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Abstract

Cardiac in silico numerical simulations are based on mathematical models
describing the physical processes involved in the heart function. In this review
paper, we critically survey biophysical detailed mathematical models describing
the subcellular mechanisms behind mechanical activation, that is the process
by which the chemical energy of ATP (adenosine triphosphate) is transformed
into mechanical work, thus making the muscle tissue contract. While presenting
these models, that feature different levels of biophysical detail, we analyze the
trade-off between the accuracy in the description of the subcellular mechanisms
and the number of parameters that need to be estimated from experiments.
Then, we focus on a generalized version of the classic Huxley model, that is
able of reproducing the main experimental characterizations associated to the
time scales typical of an heartbeat – such as the force-velocity relationship and
the tissue stiffness in response to small steps – featuring only four independent
parameters. Finally, we show how those parameters can be calibrated starting
from macroscopic measurements available from experiments.

Keywords Mathematical modeling, Cardiac modeling, Active stress, Sarcomeres,
Crossbridges

1 Introduction

Cardiovascular diseases represent the worldwide leading causes of death (Murray et al.
2014), with millions of cases every year. While advancements in medical practice are
continuously leading to the development of new therapies and to the improvement of
patients care, the role of mathematical and numerical modeling and, more generally,
computational medicine, is increasingly being recognized in the context of cardiovas-
cular research. Realistic and accurate in silico models can indeed provide valuable
insights on the heart function and support clinicians for personalized treatment of
patients (Smith et al. 2004; Crampin et al. 2004; Nordsletten et al. 2011; Fink et al.
2011; Chabiniok et al. 2016; Gerbi, Dedè, and Quarteroni 2018; Quarteroni et al.
2019).
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The development of a mathematical and numerical model of the heart function re-
quires integrating together models describing the different physical processes involved,
at different spatial scales, in the cardiac activity. The heart is indeed a multiphysics
and multiscale system, whose functions is the result of multiple processes acting in
concert to accomplish its main goal, that is pumping blood throughout the body, to
supply organs with oxygen and nutrients and to remove the metabolic waste (Tor-
tora and Derrickson 2008; Jenkins, Kemnitz, and Tortora 2007; Katz 2010; Bers
2001). This process involves an electrophysiological activity (the propagation of an
electric potential throughout the cardiac cells membrane and ionic exchanges across
the membrane), a subcellular activity (the interactions of contractile proteins) and a
mechanical activity (the contraction of the muscle and the resulting blood ejection
form the cardiac chambers).

Each process involved in the cardiac function can be described by ad hoc developed
mathematical models, written in different forms, including:

• systems of ODEs (Ordinary Differential Equations, see e.g. Hodgkin and Huxley
1952; Ten Tusscher et al. 2004; Ten Tusscher and Panfilov 2006; Aliev and Pan-
filov 1996; Bueno-Orovio, Cherry, and Fenton 2008; Regazzoni, Dedè, and Quar-
teroni 2018; Regazzoni, Dedè, and Quarteroni 2019; Regazzoni 2019; Hunter,
McCulloch, and Ter Keurs 1998; Niederer, Hunter, and Smith 2006; Land et al.
2012);

• systems of PDEs (Partial Differential Equations, see e.g. Colli Franzone, Pavarino,
and Savaré 2006; Colli Franzone, Pavarino, and Scacchi 2014; Guccione, McCul-
loch, and Waldman 1991; Holzapfel and Ogden 2009; Huxley 1957; Regazzoni
2019);

• continuous-time Markov Chains (see e.g. Rice et al. 2003; Hussan, Tombe, and
Rice 2006; Sugiura et al. 2012; Washio et al. 2013; Washio et al. 2015);

• systems of SDEs (Stochastic Differential Equations, see e.g. Caruel and Truski-
novsky 2018; Caruel, Moireau, and Chapelle 2019).

In this review paper, we focus on the models describing the subcellular processes by
which the energy stored in ATP is transformed into mechanical work, thus leading to
the contraction of the myocardium. To fulfill their predictive role, these mathematical
models should accurately describe the complex mechanisms involved in the process of
active force generation. However, very detailed models typically feature large num-
bers of parameters, which need to be estimated by experimental measurements. The
difficulty inherent to direct measures of the subcellular properties of the cardiac tis-
sue calls for a difficult trade-off between the biophysical detail of the models and the
identifiability of their parameters.

1.1 Paper outline

This paper is organized as follows. In Sec. 2 we illustrate the physiological basis of the
active contraction of the cardiac muscle and the main experimental characterizations
of this phenomenon, and we highlight the fundamental behaviors that need to be
reproduced by mathematical models. Then, in Sec. 3, we review several mathematical
models, available in literature, describing the mechanisms by which force is generated
in the cardiac muscle. In Sec. 4 we consider the issue of parameters identifiability for
force generation models. In particular, we show, for a modified version of the Huxley
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Figure 1: Representation of a sarcomere. Inside sarcomeres, thin and thick filaments
are arranged with a regular structure. M-lines, located at the center of the sarcom-
ere, have the function of connecting thick filaments together. Z-discs link adjacent
sarcomeres to each other and to the extracellular matrix and are connected to thick
filaments through a huge cytoskeletal protein named titin.

model (Huxley 1957), how the model parameters can be estimated by measurement
typically available from experiments. Finally, in Sec. 5, we discuss some concluding
remarks.

2 Active force generation in the cardiac tissue

Sarcomeres, the fundamental contractile units of striated (i.e. skeletal and cardiac)
muscles, have a cylindrical shape, with a length ranging from 1.7 µm and 2.3 µm in
physiological conditions. They mainly consists in two types of filaments, thin filaments
(or actin filaments, AF) and thick filaments (myosin filaments, MF), arranged with a
nearly crystalline structure (see Fig. 1). Active force is generated by the interaction of
the protein actin, located on the thin filament, and the protein myosin, located in the
thick filaments (Tortora and Derrickson 2008; Jenkins, Kemnitz, and Tortora 2007;
Katz 2010; Bers 2001).

The contraction of sarcomeres is triggered by an increase of intracellular calcium
ions concentration and can be split into two steps. The first one is the thin filament
regulation, the second one is the actomyosin interaction. The focus of this paper is on
the second of the two steps, described in Sec. 2.1.

In the first step, calcium ions bind to the so-called regulatory units (troponin-
tropomyosin complexes located on the thin filaments), thus inducing a conformational
change in tropomyosin. Tropomyosin acts as an on-off switch for the actomyosin
interaction: when it is in non-permissive state, it sterically hinders the binding of
myosin with the regulated actin binding sites. Conversely when a tropomyosin unit is
in permissive state, the regulated actin binding sites are free to interact with myosin
and to generate force. The actomyosin interaction is a cyclical process, known as
Lymn-Taylor cycle (Lymn and Taylor 1971), described in detail in the next section
(Sec. 2.1).

2.1 The Lymn-Taylor cycle

Myosin is a molecule made of a coiled–coil tail and two paired heads, capable of
binding to actin, thus forming the so-called crossbridges (XBs). Myosin is indeed a
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Figure 2: Representation of the Lymn-Taylor cycle.

molecular motor, which translates the chemical energy stored inside ATP, the primary
energy carrier in living organisms, into mechanical work. This is made possible by the
so–called power-stroke, that is a rotation of the attached myosin heads (MHs) which
pulls the AF towards the centre of the sarcomere. After the power-stroke, the MH
detaches and binds to actin in a different position and the cycle is repeated. The joint
work of several thousands of pulling MHs makes the sarcomere contract (Tortora and
Derrickson 2008; Jenkins, Kemnitz, and Tortora 2007; Katz 2010; Bers 2001).

Such attachment-detachment process takes place along a cyclical path, described
by the Lymn-Taylor cycle, comprising the following four steps (Lymn and Taylor 1971;
Bers 2001; Keener and Sneyd 2009; Caruel and Truskinovsky 2018), represented in
Fig. 2.

1. ATP hydrolisis. Myosin, in the stage of the cycle that is traditionally con-
sidered as the starting point, is bound to ATP and detached from actin. The
catalytic site of myosin hydrolyses ATP into ADP and a phosphate group Pi

(which remains attached to myosin), transferring to myosin the energy stored
in ATP. The MH is still detached from actin, but reoriented and in a higher
energetic state.

