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G. Caliò1, F. Ragazzi2, A. Popoli2, A. Cristofolini2, L. Valdettaro1, C. de Falco1, and P.
Barbante1

1MOX, Department of Mathematics, Politecnico di Milano, Milano, Italy
2Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy

Abstract

In the field of corona discharges, the complex chemical mechanisms inside the ionization region
have prompted the development of simplified models to replicate the macroscopic effects of ion
generation, thereby reducing the computational effort, especially in two and three dimensional sim-
ulations. We propose a methodology that allows to replace the ionization process with appropriate
boundary conditions used by a corona model solving the drift region. We refer to this model as
macro-scale, since it does not solve the ionization region. Our approach begins with one dimensional
computations in cylindrical coordinates of the whole discharge, where we include a fairly detailed
model of the plasma region near the emitter. We refer to this model as full-scale, since all the
spatial scales, including the ionization region, are properly taken into account. From these results
it is possible to establish boundary conditions for macroscopic simulations. The idea is that, given
an emitter radius, the boundary conditions can be used for a variety of geometries that leverage
on that emitter as active electrode. Our results agree with available experimental data for positive
corona discharges in different configurations and with simplified analytical models from literature.

Nomenclature

γj Secondary electron emission coefficient due to ion im-
pact on the electrodes

γph Secondary electron efficiency due to photo-ionization

Γk Drift-diffusion flux of kth species

E Electric field

µk mobility of kth species

S̃k Chemical source term of kth species

ε Dielectric permittivity of the medium

φ Electric potential

φon Onset electric potential

Dk Diffusion coefficient of kth species

Eon Onset electric field

L Gap between emitter and collector

N Gas Density

nk Number density of kth species

q Fundamental charge

qk Charge of kth species

Rc Collector Radius

Re Emitter Radius

rw Wall reflection parameter coefficient

Sph Approximate photo-ionization source term

1 Introduction

Corona discharges are weakly luminous discharges characterized by spatial non-uniformity, with a
distinction between two regions where different physical phenomena occur. The first one is the plasma
region or ionization layer, located near the emitter electrode, where plasma, light generation and a
high strength electric field are simultaneously present [1]. The confinement of plasma generation near
the emitter electrode is obtained thanks to its geometry; for instance, a thin wire can sustain a strong
electric field in its proximity. When the electric field exceeds an onset threshold Eon, ionization by
electron collisions begins. Beyond the ionization layer, there is the drift region, where the generated
ions travel under the influence of the electric field. Further ion generation is usually not possible in
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this region due to the low electric field [2], but ions transfer their momentum to neutral species by
collision, resulting in an airflow known as ionic wind.
The physical mechanisms discussed above make the full-scale description of the corona phenomenon
challenging from a numerical point of view. This is especially true when a gas like air, characterized
by complex chemical kinetics, is considered. Historically, the most common approach to the modeling
of corona discharges has been fully-coupled monolithic descriptions (i.e. where the same mathematical
model is applied to the whole physical domain) that relies on simple kinetic models, with chemistry
described by the Townsend-like models. These models involve electrons and pseudo charged species
that represent the total amount of positive and negative ions [3, 4] or only of positive ones [5, 6].
Another class of models includes those based on coupled multi-domain simulations, which stem from
domain decomposition techniques [7] or from asymptotic analysis [8, 9], yet still relying on simplified
kinetic schemes. Additionally, there are also models that solve only the drift region and are based
on Kaptzov’s hypothesis, which states that, once a stable corona regime is established, the electric
field on the emitter surface remains constant and equal to the onset value Eon, which has been exper-
imentally shown to be strongly correletated to the curvature radius of the emitter contact. Based on
this assumption, some approximate expressions for charge density and electric field at the edge of the
plasma region can be derived and used as boundary conditions (injection law) at the emitter [10–14, 8].
We can refer to these models as ”macro-scale” models, as they do not resolve the ionization events
occurring over the small scales of the plasma region. On the opposite, full-scale models also include
the plasma region and model the ionizing events with a suitable set of plasma-chemical reactions.
Despite their accuracy full-scale models are computationally expensive. Three-dimensional simula-
tions [4] have been conducted in literature, but considering a simple axisymmetric geometry of the
electrodes. Emerging applications such as ionic propulsion [15, 16] require the simulation of three-
dimensional configurations, including the effects of external airflow. To the authors’ best knowledge,
in these cases only macro-scale models have been used and the plasma region has been replaced by
injection laws based on the Kaptzov’s hypothesis [17]. From this perspective, macro-scale models ap-
pear convenient for three dimensional computations, as they significantly reduce computational cost
by avoiding the coupling between the drift and the plasma region.
As one may expect, the predictive accuracy of macro-scale models, mainly depends on the quality of
the boundary conditions at the emitter (injection law from now on); in [13] a systematic presentation
of different injection laws is presented, and a simple exponential relation is proposed and shown to be
especially convenient for its good numerical performance within coupled simulation algorithms. The
exponential injection law presented in [13] depends on two parameters: in addition to the onset field
Eon, an additional parameter Eref is introduced, that controls the slope of the injection relation near
threshold. In the present work we show that the latter feature, which was originally intended only to
improve the convergence on nonlinear iteration algorithms, can actually be also exploited in order to
more accurately describe the behaviour of the emitter near and above onset. Indeed, we show that
by fitting the additional parameter to full-scale model simulation, the Kaptzov hypothesis does not
need to be assumed a priori, but it is found a posteriori as a result of full-scale model computations.
This is not completely surprising, given the good matching with experimental results of corona models
relying on it.
Initially, we present results for axisymmetric configurations, where the symmetry properties allows
the direct usage of one dimensional models. Then our approach is extended to a wire-to-cylinder
configuration. Thus in this work a methodological framework is set up for future investigations of
more complex arrangements of the electrodes.
The one-dimensional simulations in this work are performed using a drift-diffusion-reaction model with
a kinetic reaction scheme for dry air that includes six chemical species [18]. The original mechanism
of Ref. [18] did not include the effect of photo-ionization. However many literature references point
out the role of photo-ionization in providing a seed of electrons that trigger impact ionization and
thus sustain the discharge [8, 19, 20]. Therefore we present the results both with the original Parent
model and with its modification that includes an additional photo-ionization term.

