course, direct measurements, such as core dritiamge helpful
in recovering these scenarios.

To deal with this possible interplay among horizons, we have set @ap hoc pro-
cedure. Let us focus on the geological configuration in Figure 23, léfard horizon,
Sy, Is compressing a soft horizo§,. In the geometry of interest, a new surface,
replaces both the horizods, andS;. In more detail, we assume th&t coincides with
S; in the regions wheré), lays overS;; viceversas, coincides withS;, whereS,, lays
underS; (see Figure 23, right). From an operative viewpoint, the computation of the
intersection curves;, N S as well as the detection, on baffy andS;, of the regions
bounded by this curve are crucial steps for the generation of the hafjzohhe geo-
metric operations in Sections 2—3 turn out to be consequently useful for tigeg®l

Figure 23: Starting geological configuration (left): a hard horizon (thergane) inter-
sects a soft horizon (the red one); the horiZyrwhich replacesS, andS; (right).

5.3 Selection of subvolumes

Very often we are interested in determining geological information related te-a ce
tain subsurface volume of interest rather than to the whole sedimentary(besikig-
ure 24). This volume becomes the representative of the basin at hamparticular,

we aim at generating a tetrahedral mesh of this geological volume which takescin
count the presence of any horizons and faults. Before proceedlinghe volume mesh
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generation, suitable preprocessing procedures are sometimes dematitedhwolved
horizons and faults.

Figure 24: Example of volume of interest in a geological configuration.

L o<

Figure 25: Portion (in red) of the blue horizon in Figure 24 cut by the volunigtefest
(left); zoom in on the corner leftmost (right).

Purpose of this section is to show how the geometric operations introduced in Sec-
tions 2—-3 can be useful in this preprocessing phase. First of all, webbrevéa the
surface intersection and the region detection procedures, to identifyadbreorizon,
the corresponding portion cut by the volume of interest (see Figure R&nfexample).
Starting from these cutouts on the different horizons, we can build thedaoyiof the
geological volume.

Nevertheless, as highlighted in Section 4, the involved operations among sufsee
corrupt the quality of the mesh elements: this is evident in Figure 25, righetdsis
in Figure 26, right where a lot of stretched triangles appear. Thusréékaling with
the tetrahedral mesh generation, it is crucial to improve the mesh quality obheriz

23



and faults: we pursue this task essentially by exploiting the four geometriatopes
in Section 4. Finally, the 3D mesh is built using a generalized Delaunay pracadu
plemented in the TetGen library [7].

This whole procedure allows us to obtain a detailed representation of theggedlo
volume of interest via a tetrahedral mesh of good quality which is constraintod
horizons and faults inside the volume. Figure 27 provides an instance atfittb@me of
the procedure when applied to a rather complex geological configuratienrebular
shape of the tetrahedra is evident.

Figure 26: Example of a geological volume of interest (left); a correspgneertical
cutoff (middle); two zooms in on poor quality triangles (right).

= ] |

Figure 27: Example of tetrahedral mesh generation for the geological voliime@st
on the left; two vertical cutoffs of the resulting volumetric mesh (on the right).

The procedure just described perfectly works when dealing with geseriaces.
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T STRUCTURED AB-UNBALANCED AB-BALANCED MIXED REGION DETECTION
~ 6800 2 3 2 2 1
~ 68000 8 121 45 13 2
~ 680000 30 35148 10114 | 67 19

Table 2:S% N SP: CPU time for the different surface intersection algorithms and for
the region detection on uniform meshes.

6 Numerical assessment

This section is meant to provide a more quantitative analysis of both the surface in
section and the region detection procedures in Sections 2—3 on benchmégkiicen
tions.

We consider two pairs of intersecting surfaces with the aim of detecting the-corr
sponding intersection curve®® N S, fori = 1,2, as well as the regions bounded by
these (see Figure 28). The configurat®fi N S can be assumed as the result of two
sinusoidal surfaces which intersect each other. To approximate thelddaces, we

"l\\\ -

Figure 28: Intersecting surfaceS® N SP (left), S& N S& (right).

resort to different families of meshes. We compare in terms of CPU time the perfor
mances of the surface intersection procedures addressed in SectioalB, kia apply
the region detection strategy proposed in Section 3.
Tables 2 and 3 gather the results of such a comparison for uniform meshbsut
6800, 68000 and680000 triangles, respectively. In particular, for the different surface
triangulations, we collect the CPU time (in seconds) required by the intersetdion a
rithm based on a structured data search (second column), by the intersectiedyre
exploiting a balanced (third column) and an unbalanced (fourth column) ARlsear
tree, by the mixed structured-AB data search approach (fifth column)fiaady, by
the region detection phase (sixth column).