2. XB attachment. The energized MH binds to actin and the phosphate group
is released.

3. Power stroke. The MH rotates towards the centre of the sarcomere (less
energetic state), thus pulling the actin filament in the same direction. ADP is
released from myosin. The force developed by a single power stroke is nearly
0.5–1.0 pN, and the head rotation is nearly 5–10 nm.

4. XB detachment. At the end of the power stroke, myosin is tightly bound to
actin in a rigor configuration, until an ATP molecule binds to myosin, making
it detach from actin.

The Lymn-Taylor cycle is repeated, with a pace of nearly five times per second, as long
as two conditions are satisfied: enough ATP to fuel the process is available; calcium
ions level is high enough to keep tropomyosin in the permissive configuration. When
ATP is depleted, the cycle stops in the phase between steps 3 and 4, where all XBs are
firmly attached (leading, for skeletal muscle, to the rigor state observed in cadavers).
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(a) Force-velocity relatioship (b) Fast transient response

Figure 3: Representation of the force-velocity curve (a) and tension-elongation curves
after a fast transient (b) that is typically obtained in experiments.

When calcium concentration returns to its rest concentration, instead, the cycle is
stopped in the phase between steps 1 and 2.

2.2 Force-velocity relationship

One of the earliest experimental characterizations of muscle functionality is the force-
velocity relationship, dating back to Archibald V. Hill, Nobel Prize winner for his
work on the heat production and mechanical work in muscles (Hill 1938). In the Hill’s
experimental setup, a muscle fiber is stimulated under isometric conditions until it
reaches the steady-state active tension T iso

a . Then, a negative (or positive) force step
is applied. After a transient phase (which is discussed in Sec. 2.3), the fiber reaches a
steady-state with a constant shortening (or lengthening) velocity. The measured force-
velocity relationship is a convex curve for positive shortening velocities, connecting the
so-called stall force, namely the force in isometric conditions (T iso

a ), with the maximum
shortening velocity (vmax), in correspondence of which the generated tension is zero
(see Fig. 3a).

The force in isometric conditions T iso
a depends on two variables (the sarcomere

length SL and the calcium concentration inside the cells [Ca2+]i, where the subscript
“i” stands for intracellular) that affect the fraction of permissive regulatory units
(Bers 2001; Katz 2010). Clearly, also the force-velocity curves are affected by the
same variables; however, when the tension is normalized with respect to the isometric
values, the curves obtained with different values virtually superimpose (Bers 2001;
Caremani et al. 2016). This observation suggests that the mechanism underlying
the force-velocity relationship is largely independent of the calcium-driven regulation
and, therefore, it is linked to the cycling of XBs (Keener and Sneyd 2009; Caruel
and Truskinovsky 2018; Caremani et al. 2016). The maximum shortening velocity for
half-sarcomere is independent on the [Ca2+]i and SL and it is about vmax

hs = 8 µm s−1

(significantly larger than for skeletal muscle).

2.3 Fast isometric and isotonic transients

Fast isometric and isotonic experiments help shedding light on the fastest time scales
involved in the dynamics of force generation in the muscle tissue. The two experimen-
tal setups are briefly described in the following.

• Force clamp (soft device or isotonic transient). It consists in the same setup
employed to obtain the force-velocity relationship. After the isometric force is
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reached, a step in tension is applied. After a fast transient, the fiber reaches a
constant velocity.

• Length clamp (hard device or isometric transient). In this case, after that the
steady-state is reached while keeping constant the length of the fibers (typically
in the range of sarcomere lengths for which the force-length curve is constant,
Gordon, Huxley, and Julian 1966; Kentish et al. 1986; Ter Keurs, Hollander, and
Keurs 2000), a step in length is applied (without exiting the above mentioned
plateau region). The measured force undergoes a fast transient, before returning
to the original level.

In both the cases, the observed transient can be split into four different phases (even
if in the cardiac tissue the third phase is absent), associated with different time scales
(Keener and Sneyd 2009; Marcucci and Truskinovsky 2010a; Marcucci and Truski-
novsky 2010b; Caruel and Truskinovsky 2018; Caremani et al. 2016).

• Phase 1 (∼ 200 µs). In a first phase the tension T (respectively, the length
of the fiber L) changes simultaneously with the step in L (respectively, in T ),
until it reaches a level called T1 (respectively, L1). Interestingly, by plotting
the values of T1 and L1 in the T -L plane, the curves obtained with the soft
and hard devices superimpose and show a linear relationship between tension
and elongation (Fig. 3b). This first phase of the transient is indeed linked to
the instantaneous elastic response of XBs. Measurements of the stiffness of this
relationship under rigor conditions (when the number of attached XBs can be
estimated) allow to estimate the stiffness of a single XB (Piazzesi et al. 2007).

• Phase 2 (∼ 2− 3 ms). After the instantaneous response, tension (respectively,
length) quickly reaches a second level, denoted by T2 (respectively, L2). Also in
this case, the curves of T2-L2 obtained with the soft and hard devices superim-
pose. For lengths close to the rest length, the T2 tension is very similar to the
isometric tension T iso

a , but for larger length steps it is approximately linear in
L, with a lower stiffness than the elastic stiffness, related to T1 (Fig. 3b). The
time scale associated with this phase coincides with the time scale of the power
stroke: in this phase, MHs rearrange from the non-equilibrium condition due
to the fast step in length until a new equilibrium is reached. Indeed, for small
length steps, the power stroke is sufficient for the fibers to almost recover the
initial tension level T iso

a .

• Phase 3 and 4 (∼ 500 ms). After the rapid second phase, in length clamp
experiments tension slowly recovers its original level T iso

a (if the step in length
is such that the sarcomeres are still in the plateau region of the force-length
relationship). In force clamp experiments, as described in Sec. 2.2, the filament
reaches a steady-state with a constant shortening (or lengthening) velocity. Such
velocity, plotted against the isotonic tension, gives the force-velocity curve. This
final phase is associated with the XBs attachment and detachment, the slower
step of the Lymn-Taylor cycle (see Sec. 2.1).

Similarly to the force-velocity relationship, when the tension is normalized with
respect to the isometric values, the tension-elongation curves virtually superimpose
(Caremani et al. 2016). This fact supports the hypothesis that the phenomena asso-
ciated with the fast time scales observed through this experimental setup are linked
to the XB dynamics, and not to the regulatory units dynamics.
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Figure 4: Sketch of the phenomenological model of Hill 1938. A contractile element,
following the law (2), is coupled in series with an elastic element, to which a quadratic
energy ue(x) = 1

2k x
2 is associated.

3 Mathematical models of the actomyosin interac-
tion

In this section, we review several contributions available in literature to the definition
of mathematical models describing the dynamics of XBs. The historical development
of such models reflects the progresses in the understanding by the physiologists com-
munity of the mechanisms underlying the microscopic force generation. We notice
that most of the models are suitable for both the skeletal and the cardiac muscle,
provided that the parameters are calibrated accordingly.

3.1 Hill 1938 model

One of the earliest mathematical descriptions of muscles dates back to Hill 1938. By
studying the release of heat when a muscle contracts against a constant load (isotonic
contraction), A. V. Hill discovered that the relationship between the active tension Ta

and the shortening velocity vfiber is well described by the hyperbolic law:

(Ta + a) vfiber = bfiber (T iso
a − Ta), (1)

where T iso
a is the isometric tension (i.e. the tension for vfiber = 0), while a and bfiber are

positive constants. In the following, it will be helpful to write relationships that are
independent of the length of the muscle fiber used to perform the experiment. With
this aim, by dividing Eq. (1) by the length of the fiber Lfiber, we get the following
relationship:

(Ta + a) v = b (T iso
a − Ta). (2)

where we call v = vfiber/Lfiber the normalized velocity (dimensionally, v is the inverse
of time units). The maximum shortening velocity, that is the maximum speed at which
the muscle is able to shorten (see Sec. 2.2), can be computed as vmax = b T iso

a /a. In
the original paper, by fitting the experimental measurements, Hill obtained a/T iso

a =
0.22, bfiber = 1.03 cm s−1 for a fiber of length Lfiber = 38 mm, thus b = 0.27 s−1 and
vmax = 1.23 s−1 (Hill 1938).