2



The paper is organized as follows. Section 2 describes the physical models and the underlying assump-
tions. Section 3 provides the details about the numerical methods. Section 4 shows the validation of
the full-scale model against numerical, analytical and experimental results and illustrates the method-
ology used to obtain the boundary condition for the macro-scale model. Section 5 shows the results of
the macroscopic simulations compared with the ones obtained by the full-scale model. Section 6 shows
macroscopic simulations for truly two-dimensional emitter-collector arrangements and compares them
with literature results.

2 Physical Models

The main focus of this work is the computation of an injection law at the emitter for a positive corona.
In accordance to the phenomenology of positive corona discharges, the ionization length lion can be
considered negligible with respect to the gap L between the electrodes (lion ≪ L). The main reason
is due to the fact that the high values of the electric field needed to accelerate free electrons and
promote ionization reactions are confined in a tiny spatial region that is located around the emitter
(active electrode). The overall effect of the plasma region is the injection of positive ions into the drift
region. Thus, in the macroscopic model, that has characteristic length L, the ionization region can be
collapsed over the surface of the emitter and the charge injected into the domain can be accounted
for by a suitable boundary condition. If a Kaptzov-like behavior was assumed, the amount of charge
on the emitter would be such to maintain the magnitude of the electric field on the emitter constant
and equal to the onset value Eon, computed with the classical Peek’s law [21] or with more recent
formulas [22]. In both cases, for fixed gas conditions, Eon is a function only of the radius of the
emitter Re. Without directly applying the Kaptzov’s hypothesis, but still assuming that the amount
of charge entering the drift region is independent from the collector geometry, we aim to determine an
injection law of the form np = f(E,Re), with np the number density of the positive ions and f(E,Re)
a nonlinear function of the local electric field and of the emitter radius Re.
For a given emitter radius Re and considering a sufficiently large gap L to avoid the possible insur-
gence of non local effects, i.e. the collector geometry influences f when the current becomes relatively
high [23], we can sample the positive ion number density at the end of the ionization region as func-
tion of the electric field at the emitter. These number density values are the look-up relation that
allows one to set the charge density on the emitter as function of the local electric field. However,
in order to enhance the numerical stability and convergence properties of the macro-scale simulation,
the raw data can be fitted with a suitable smooth function of E. For example, Ref. [13] exploited an
exponential law of the form:

np(E,Re) = nref exp

[
E − Ēon(Re)

Eref (Re)

]
(2.1)

These strategies require the definition of the ionization length lion in order to sample the charge density
at the boundary between the ionization and drift region. The criterion we used to compute lion will
be explained in section 4.2.
The macro and the full-scale physical model will be described in details in the following sections.

2.1 Full-scale Discharge Model

The discharge model is based on the well known drift diffusion approximation. Each plasma component
is governed by a continuity equation

∂nk

∂t
+∇ · Γk = S̃k k = 1, . . . , Nsp (2.2)

where the flux reads

Γk = −Dk∇nk + zkµkEnk (2.3)

3



Dk and µk are the diffusion and electrical mobility coefficients of the kth species respectively and
zk = 1 for positive ions, zk = −1 for negative ions and electrons and zk = 0 for neutral species. For
the neutral species the electrical mobility is set to zero, while for the charged ones the Einstein relation
Dk = µkkBTk/qk is used. In this relation Tk is the temperature in Kelvin of the kth species and kB
the Boltzmann constant.
The neutral gas is assumed to be Air, approximated as a mixture of N2 and O2 in ratio 3.72 to 1.
Ideal gas behavior and atmospheric pressure are assumed.
The Local Field Approximation [24, 25] is exploited, therefore the electron temperature is assumed to
be a function of the local reduced electric field and it is computed with the Boltzmann solver LoKI-
B [26, 27]. The ions and neutral gas temperature are both assumed constant and equal to T = 300K.
The self-consistent electric field is governed, under the quasi-static approximation, by the Poisson
equation:

−∇ · (ε∇φ) =

Nsp∑
k=1

qk nk (2.4)

where ε is the medium dielectric permittivity. Boundary conditions at the electrodes for charged
species (ions and electrons) are expressed following the two-stream approach [28]:

Γi · n =
1− rw
1 + rw

ni|vd,i| · n i = N+
2 , O+

2 , O
−
2

Γe · n =
1− rw
1 + rw

ne|vd,e| · n− 2

1 + rw

∑
γjΓj · n j = N+

2 , O+
2

(2.5)

with vd,k = µkE being the drift velocity of ions and electrons (k = i, e). The normal n at the
boundary is directed away from the plasma domain. Here rw is the reflection coefficient and γj are
the secondary electron emission coefficients by ion impact. We have assumed rw = 0 and γj = 10−2

for all the computations carried out with the full-scale model.
Regarding the neutral species, an homogeneous Neumann boundary condition, which corresponds to
a non-catalytic wall, has been imposed:

Γk · n = 0 k = N2, O2 (2.6)

The boundary conditions for the Poisson equation are Dirichlet boundary conditions. The voltage is
imposed at the emitter and at the collector:{

φ(Re) = Ve

φ(Rc) = 0
(2.7)

The mobilities for each species are taken from Ref. [18] and are reported in Tab. 1, with their
original references.

Table 1: Ion and electron mobilities in aira

Charged Species Mobility [m2V −1s−1] Reference

N+
2 N−1 ·min(0.75 · 1023 · T−0.5, 2.03 · 1012 · (E∗)−0.5 [29]

O+
2 N−1 ·min(1.18 · 1023 · T−0.5, 3.61 · 1012 · (E∗)−0.5 [29]

O−
2 N−1 ·min(0.97 · 1023 · T−0.5, 3.56 · 1012 · (E∗)−0.1 [30]

e N−1 · 3.74 · 1019 · exp(33.5 · (ln(Te)
−0.5) [31, Ch. 21]

a Units: Te and T are in Kelvin, N is the total number density of the gas in m−3; E∗

is the reduced effective electric field (E∗ = |E|/N) in units of V m−2.

The chemical kinetic scheme employed for the computation of the source terms S̃k includes two
contributions: chemical reactions and photo-ionization. Chemical reactions are taken from Ref. [18]:
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the kinetic model of air includes six species and thirteen reactions and we refer to it as Parent model.
The original model includes two reactions representing electron beam ionization, that are neglected in
the context of corona discharge. The reactions and their chemical reaction rate constants are reported
for convenience in Tab. 2.

Table 2: 6 species-13 reactions Parent air modela

No. Reaction Rate Coefficient Ref.

