
MOX–Report No. 46/2012

Efficient geometric reconstruction of complex
geological structures

Dassi, F.; Perotto, S.; Formaggia, L.; Ruffo, P.

MOX, Dipartimento di Matematica “F. Brioschi”
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox@mate.polimi.it http://mox.polimi.it

Efficient geometric reconstruction of complex
geological structures

F. Dassi1, S. Perotto1, L. Formaggia1 and P. Ruffo2

October 23, 2012

1MOX, Politecnico di Milano, Dipartimento di Matematica “F.Brioschi”
Piazza Leonardo da Vinci 32, I-20133, Milano, ITALY

{franco.dassi,simona.perotto,luca.formaggia}@polimi.it
2 ENI - Exploration & Production Division, GEBA Dept.

Via Emilia 1, I-20097, San Donato Milanese, ITALY
Paolo.Ruffo@eni.com

23-10-2012

Keywords: triangulated surface intersection, search data structures, geological model
reconstruction.

AMS Subject Classification: 51 65 90

Abstract

Complex geological structures pose a challenge to domain discretization. In-
deed data are normally given as a set of intersecting surfaces, sometimes with in-
complete data, from which one has to identify the computational domain to build
a mesh suited for numerical simulations. In this paper we describe a set of tools
which have been developed for this purpose. Specialized data structures have been
developed to efficiently identify intersections of triangulated surfaces and to con-
formally include these intersections in the starting meshes, while improving the
mesh quality. Then, an effective algorithm has been implemented to detect the
different sub-regions forming the computational domain; this algorithm has been
properly enhanced to take into account the specific characteristics involved in the
simulation of geological basins.

1 Introduction

In many applications the geometry of the computational domain comes from different
kind of tomography processes, acoustic, seismic and X-ray imaging being only few ex-
amples. In fact, these processes are usually able to give information on the geometry of

1

the surfaces that bound the different parts of the domain of interest. Specific procedures
are then necessary to convert this information to a geometrical description suitable for
the successive analyses, which typically involve the numerical solution of partial dif-
ferential equations.
For example, data from seismic imaging offer a description of the horizons, i.e., aset of
three dimensional surfaces that represent the deposition of different kind of sediments
(see Figure 1, left). Moving from these data, we have to get a volume discretization
representing the whole sedimentary basin (see Figure 1, right).

Figure 1: Surfaces that represent the horizons (left); the volume of interest (right).

We are indeed interested in the geometrical reconstruction of a sedimentary basin
moving from the description of horizons, usually given in the form of a triangulated
surfaces There is a sequence of operations that are required to finally obtain a com-
putational mesh representing the whole sedimentary basin on which one can carry out
numerical simulations. We will focus on the following procedures:

a) identification of surface intersection;

b) detection of regions enclosed by this intersection and generation of a conformal
mesh which includes such intersection;

c) improvement of the mesh quality.

In geological applications, the data sets that represent the different horizons have
large size; so an efficient implementation of the previous algorithms, especially ofthe
surface intersection, becomes important. We have devised proper data structures based
on the combination of an Alternated Binary Tree with a Structured Space discretization,
to address this issue and to obtain an efficient code.
The intersections partition the surface into regions which have to be identified,since
they represent the boundary of different portions of the computational domain, typically
with different characteristics. We propose here a simple algorithm for the automatic
recognition of those regions. In this process we also remesh the surface so that the new
triangulation is conformal with the intersections. This process is complemented by a
mesh enhancement procedure to avoid badly shaped triangles. Finally, weare able to

2

identify the different portions of the three dimensional geometry automatically.
Another aspect peculiar to the target application is that data are often incomplete. We
thus need to reconstruct the missing parts. We present here two possible strategies that
we have successfully implemented.

The paper is organized as follows. Section 2 deals with the problem of findingthe
intersection between two triangulated surfaces and details the data structuresthat have
been used for this purpose. The localization of the intersection is a prerequisite for the
procedure we illustrate in Section 3, where we deal with the automatic detection of the
different regions composing our 3D model. The surface mesh provided by the original
data set and successively modified by the intersection finding procedure is often not
suitable for computations. The quality of the elements is usually poor. In Section 4 we
outline the mesh improvement strategies we have consequently adopted. In Section 5
we describe some techniques specific for the application at hand, namely the completion
of defective geometrical data, the treatment of the so-called hard and soft horizons, and
the construction of sub-volumes. Finally, Section 6 provides some more quantitative
results about the algorithms proposed in Sections 2–3. Some conclusions are drawn in
the last section.

2 Intersection of horizons and faults

The goal of this section is to describe an efficient method to detect the intersection
between horizons and faults in a sedimentary basin. The latter are described by trian-
gulated surfaces.
For the sake of simplicity, we focus on a single intersection between a fault anda hori-
zon, even though realistic geological configurations include multiple intersections (see
Figure 2 for two examples). We can consequently formalize the detection of such an
intersection via the simple geometric configuration illustrated in Figure 3. Here, the
blue surfaceSB represents a fault which intersects the horizon given by the red surface
SR. In particular, since we deal with two triangulated surfaces, we are led to identify
the yellow piecewise linear curveΓ in Figure 3, right, i.e., to search the intersection
between couples of non-coplanar triangles. To get an efficient procedure, we need
a fast algorithm to identify the couples of triangles intersecting each other. Themost
straightforward approach, which consists in checking the intersection, for instance, of
each triangle ofSB with each triangle ofSR, is unavoidably ineffective when dealing
with large data sets.
A more efficient criterion consists in finding a fast procedure to select, foreach triangle
T ∈ SB, a subsetDT ⊂ S

R of triangles surroudingT and containing the possible
intersecting triangle(s) (see Figure 4). We can then check the actual intersection only
on the elements inDT .

The availability of a proper search data structure becomes crucial for a quick detec-
tion ofDT , which should enjoy the following properties:

i) to contain the intersectionT ∩ SR;

3

Figure 2: Examples of geological configurations where horizons are crossed by faults.