On the basis of the relationship (2), Hill proposed a phenomenological model where
an elastic element is arranged in series with a contractile element governed by the
law (2) itself. This model, however, does not provide any insight into the muscle
functioning, as it is not based on a microscopical description of the tissue (this is not
surprising since the muscle anatomy was not known at that time).
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3.2 Huxley 1957 (H57) model

In 1957, A. F. Huxley proposed a model (H57 model) to link the force-velocity rela-
tionship observed by A. V. Hill with the subcellular attachment-detachment process
of MHs (Huxley 1957). This model considers two states (bound and unbound) and
assumes that the transition rates depend on the distance between the myosin arm rest
position and the BS, denoted by x. We have x > 0 when the attachment leads to a
positive tension, x ≤ 0 otherwise (see Fig. 5).

Let us consider a population of MHs and BSs, and assume that the probability
density of finding a couple with a given displacement x is constant in a an interval
sufficiently close to x = 0 (more precisely, the number of couples with displacement
x ∈ (a, b) for each half filament is ρAM|b − a|, if a and b are sufficiently close to 0).
This is well motivated, assuming the effect of the units located at the border of the
filaments negligible.

Let n(x, t) ∈ [0, 1] denote the probability that a couple MH-BS with elongation x
is attached. Then, the expected value of the number of attached XBs with elongation
between a and b at time t is given by:

ρAM

∫ b

a

n(x, t)dx.

Let us consider a small time interval ∆t. The variation of the population of attached
MHs from t to t+∆t with displacement in the interval (a, b) is given (at the first order
in ∆t) by:∫ b

a

n(x, t+ ∆t)dx ∼
∫ b

a

n(x, t)dx+ n(b, t)vhs(t)∆t− n(a, t)vhs(t)∆t

+

∫ b

a

(1− n(x, t))f(x)∆t dx−
∫ b

a

n(x, t)g(x)∆t dx,

(3)

where vhs(t) = −dSL(t)/2
dt , the shortening velocity of half sarcomere (that is the relative

velocity between the MF and the AF), convects the MH distribution and f(x) and
g(x) are the attachment and detachment rates, respectively. By dividing the above
equation by ∆t (b− a) and letting both intervals go to zero, we get the H57 model:

∂n(x, t)

∂t
− vhs(t)

∂n(x, t)

∂x
= (1− n(x, t))f(x)− n(x, t)g(x), x ∈ R, t ≥ 0, (4)

with suitable initial conditions. Finally, assuming that each attached XB acts as a
linear spring with stiffness kXB, the total force exerted by the pair of interacting half
thick filament and thin filament is equal to:

Fhf(t) = ρAM kXB

∫ +∞

−∞
xn(x, t)dx. (5)

In Huxley 1957, the transition rates are phenomenologically set as:

f(x) = f1
x

h
1[0,h](x), g(x) = g21x≤0 + g1

x

h
1x>0, (6)

where f1, g1 and g2 are positive constants. Attachment can occur only in the interval
x ∈ [0, h], that is for positive displacement: such symmetry-breaking feature is what
makes the muscle contract. For x < 0 the detachment rate is very high, in order to
prevent the XBs to generate force in the opposite direction.
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Figure 5: Scheme of the H57 model. The attachment-detachment rates of MHs (de-
noted respectively by f and g) depend on the XB distortion x. The myosin arm is
modeled as a linear elastic element with stiffness kXB.

The H57 model provides a microscopical explanation of the force-velocity relation-
ship. When the shortening velocity is high, the attached XBs are convected towards
lower values of x, thus leading to a reduction of force. This mechanism is often com-
pared to a “tug-of-war” game. If the rod is quickly pulled, the players need to detach
their hands and reattach them further on the rod, otherwise they are not able to pull
any more. Thus, when the rod is sliding towards to players, their action is less efficient
than in the steady regime, when they can firmly hold the rod. It is all about how
fast the rod slides and how are the players fast in detaching and reattaching their
hands. We will see later a quantitative description of the competition between the
two phenomena.

With the choice (6), Huxley derived a steady-state solution (with a constant short-
ening velocity) for (4):

n(x) =


F1

(
1− e−ϕ/vhs

)
e

x
2hG2

ϕ
vhs x < 0,

F1

(
1− e

(
x2

h2−1
)

ϕ
vhs

)
0 ≤ x < h,

0 x ≥ h,

(7)

where ϕ = (f1 + g1)h/2, F2 = f1
f1+g1

, G2 = g2
f1+g1

. This gives the following force-
velocity relationship:

Fhf = ρAMkXBF1
h2

2

(
1− vhs

ϕ

(
1− e−ϕ/vhs

)(
1 +

1

2G2
2

vhs

ϕ

))
. (8)

Huxley, proceeding by trial and error, obtained a good fit of experimental data with
F1 = 13/16 and G2 = 3.919. For this parameters, by setting Fhf = 0 we have
vmax

hs ' 4ϕ. For instance, in Brokaw 1976, with the choice f1 = 65 s−1, g1 = 15 s−1,
g1 = 313.5 s−1, h = 10 nm, one gets vmax

hs ' 1600 nm s−1, which gives vmax =
vmax

hs /(SL0/2) ' 1.45 s−1, were we denote by SL0 the reference sarcomere length.
All the above mentioned constants are calibrated for the skeletal muscle.

3.2.1 The distribution-moment equations

To avoid the solution of a PDE, in Zahalak 1981 an approximation of the model (4) by
means of ODEs was proposed. By applying a general strategy of statistical physics,
the author computed the equations for the evolution of the distribution-moments of
n(x, t), defined as:

µp(t) :=

∫ +∞

−∞
xpn(x, t)dx.
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Indeed, thanks to the linear spring hypothesis for the myosin arm, the full distribution
n(x, t) is not needed to compute the force, but rather its first moment is enough, as
we have, from Eq. (5):

Fhf(t) = ρAM kXB µ
1(t). (9)

By multiplying Eq. (4) by xp and integrating over (−∞,+∞) one gets, for p = 0, 1, . . . :

d

dt
µp(t)− p vhs(t)µ

p−1(t) = µpf −
∫ +∞

−∞
xp(f(x) + g(x))n(x, t)dx, (10)

where we have integrated by parts the term∫ +∞

−∞
xp
∂n(x, t)

∂x
dx = [xp n(x, t)]

+∞
−∞ − p

∫ +∞

−∞
xp−1n(x, t)dx = −p µp−1(t),

and we have used the fact that n(−∞, t) = n(+∞, t) = 0. The last term of (10) needs
to be modeled for model closure. In Zahalak 1981 the authors proposed to assume
a specific distribution (a gaussian distribution) for n(·, t), so that that term can be
computed. Specifically, by assuming that:

n(x, t) =
µ0(t)√
2πσ(t)

exp

(
− (x− x̄(t))2

2σ2(t)

)
,

where

x̄(t) =
µ1(t)

µ0(t)
, σ2(t) =

µ2(t)

µ0(t)
−
(
µ1(t)

µ0(t)

)2

,

the distribution n(·, t) is fully characterized by its first three moments, and thus the
first three equations of (10) are completely equivalent to the PDE model (4). However,
we have here to pay the price of a strong assumption of gaussianity for n(·, t). Still, the
analytical solution of Eq. (7) shows that even in the steady-state case the distribution
may be very skewed and thus significantly differ from a gaussian one.

When the transition rates f(x) and g(x) take special forms, the distribution-
moments strategy can be used to derive exact equivalents of the PDE model (4)
(Bestel, Clément, and Sorine 2001; Chapelle et al. 2012). In fact, if the total transi-
tion rate is independent of the displacement (i.e. f(x) + g(x) = r), the last term in
(10) can be computed as:∫ +∞

−∞
xp(f(x) + g(x))n(x, t)dx = rµp(t),

and the hierarchy of equations (10) can be truncated by considering only the first two
moments: 

d

dt
µ0(t) = µ0

f − r µ0(t) t ≥ 0,

d

dt
µ1(t) = µ1

f − r µ1(t) + vhs(t)µ
0(t) t ≥ 0.