1a e− +N2 → N+
2 + 2e− 10−6 · exp(−0.0105809 · ln2(E∗)− 2.40411 · 10−75 · ln46(E∗)) m3/s [32, 33, 31]

1b e− +O2 → O+
2 + 2e− 10−6 · exp(−0.0102785 · ln2(E∗)− 2.42260 · 10−75 · ln46(E∗)) m3/s [32, 33, 31]

2a e− +O+
2 → O2 2.0 · 10−13 · (300/Te)

0.7 m3/s [34]

2b e− +N+
2 → N2 2.8 · 10−13 · (300/Te)

0.5 m3/s [35]

3a O−
2 +N+

2 → N2 +O2 2.0 · 10−13 · (300/T )0.5 m3/s [35]

3b O−
2 +O+

2 → O2 +O2 2.0 · 10−13 · (300/T )0.5 m3/s [35]

4a O−
2 +N+

2 +N2 → O2 +N2 +N2 2.0 · 10−31 · (300/T )2.5 m3/s [35]

4b O−
2 +O+

2 +N2 → O2 +O2 +N2 2.0 · 10−31 · (300/T )2.5 m3/s [35]

4c O−
2 +N+

2 +O2 → O2 +N2 +O2 2.0 · 10−31 · (300/T )2.5 m3/s [35]

4d O−
2 +O+

2 +O2 → O2 +O2 +O2 2.0 · 10−31 · (300/T )2.5 m3/s [35]

5a e− +O2 +O2 → O−
2 +O2 2.0 · 10−41 · (300/Te) · exp(−600/T ) · exp

(
700(Te−T )

TeT

)
m6/s [35]

5b e− +O2 +N2 → O−
2 +N2 1.4 · 10−43 · (300/Te)

2 · exp(−70/T ) · exp( 1500(Te−T )
TeT

) m6/s [35]

6 O−
2 +O2 → e− +O2 +O2 8.6 · 10−16 · exp(−6030/T ) · exp(1− exp(−1570/T )) m3/s [36, Ch. 2]

a Units: Te and T are in Kelvin, N is the total number density of the plasma in m−3; E∗ is the reduced effective electric
field (E∗ = |E|/N) in units of V m−2.

The functional form of the source term due to chemical reactions is quite standard. Consider,
for example, a set of M reactions involving Nsp species k = 1 . . . Nsp and denote by ri,k and pi,k the
stoichiometric coefficient of the species k in the reaction i, namely

Nsp∑
k=1

ri,k nk ⇌
Nsp∑
k=1

pi,k nk i = 1 . . .M

Denoting forward reaction rate constant by cfi , the rate Rf
i of the i-th forward reaction is

Rf
i = cfi

∏
k

n
ri,k
k

therefore source term Sk has the form

Sk =

M∑
i=1

Rf
i (pi,k − ri,k) (2.8)

In order to include the effect of photo-ionization, we have followed the approach of Ref. [8]. Here
the number of photo-ionizing events per unit volume and time at position R is defined as the integral
of the ionization rates times a radiative kernel g(R,R′). Unlike Ref. [8], where the production of
ionized species is modeled with a classical Townsend-like expression, in our model the production of
ionized species is the effect of a suitable set of chemical reactions. For air the photo-ionization process
is usually triggered by photons emitted by excited molecular nitrogen N2. These photons, in their
turn, ionize oxygen molecules via the reaction O2 + hν → O+

2 + e [19]. N2 excitation is usually due
to energetic impact with electrons (i.e. electrons transfer energy to N2): it is therefore reasonable to
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assume that the photo-ionization rate depends on the rate of reaction 1a reported in Table 2. The
photo-ionization source term therefore reads:

Sph(R) = γph

∫
g(R,R′)

4π|R−R′|2
S1a(R′) d3R′ (2.9)

where S1a is the rate of reaction 1a and γph is the secondary electron efficiency. γph takes into account
the fact that only a fraction of the energetic collisions between N2 and electrons leads to an excited
state. The expression of the three dimensional photo-ionization kernel g(R,R′) is taken from [37, 38]:

g(R,R′) =
exp(−λ1|R−R′|)− exp(−λ2|R−R′|)

ln(λ2/λ1)|R−R′|
(2.10)

where λ1 = χmin PO2 , λ2 = χmax PO2 , and χmin = 0.035Torr−1 cm−1, χmax = 2Torr−1 cm−1 and where
PO2 is the partial pressure of molecular oxygen. Considering atmospheric pressure, PO2 = 150Torr,
thus 1/λ1 = 1.9mm and 1/λ2 = 33µm [8].
The geometry of the full-scale computation is cylindrical (see Fig. 1) and the problem is invariant
along the longitudinal axis ez. It is convenient to decompose the position vector R into a vector r
lying in the reference plane and into a vector zez along the longitudinal axis: R = r+zez. The source
term S1a does not depend on z and the general three-dimensional kernel of Eq. 2.10 can be integrated
along the longitudinal axis ez. This integration defines a new two-dimensional photo-ionization kernel:

G(r, r′) ≡ G(ρ ≡ |r− r′|) =
∫

g(R,R′)

4π|R−R′|2
dz′ (2.11)

The integration along z provides an explicit expression of the two-dimensional kernel G(r, r′) [8]:

G(ρ) =
ρ

4π ln
(
λ2
λ1

) [λ3
1G

0,3
3,0

(∣∣∣∣ 0(
−1

2 ,−1,−3
2

) ∣∣∣∣ (λ1ρ

2

)2
)

− λ3
2G

0,3
3,0

(∣∣∣∣ 0(
−1

2 ,−1,−3
2

) ∣∣∣∣ (λ2ρ

2

)2
)]

(2.12)

where G m n
p q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣ z) is the Meijer-G function [39].