Figure 3: Non-coplanar surfaces (left) and corresponding intersection (the yellow line,
on the right).

ii) to be as small as possible;

iii) to be found rapidly.

In Section 2.3 we propose an intersection algorithm particularly suited to deal with
the geological configurations we are interested in. It essentially merges two intersec-
tion procedures based on well-established data structures which we summarize in Sec-
tions 2.1 and 2.2, respectively. Independently of the selected approach,the idea is first
to build a suitable data structure associated with one of the two surfaces and then to
look for the intersection with the other surface.

2.1 An intersection algorithm based on a structured data search

We refer to the approach proposed, e.g., in [6]. We associate the data structure with the
horizonSR. For this purpose, we denote byNR andT R the set of the nodes and of the

4

Figure 4: SetDT (the yellow area) associated with the triangleT ∈ SB.

elements of the triangulated surfaceSR, respectively, and we indicate the generic 3D
coordinate system by(0, x, y, z). We build thebounding box B(SR) associated with
SR, i.e., the smallest box containing the whole surfaceSR, identified by the two points
SWR = (xsw, ysw, zsw) andNER = (xne, yne, zne), of coordinates

xsw = min
P∈NR

xp, ysw = min
P∈NR

yp, zsw = min
P∈NR

zp, (1)

xne = max
P∈NR

xp, yne = max
P∈NR

yp, zne = max
P∈NR

zp, (2)

whereP = (xp, yp, zp) is the generic node ofSR (see Figure 5, left for an example).
We successively subdivideB(SR) into fixed-size sub-boxes, of dimensions

Figure 5: Bounding box (left) and corresponding hexahedral mesh (right) for the surface
SR.

Lx = max
K∈T R

dxK , Ly = max
K∈T R

dyK , Lz = max
K∈T R

dzK , (3)

where

dxK = max
Q,R∈NK

|xq − xr|, dyK = max
Q,R∈NK

|yq − yr|, dzK = max
Q,R∈NK

|zq − zr|,

(4)
are the dimensions of the bounding boxB(K) associated with the generic triangleK ∈
T R (see Figure 7, left), whileQ = (xq, yq, zq) andR = (xr, yr, zr) are chosen in the

5

setNK of the nodes ofK.
The 3D space is consequently organized into astructured cartesian hexahedral mesh
(see Figure 5, right). This spatial discretization is very flexible: it can be employed
to organize anyn-dimensional space after properly redefining the involved geometrical
elements. It is also suited to parallelization since the hexahedral mesh can be subdivided
into sub-blocks distributed among processors. Moreover, it allows us to identify the cell
containing a certain pointP ∈ R

n in a fast way. Let us exemplify this property in a
2D setting. As shown in Figure 6, the bounding box now coincides with the rectangle
defined by the pointsSWR = (xsw, ysw) andNER = (xne, yne), and it is subdivided,
for instance, intoNx(= 5) andNy(= 4) cells of lenghtLx andLy along thex-axis
and y-axis, respectively. The numbering of the cells follows a lexicographic order.
This allows us to immediately find the identificator IdP of the cell containing the point
P = (xp, yp), via the formula

IdP = XId + YIdNx, (5)

where
XId =

⌊xp − xsw
Lx

⌋

, YId =
⌊yp − ysw

Ly

⌋

, (6)

and where⌊·⌋ denotes the standard floor function. Formula (5) generalizes to

IdP = XId + YIdNx + ZIdNxNy (7)

in the 3D case, with

XId =

⌊

xp − xsw
Lx

⌋

, YId =

⌊

yp − ysw
Ly

⌋

, ZId =

⌊

zp − zsw
Lz

⌋

, (8)

P = (xp, yp, zp) andLz the size of the sub-boxes ofB(SR) along thez-axis.
We now store all the triangles inT R into the hexahedral mesh defined by (3)-(4): a

priori, each sub-box may contain any number of elements, including none (see Figure 7,
right for an example, where different elements share the same hexahedral box). For any
triangleK ∈ T R, we introduce the centerCK = (xCK

, yCK
, zCK

) of the bounding
boxB(K) as representative ofK, where

xCK
=

xKsw + xKne
2

, yCK
=

yKsw + yKne
2

, zCK
=

zKsw + zKne
2

,

while SWK = (xKsw, y
K
sw, z

K
sw) andNEK = (xKne, y

K
ne, z

K
ne) are the two points identi-

fying B(K), with cartesian coordinates defined according to (1)-(2), forP ∈ NK (see
Figure 7, left). Then, the triangleK is stored in the hexahedral cell where its repre-
sentativeCK falls, according to criterion (7). At this point it is rather easy to detect
all the triangles close to a certain pointP , since they are stored in the hexahedral cell
containingP , whose identificator is given by (7).

Now, by exploting this data structure, it is possible to construct, for each element
T ∈ SB, the setDT ⊂ S

R of the triangles inSR close toT ([6]). We consider the

6

Figure 6: Example of direct addressing associated with structured data in a 2D case.

bounding boxB(T); then, we build the setHT of the hexahedral cells ofSR intersecting
B(T) moving from the identificators IdSWT and IdNET of the hexahedral cells ofSR

containingSW T andNET . The setDT is thus defined by the union of all the triangles
contained inHT . Finally, the segment representing the intersectionT ∩ DT is found
by resorting to a standard triangle-triangleintersection test; in particular, following [1],
we have adopted the one proposed in [5].

We remark that the setDT does not satisfy the requirement of minimal possible
extension since it may include triangles that do not actually intersect the bounding box
B(T) (we refer to Figure 8 for an example of non optimal detection ofDT). Useless
triangle-triangle intersection tests are consequently performed. The algorithmcan be
improved by performing a bounding-box intersection test before checkingthe actual
triangle-triangle intersection.