(11)

3.2.2 Extensions of the H57 model

To account for the fact that not all XBs can be recruitable for attachment (e.g. because
a portion of the MF does not face any AF), in Chapelle et al. 2012 the authors modified
the source term (1−n(x, t))f(x) of (4) into (n0(t)−n(x, t))f(x), where the reduction
factor 0 ≤ n0(t) ≤ 1 denotes the fraction of recruitable XBs.
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In Bestel, Clément, and Sorine 2001; Chapelle et al. 2012 the authors introduced
a chemical input, affecting the transition rates f(x) and g(x), to model the effect of
the calcium-driven regulation. Moreover, by assuming that high relative velocities
between the two filaments can lead to destruction of XBs, they introduced a further
sink term, linearly proportional to |v(t)|. Specifically, the following transition rates
were chosen:

f(x, t) = kATP1x∈[0,1]1[Ca2+]i(t)>C ,

g(x, t) = kATP1x/∈[0,1]1[Ca2+]i(t)>C + kRS1[Ca2+]i(t)≤C + α|v(t)|,

where kATP is the ATP turnover rate, C is the activation threshold for [Ca2+]i and α
is a positive constant. Despite the introduction of the dependence on [Ca2+]i(t) and
v(t), the sum f(x, t) + g(x, t) is still independent of x. Hence, distribution-moment
equations analogous to (11) can be derived for this model.

In Kimmig et al. 2019 and Kimmig 2019 the authors proposed a model, based
on the H57 formalism, where the population of MHs is split into two pools: the
first one contains the MHs located in the single-overlap zone, while the other one
(for which f = 0) contains the remaining MHs. Each pool is characterized by its
own density function n(x, t), whose evolution is described by an equation similar to
Eq. (4), supplemented with a source and a sink term accounting for fluxes across the
two pools. Moreover, a variable representing the fraction of permissive BSs multiplies
to attachment rate term.

3.2.3 Limitations of the H57 model

The models belonging to the family of the H57 model, however, are not able to ex-
plain some of the phenomena experimentally observed. In particular, they fail to
reproduce the phenomena related to time scales that are faster than the time scale of
the power-stroke (∼ 1 ms). The reason is that this class of models does not incorporate
a description of the power-stroke, but rather assumes that MHs attach in a stretched
configuration. This cannot explain the fast force recovery following a sudden change
in the sarcomere length (see Sec. 2.3) since, in the H57 model, force is recovered with
a time scale that is compatible with the ATP turnover (order of 100 ms). These lim-
itations were recognized by A. F. Huxley himself, who proposed, in 1971, a model
incorporating an explicit description of the power-stroke.

3.3 Power-stroke models

In Huxley and Simmons 1971 the authors proposed a new model (HS71 model), by
interpreting the pre-power-stroke and the post-power-stroke configurations as discrete
states. Thus, they introduced a degree of freedom, y, that can be interpreted as the
angular position of the rotating MH. The variable y is associated with a discrete energy
potential, with two minima in 0 and a (where a is the power-stroke length), separated
by an energy barrier. This newly introduced degree of freedom supplements the linear
elastic element of the H57, with potential energy ue(x) = kXB/2 (x+ y)2.

This hard-spin model provided a first quantitative description of the power-stroke,
with the assumption that the fast force recovery (see Sec. 2.3) is a passive mecha-
nisms, interpretable as a mechanical conformational change. This is coherent with
the observation that the fast force recovery is not rate limited by the chemical stages,
supporting the hypothesis that the power-stroke is a mechanical phenomenon.
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The main drawback of the hard-spin HS71 model is that the transition between the
two configurations requires the linear spring to be stretched by the effect of thermal
fluctuation in order to overcome the energy barrier. As a consequence, this model
predicts a slower time-constant for the power-stroke than what is measured in experi-
ments (Caruel 2011; Caruel and Truskinovsky 2018). This led to assume the existence
of intermediate configurations, by the introduction of a number of additional states
(Huxley and Simmons 1971; Smith et al. 2008).

In Washio et al. 2013; Washio et al. 2015, the authors considered a full-sarcomere
model where the actomyosin interaction is described within the HS71 formalism, that
is to say as transitions between discrete states. A continuous variable describing the
myosin arm stretch is associated with each MH, so that the transition rates are made
dependent on the XB distortion. Due to the complexity of the model, that also includes
a description of the regulatory units, its solution is approximated by means of the
Monte Carlo method. A similar model, where the crossbridge dynamics is described
with a H71-like model, is proposed in Hussan, Tombe, and Rice 2006. In such models,
additional states (besides the two states of the H71 model) are considered.

3.3.1 Soft-spin models

In contrast, in Marcucci and Truskinovsky 2010a; Marcucci and Truskinovsky 2010b
the authors proposed to replace the rigid bistable device (or multi-stable) of hard-spin
models by a bistable element, parametrized by a continuous variable. The transition
from hard-spin to soft-spin removed the contradictions concerning the time scale of
the power-stroke (Caruel and Truskinovsky 2018).

This model was extended with the inclusion of the attachment-detachement ATP-
driven mechanism by adding a coloured noise (mimicking the out-of-equilibrium ATP
reactions) to the Langevin dynamics within the energy landscape (Marcucci and
Truskinovsky 2010b).

In Caruel, Moireau, and Chapelle 2019 the authors proposed a mechano-chemical
model (CMC19 model), with a soft-spin model for MHs coupled with a chemical
state describing the ATP-driven attachment-detachment process, obtaining a unified
framework capable of matching both the phenomena related to the power-stroke (such
as the fast velocity recovery) and those related to the attachment-detachment of XBs
(such as the force-velocity curve). Moreover, the authors showed that the H57 model
can be derived from the CMC19 model under simplifying assumptions, thus giving
an interpretation to the H57 model in terms of Langevin dynamics. Remarkably, the
authors also showed that a lumped version of the CMC19 model in which the power-
stroke variable is assumed to be in equilibrium formally reduces to a H57-like model,
thus allowing to interpret the transition rates of the H57 model as effective rates,
in light of the CMC19 model. We illustrate in what follows the construction of the
CMC19 model.

3.3.2 Caruel-Moireau-Chapelle 2019 (CMC19) model

Model setup. We consider a single MH, described by a discrete degree of freedom,
namely ωt (ωt = 1 when the MH is attached, ωt = 0 when it is detached), and
two continuous degrees of freedom, namely Zt (measuring the distance of the MH
tip from the rest-position of the myosin harm) and Y t (associated with the angular
orientation of the MH), as it is shown in Fig. 6. In the pre-power-stroke configuration,
we typically have Y t = 0, and thus the elongation of the myosin arm coincides with
Zt. When power-stroke occurs, Y t becomes positive, making the total myosin arm

12
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Figure 6: Scheme of the CMC19 model. The MH is described by two degrees of
freedom (z and y). When the MH is attached, the degree of freedom z coincides with
the variable x. The attachment-detachment rates of MHs (f and g) depend on the
XB distortion x. The myosin arm is modeled as a linear elastic element with stiffness
kXB, while the degree of freedom y is associated with a bistable energy, which depends
on the XB attachment state.

elogation increase. The myosin arm elogation is indeed given by Xt + Y t (see Fig. 6).
When the MH is attached (ωt = 1) the tip of the MH is attached to the BS. Therefore,
we have by definition Zt ≡ x (where we denote by x, as in the previous sections, the
distance between to myosin arm rest position and the BS).

The elastic element is associated with a quadratic energy ue, while the inter-
nal degree of freedom Y t is associated with a bistable energy uω, that takes differ-
ent expression when the XB is attached and when instead is not. Specifically, in
the attached (respectively, detached) configuration, the minimum corresponding to
the post-power-stroke configuration (Y t > 0) is endowed with a lower (respectively,
higher) energy than the pre-power-stroke configuration (Y t = 0). The resulting en-
ergy landscape for the mechanical variables (Zt, Y t) is thus associated with the energy
wω(z, y) = uω(y) + ue(z + y).

The Langevin dynamics (see e.g. Karatzas and Shreve 1998) associated with the
energy wω(z, y) gives the following stochastic differential equation:

η dZt =

(
−ωtη vhs − (1− ωt)∂wω

∂z
(Zt, Y t)

)
dt

+ ηδts(t)
(
x− Zt

)
dt+ (1− ωt)

√
2ηkBTdB

t
z t ≥ 0,

η dY t = −∂wω
∂y

(Zt, Y t)dt+
√

2ηkBTdB
t
y t ≥ 0,

(12)

where dBtz and dBty are the increments of a two-dimensional Brownian motion, η is
the viscous damping coefficient associated with the surrounding fluid, kB denotes the
Boltzmann constant, T the absolute temperature, and ts denotes the time of any
switch from ωt = 0 to ωt = 1. We notice that, far from t = ts, when the XB is
detached (i.e. ωt = 0), the first equation reduces to:

ηdZt = −∂wω
∂z

(Zt, Y t)dt+
√

2ηkBTdB
t
z,

while when the XB is attached (i.e. ωt = 1), it reduces to:

dZt = −vhs dt,
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coherently with the fact that Zt ≡ x (we recall that vhs denotes the shortening velocity,
thus ẋ = −vhs). Finally, at time t = ts the Dirac delta term makes the variable Zt

instantaneously jump to Zt = x.
The kinetics of the chemical degree of freedom ωt is determined by the following

transition rates:

P
[
ωt+∆t = 1|ωt = 0

]
= k+(Zt, Y t, x, t)∆t+ o (∆t) ,

P
[
ωt+∆t = 0|ωt = 1

]
= k−(Y t, x, t)∆t+ o (∆t) ,

(13)

where the detachment transition rate is independent of Zt since when the MH is
attached we have Zt = x.