Therefore the photo-ionization source term of Eq. 2.9 now becomes:

Sph(r) = γph

∫
Ω
G(r, r′)S1a(r′) d2r′ (2.13)

The function G(r, r′) strongly decreases as a function of its argument ρ and it is convenient to expand
it inside the integral [8]:

Sph(r) = γphG(|r|)
∫
Ω
S1a(r′)d2r′ + γph∇G(|r|) ·

∫
Ω
S1a(r′)r′d2r′ +O(ρ2) (2.14)

One can define the leading order term Sph,0(r) = γphG(|r|)
∫
Ω S1a(r′)d2r′ and the first order term

Sph,1(r) = γph∇G(|r|) ·
∫
Ω S1a(r′)r′d2r′ of the expansion:

Sph(r) = Sph,0(r) + Sph,1(r) +O(ρ2) (2.15)

The leading order term Sph,0(r) is the dominant one and the photo-ionization source term reduces to:

Sph(r) ≈ Sph,0(r) (2.16)

Finally the total source term S̃k is:

S̃e = Se + Sph

S̃O2 = SO2 − Sph

S̃O+
2
= SO+

2
+ Sph

S̃j = Sj j = N2, N
+
2 , O−

2

(2.17)
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2.2 Macroscopic model of the Drift region

In the drift region the reaction terms are negligible because of the low magnitude of the electric field,
as confirmed by the asymptotic analysis of Ref. [8]. Therefore, at stationary state, the drift-diffusion
model in this portion of the domain reduces to:{

∇ · Γp = 0

Γp = −Dp∇np + µpEnp

(2.18)

where np, µp and Dp are respectively the number density, the mobility and diffusion coefficient of the
charge carriers, namely the positive ions. In practice we replace the two positive ions of the full-scale
model, N+

2 and O+
2 , with a positive overall pseudo species.

In the electric quasi-static approximation, the electric field E is equal to the gradient of its potential
φ. Hence the Poisson equation reads as:

−∇ · (ε∇φ) = qnp (2.19)

The Poisson equation is completed with Dirichlet boundary conditions:{
φ(Re) = Ve

φ(Rc) = 0
(2.20)

that, we notice, are equal to the ones of Eq. 2.7. As explained in Sec. 2, the continuity equation is
completed with the following boundary conditions:

np(Re) = f(E,Re) (2.21)

np(Rc) = nmin (2.22)

Eq. 2.21 is the injection law based on the results of the full-scale simulations and will be discussed in
Sec. 4.3. The right-hand side of Eq. 2.22 is a constant value representing a minimum level of charged
species density, that we set equal to 109m−3 in all the simulations.
In the macroscopic model the mobility is assumed to be constant in contrast to the full-scale model.
This assumption is common in other literature contributions [14, 8, 17]. For all the simulations
we assume µ = 2 · 10−4m2 V −1 s−1. This is the same value adopted by Ref. [14]. Moreover it is
approximately the limiting value for positive air ions in the Parent model assuming a gas temperature
of T = 300K.

3 Numerical Method

In this section we describe the numerical methods used to solve the equations stemming from the
models described above. We start in Sec. 3.1 by considering the full-scale model of Sec. 2.1 as it is
the most complex to deal with. Indeed the method required to solve the macroscopic model is just a
special simplified case of that of Sec. 3.1, we briefly describe such simplifications and modifications in
Sec. 3.3.

3.1 Full-scale model

The full-scale model is applied to a configuration with concentric cylindrical electrodes (see Fig. 1).
The spatial discretization of the drift-diffusion equations 2.2 and of Poisson equation 2.4 is based on
a finite volume cell centred scheme. Due to the symmetry of the geometry, we work in cylindrical
coordinates and take into account only the dependence on the radial coordinate r.
A sketch of the computational mesh is shown in Fig. 2. The domain is divided into NC interior
cells plus two ghost cells. The unknowns (species number densities and potential, we use the generic
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Figure 1: Wire-in-Cylinder configuration of the electrodes. Emitter electrode is magnified for sake of
clarity

symbol ni in Fig. 2) are located at cell centres, except for n1 and nNC+2
, that are located on the

physical boundaries of the domain (i.e. the surface of the electrodes). Continuous vertical lines are the
physical boundaries of the domain, dashed vertical lines are the interfaces between interior cells and
dotted vertical lines are the internal interfaces of the two ghost cells (the other two being the physical
interfaces). For sake of clarity we rewrite Eqs. 2.2 and 2.4 in the new cylindrical reference system.

ni ni+1ni−1

i+ 1
2i− 1

2

∆ri

n1 n2 nNC+1
nNC+2

Figure 2: Sketch of the computational mesh.

The continuity drift-diffusion equation reads:

∂nk

∂t
+

1

r

∂ (rΓk)

∂r
= S̃k (3.1)

where Γk = −Dk
∂nk
∂r + zkµkEr nk is the flux and Er = −∂φ

∂r the component of the electric field along
the r axis. The Poisson equation for the electric field now reads:

1

r

∂

∂r

(
r
∂φ

∂r

)
= −1

ε

Nsp∑
k=1

qknk (3.2)

In order to discretize Eqs. 3.1 and 3.2 let’s multiply each side of the equations by r and then integrate
over each cell. The standard approximations used in the finite volume method lead to the following
equations for species density nk and for electric potential φ, written for the ith interior cell:

∂nk

∂t

∣∣∣∣
i

+
1

ri∆ri

[
(rΓk) |i+1/2 − (rΓk) |i−1/2

]
= S̃k|i (3.3)

1

ri∆ri

[(
r
∂φ

∂r

)∣∣∣∣
i+1/2

−
(
r
∂φ

∂r

)∣∣∣∣
i−1/2

]
= −1

ε

Nsp∑
k=1

(qknk)|i (3.4)

where we denote with the halved labels the cell interfaces and with the integer ones the cell centre.

(rΓk) |i+1/2 and
(
r ∂φ
∂r

)∣∣∣
i+1/2

are numerical fluxes and we need a suitable expression for them. The

numerical flux for Eq. 3.3 is computed with the exponential [40], or Scharfetter-Gummel [41], scheme:

(rΓk) |i+1/2 =
Dk|i+1/2

ln(r1+1/ri)

(
B(Xk|i+1/2)nk|i −B(−Xk|1+1/2)nk|i+1

)
(3.5)
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where B(X) = X/(eX −1) is Bernoulli’s function and Xk|i+1/2 = zkµk|i+1/2(φi+1−φi)/Dk|i+1/2. The
numerical flux for Eq. 3.4 is: (

r
∂φ

∂r

)∣∣∣∣
i+1/2

=
φi+1 − φi

ln(ri+1/ri)
(3.6)

The boundary conditions are applied in a straightforward way. For the drift-diffusion equations the
numerical flux at the physical boundaries of the domain (continuous vertical lines in Fig. 2) is com-
puted with Eqs. 2.5 for the ionized species and with Eq. 2.6 for neutral ones, instead of Eq. 3.5. For
the Poisson equation we impose φ1 = Ve and φNC+2

= 0.
The problem at hand is characterized by strong gradients of the electric field and of the species number
densities near the emitter electrode. Therefore, the mesh is built following a non uniform distribution
along the radial direction. The length ∆ri of the cells follows an hyperbolic tangent distribution. The
advantage is the possibility to cluster a higher number of cells in the vicinity of the emitter electrode.
Moreover the distribution has been made asymmetric, in order to increase the refinement near the
emitter.
The time integration of the system 3.3 is performed with the SUNDIALS [42] module available inside
the MATLAB software. We have selected the CVODE stiff solver, that implicitly integrates the sys-
tem of equations with a variable order method. In our case we have chosen a third order scheme.