2.2 An intersection algorithm based on an AB search

We present here an alternative data structure for the horizonSR, based on a binary tree.
More precisely, we resort to an alternate binary (AB) search tree ([6]) (see Figure 9 for
an example).

Let us explain how an elementK ∈ SR is stored in an AB data structure. At the
beginning of the storage procedure, the tree data structure is empty, so thatthe triangle
first considered is stored in the root➀. Afterwards, each elementK is stored, starting
from the root, in the first available node identified via a precise criterium.
Namely, we consider the vector~vK = (xKsw, x

K
ne, y

K
sw, y

K
ne, z

K
sw, z

K
ne) ∈ R

6 associated
with the bounding boxB(K) of the elementK, i.e., collecting the coordinates of the
pointsSWK = (xKsw, y

K
sw, z

K
sw) andNEK = (xKne, y

K
ne, z

K
ne) (see Figure 7, left), as well

as the vector~vτ = (xτsw, x
τ
ne, y

τ
sw, y

τ
ne, z

τ
sw, z

τ
ne) associated with the triangle stored at

7

Figure 7: Bounding boxB(K)with the representativeCK (left); surfaceSR stored in
the corresponding hexahedral mesh (right).

Figure 8: Detection of the setDT (the orange area) via the structured-data approach.

the generic nodeτ of the tree. TriangleK finds a location in the tree by properly
comparing vectors~vK and~vτ . In particular, letjτ denote the depth of the nodeτ
and letvK,i be thei-th component of the vector~vK . Then, we apply the following
algorithm:

τ ← root; jτ = 0;

if τ is empty,
τ ← K, return;

α = jτ(mod 6);

if vK,α < vτ,α,
τ ← τ.left;

else
τ ← τ.right;

end

8

Figure 9: Example of AB search tree.

jτ=jτ+1;

whereτ.left andτ.right is the child at the left and at the right ofτ , respectively.
The comparison test in the algorithm depends on the depth of the tree: the inequalities
alternate both the extremes of the bounding boxes and the coordinates,x, y andz. This
justifies the name of the algorithm as well as it makes this approach suited to organize
data in any dimension.
Once an AB data structure is built for the horizonSR, we proceed with the intersection
with the faultSB. For any elementT ∈ SB, we find the setDT of the triangles in
SR nearT . In particular, we build the bounding boxB(T) associated withT ; we go
through the binary tree ofSR, moving from the root. The nodeτ of the tree is included
in DT if the corresponding bounding boxB(τ) intersectsB(T). Then, we proceed
recursively by examining the children ofτ . We can summarize this procedure via the
algorithm below:
let jτ and~vK be defined as above; letS andQ be two stacks1 initially empty (S is a
temporary stack, whileQ will contain the list of the triangles constitutingDT). Then

S.push(root)

Until S is empty
τ = S.pop;
jτ = depth(τ);
α = jτ(mod 6);

if α is even,
k = α + 1;
if vT,k < vτ,α,

S.push(τ.left);

1We remind that a stack is characterized by two standard operations, calledpush andpop: thepush
operation adds a new item to the top of the stack; viceversa, thepop operation removes an item from the
top of the stack

9

else
Q.push(τ);
S.push(τ.left);
S.push(τ.right);

end
else

k = α - 1;
if vT,k ≥ vτ,α,

S.push(τ.right);
else

Q.push(τ);
S.push(τ.left);
S.push(τ.right);

end
end

end

The regionDT identified via an AB data structure is, in general, different than the
one obtained via a structured data search. The AB approach allows us to build a really
confined setDT , where only the triangles ofSR whose bounding box actually intersects
B(T) are included. This property is not a priori guaranteed by the structured-data based
approach, as shown in Figure 8.

Moreover, at each step of the procedure, one of the two children ofτ is excluded
from the search. To maximize the benefits due to this “cutting of branches”, weshould
have a tree as balanced as possible (like the one in Figure 9). To exemplify thenegative
effect of unbalancing, let us consider the AB data structure associatedwith the mesh
in Figure 10. If we assign the triangle number1 to the root, we get a tree completely
unbalanced since all the elements of the mesh are stored at the right of the root. No
elimination criterion is consequently exploited at depth0.

It is possible to extend the data structure to achieve automatically a good balancing
(see [6]); yet in our case a good balancing may be obtained by suitably modifying the
strategy for the insertion of the elements in the tree structure. We have chosenthe
following approach: for a certain surfaceS, we first define the six vectorsSWx, SWy,
SWz, NEx, NEy, NEz that collect, for each elementK ∈ S, the coordinatesx, y, z
of the pointsSWK andNEK defining the bounding boxB(K). We sort the elements
in each vector into the ascending order. Then, we build the binary tree datastructure
following a dichotomic principle. At depth0, as root of the tree, we select the triangle
coinciding with the median of the vectorSWx; the two nodes at depth1 are represented
by the two4-quantiles of the vectorSWy of order1/4 and3/4; the four nodes at depth
2 are provided by the four8-quantiles of the vectorSWz of order1/8, 3/8, 5/8, 7/8,
and so on. Table 1 formalizes this idea level by level, whereIt = {

2j+1

t
< 1, j ∈ N},

with t = 2i+1 andi the considered depth of the tree. Of course, the triangleK is
removed from the six vectors as soon as it is stored in the binary tree. With reference to

10

Figure 10: A 2D planar surfaceS: two possible choices for the root, leading to a com-
pletely unbalanced (triangle1) and to a balanced (triangle2) binary tree data structure.

Figure 10, the choice, e.g., of the triangle2 as root leads to a balanced binary tree.

2.3 Coupling structured and AB data search

The two algorithms in Sections 2.1 and 2.2 have complementary characteristics with
respect to properties i)-iii) itemized at the beginning of this section. Both the approaches
guarantee the first property. The algorithm based on a structured data search detects the
setDT very rapidly, in practice each search hasO(1) complexity. But this set can be
rather large, thus violating requirement ii). On the contrary, the algorithm based on
the AB search builds a setDT with a rather small number of elements. However, this
procedure is, in general, less efficient, the complexity of a single search being (for a
balanced tree) of orderO(logN), with N the number of elements in the tree.