Fokker-Plank equation. To write the Fokker-Plank equation (see e.g. Karatzas
and Shreve 1998) associated with Eq. (12), we denote by p(z, y, ω;x, t) the probability
density for a MH (at time t and located at distance x) of being in state (z, y, ω) (we
notice that x and t are regarded as deterministic variables). Since for attached heads
we have Zt = x, the probability density for ω = 1 can be written as:

p(z, y, 1;x, t) = δx(z)p̄(y;x, t).

With this notation, the Fokker-Plank equation reads:

∂

∂t
p(z, y, 0;x, t) = vhs

∂

∂x
p(z, y, 0;x, t)

+ η−1 ∂

∂z

(
∂

∂z
w0(z, y) p(z, y, 0;x, t)

)
+ η−1 ∂

∂y

(
∂

∂y
w0(z, y) p(z, y, 0;x, t)

)
+
kBT

η

(
∂2

∂z2
p(z, y, 0;x, t) +

∂2

∂y2
p(z, y, 0;x, t)

)
+ k−(y, x)δx(z)p̄(y;x, t)

− k+(z, y, x)p(z, y, 0;x, t) x, y, z ∈ R, t > 0,

∂

∂t
p̄(y;x, t) = vhs

∂

∂x
p̄(y;x, t)

+ η−1 ∂

∂y

(
∂

∂y
w1(x, y) p̄(y;x, t)

)
+
kBT

η

∂2

∂y2
p̄(y;x, t)

+

∫ +∞

−∞
k+(z, y, x)p(z, y, 0;x, t)dz

− k−(y, x)p̄(y;x, t) x, y ∈ R, t > 0,
(14)

endowed with suitable initial conditions. To link this model with the H57 formalism,
we notice that the fraction of attached MHs with displacement x at time t is given by:

n(x, t) =

∫ ∫
p(z, y, 1;x, t) dz dy =

∫
p̄(y;x, t) dy.
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By integrating the equations of (14) with respct to z and y, we obtain the following
H57 like equation:

∂n(x, t)

∂t
− vhs(t)

∂n(x, t)

∂x
= (1− n(x, t))f(x, t)− n(x, t)g(x, t),

where the transition rates are given by:

f(x, t) =

∫ ∫
k+(z, y, x)

p(z, y, 0;x, t)

1− n(x, t)
dz dy,

g(x, t) =

∫
k−(y, x)

p̄(y;x, t)

n(x, t)
dy.

(15)

We notice that this H57 version of Eq. (14) is not written in closed form, as f(x, t)
and g(x, t) depend on the specific distribution of the degrees of freedom z and y and
not only on the averaged quantity n(x, t).

Recovering the H57 model. This analogy with the H57 model allows for a more
direct comparison when hypotheses closer to those of the H57 model are assumed.
Indeed, by canceling the degree of freedom associated with the power-stroke (i.e.
Y t ≡ 0), we have:

p(z, y, 0;x, t) = p̂(z;x, t)δ(y),

p̄(y;x, t) = n(x, t)δ(y),

which gives, thanks to (15), g(x, t) = k−(0, x) = ĝ(x). Moreover, coherently with H57,

let us assume that the binding rate is independent of Zt, that is k+(z, 0, x) = f̂(x),

which gives, thanks to (15), f(x, t) = f̂(x). In this way, in Caruel, Moireau, and
Chapelle 2019, the authors recovered the original H57 model.

Thermal equilibrium model. More interestingly, the authors recovered an anal-
ogy with the H57 model under the hypothesis that the time scale of the macroscopic
behavior is large enough for the internal degrees of freedom to be at thermal equilib-
rium. The equilibrium distributions can be multiplicatively decomposed as:

p(z, y, 0;x, t) = pth0 (z, y)(1− n(x, t)),

p̄(y;x, t) = pth1 (y;x)n(x, t),

where

pth0 (z, y) =
exp

(
−w0(z,y)

kBT

)
∫ ∫

exp
(
−w0(z,y)

kBT

)
dz dy

,

pth1 (y;x) =
exp

(
−w1(x,y)

kBT

)
∫

exp
(
−w1(x,y)

kBT

)
dy
.

When the probability distribution takes this form, Eq. (15) reduces to:

f(x, t) = f th(x) =

∫ ∫
k+(z, y, x)pth0 (z, y)dz dy,

g(x, t) = gth(x) =

∫
k−(y, x)pth1 (y;x)dy,

(16)
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which gives a model, equivalent to the H57 one, in closed form. This conclusion is more
than a mere analogy and it allows to shed a new light on the H57 model. The H57
model, which does not explicitly represent the power-stroke, can indeed be interpreted
as a model where the variable describing the degree of freedom associated with the
power-stroke is considered at equilibrium. Unlike in the H57 original formulation,
where the power-stroke is simply neglected, here it is accounted for in the definition
of the transition rates given by (16). This allows to relate a microscopic description
of the contractile mechanism with macroscopic effective quantities.

4 Parameters estimation in H57-like models

In Sec. 3 we reviewed several models proposed in literature to describe the dynamics of
force generation in the cardiac muscle tissue. Those models feature different levels of
biophysical detail in the description of the complex mechanisms that determine active
force generation. We have shown how the most detailed models are able to capture
phenomena that cannot be captured by the simpler models, such as the fast time scale
response of the muscle tissue.

However, when used in specific settings such as that of multiscale cardiac simula-
tions (see e.g. Quarteroni et al. 2019; Salvador, Dedè, and Quarteroni 2019; Regazzoni
2019), the most detailed models are not necessarily the most suitable to apply. Indeed,
some features such as the separation between the phase 1 and phase 2 of fast response
(see Sec. 2.3) cannot be appreciated when the involved time scales are those charac-
terizing the muscle movements during an heartbeat (as we will quantitatively assess
later in this section). Moreover, the more detailed a model is, the more numerous
parameters need to be calibrated. Because of the difficulty to measure the parameters
characterizing the microscopic features of the contractile apparatus, simpler models
with fewer parameters (that can be easily calibrated by macroscale measurements) are
to be preferred. As a matter of fact, the best compromise between biophysical detail
of the model and identifiability of its parameters ought be pursued, by “making things
as simple as possible, but not simpler”, to paraphrase a celebrated quote attributed
to A. Einstein.

Motivated by the above observations, in this section we consider a (generalized)
version of the H57 model, to investigate to which extent this model can explain the
experimentally observed behaviors linked to the XB dynamics and, at the same time,
how the associated parameters can be calibrated by measurements typically available
from experiments.

4.1 A generalized H57 model

The H57 model is derived under the condition of full activation of the thin filament. To
take into account, in a simple way, the fact that not all the regulatory units may be in
permissive state (and, thus, the binding sites may not be available for XB formation),
we consider two options. The first one is to multiply, in the computation of force,
the number of XBs by the fraction of permissive BSs, P . The second is to replace in
(4) the term (1− n(x, t)) by (P − n(x, t)), similarly to what proposed, to account for
the filaments overlapping, in Chapelle et al. 2012. Notice that, thanks to the linearity
of the equation, both approaches lead to the same result. Even if this approach is
approximate, as it does not take into account the possible time dependence of P (t),
we restrict ourselves to the condition of constant activation.
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Hence, we consider the following modified H57 model, where we allow (as in Bestel,
Clément, and Sorine 2001; Chapelle et al. 2012) for a dependency of the transition rate
on the shortening velocity vhs(t), and we introduce the dependence on the permissivity
P :

∂n(x, t)

∂t
− vhs(t)

∂n(x, t)

∂x
= (P − n(x, t))f(x, v(t))− n(x, t)g(x, v(t)), x ∈ R, t ≥ 0,

(17)
where we prefer to express the transition rates in function of the normalized shortening
velocity v(t) = vhs(t)/(SL0/2). The force generated by half filament, by assuming that
a XB attached with displacement x exerts a force of FXB(x), is given by:

Fhf(t) = ρAM

∫ +∞

−∞
FXB(x)n(x, t)dx. (18)

In particular, with a linear spring XB model (i.e. FXB(x) = kXB x), we have:

Fhf(t) = ρAMkXB

∫ +∞

−∞
xn(x, t)dx. (19)

The macroscopic tension, in turn, is proportional to the force generated by half fila-
ment.