3.2 Computation of Sph in cylindrical coordinates

We express the integral appearing in Eq. 2.16 in cylindrical coordinates:

Sph(r, θ) = γphG(r)

∫
Ω
S1a(r′) r′dr′dθ′ (3.7)

Given the symmetry of the problem the argument of the integral does not depend on the variable θ′

and defining γeff = 2πγph it follows:

Sph(r) = γeffG(r)

∫ Re

Rc

S1a(r′) r′dr′ (3.8)

The integral appearing in Eq. 3.8 is computed with the standard mid-point rule of finite volume
method.

3.3 Macroscopic model

The governing equations of the macroscopic model are also discretized with a finite volume method.
In particular, the numerical flux of the discrete version of Eq. 2.18 is expressed by Eq. 3.5, while for
Eq. 2.19 we resort to Eq. 3.6. The non linear system of equations obtained from the discretization
procedure is solved, together with the boundary conditions given by Eqs. 2.20, 2.21 and 2.22, via the
fsolve function of MATLAB.

4 Full-scale model results

The simulations are performed imposing on the emitter a voltage that varies in a quasi-stationary
fashion:

Ve(t) = V0 +


0 0 ≤ t < 1

Vf
t− 1

T
1 ≤ t < T − 1

Vf T − 1 ≤ t ≤ 2T

(4.1)

With a suitable choice of T the voltage varies so slowly in time, that at each instant the solution is
practically stationary. This procedure allows to retrieve the entire output dataset over the chosen
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range of voltage [V0, Vf ] in a single simulation. In our simulations we choose T = 200 s.
The current produced by the corona discharge is computed according to the Sato’s formula [43, 44]:

I =
1

Ve

∫∫∫
Ω

Nsp∑
k=1

qkΓk

 ·EsdV [A] (4.2)

that, in a one-dimensional geometry in cylindrical coordinates, reduces to:

J =
2π

Ve

∫ Rc

Re

Nsp∑
k=1

qkΓk

Esrdr [A/m] (4.3)

where Es is the static or Laplacian electric field, obtained considering only the applied voltage and
neglecting the charge density inside the volume.

4.1 Validation

The results of the full-scale model are compared with the experimental measurements of Ref. [45] in
order to provide a validation of our assumptions. In Fig. 3 the experimental current-voltage data
are confronted with the numerical data obtained with the plasma model presented in Sec. 2.1. We
performed the computations both with the original Parent kinetic model without photo-ionization and
with our modified version that includes photo-ionization.
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(a) Linear scale.

25 30 35 40 45 50 55

10 -1

10 0

(b) Logarithmic scale.

Figure 3: Current-voltage curves obtained from experimental results (Zheng et al. 2015) [45], nu-
merical two-scale model (Monrolin et al. 2021) [8], analytical model (Monrolin et al. 2018) [22] and
1D simulation with Parent model with and without photo-ionization. Emitter radius 700µm, gap
10.35 cm.

Our full-scale model with the inclusion of photo-ionization appears to be in good agreement with
the experimental data when setting γeff = 2.5 ·10−3. The emitter radius Re is quite large, being equal
to 700µm; the local electric field, for purely geometric reasons, is not too high and the contribution
of photo-ionization is not negligible. The small difference in the slope of the curve with respect to
Refs. [22] and [8] is due to the mobility of ions which they take constant, while in our model it is a
function of the electric field and of temperature. The current is well predicted for almost all applied
voltages, excluding under Ve = 25 kV , a value that is however close to the onset voltage, estimated
to be Von ≈ 22.1 kV in Ref. [45]. The addition of other chemical species could improve the quality
of predictions in the neighborhood of the onset voltage. However, we should point out that in this
contribution we aim at devising an injection law to be used after the onset and therefore a very precise
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estimation of the onset voltage is not of fundamental importance. Onset conditions are the limit above
which current is generated in the corona [22, 45]. The onset, or ignition, voltage Von can be accurately
computed as the solution of a suitable eigenvalue problem [46]. Instead of solving the eigenvalue
problem, we have opted to identify as onset the voltage at which the current starts to be greater than
zero. Because of the limitations of our model and discretization errors of numerical approximations,
it is reasonable to consider the onset of the discharge when the computed current reaches a threshold
value set equal to 10−6A/m. In Table 3 the onset electric field estimated from our simulations for
three different emitter radii and a gap L = 9 cm, considering the model with and without photo-
ionization, is compared with the one predicted according to Ref. [22]. The numerically computed
onset electric field Eon with photo-ionization is in good agreement with the analytical formula of
Ref. [22]. The onset electric field without photo-ionization is instead systematically higher, because a
stronger applied voltage is needed to initiate the discharge.

Table 3: Comparison of the estimated onset field with respect to theoretical predictions of [22]. Here
the onset criterion is based on a threshold current value of 10−6 A/m

Emitter Radius [µm] Eon[V/m] [22] Eon[V/m] [No Sph] Eon[V/m] [With Sph]

50 1.479 107 1.975 107 1.469 107

300 8.044 106 9.472 106 8.292 106

700 6.471 106 7.352 106 6.729 106

The computation without photo-ionization underestimates the current for the same applied voltage.
The absence of the photo-ionization source term Sph is clearly visible on the current-voltage curve:
the discharge produces the same current with a higher applied voltage on the emitter. The reason
could be found in the lack of sufficiently energized electrons inside the plasma region that can sustain
the discharge at lower voltages.

We have noticed that, when the emitter radius is decreased and the applied voltage increases, the
role of photo-ionization becomes less and less important in predicting the current. Figure 4 shows
the current-voltage curve for an emitter of radius Re = 50µm and a gap L = 2 cm with and without
photo-ionization. When the applied voltage is above 15 kV the difference in the computed current
is negligible. However, there is still a difference in the neighborhood of the discharge onset, that is
around 5 kV . We remark also, as before, that the onset is delayed without photo-ionization.
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(b) Logarithmic scale.