Our actual goal is to combine these two procedures into a new algorithm able to
merge the respective advantages. The basic idea consists of reducing the size of the
problemSR ∩ SB, by confining the intersection to suitable subsetsSRs andSBs of SR

andSB, respectively (see Figure 11 for a sketch of the procedure). In more detail,
the reduction step, that is the generation of the sub-meshesSRs andSBs , is performed
via the quick (but rough) algorithm; the intersection phase is assigned to the sharp
AB-algorithm: the slower speed of the AB approach is balanced by the reduced num-
ber of mesh elements now involved in the intersection. We can think about a sortof
predictor-corrector approach, where the structured data search is the predictor and the
AB-algorithm is the corrector.

To itemize the main steps of the proposed procedure, we refer to the geometric
configuration in Figure 11 (the same as in Figure 3).

1. we associate aunique data structure to the unionSR ∪ SB of the two intersecting
surfaces, following the approach in Section 2.1: the hexahedral mesh nowcontains

11

depth of the tree reference vector quantile orders
0 SWx I2
1 SWy I4
2 SWz I8
3 NEx I16
4 NEy I32
5 NEz I64
6 SWx I128
7 SWy I256
...

...
...

Table 1: Vectors and quantile orders associated with the different depthsof the tree to
build a balanced binary tree.

Figure 11: Reduction of the intersectionSR ∩ SB to the problemSRs ∩ S
B
s .

both the surfacesSR andSB (Figure 11, left);

2. starting from this data structure, we extract the two sub-meshesSBs andSRs : we first
build the setCs of the hexaedral cells where both the red and the blue triangles are
stored together (Figure 11, middle); then we defineSBs andSRs as the union of the
trianglesT ∈ Cs ∩ SB andK ∈ Cs ∩ SR, respectively;

3. we apply the intersection algorithm in Section 2.2 to the reduced configurationSRs ∩
SBs to detect the intersection lineΓ (see in Figure 11, right). Thus, the binary tree
data structure is built for the sub-meshSRs only.

Before considering realistic geological configurations, we assess the performances of
this algorithm on the setting in Figure 12. The horizonSR is characterized by a non
uniform sizing, i.e., we distinguish a portion, the one on the left, where the mesh is
rather coarse, in contrast to the part on the right where the triangles arerather refined.
Formulas (3)-(4) lead to a hexahedral mesh with huge cells, containing a large number

12

Figure 12: Intersecting non-coplanar horizons.

of elements whereSR is fine. Nevertheless, the reduction step yields the sub-meshes
SRs andSBs consisting of1415 and2614 triangles in contrast with4368 and15519
elements forSR andSB, respectively. As a consequence, the intersectionSRs ∩ S

B
s

based on the AB algorithm turns out to be quick: less than one second suffices to detect
the intersection, to be compared with a timing of3 and74 seconds demanded by the
AB and by the structured data search algorithm, respectively2 when applied to the whole
configuration.

Let us apply now the proposed algorithm to more realistic geological configura-
tions: the presence of faults intersecting the geological horizons very oftenleads to
really complex configurations (see Figures 13, left for two examples). In particular, a
single fault may intersect an arbitrary number of horizons: the corresponding intersec-
tion lines assume any shape, depending on the displacement of the intersected horizons
(compare the straight with the irregular yellow lines in Figure 13, right).
Figure 13 shows that the proposed algorithm works extremely well in practice, despite
the possible highly complex configurations. Notice, for instance, the capability todetect
the intersection between the green horizon and the brown fault in Figure 13,top-left,
despite the fault slightly overcomes the horizon. The reduction step allows us to oper-
ate with a leaner data structure thus saving computational costs: about two seconds are
demanded to identify the intersection for both the geological configurations. Due tothe
size of the problem, an approach based on a full data structure might be computationally
prohibitive.

3 Detection of regions on a horizon

As shown in Figure 13, the complexity of the geological configurations we are inter-
ested in often leads tocomposite intersections, represented by the union of different
piecewise linear curves (see Figure 14, left for an example). At this stage,the trian-
gulated surface and the output of the intersection procedure are still separated entities,
i.e., the intersection curve does not necessarily follow the edges of the triangulation

2Throughout the paper, all the computations have been carried out on anotebook with an Intel dual
core CPU at 2.26 GHz with a 3 GB RAM.

13

Figure 13: Possible geological configurations, where horizons and faultsintersect (left);
corresponding intersection lines identified on the fault surfaces (right).

but it may cross the mesh elements. Furthermore, the intersection curve identifiesdis-
tinct regions on the horizon at hand (e.g., in Figure 14, right we recognizenine distinct
areas).

Our actual goal is to detect such regions automatically. In particular, letI de-
note the intersection curve on a certain surfaceS. We aim at finding a partitionP =
{ω1, ω2, . . . ωn} of S such that:

•
⋃n

i=1
ωi = S;

• ω̊i ∩ ω̊j = ∅ ∀i 6= j, i, j = 1, . . . , n;

• ∂ωi ⊂ I ∀i = 1, 2, . . . n;

• ω̊i ∩ I = ∅ ∀i = 1, 2, . . . n.

The subdomainsωi are assumed to be closed set andω̊i stands for the internal part
of ωi.
The approach we propose here consists of two distinct phases:

• we include the intersection curveI into the surface mesh via a suitable remesh-
ing: the information of these two, a priori distinct, geometrical entities, is thus
properly linked;

• we subdivide the triangulated surface into regionsωi so that to define a partition
P of S matching the properties above.

In the two next sections we deal with these two phases, separately.

14

Figure 14: Example of composite intersectionI (the yellow line on the left); inclusion
of I into the mesh (middle); region detection (right).

3.1 Inclusion of the intersection curve

This step is quite complex since we cannot make any a-priori assumption on the shape
of the intersection curveI. We only know that the segments constituting the intersection
line lie in some triangle of the surface.