In (17), the quantities to be modeled (that is the “parameters” of the model) are
f(x, v) and g(x, v). Clearly, without a detailed microscopic model of the attachment-
detachment process, the two functions f(x, v) and g(x, v) cannot be easily calibrated
from macroscale experiments.

4.2 Distribution-moments equation

Under the hypothesis that the total transition rate is independent of x (i.e. there exists
a function r(v) = f(x, v) + g(x, v)), it is possible to write the distribution-moments
equations (see Sec. 3.2). With this aim, we introduce the moments for p ∈ N (we
notice that, differently from the notation used in Sec. 3.2, µp are dimensionless, while
µpf are inverse of time units):

µp(t) :=

∫ +∞

−∞

(
x

SL0/2

)p
n(x, t)

dx

DM
,

µpf (v) :=

∫ +∞

−∞

(
x

SL0/2

)p
f(x, v)

dx

DM
.

(20)

Thanks to this definition, µ0(t) can be interpreted as the fraction of BSs involved in
a XB. Moreover, µ1(t)/µ0(t) corresponds to the average distortion of attached XBs,
normalized with respect to SL0/2. We notice that, under the linear spring hypothesis,
thanks to Eq. (19), the total active tension is proportional to µ1(t). Therefore, we can
write Ta(t) = aXBµ

1(t), where aXB has the dimension of a pressure.
By multiplying by (x/(SL0/2))p, integrating over x ∈ (−∞,+∞) and using the

fact that n(−∞, t) = n(+∞, t) = 0, we get the following distribution-moments equa-
tions: 

d

dt
µ0(t) = −r(v(t))µ0(t) + P µ0

f (v(t)) t ≥ 0,

d

dt
µ1(t) = −r(v(t))µ1(t) + P µ1

f (v(t))− µ0(t)v(t) t ≥ 0.

(21)
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By assuming that f + g is independent of x, the freedom in the choice of the
functions describing the model has been reduced, as we have to model µ0

f (v), µ1
f (v)

and r(v), that are only functions of v.

4.3 Steady-state solution

By assuming a constant shortening v(t) ≡ v̄, and solving (20) by setting all time
derivatives equal to zero, we get the following steady-state solution:

µ̄0 = P
µ0
f (v̄)

r(v̄)
,

µ̄1 = P
µ1
f (v̄)− µ0(t)v̄

r(v̄)
= P

(
µ1
f (v̄)

r(v̄)
−
µ0
f (v̄)

r(v̄)2
v̄

)
.

(22)

Since the force is proportional to µ1, the last equation gives the force-velocity relation-
ship. Moreover, the steady-state solution of Eq. (22) allows to compute some quan-
tities of interest. The force in isometric conditions is given by T iso

a = aXB(µ̄1)v̄=0 =
aXBPµ

1
f (0)/r(0). The fraction of attached XBs, in turn, is given by (µ̄0)v̄=0 =

Pµ0
f (0)/r(0). Finally, the maximum shortening velocity vmax can be computed as

the positive solution of the equation µ1
f (vmax)r(vmax) = µ0

f (vmax)vmax.
As a matter of fact, the above mentioned quantities take special forms under

more restrictive hypotheses for f and g. For instance, it is reasonable to assume
that the sliding velocity only affects the detachment rate, so that f(x, v) = f̄(x).
In this case, assuming again that the sum f + g is independent of x, we can write
g(x, v) = r0− f̄(x) + q(v), for some q(v) such that q(0) = 0 and where r0 = r(0). The
term q(v) models the rate of XB destruction due to rapid length changes. Under this
additional hypothesis, the objects to be modeled are just µ0

f̄
, µ1

f̄
, r0 and q(v) (three

scalar values and a function). If we set, as in Chapelle et al. 2012, q(v) = α|v| (which
reduces the quantities to be modeled to 4 scalars), the maximum shortening velocity
takes the form:

vmax = r0

(
µ0
f̄

µ1
f̄

− α

)−1

.

Let us consider now the particular case of constant attachment rate within the interval
x ∈ [s0, s0 + h] (as in Bestel, Clément, and Sorine 2001):

f(x, v) = kATP1[s0,s0+h](x), g(x, v) = kATP(1− 1[s0,s0+h](x)) + q(v). (23)

This choice falls within the above mentioned case. The quantities to be modeled, in
this case, are kATP, h, s0, q(v), which are linked to the previous ones by:

µ0
f̄ = kATP

h

DM
, µ1

f̄ = kATP
h(h+ 2 s0)

SL0DM
, r0 = kATP, (24)

and, conversely:

h =
kATP

µ0
f̄
DM

, s0 =
1

2

(
SL0DMµ

1
f̄

kATPh
− h

)
, kATP = r0, (25)
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which allows to give a microscopical interpretation to the constants. In this case, the
steady-state solution reads:

µ̄0 = P
h

DM

(
1 +

q(v̄)

kATP

)−1

,

µ̄1 = P
h

2DM

(
1 +

q(v̄)

kATP

)−2(
h+ 2s0

SL0/2

(
1 +

q(v̄)

kATP

)
− 2

v̄

kATP

)
.

(26)

Moreover, the isometric tension is given by T iso
a = aXBP

h(h+2 s0)
SL0DM

and the fraction of

attached XBs in isometric conditions is (µ̄0)v̄=0 = P h
DM

. With the choice q(v) = α|v|,
the maximum shortening velocity, if α < SL0

h+2s0
, is given by:

vmax = kATP

(
SL0

h+ 2s0
− α

)−1

.

Conversely, if α ≥ SL0

h+2s0
, vmax is not defined, as the force-velocity relationship never

intercepts the Ta = 0 axis.

4.4 Fast transients solution

Because of the lack of explicit representation of the power-stroke, the generalized H57
model (20) fails to reproduce the three different phases after a fast step, either in
length or in tension (see Sec. 2.3). Indeed, in place of the two fast steps (the elastic
response and the fast force recovery, due to the power-stroke), we have only a single
fast step, followed by the slow force recovery (or by the constant shortening, in the
case of the soft device experiment). In this section, we study the predictions of the
model concerning such fast phase.

In order to study the behavior predicted by the model when a fast transient
experiment is performed (here we focus on steps in length), we suppose that at
t = 0 the muscle is in steady-state isometric conditions (i.e. µ0(0) = Pµ0

f (0)/r(0),

µ1(0) = Pµ1
f (0)/r(0)). We then consider a sudden change in length ∆L (the relative

shortening w.r.t. half sarcomere, thus a dimensionless quantity), accomplished in a
small amount of time δ (i.e. v(t) = ∆L

δ 1[0,δ](t)). We study the solution at t = δ, for
δ → 0+.

The solution of (21), when v(t) = v̄ is constant, is given by:

µ0(t) = µ0(0) +

(
P
µ0
f (v̄)

r(v̄)
− µ0(0)

)(
1− e−r(v̄)t

)
t ≥ 0,

µ1(t) = µ1(0) +

(
P

(
µ1
f (v̄)

r(v̄)
−
µ0
f (v̄)

r(v̄)2
v̄

)
− µ1(0)

)(
1− e−r(v̄)t

)
+

(
P
µ0
f (v̄)

r(v̄)
− µ0(0)

)
v̄ t e−r(v̄)t t ≥ 0.

(27)

By setting v̄ = ∆L
δ , the tension at the end of the length step reads:

Ta(δ) = aXBµ
1(δ) = aXBP

[
µ1
f

r(0)
+

(
µ1
f

(
1

r(v̄)
− 1

r(0)

)
−

µ0
f

r(v̄)2

∆L

δ

)
(

1− e−r(v̄)δ
)

+ µ0
f

(
1

r(v̄)
− 1

r(0)

)
∆Le−r(v̄)δ

]
.