Figure 4: Current-voltage curve obtained from full-scale simulations. Emitter radius 50µm, gap 2 cm.
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4.2 Ionization region thickness

As already pointed out, in corona discharges the strong gradient of the electric field allows the dis-
tinction between a ionization and a drift region. To the authors’ best knowledge, there is not a unique
criterion to identify the length of the plasma region. Therefore we propose a strategy to identify where
it is possible to reasonably locate the end of the ionization layer and thus to compute the plasma region
length. Our idea is based on the phenomenological behavior of corona discharges, assuming a clear
distinction between the ionization and the drift zone. By definition, the ionization layer is where the
greatest part of ionizing events by chemical reactions takes place. We define a cumulative integral of
the kth species reaction rate as:

Ŝk(r) =

∫ r

Re

Skr
′dr′ k = N+

2 , O+
2 (4.4)

The integral Ŝk(r) is computed for every relevant charged species that will survive in the drift region,
namely the positive ions, that for the Parent model are N+

2 and O+
2 . Remark that, because of

symmetry, it is unnecessary to integrate over the remaining coordinates of the cylindrical reference
system. The cumulative integral is equal to the total generation or destruction of species k in the
domain, per unit time and area, when r = Rc. We can find the coordinate of the end of the ionization
layer by considering the point at which the cumulative integral reaches a certain threshold. A low
threshold will underestimate the thickness of the ionization region, a too high one will overestimate
it. An example of cumulative integral is presented in Fig. 5a for an emitter radius Re = 700µm, a
gap L = 10.35 cm and an applied voltage of 53000V . This case corresponds to the highest applied
voltage of Fig. 3 in Sec. 4.1. The cumulative integrals of N+

2 and O+
2 both increase very quickly near

the emitter, reach a maximum and slightly decrease afterwards in the drift region, where there is a
practically negligible neutralization of charged species. The value r̂ at which Ŝk reaches 98% of its
first maximum is considered as the end of the ionization layer. With this procedure we obtain two
values of r̂, one for N+

2 and one for O+
2 . The end of the ionization region, and therefore the ionization

length lion = r̂−Re, is then identified with the maximum between these two values. Once the corona
discharge is ignited, the two values of the computed ionization lengths are close one to the other, as
shown in Fig. 5b, thereby supporting the validity of our definition of the ionization region length. In
principle it is necessary to compute the ionization length for every applied voltage greater than the
onset one. However, as we notice from Fig. 5b, the ionization length quickly tends to an asymptotic
value. Therefore, in the following, given a range of voltages for a certain geometry, we retain the value
of ionization length that corresponds to the last simulated applied voltage.
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(a) Cumulative integral of the reaction rates, applied
voltage Ve = 53 kV .
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Figure 5

12



6.0×10
6

8.0×10
6

1.0×10
7

1.2×10
7

1.4×10
7

1.6×10
7

E [V/m]

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

n
 [

m
-3

]

Gap 2 cm

Gap 3 cm

Gap 5 cm

Gap 7 cm

Gap 9 cm

Number density positive ions vs emitter electric field
With photoionization, R

e
 = 50 µm

p

(a) Number density of positive ions versus electric
field at the emitter surface, with photo-ionization.

8.0×10
6

1.2×10
7

1.6×10
7

2.0×10
7

2.4×10
7

E [V/m]

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

n
 [

m
-3

]

Gap 2 cm

Gap 3 cm

Gap 5 cm

Gap 7 cm

Gap 9 cm

Number density positive ions vs emitter electric field
Without photoionization, R

e
 = 50 µm

p

(b) Number density of positive ions versus electric
field at the emitter surface, without photo-ionization.

Figure 6

4.3 Injection law

The main goal of this work is to provide a reliable way of exploiting one dimensional results to build
boundary conditions for more complex configurations. To accomplish this task we need to sample
the positive charge density at the end of the ionization region as function of the electric field. In the
macro-scale, or drift region, computations, the ionization region is assumed to be vanishingly small,
i.e. the macro-scale boundary conditions are applied at the surface of the emitter electrode, instead
of the edge of the ionization layer. For this reason, we use the electric field at the emitter surface
as a parameter to fit the number density of positive ions. This approach is very similar to classical
boundary layer theory [47], where the outer edge of the boundary layer (the ionization region for us)
corresponds to the wall surface of the external flow (the drift region for us). We have noticed that
photo-ionization strongly influences the relation between charge density and electric field at the edge
of ionization region (see Figs. 6a and 6b), even for cases, like the one shown in Fig. 4 of Sec. 4.1,
where the current is only marginally affected by photo-ionization. Therefore we performed full-scale
computations with and without photo-ionization and differentiate the fitting procedure between the
two cases.
We have carried out several simulations varying the emitter radius and the gap length. We considered
five different emitters with radius Re = 700, 500, 300, 100, 50µm and five gaps L = 9, 7, 5, 3, 2 cm. The
computations are performed with the full-scale model, presented in Sec. 2.1 and validated in Sec. 4.1.
The parameters for the boundary condition of the macro-scale model (positive charge number density
and electric field) are found from these full-scale results.
For the computations with photo-ionization, Fig. 6a clearly shows that, once the discharge is ignited,
the relation between the number density of positive ions at the edge of the ionization region and
electric field at the emitter surface is quite insensitive to the gap length. A Kaptzov-like behavior is
observed: once the discharge is ignited the value of the electric field remains nearly constant, with a
huge increase in the density of positive ions. The results of Fig. 6a are computed for an emitter with
Re = 50µm, but the same qualitative behavior is found for the other combinations of emitter radius
and gap. Therefore we consider only the biggest gap, namely L = 9 cm, for every emitter radius.
For computations without photo-ionization, the differences among the various gap lengths are more
important, as shown in Fig. 6b and the Kaptzov like behavior is much less evident. In particular for
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gaps of 2 cm and 3 cm the link between electric field and number density is not a one-to-one function
anymore. This phenomenon happens at high applied voltages, when the discharge is probably very
close to spark transition. We are aware that further investigations are needed before we can conclude
if this behavior can be real or it is only an artifact of our modeling assumptions. As a consequence we
have discarded the results for the small gaps and have taken into account only the biggest gap also
for the fitting procedure without photo-ionization.