The proposed method aims at properly remeshing each triangle crossed byI with
the constraint of including the intersection segments in the new mesh. Fort this purpose,
as first step, we have to find the elements crossed byI: of course, no problem is yielded
by the intersection segments coinciding with an edge of a triangle (or with a portionof
it). Successively, we have to properly remesh each crossed element sothat to guarantee
the global conformity of the new mesh.

To detect the crossed triangles we can resort to the data structure search algorithms
of Section 2: in particular, we employ the coupled approach of Section 2.3. To illus-

Figure 15: Example of inclusion of an intersection curve.

trate the procedure which creates a new triangulation conforming with the intersections,
let us consider the four elements in Figure 15, left. We aim at adding the six dashed
segments to the existing mesh to get a new mesh that includes them. As sketched in
Figure 15, we process separately each of the four elements: the remeshing is performed
first by including the intersection segments among the edges of the new mesh (Fig-
ure 15, c)) and then by adding additional edges to locally preserve the conformity of the
mesh (Figure 15, d)). The conformity is inherited by the global mesh (Figure15, s)).
In Figure 14, middle we show the final result of the inclusion of the intersection curve
procedure applied to the configuration on the left.

We remark that the quality of the elements thus generated is not necessarily good

15

(really thin triangles might appear after the remeshing as shown in Figure 14,middle).
We come back to this important issue in Section 4.

3.2 Subdivision of a horizon into regions

The inclusion of the intersection curveI into the mesh of the horizon at handS makes
the detection of the different regions a straightforward task. We assume again the simple
configuration in Figure 15 as reference to explain the approach for the region detection.

We apply a sort ofdiffusive procedure. We assign a source to a certain triangle of
the mesh; then we follow the diffusion of this source in the adjacent elements, driven
by the triangle connectivity and by these simple rules:

1) each triangle spreads the source into the adjacent triangles across its edges;

2) the diffusion stops at the intersection segments.

In particular, we mean that two triangles are adjacent if they share an edge. Of course,
at the end of the procedure, all the triangles of the mesh have to be assigned to a certain
regionωi. This means that we need to restart the procedure until we have partitioned
the whole surface. We formalize this procedure via the following algorithm:

n = 0; i = 0;
⋃

n

i=1
ωi = ∅;

until
⋃

n

i=1
ωi == S

i = i + 1;

choose K ∈ S \ {
⋃

n

i=1
ωi};

ωi = K;

until ∃ T : ∂T ∩ ∂ωi 6= ∅ & ∂T ∩ (∂ωi ∩ I) = ∅

ωi = ωi ∪ T;

end

n = n + 1;

end

Relation∂T ∩ (∂ωi∩I) = ∅ essentially checks if triangleT is on the correct part ofI.
Figure 16 exemplifies the region subdivision algorithm on the intersected mesh ofFig-
ure 15, s). Three diffusive processess take place in such a case. In Figure 14, right
we show the result associated with the horizon of interest: nine regionsωi are now
detected.

We highlight that the algorithm above as well as the approach proposed in in Sec-
tion 3.1 can be extended, in a straighforward way, to more general frameworks, e.g.,
to quadrilateral meshes as well as to a higher dimension (for instance, to detect the
volumes identified by a set of surfaces in a tetrahedral mesh).

16

Figure 16: Example of region subdivision (the yellow curve marksI).

4 Mesh quality improvement

The operations among surfaces in Sections 2 and 3 might lead to bad quality meshes
with distorted elements. In particular, the inclusion of the intersection curve often yields
really thin triangles. With a view to the approximation of a partial differential equation
model (e.g., the Darcy equation) in a sedimentary basin of interest via a finite ele-
ment scheme, the shape of the mesh elements may strongly affect the conditioningof
the corresponding stiffness matrix. Meshes constituted by equilateral triangles usually
guarantee reliable numerical results, while thin triangles often lead to badly conditioned
matrices (see, e.g., [9]). For this reason, the geological reconstruction procedure pro-
posed in this paper includes, as last step, suitable mesh modification modules to improve
the shape of the mesh elements constituting the detected horizons and faults.

We resort essentially to the following four geometric operations (see Figure 17 for
a corresponding schematic representation):

• node smoothing: we use the trapezium drawing (TD) approach proposed in [8],
suited to deal with any not necessarily smooth surface;

• edge swapping: we choose the best diagonal for the quadrilateral formed by two
adjiacent triangles, in order to minimize the maximum angle of such a quadri-
lateral; of course, the quadrilateral must be convex for edge swapping tobe per-
formed;

• edge collapsing: we remove vertices or edges (and also triangles via successive
edge collapses) to avoid excessively short edges;

• edge splitting: a node is inserted at the midpoint of the longest edges to minimize
the maximum angle of the mesh.

To quantify the shape of a generic triangleT , we resort to the so-calledquality
index q(T) = 2 r/R ([9, 10, 8, 4]), wherer andR are the radius of the circumference

17

Figure 17: Geometric operations to improve the quality of the mesh: node smoothing,
edge swapping, edge collapsing, edge splitting (top-bottom, left-right).

inscribed and circuscribed toT , respectively. IfT is an equilateral triangle,q(T) = 1;
viceversa,q(T)≪ 1 if T is a very stretched triangle.

Figure 18 shows the benefits led by the four mesh operations when applied to the
surface in Figure 14, right. The number of the mesh elements is significantly increased
(the original mesh has1136 elements while the regularized mesh consists of2726 tri-
angles) but now all the triangles are very regular. The improvement of themesh quality
is confirmed by the hystograms in Figure 19, which represent the distribution of the
quality indexq(T) on the mesh elements before and after the mesh regularization.

Figure 18: Instance of mesh quality improvement: original mesh (left) and improved
mesh (right).