(28)
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For time t > δ, the solution is given by (27), shifted by δ, with v̄ = 0 and with
initial state given by (28). However, to characterize the fast phase, we are here only
interested in studying the asymptotic behavior of (28) for δ → 0+. The solution
depends on the behavior of r(v) for v → +∞. We distinguish between four possible
cases: bounded or with sublinear, linear or superlinear growth.

• Saturating behavior. Suppose that for v → +∞, r(v) → rmax. Then, we
have:

Ta(δ) ∼ aXBP

[
µ1
f

r(0)
+

µ0
f

rmax
∆L− µ0

f

(
1

rmax
− 1

r(0)

)
∆L

]

=
aXBPµ

1
f

r(0)
−
aXBPµ

0
f

r(0)
∆L,

(29)

which is a linear response, with slope
aXBPµ

0
f

r(0) . In this case, therefore, the fast

response is that of a linear elastic spring (like the T1-L1 curve), with stiffness

given by
aXBPµ

0
f

r(0) .

• Sublinear growth. Suppose that r(v)→ +∞, but r(v)/v → 0. Then we have
r(v̄)δ = r(∆L

δ )δ → 0, and thus:

Ta(δ) ∼
aXBPµ

1
f

r(0)
−
aXBPµ

0
f

r(0)
∆L, (30)

which is the same behavior as the previous case. For this reason, from now on,
we will include both cases in the sublinear growth one.

• Linear growth. Suppose now that r(v) ∼ αv. In this case, we have r(v̄)δ =
r(∆L

δ )δ ∼ α∆L and thus:

Ta(δ) ∼
aXBPµ

1
f

r(0)
e−α∆L −

aXBPµ
0
f

r(0)
e−α∆L∆L. (31)

Hence, in this case the response is different from a linearly elastic element. In
order to compare the stiffness for small step lengths with the stiffness predicted
in the sublinear growth case, we linearize around ∆L = 0, getting:

Ta(δ) ∼
aXBPµ

1
f

r(0)
− aXBP

µ0
f + αµ1

f

r(0)
∆L. (32)

In conclusion, the stiffness associated with small steps is increased by a term
αaXB P µ

1
f/r(0).

• Superlinear growth. Suppose that r(v)→ +∞ and r(v)/v → +∞. Then we
have r(v̄)δ = r(∆L

δ )δ → +∞, which gives:

Ta(δ)→ 0. (33)

This means that, if the destruction rate grows more than linearly in the velocity,
then, in the limit of an instantaneous length step, the velocity is such that all
the XB are destructed.
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4.5 Parameters calibration

As noticed in Sec. 4, the calibration of the generalized H57 model (20) requires the
definition of the functions f(x, v) and g(x, v). However, such functions, without a de-
tailed microscopical model, are difficult to be determined solely based on experimental
results. By assuming that the sum f + g is independent of x and that v only affects
detachment, instead, the objects to be estimated reduce to the four scalars µ0

f̄
, µ1

f̄
,

r0, aXB and the function q(v). In addition, as shown in Sec. 4.4, the response to fast
transients is only affected by the asymptotic behavior of q(v) for |v| → +∞, while
the force-velocity relationship is only affected by the values of q(v) for 0 ≤ v ≤ vmax.
Therefore, in the following, we will restrict ourselves to the following two cases:

• Sublinear growth: we consider q(v) such that q(v) = α|v| for small velocities,
while for |v| → +∞ we have q(v)/|v| → 0.

• Linear growth: we consider for simplicity the case q(v) = α|v|.

We do not consider the case of superlinear growth since in the limit of instantaneous
response it predicts the detachment of all the XBs, which hinders the possibility of
fitting any fast response curve.

The behavior of the model is thus determined by five scalar parameters (µ0
f̄
, µ1

f̄
,

r0, aXB, α) and by the asymptotic of behavior q(v) (linear or sublinear). From the
previous sections, it follows that by acting on the above mentioned parameters, the
generalized H57 model can match the following experimentally measured quantities.

• Under isometric conditions, the solution allows to compute the following
quantities.

◦ The isometric tension:

T iso
a = aXB(µ̄1)v̄=0 = aXBP

µ1
f̄

r0
.

◦ The fraction of attached XBs:

µ0
iso := (µ̄0)v̄=0 = P

µ0
f̄

r0
.

• The force-velocity is invariant after normalization with respect to the isometric
tension (see 2.2). The generalized H57 model correctly predicts this fact. If we
suppose, for instance, to vary the calcium concentration and consequently the
value of P , the normalized force-length relationship would be unaffected. Indeed,
the normalized force-length relationship is given by:

Ta/T
iso
a =

1

1 + α |v|r0

−
µ0
f̄
/µ1

f̄(
1 + α |v|r0

)2

v

r0
.

Unlike the original H57 model, that predicts a linear force-velocity relationship
(corresponding to the case α = 0), by allowing for a dependence of the de-
tachment rate on the velocity, the experimentally observed convex shape can be
obtained. Indeed, by properly choosing the parameters of the model, one can
fit the following two quantities, characterizing the relationship for large and for
small velocities, respectively.
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◦ The maximum shortening velocity:

vmax = r0

(
µ0
f̄

µ1
f̄

− α

)−1

.

◦ The inverse of the sensitivity of the normalized force w.r.t. velocity changes
in isometric conditions (whose interpretation in the force-velocity curve is
shown in Fig. 7a):

v0 := −
(
∂T̄a/T

iso
a

∂v
|v=0

)−1

= r0

(
µ0
f̄

µ1
f̄

+ α

)−1

.

With the original H57 model, having α = 0, we have vmax = v0 and the behaviors
at small and large velocities cannot be decoupled.

• The fast transients response is characterized by two distinct curves, associated
with different time scales (see Sec. 2.3). As previously noticed, models belonging
to the H57 class do not incorporate a description of the power-stroke and are
thus only capable of reproducing the instantaneous linear response. However,
if we interpret the H57 model as the limit of a more detailed model where the
power-stroke is considered at equilibrium (see Sec. 3.3.2), the fast response is
only characterized by a single time constant, corresponding to the slowest of
the two time constants observed experimentally. Such time constant, therefore,
corresponds to the second of the phases considered in 2.3. For this reason, we
interpret the stiffness associated with fast steps in the generalized H57 model
of Eq. (20) as the stiffness associated with the T2-L2 curve. In particular, the
parameters can be chosen so that to fit the following value.

◦ The tangent normalized stiffness in isometric conditions (see Fig. 7b):

k̃2 := −∂Ta(0+)/T iso
a

∂∆L
|∆L=0 =

{
µ0
f̄
/µ1

f̄
sublinear q,

µ0
f̄
/µ1

f̄
+ α linear q.

Moreover, we notice that, if one is interested in macroscopic regimes character-
ized by sufficiently large time scales, only the region of the T2-L2 curve associ-
ated with small steps is of interest. Indeed, the larger the length step, the higher
shortening velocities are needed to appreciate the distinction between phase 2
and phases 3-4 of the response (we will quantitatively support this point in
Sec. 4.6). In conclusion, since in the region associated with small steps a linear
fit provides a good approximation of the curve, the quantity k̃2 alone provides
a sufficiently complete characterization of the fast step response.

The five parameters characterizing the generalized H57 model (20) can be assigned
to match the five measured quantities T iso

a , µ0
iso, vmax, v0 and k̃2. This provides a

practical way of calibrating the model parameters from experimental measurements.
Specifically, in the linear growth case, the parameters of the model can be determined
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(a) Force-velocity relatioship (b) Fast transient response

Figure 7: The force-velocity relationship (a) is characterized by the maximum short-
ening velocity vmax (the intercept of the curve with the axis Ta = 0) and by the
inverse sensitivity of the force to velocity in isometric conditions v0, which can be
interpreted as the intercept with the axis Ta = 0 of the tangent to the curve in iso-
metric conditions. On the other hand, the response to fast transients is characterized
by the normalized stiffness k̃2, where the subscript 2 reflects the fact that this value
characterizes the T2-L2 response.

by the following relationships:

r0 = k̃2 v
0,

α =
r0

2
((v0)−1 − (vmax)−1) =

k̃2

2

(
1− v0

vmax

)
,

µ0
f̄ =

µ0
isor0

P
=
µ0

isok̃2v
0

P
,

µ1
f̄ =

(
k̃2 − α

)−1

µ0
f̄ ,

aXB =
T iso

a r0

µ1
f̄
P

=
T iso

a k̃2(1 + v0

vmax )

2µ0
iso

.