The values in Tables 2—3 confirm, first of all, the importance of creating ateath
binary tree: by comparing the values in the third and in the fourth column, wgmeo®
that the CPU time approximately triplicates in the case of an unbalanced binary tree
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T STRUCTURED AB-UNBALANCED AB-BALANCED MIXED REGION DETECTION
~ 6800 2 5 3 2 1
~ 68000 20 142 49 50 3
~ 680000 62 22753 791 172 23

Table 3: S5 N SP: CPU time for the different surface intersection algorithms and for
the region detection on uniform meshes.

STRUCTURED AB-BALANCED MIXED

SFEnsSP| 593 27 14
SENSP| 624 30 18

Table 4: CPU time for the different surface intersection algorithms on nonuamifor
meshes.

(and it becomes almo80 times greater for the second configuration approximated via
the finest mesh).

Then, we remark that the approach proposed in Section 2.3 improves thenances

of the intersection algorithm based on an AB tree, even though the tree is &dlanc
the gain becomes particularly evident for increasingly finer meshes and cate of

the first geometric configuration where the surface intersection is more localited
selected sub—mesh&i and st are small enough to speed up the AB tree search
procedure. On the contrary, a more widespread surface intersectionhascasess’ N

SP, does not necessarily lead to small sub-mesﬁ%,andes, with a consequent
less significative reduction of the corresponding CPU times.

Moreover, both the Tables 2 and 3 suggest us that the best intersectioithatgis

the one based on a structured data search for both the geometric catidigsiand for
this kind of meshes. Finally, the region detection is a really cheap operation in terms
of computational costs for both the configurations and for each of the mestiues to
selected.

The conclusion drawn above about the better performances of théusedidata
search algorithm is no longer the same when considering nonuniform m@shat
ready anticipated in Section 2.3 on a simpler configuration). The columns in Table 4
provide the CPU time demanded by the structured data search algorithm, by the bal-
anced AB tree approach and by the procedure proposed in Sectiore@p@ctively
when dealing with nonuniform meshes. The surfagfsand S, with i = 1,2, are
approximated via meshes consisting of al2i{to0 and65000 elements, respectively.
Figure 29 shows the corresponding surfaces of intersection whererhbeifiorm struc-
ture of the meshes is evident.

In the presence of nonuniform meshes, the mixed structured-AB datehsap:
proach turns out to be the most effective: a significative saving in term®ofi@ne is
guaranteed with respect to the balanced AB tree procedure and,exgexkit becomes
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Figure 29: Intersecting surfaces and corresponding mestest SP (left), SIt N SP
(right).

even more remarkable with respect to the structured data search algorithm.

7 Conclusions

This paper illustrates various techniques applied to the geometric reconstrattion
complex geological structures. Besides the specific target application réhefrather
general use.
We have demonstrated how by the combination of smart data structures and specific
tools, it is possible to effectively treat complex geometries.
Moreover, we highlight that the proposed methods are rather flexibleethdie have
illustrated these procedures on triangulated surfaces but many of thebe caadily
extended to different kinds of meshes.

We have implemented and compared different data structures, also in combina-
tion, to reach the conclusion that the best data structure strictly depends &mth
of involved meshes. If the surface meshes are structured or unifornstrinetured
data search turns out to be the most effective algorithm. Viceversa, the CPHE time
demanded by this straightforward approach can be large on nonunifostmesieThe
mixed structured-AB data search approach proposed in Section 2.3 gadasmnances
more homogeneous with respect to the type of the mesh. On structured anminunifo
meshes, the CPU times are comparable with the ones guaranteed by the structured
data algorithm; on the contrary, we have shown that the computational gain led by
the mixed procedure can become extremely relevant when dealing with nomanif
meshes. Therefore, the mixed approach is more suited for the genexal cas
The use of this new data structure has made it possible to analyze very cageplex
ological situations at an affordable cost. In particular, we have combinedthins
specialized to identify the intersection of horizons and faults with a simple ladtefé
algorithm to automatically detect the different regions forming the geologicghpa
completed with suitable mesh enhancing algorithms. This has allowed us to obtain
good and conforming surface meshes for the different portions of tieenat and in-
ternal boundary of the basin of interest, ready to be input to a 3D mesragenfor
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the production of meshes suitable for numerical simulations.
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