5 Generation of a geological geometry of interest

This section covers some other fundamental aspects that may be relevant when dealing
with the geometrical modeling of geological basins. Namely, the requirement of com-
pleting possible missing data, the treatment of the so-called hard and soft horizons, and

18

Figure 19: Distribution ofq(T) before (left) and after (right) the mesh quality improve-
ment.

the construction of subvolumes.

5.1 Lack of data

The seismic data used for the simulations are often incomplete or non reliable due to
either a lack of existing coverage or inadequate and old measurements. Thus,moving
from the available information, it is sometimes necessary to reconstruct the horizons in
the geological basin of interest before generating a corresponding tetrahedral mesh.
In particular, we investigate two different techniques to deal with a possiblelack of
data. As first approach, we have resorted to a well-known geo-statistical technique,
i.e., thekriging ([2]). It is a regression method to recover the value of a certain field
at unobserved locations starting from observations of the same field in nearbysites. In
this case, the field of interest is the location of a horizon characterized by any lack of
information (for instance, a hole). To apply this technique, we need to assumethat
the surface may be described explicitly asz = f(x, y). We refer to Figure 20, left or
Figure 22, left for possible examples.

In more detail, moving from a set{zQ} of z-coordinates associated with a setN =
{Q} of points on the horizon with the lack of data, we recover thez-coordinatezP of a
pointP located inside a hole as

zp =
∑

Q∈N

λQzQ , (9)

with λQ a suitable weight associated with the pointQ ∈ N . The type of kriging
determines the choice for the unknown weights: we resort to a standard ordinary kriging
where the weights essentially depend on the variogram associated with the starting data
[2]. Moreover, the points inN are not necessarily spread on the whole horizon but
they might be located only in a neighborhood of the pointP . The computation of the
weightsλQ is not always an easy task: we resort to several searching processes that
lead to the solution of several linear systems. Details on kriging may be found in the
cited bibliography.

19

As an alternative approach we employ an implicit representation of the horizons
based on radial basis functions ([3]): a horizonS is identified as the zero-level iso-
surface of a suitable functionf : R3 → R, i.e.,S = {P ∈ R

3 : f(P) = 0} with

f(P) =
∑

Q∈N

cQφ(r), (10)

wherer = ||P − Q|| is the standard Euclidean distance betweenP andQ, φ is a
radial basis function (in our simulations we chooseφ(r) = r3), andcQ are unknown
coefficients determined by imposing interpolation constraints. This usually leadsto
solve an ill-conditioned full linear system of dimensioncard(N), which, therefore, has
to be properly solved; yet we have eventually an implicit representation, which is more
flexible than the one provided by the previous strategy.

Figure 20: Original horizonS with a hole (left); the recovered partSrec overlapped to
S (middle); the setStojoin (right).

Thanks to the numerical validation, we believe that the approach based on an im-
plicit representation of the non complete horizon is more suited to deal with any kind
of surfaces. In particular, this method allows us to treat in a more straightforward way
also complex surfaces that cannot be expressed via a single-valued functionf .

Now, independently of the technique adopted to recover the missing data, weaim
at properly joining the recovered partSrec of the horizon with the original horizonS
(see Figure 20, middle). We remark that the boundary of the hole is approximated via a
piecewise-linear function constituted by the edges of the elements ofS around the hole
itself. The goal is consequently twofold: first, we have to identify the elementsof Srec

inside the hole; then, we have to add them to the triangles constitutingS. To do this,
we proceed in such a way:

20

1. we build an auxiliary meshSboundaround the hole and overlapped toS: the idea is to
consider, for each node ofS along the hole, the direction normal to the surface and
to fix two points along it, at a certain distance±d, respectively. These points along
the normal directions allow us to build a strip constituted of couples of triangles,
which representsSbound(see Figure 21);

2. we find the intersection curveSbound∩ Srec via the mixed structured-AB data search
algorithm;

3. we add this intersection curve toSrec following the approach in Section 3.1;

4. we identify the setStojoin of the elements ofSrec strictly cointained in the hole (see
Figure 20, right) by employing a suitable variant of thediffusive procedure described
in Section 3.2;

5. we join the meshesStojoin andS, by properly connecting the outer rows of the trian-
gles inStojoin andS so that to guarantee the conformity of the recovered mesh.

Figure 21: The auxiliary meshSboundassociated with the hole inS (left); a zoom (right).

Figure 22: Reconstruction of four holes on a horizon of interest.

Figure 22 shows the result of this approach when several holes occuron a certain
horizon. The approach based on an implicit representation of the horizonshas been

21

employed to build the surfaceSrec. As we shall see in the next sections, the management
of geological horizons demands additional care in some circumstances.

5.2 Hard and soft rocks

Different kinds of rock do exist in nature. As a possible classification, wemay distin-
guish them in hard and soft rocks. The hardness of a rock essentially depends on the
nature of the grains constituting the rock as well as on what kind of natural glue holds
them together: rocks baked in the deep underground are usually very hard (marble, for
instance), while mudstones and shales are examples of soft rocks. The different nature
of the geological layers overlapping in the basin of interest has to be properly taken
into account when generating the corresponding geometry. If, for instance, a layer of
marble stands above a layer of clay, we expect that the layer below is compressed by
the layer above. Of course, direct measurements, such as core drillings, can be helpful
in recovering these scenarios.

To deal with this possible interplay among horizons, we have set up anad hoc pro-
cedure. Let us focus on the geological configuration in Figure 23, left: ahard horizon,
Sh, is compressing a soft horizon,Ss. In the geometry of interest, a new surface,Sr,
replaces both the horizonsSh andSs. In more detail, we assume thatSr coincides with
Ss in the regions whereSh lays overSs; viceversa,Sr coincides withSh whereSh lays
underSs (see Figure 23, right). From an operative viewpoint, the computation of the
intersection curveSh ∩ Ss as well as the detection, on bothSh andSs, of the regions
bounded by this curve are crucial steps for the generation of the horizonSr. The geo-
metric operations in Sections 2–3 turn out to be consequently useful for this purpose.