(34)

Conversely, in the sublinear growth case we have:

r0 =
2 k̃2v

max

1 + vmax/v0
,

α =
vmax − v0

vmax + v0
k̃2,

µ0
f̄ =

µ0
isor0

P
,

µ1
f̄ = µ0

f̄/k̃2,

aXB =
T iso

a r0

µ1
f̄
P
.

(35)

In both the cases of linear and sublinear growth, P denotes the permissivity associated
with the condition in which T iso

a and µ0
iso are measured.

Remark 1. Among the five quantities used to calibrate the model parameters, only
one (namely µ0

iso) is related to the microscopic scale, while the others are related to
the macroscale. The measurement of µ0

iso may be hard to be accomplished, indeed.
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Table 1: List of the experimental data used for model calibration.

Parameter Value Units Reference

T iso
a 120 kPa Ter Keurs, Hollander, and Keurs 2000
µ0

iso 0.22 - Brunello et al. 2014
vmax 8 s−1 Caremani et al. 2016
v0 2 s−1 Caremani et al. 2016

k̃2 66 - Caremani et al. 2016

Table 2: List of the calibrated parameters in the sublinear, linear and superlinear
growth cases.

Parameter Units Sublinear growth Linear growth Superlinear growth

aXB MPa 35.46 22.16 20.46
µ1
f̄

s−1 0.7040 0.7040 0.7040

µ0
f̄

s−1 45.76 28.60 2.640

α − 39.00 24.37 2.250
r0 s−1 208.0 130.0 12.00

However, if one is interested only in the prediction of the generated tension and not
in the moments µ0 and µ1, the calibration can be accomplished regardless of µ0

iso, by
considering only the macroscopic scale. As a matter of fact, the three parameters aXB,
µ0
f̄

and µ1
f̄

appear always in the two combinations aXBµ
1
f̄

and µ0
f̄
/µ1

f̄
, apart from in

the expression of µ0
iso. Therefore, one could calibrate the two combined terms aXBµ

1
f̄

and µ0
f̄
/µ1

f̄
rather than the three parameters.

In other terms, thanks to the linearity of the equations, the value of µ0
iso used in

the calibration of the model only affects the prediction of the quantities related to the
microscale (i.e. µ0 and µ1), but not the tension Ta. Therefore, as far as the modeling
of Ta is concerned, the model is fully characterized by the four quantities T iso

a , vmax,
v0 and k̃2.

4.6 Numerical results

In this section, we perform the calibration of the parameters of the model (21), by using
the relationships derived in Sec. 4.5 (Eqs. (34) and (35)), starting from experimental
measurements, reported in Tab. 1, together with a reference to the source in literature.
We consider data coming from intact (i.e. non skinned, see Kentish et al. 1986; Backx
et al. 1995; Gao et al. 1994; Dobesh, Konhilas, and Tombe 2002) cardiac rat cell at
room temperature. The unique datum not satisfying these condition is µ0

iso (which is
acquired from skeletal frog muscle). However, as we mentioned in Sec. 4.5, the value
of such parameter only affects the value of the microscopic variables (i.e. µp), but
not the predicted active tension. In Tab. 2 we report the parameters obtained by
calibrating the model in both the sublinear and linear growth cases.

In Fig. 8 we show the force-velocity relationship obtained with the calibrated model
(in the linear growth case), together with the experimental data from Caremani et al.
2016. We can see that the calibration procedure is successful if matching the prediction
of the model with the experimental measurements.
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Figure 8: Force-velocity relationship obtained with the model (21), compared with
experimental data from Caremani et al. 2016.

Then, in Fig. 9 we consider the fast response predicted by the model. With this
aim, we let the model reach the steady state and then we apply a length step, by
applying a constant velocity in a small time interval ∆t. Finally, we plot the tension
obtained at the end of the step against the step length ∆L. We repeat this protocol
twice: first, by reproducing the same conditions employed in laboratory, that is by
applying the length step in a very small time interval (∆t = 200 µs, see Caremani
et al. 2016 and Sec. 2.3); then, we repeat the simulation, this time by applying the
step with a lower shortening velocity, compatible with the typical velocity by which
the cardiac tissue shortens during an heartbeat (we set v = 0.5 s−1).

We show in Figs. 9a and 9b the results obtained, in the case of sublinear (by
setting q(v) = α

√
|v|) and linear (by setting q(v) = α|v|) growth of q, respectively.

The models here considered do not explicitly represent the power-stroke, whose effect
is instead accounted for in the definition of the attachment-detachment rates (see
Sec. 4.5). Therefore, we compare the tension after the 200 µs fast transient with the
T2-L2 data, experimentally measured by applying a fast step within the same time
interval (see again Sec. 4.5). The good match between the simulation results and the
experimental measurements provide a further validation of the calibration procedure.

The curves obtained by letting the tissue shorten with a velocity similar to that
observed during an heartbeat are close to those obtained with an almost instantaneous
step, for small values of ∆L. Conversely, for larger ∆L, the former curves saturate
and a smaller force drop is observed. The reason is that a large length step takes a
longer time to be accomplished, and, consequently, the time interval is large enough for
the attachment-detachment process to partially recover the original tension. In other
terms, when we consider the typical time scales of an heartbeat, the dynamics of the
length changes is not sufficiently fast to appreciate the scale separation between the
different phases following a fast transient (see Sec. 2.3). This provides a justification for
the fact that a lumped description of the power-stroke is an acceptable approximation
if the model is used for organ-level simulations and for the fact that, in the model
calibration, fitting the T2-L2 curve for small values of ∆L is sufficient (see Sec. 4.5).

Finally, in Fig. 9c we show the fast-transient obtained in the case of superlinear
growth of r (by setting q(v) = α(|v| + v2)). In this case, since we de not have a
relationship equivalent to (Eqs. (34) and (35)), we employ the relationship derived in
the linear growth case, by adjusting the parameter k̃2 to fit the experimental data.
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(a) Sublinear growth.
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(b) Linear growth.
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(c) Superlinear growth.

Figure 9: Normalized force after the application of a fast length step ∆L. The fast
steps reported by the blue lines (model result) and the blue circles (T2-L2 experimental
data from Caremani et al. 2016) are applied within a time interval of ∆t = 200 µs,
while the red lines refer to fast steps applied with a shortening velocity of v = 0.5 s−1.
Finally, the black dashed lines refer to the asymptotical response for ∆t→ 0.

We notice that, even if the asymptotic analysis of Sec. 4.4 shows that, in the limit
of v → ∞, the response to fast steps leads to vanishing tension, when the step is
applied with a finite time interval, we obtain a curve that is in agreement with the
experimental measurements.

5 Conclusions

In this paper we reviewed several models describing the interaction between actin
and myosin in cardiac muscle cells. As a matter of fact, different models, with dif-
ferent degrees of biophysical detail, are available in literature. The most detailed
models are able of capturing phenomena, such as the response to fast steps, occur-
ring at the fastest time scales involved in the force generation mechanism (Marcucci
and Truskinovsky 2010b; Marcucci and Truskinovsky 2010a; Caruel, Moireau, and
Chapelle 2019). Conversely, the models belonging to the family of the H57 model,
while being able of reproducing the phenomena occurring at slower time scales (such
as the force-velocity relationship), do not allow to match the two different experimen-
tally observed fast responses exhibited by the muscle tissue when a step (either in
length or in tension) is applied.

In Caruel, Moireau, and Chapelle 2019 the authors show that, if the considered
time scales are large enough for the variable describing the power-stroke to be con-
sidered at thermal equilibrium, detailed soft-spring models that explicitly represent
the power-stroke are formally recast to the H57 model. Motivated by this observa-
tion, we have investigated the capabilities of a modified version of the H57 model to
reproduce the experimentally observed characterizations of the force generation phe-
nomenon. Such model, compared to the most detailed models that explicitly represent
the power-stroke, has the significant advantage of featuring only four independent pa-
rameters, that can be determined starting from macroscopic measurements typically
available from experiments. In particular, the model can match the isometric ac-
tive tension, the force-velocity relationship and the stiffness associated to small steps.
Hence, if the characteristic time scales of the phenomena under exam are slower than
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the fast time scale of the power stroke (such as in full-organ cardiac simulations),
the models of the H57 family match a good balance between model accuracy and
parameters identifiability.
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