We fit the relation between the positive ions density and the electric field with an exponential law
of the form:

np(E) = nref exp

(
E − Ēon

Eref

)
(4.5)

The rationale is that this form has already been proven to work well and to ensure the numerical
stability of the non linear solver of the macroscopic model [13].
Below the onset, when the discharge is not yet started, the density of positive ions is very small and
the current is negligible. It is pointless to fit the relation between density and electric field for this
condition, therefore the density is simply kept equal to a suitable constant value. In the self-sustained
regime the density profile approximated by Eq. 4.5 can be seen as a linear regression in the log-log
plane. Taking the logarithm on both sides of Eq. 4.5 it follows:

ln(np/nref ) =
E − Ēon

Eref
= mE + q (4.6)

where m = 1/Eref and q = −Ēon/Eref .
Ēon can be interpreted as a kind of onset electric field, although it should not be confused with the
physical quantity Eon discussed in Sec. 4.1. It can coincide numerically with the true Eon, but it is
better to see it as a fitting parameter. nref is the value of number density when E = Ēon. Eref will
determine the slope of the linear regression. The interpretation of this parameter is different according
to the full scale model adopted.
The continuous curves of Fig. 7 show the number density of positive ions as a function of the electric
field, once the discharge is ignited. With photo-ionization the curves follow quite closely the Kaptzov
hypothesis, hence the electric field remains almost constant. This behavior causes troubles in the
numerical solution of the macroscopic model, because a small change in the electric field would corre-
spond to a huge variation in ions number density: here Eref controls the slope of the number density
and the stability of the numerical solution. A small Eref yields a steeper slope but at the same time
reduces the beneficial effect of the exponential law in terms of stability. Therefore Eref needs to be
a compromise between accuracy of fitting and numerical stability. We empirically found that Eref

should be set between 10−3 Ēon and 10−2 Ēon.
In Sec. 4.1, Fig. 4, we have shown that, for small radius emitters, the photo-ionization plays a marginal
role in the current-voltage characteristic of the discharge, for a sufficiently high applied voltage. How-
ever the model produces profiles of the number density versus the electric field at the emitter that are
different from the ones predicted with photo-ionization, as can be noticed by Figs. 6a and 6b. Indeed,
without photo-ionization, the number density shows initially a Kaptzov-like behavior after the onset,
but when the number density is above 1013, the behavior deviates from the Kaptzov one and, for gaps
greater than 5 cm, the increase of positive charges with electric field is smoother. In this case Eref is
a parameter that permits to find the correct slope in the np − E plane.
In Fig. 7 the exponential fitting of the boundary condition is reported considering various emitter
radii, with and without photo-ionization. Without photo-ionization a systematically higher electric
field and therefore applied voltage is needed to reach the same value of ions number density produced
with photo-ionization. The consequence in the macroscopic model is that, for the same applied volt-
age, the current will be under-estimated because the onset is delayed, as shown in Figs. 3 and 4 for
the full-scale model. For low applied voltages, when the discharge has not yet started, the error of the
described fitting will be considerable. However, because we are interested only in the self-sustained
regime of the corona, this error is not of practical relevance. The values of the parameters nref ,
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Ēon and Eref used to obtain the fitting curves of Fig. 7 are reported in Table 4. We observe that,
with photo-ionization, Ēon is very close to the values of the physical Eon shown in Table 3; without
photo-ionization the difference between the two quantities is quite larger.

Table 4

Emitter Radius [µm] Sph Ēon [V/m] Eref [V/m] nref [m−3]

50 Yes 1.4681 107 1.4681 105 109

50 No 1.5458 107 4.5425 105 109

300 Yes 8.2879 106 1.6576 104 109

300 No 7.9734 106 1.5795 105 109

700 Yes 6.7338 106 1.3468 104 109

700 No 6.4195 106 9.1253 104 109

1.4 1.6 1.8 2 2.2 2.4
10 7

10 10

10 12

10 14

10 16

p

(a) Re = 50µm

8 8.5 9 9.5 10 10.5
10 6

10 10

10 12

10 14

10 16

p

(b) Re = 300µm

6.6 6.8 7 7.2 7.4 7.6 7.8 8
10 6

10 10

10 12

10 14

10 16

p

(c) Re = 700µm

Figure 7: Fitting of the injection law.

15



5 Macroscopic Simulations

In this section we compare the results of the macro-scale model, supplemented with the injection law
explained in Sec. 4.3, with the full-scale computations. We emphasize that, for each emitter, only
one full-scale simulation is required to fit the boundary condition for a variety of gap lengths in the
macro-scale model.
Figure 8 shows the current-voltage curves computed by the macro-scale model for three different
emitter radii (Re = 50µm, Re = 300µm, Re = 700µm) against those computed with the full-scale
one, with photo-ionization. As a general trend we observe that the agreement is excellent for the
biggest gaps, which is not surprising because the fitting procedure of Sec. 4.3 is carried out for a gap
of 9 cm, and is acceptable for the smallest gaps of 2 cm and 3 cm. The maximum error is found for the
combination of smallest gap and biggest emitter and it is about 15%. There are a couple of reasons
that justify this behavior. First of all we remark that the current, with the same applied voltage,
decreases with respect to gap length. The reason is simple, the number density of positive ions at
the emitter decreases too for increasing gap length. An inspection of Fig. 7 shows clearly that the
discrepancy between the true np − E curve and its fitting increases with np. Therefore small gap
lengths, with higher np, amplify the discrepancy between full-scale and macro-scale computations,
even if the maximum error is still acceptable. The agreement could be improved increasing the slope
of the fitting curve, i.e. with a smaller Eref , but at the expense of numerical stability, as explained in
Sec. 4.3. Another reason is that some deviations from the Kaptzov-like behavior can arise for small
gaps and high applied voltage: indeed this is shown in Fig. 6a for 2 cm and 3 cm gaps. In the context
of negative corona small deviations from the Kaptzov hypothesis have been found in high current
regime [23]. A detailed study of these phenomena is beyond the scope of the present paper and it is
postponed to future studies.

An inspection of Fig. 9 shows that for a gap L = 9 cm the density profile obtained with the
macroscopic model is in very good agreement with the full-scale one, since the boundary condition is
derived from this geometry. Differences between the two models are amplified for a gap L = 2 cm;
the macroscopic model tends to underestimate the charge injected in the domain, as shown in Fig. 10.
Again this is expected since we are limiting the slope of the fitting curve between the number density
of positive ions and the electric field at the emitter surface. We remark again that the less accurate
configuration is for the smallest gap and the biggest emitter radius, as shown by Fig. 10a. In the
field of ionic propulsion emitter radii are usually below 100µm [15] and therefore, as we remark from
Figs. 9b and 10b, macro-scale results can be expected to be quite close to full-scale ones.