Figure 23: Starting geological configuration (left): a hard horizon (the green one) inter-
sects a soft horizon (the red one); the horizonSr which replacesSh andSs (right).

5.3 Selection of subvolumes

Very often we are interested in determining geological information related to a cer-
tain subsurface volume of interest rather than to the whole sedimentary basin(see Fig-
ure 24). This volume becomes the representative of the basin at hand. Inparticular,
we aim at generating a tetrahedral mesh of this geological volume which takes into ac-
count the presence of any horizons and faults. Before proceeding with the volume mesh

22

generation, suitable preprocessing procedures are sometimes demanded on the involved
horizons and faults.

Figure 24: Example of volume of interest in a geological configuration.

Figure 25: Portion (in red) of the blue horizon in Figure 24 cut by the volume ofinterest
(left); zoom in on the corner leftmost (right).

Purpose of this section is to show how the geometric operations introduced in Sec-
tions 2–3 can be useful in this preprocessing phase. First of all, we are able, via the
surface intersection and the region detection procedures, to identify, for each horizon,
the corresponding portion cut by the volume of interest (see Figure 25, for an example).
Starting from these cutouts on the different horizons, we can build the boundary of the
geological volume.
Nevertheless, as highlighted in Section 4, the involved operations among surfaces often
corrupt the quality of the mesh elements: this is evident in Figure 25, right as well as
in Figure 26, right where a lot of stretched triangles appear. Thus, before dealing with
the tetrahedral mesh generation, it is crucial to improve the mesh quality of horizons

23

and faults: we pursue this task essentially by exploiting the four geometric operations
in Section 4. Finally, the 3D mesh is built using a generalized Delaunay procedure im-
plemented in the TetGen library [7].
This whole procedure allows us to obtain a detailed representation of the geological
volume of interest via a tetrahedral mesh of good quality which is constrainedto the
horizons and faults inside the volume. Figure 27 provides an instance of theoutcome of
the procedure when applied to a rather complex geological configuration. The regular
shape of the tetrahedra is evident.

Figure 26: Example of a geological volume of interest (left); a corresponding vertical
cutoff (middle); two zooms in on poor quality triangles (right).

Figure 27: Example of tetrahedral mesh generation for the geological volume of interest
on the left; two vertical cutoffs of the resulting volumetric mesh (on the right).

The procedure just described perfectly works when dealing with genericsurfaces.

24

T STRUCTURED AB-UNBALANCED AB-BALANCED M IXED REGION DETECTION

≃ 6800 2 3 2 2 1
≃ 68000 8 121 45 13 2
≃ 680000 30 35148 10114 67 19

Table 2:SR1 ∩ S
B
1 : CPU time for the different surface intersection algorithms and for

the region detection on uniform meshes.

6 Numerical assessment

This section is meant to provide a more quantitative analysis of both the surface inter-
section and the region detection procedures in Sections 2–3 on benchmark configura-
tions.

We consider two pairs of intersecting surfaces with the aim of detecting the corre-
sponding intersection curvesSRi ∩ S

B
i , for i = 1, 2, as well as the regions bounded by

these (see Figure 28). The configurationSR2 ∩ S
B
2 can be assumed as the result of two

sinusoidal surfaces which intersect each other. To approximate the four surfaces, we

Figure 28: Intersecting surfaces:SR1 ∩ S
B
1 (left), SR2 ∩ S

B
2 (right).

resort to different families of meshes. We compare in terms of CPU time the perfor-
mances of the surface intersection procedures addressed in Section 2. Finally, we apply
the region detection strategy proposed in Section 3.
Tables 2 and 3 gather the results of such a comparison for uniform meshes of about
6800, 68000 and680000 triangles, respectively. In particular, for the different surface
triangulations, we collect the CPU time (in seconds) required by the intersection algo-
rithm based on a structured data search (second column), by the intersection procedure
exploiting a balanced (third column) and an unbalanced (fourth column) AB search
tree, by the mixed structured-AB data search approach (fifth column) and,finally, by
the region detection phase (sixth column).

The values in Tables 2–3 confirm, first of all, the importance of creating a balanced
binary tree: by comparing the values in the third and in the fourth column, we recognize
that the CPU time approximately triplicates in the case of an unbalanced binary tree

25

T STRUCTURED AB-UNBALANCED AB-BALANCED M IXED REGION DETECTION

≃ 6800 2 5 3 2 1
≃ 68000 20 142 49 50 3
≃ 680000 62 22753 791 172 23

Table 3:SR2 ∩ S
B
2 : CPU time for the different surface intersection algorithms and for

the region detection on uniform meshes.

STRUCTURED AB-BALANCED M IXED

SR1 ∩ S
B
1 593 27 14

SR2 ∩ S
B
2 624 30 18

Table 4: CPU time for the different surface intersection algorithms on nonuniform
meshes.

(and it becomes almost30 times greater for the second configuration approximated via
the finest mesh).
Then, we remark that the approach proposed in Section 2.3 improves the performances
of the intersection algorithm based on an AB tree, even though the tree is balanced:
the gain becomes particularly evident for increasingly finer meshes and in the case of
the first geometric configuration where the surface intersection is more localized. The
selected sub-meshesSB1,s andSR1,s are small enough to speed up the AB tree search
procedure. On the contrary, a more widespread surface intersection, asin the caseSR2 ∩
SB2 , does not necessarily lead to small sub-meshes,SB2,s andSR2,s, with a consequent
less significative reduction of the corresponding CPU times.
Moreover, both the Tables 2 and 3 suggest us that the best intersection algorithm is
the one based on a structured data search for both the geometric configurations and for
this kind of meshes. Finally, the region detection is a really cheap operation in terms
of computational costs for both the configurations and for each of the meshes tobe
selected.

The conclusion drawn above about the better performances of the structured data
search algorithm is no longer the same when considering nonuniform meshes(as al-
ready anticipated in Section 2.3 on a simpler configuration). The columns in Table 4
provide the CPU time demanded by the structured data search algorithm, by the bal-
anced AB tree approach and by the procedure proposed in Section 2.3, respectively
when dealing with nonuniform meshes. The surfacesSBi andSRi , with i = 1, 2, are
approximated via meshes consisting of about20000 and65000 elements, respectively.
Figure 29 shows the corresponding surfaces of intersection where thenonuniform struc-
ture of the meshes is evident.

In the presence of nonuniform meshes, the mixed structured-AB data search ap-
proach turns out to be the most effective: a significative saving in terms of CPU time is
guaranteed with respect to the balanced AB tree procedure and, as expected, it becomes

26

Figure 29: Intersecting surfaces and corresponding meshes:SR1 ∩ S
B
1 (left), SR2 ∩ S

B
2

(right).

even more remarkable with respect to the structured data search algorithm.

7 Conclusions

This paper illustrates various techniques applied to the geometric reconstructionof
complex geological structures. Besides the specific target application, they are of rather
general use.
We have demonstrated how by the combination of smart data structures and specific
tools, it is possible to effectively treat complex geometries.
Moreover, we highlight that the proposed methods are rather flexible. Indeed we have
illustrated these procedures on triangulated surfaces but many of them canbe readily
extended to different kinds of meshes.

We have implemented and compared different data structures, also in combina-
tion, to reach the conclusion that the best data structure strictly depends on the kind
of involved meshes. If the surface meshes are structured or uniform, thestructured
data search turns out to be the most effective algorithm. Viceversa, the CPU times
demanded by this straightforward approach can be large on nonuniform meshes. The
mixed structured-AB data search approach proposed in Section 2.3 showsperformances
more homogeneous with respect to the type of the mesh. On structured and uniform
meshes, the CPU times are comparable with the ones guaranteed by the structured
data algorithm; on the contrary, we have shown that the computational gain led by
the mixed procedure can become extremely relevant when dealing with nonuniform
meshes. Therefore, the mixed approach is more suited for the general case.
The use of this new data structure has made it possible to analyze very complexge-
ological situations at an affordable cost. In particular, we have combined algorithms
specialized to identify the intersection of horizons and faults with a simple but effective
algorithm to automatically detect the different regions forming the geological basin,
completed with suitable mesh enhancing algorithms. This has allowed us to obtain
good and conforming surface meshes for the different portions of the external and in-
ternal boundary of the basin of interest, ready to be input to a 3D mesh generator for

27

the production of meshes suitable for numerical simulations.

References

[1] F. Antonio, Faster Line Segment Intersection, Ch. IV 6, in Graphics Gems III (Ed.
D. Kirk), Academic Press, San Diego 1992.

[2] N. Cressie, Statistics for Spatial Data, John Wiley & Sons Inc., New York, 1991

[3] A. Iske, Multiresolution Methods in Scattered Data Modelling, Lecture Notesin
Computational Science and Engineering 37, Springer-Verlag, Berlin, 2004

[4] M. Longoni, Generation of high quality meshes on open surfaces for biomedical
CFD, Degree Thesis 2007.

[5] T. Möller, A fast triangle-triangle intersection test, Journal of Graphics Tools 2
(2), 1997 25–30.

[6] H.Samet, Foundation of Multidimensional and Metric Data Structures, The Mor-
gan Kaufmann Series in Computer Graphics and Geometry Modelling, Morgan
Kaufmann Publishers Inc., Burlington MA, 2005.

[7] H. Si, A quality tetrahedral mesh generator and three-dimensional Delaunay tri-
angulator, Weierstrass Institute for Applied Analysis and Stochastic, Berlin,Ger-
many, 2006.

[8] J.B.Semenova, V.V. Savchenko, I.Hagiwara, Two techniques to improve the mesh
quality and preserve surface characteristics, in Proceedings of the13th Meshing
Roundtable, 2004 277–288.

[9] J. Shewchuk, What is a good linear element? Interpolation, conditioning and
quality measures, in Proceedings of the11th Meshing Roundtable, 2002 115–126.

[10] J. Shewchuk, Robust adaptive floating-point geometric predicates, in Proceedings
of the Twelfth Annual Symposium on Computational Geometry, 1996 141–150.

28

MOX Technical Reports, last issues
Dipartimento di Matematica “F. Brioschi”,

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

46/2012 Dassi, F.; Perotto, S.; Formaggia, L.; Ruffo, P.

Efficient geometric reconstruction of complex geological structures

45/2012 Negri, F.; Rozza, G.; Manzoni, A.; Quarteroni, A.

Reduced basis method for parametrized elliptic optimal control problems

43/2012 Secchi, P.; Vantini, S.; Vitelli, V.

A Case Study on Spatially Dependent Functional Data: the Analysis of

Mobile Network Data for the Metropolitan Area of Milan

44/2012 Fumagalli, A.; Scotti, A.

A numerical method for two-phase flow in fractured porous media with

non-matching grids

42/2012 Lassila, T.; Manzoni, A.; Quarteroni, A.; Rozza, G.

Generalized reduced basis methods and n width estimates for the ap-

proximation of the solution manifold of parametric PDEs

41/2012 Chen, P.; Quarteroni, A.; Rozza, G.

Comparison between reduced basis and stochastic collocation methods

for elliptic problems

40/2012 Lombardi, M.; Parolini, N.; Quarteroni, A.

Radial basis functions for inter-grid interpolation and mesh motion in

FSI problems

39/2012 Ieva, F.; Paganoni, A.M.; Ziller, S.

Operational risk management: a statistical perspective

38/2012 Antonietti, P.F.; Bigoni, N.; Verani, M.

Mimetic finite difference approximation of quasilinear elliptic problems

37/2012 Nobile, F.; Pozzoli, M.; Vergara, C.

Exact and inexact partitioned algorithms for fluid-structure interaction

problems with finite elasticity in haemodynamics