We finally observe that macro-scale and full scale computations agree reasonably well in the drift
region, but the ionization layer near the emitter cannot be captured in the macroscopic simulations. As
explained in Sec. 4.3 the ionization layer is vanishingly small on the scale of macroscopic computations
and the boundary conditions are applied at the surface of the emitter, instead of the edge of the
ionization layer. This fact is well depicted in Figs. 11a and 11b, where a zoom of the computational
domain near the emitter is shown. One can clearly see the difference between macro-scale and full-scale
computations. Macro-scale computations completely ignore the existence of the ionization layer and
reach, at the emitter wall, a number density imposed by the injection law of Eq. 4.5. On the opposite,
the full-scale computations build-up progressively the number density of the positive ions inside the
ionization layer and the two models agree outside the ionization region, i.e. in the drift region. We
remark that the length of the region where the two models disagree is of the order of 10−4m which is
negligible with respect to the gap length, that is of the order of 10−2m for the smallest gap.
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Figure 8: Current-voltage curves obtained from macroscopic simulations compared with the full-scale
ones. Legend common to all figures.
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(a) (b)

Figure 9: Number density of positive ions computed by the macroscopic model versus the full-scale
model at different applied voltages. Gap length L = 9 cm.
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Figure 10: Number density of positive ions computed by the macroscopic model versus the full-scale
model for different applied voltages. Gap length L = 2 cm.
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Figure 11: Number density of positive ions computed by the macro scale model compared with the
full-scale one. Zoom of the emitter region.

6 Two-dimensional macroscopic simulations

We test the described method to compute boundary conditions for the macroscopic model in a two-
dimensional wire-to-cylinder configuration, that, although not aerodynamically efficient, is similar to
the configurations under study for ionic propulsion [15]. The two-dimensional simulations are run on
an in-house code; the detailed description of the numerical methods adopted is beyond the scope of
the current work. The code uses the same modeling assumptions of Sec. 2.2 and a numerical method
that, like in Sec. 3.3, solves the discretized version of Eqs. 2.18 and 2.19 via Newton’s method.
The extension to the two-dimensional setting is based on the assumption that the amount of injected
charge is locally dependent on the normal component of the electric field at the emitter surface and
on the local curvature of the surface [13]. A consequence of such assumptions is that the injection law
can be applied pointwise on the emitter, with parameters derived from one-dimensional simulations.
The main purpose of the test being carried out in the present section is to assess the accuracy of
simulations based on such assumption.
We consider as emitter a wire of radius Re = 50µm, with varying gap length L and collector radius
Rc. The parameters Ēon, Eref and nref for such emitter are reported in Table 4.
As an example of this kind of computations, the number density of the positive ions for an applied
voltage V = 20 kV is shown in Fig. 12a, with the electric field iso-lines in background. The electric
potential is the depicted in Fig. 12b, with the its own iso-lines. The computations are carried out for
L = 30mm and Rc = 15mm.
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Figure 13: Number density profile at the emitter.

(a) Number density in [m−3] with electric field iso-lines. (b) Electric Potential in [V ] with its own iso-lines.

Figure 12: Wire-cylinder configuration with gap length L = 30mm, collector radius Rc = 15mm and
emitter radius Re = 50µm.

In Fig. 13 we show the number density of positive ions near the emitter. One can notice that the
density distribution is not symmetrical, because the electric field around the emitter is not symmetric
too, as shown by the iso-lines of Fig. 12a. It is remarkable that the boundary condition implemented
by Eq. 4.5 is able to properly set the ion emission around the emitter, catching the non-symmetrical
feature of such configuration. Unlike existing literature methods [14], this result is achieved without
any sort of numerical regularization.
We compare our results with respect to numerical simulations with the corona model of Coseru [14]
and the experimental results of Kiousis [48] in terms of current versus applied voltage.
The current applied-voltage curves are shown in Fig. 14. The results of Fig. 14a are obtained fixing
the gap distance to L = 30mm and varying the collector radius Rc according to the values reported
in the legend. Figure 14b shows the current applied-voltage curves obtained with a collector radius
Rc = 15mm and varying the gap L.
Our results are labeled in the legend with the keywords ”Present with Sph” and ”Present without
Sph”, differentiating between the case in which the boundary condition is fitted from the full scale
model with and without photo-ionization respectively.

Overall our results with photo-ionization (continuous line in Fig. 14a and 14b) are in good agree-
ment with the experimental data, except the case of gap length L = 20mm and collector radius
Rc = 15mm, where the current is overestimated by a maximum of 15%. As already remarked in
Sec. 5, when photo-ionization is neglected in the full scale model and therefore in the boundary condi-
tion for the macro-scale model, the current is under-estimated for the same applied voltage, as shown
by the dotted lines of Fig. 14a and 14b. It is fair to conclude that these results prove the soundness
of our approach.
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Figure 14: Current-voltage curves for a wire-cylinder configuration with Re = 50µm.

7 Conclusions

In this paper, the corona discharge in a cylindrical configuration is studied using two different models.
The first is a full-scale model, which includes chemical kinetics with and without photo-ionization and
solves together the ionization region and the drift region. The second is a macro-scale model, which
solves only the drift region and includes the ionization region via an injection law in the form of a
Dirichlet boundary condition, that prescribes the density of positive ions at the end of the ionization
region as a function of the electric field at the emitter surface. The rationale of this approach is
that the injection law mainly depends on the emitter geometry, as demonstrated by computations
with the full-scale model. The relation between the positive ions number density at the end of the
ionization region and the electric field is not assumed a priori, but rather computed with the full-scale
model. When photo-ionization is present, the results agree quite well with the Kaptzov’s hypothesis.
When photo-ionization is absent, we notice deviations from the Kaptzov’s hypothesis. This point is
interesting and will be the object of future work. An injection law of exponential form proves to
be suitable for providing both a good fit for the boundary condition data and numerical stability
of the macro-scale model. Compared with the full-scale model results, the macro-scale model yields
accurate results in terms of both current and positive ions number density, despite its simplicity. The
exponential boundary condition is then used in a two-dimensional wire-to-cylinder configuration. Our
results in terms of current and density of positive ions agree with numerical and experimental results
from literature. These two-dimensional results open the way for the application of this methodological
framework to more complex configurations which, coupled with the Navier-Stokes fluid equations, will
be object of future studies.
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