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Abstract

We consider the problem of analyzing spatially distributed data cha-
racterized by spatial anisotropy. Following a functional data analysis ap-
proach, we propose a method based on regression with partial differential
regularization, where the differential operator in the regularizing term is
anisotropic and is derived from data. We show that the method correctly
identifies the direction and intensity of anisotropy and returns an accu-
rate estimate of the spatial field. The method compares favorably to both
isotropic and anisotropic kriging, as tested in simulation studies under
various scenarios. The method is then applied to the analysis of Switzer-
land rainfall data.

Keywords: Finite elements; Functional data analysis; Parameter cas-
cading; Penalized regression

1 Introduction

Many, if not most, spatial phenomena are characterized by spatial anisotropy.
In biology, anisotropy is naturally induced by the arrangement and orientation
of fibers and cells in a tissue, or by the morphology of the organs; in meteorology,
it may be caused by the presence of winds and sea streams, or by the orography
of the region under study; in geology, by the process of sedimentation. Figure 1
depicts a dataset of 467 daily rainfall measurements recorded in Switzerland on
May 8, 1986; this dataset was used for the Spatial Interpolation Comparison
97 (Dubois et al., 2003). The size and color of point markers represent the
value of the rainfall at each location, highlighting a strong spatial anisotropy,
with higher rainfall values alternating with lower rainfall values along elongated
regions oriented in the northeast-southwest direction.

In this work we adopt a functional data analysis approach and propose to
model the spatial anisotropy via regression with partial differential regulariza-
tion. Ramsay (2002), Sangalli et al. (2013) and Wood et al. (2008) consider
spatial regression with a roughness penalty that involves the Laplacian of the
spatial field: this partial differential operator provides a simple and isotropic
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Figure 1: Switzerland rainfall data. These include 467 daily rainfall measure-
ments recorded in Switzerland on May 8, 1986. The size and color of point
markers represent the value of the rainfall at each location, highlighting a strong
spatial anisotropy.

measure of the curvature of the spatial field; its use in the regularizing term
induces an isotropic smoothing effect. Thin plate splines (Wahba, 1990) and
bivariate splines over triangulations (Guillas and Lai, 2010) offer other classical
and recent proposals of spatial isotropic smoothing defined as regression with
differential regularization. Azzimonti et al. (2015) extend the method in Ramsay
(2002) and Sangalli et al. (2013) to the case where the regularizing term involves
a more general partial differential equation (PDE) that induces an anisotropic
and non-stationary smoothing. In particular, Azzimonti et al. (2015) assume
that the PDE in the regularizing term is suggested by prior knowledge of the
phenomenon under study, coming for instance from the physics or morphology
of the problem; the parameters of the PDE are consequently fixed considering
their physical meaning.

We here instead assume no prior knowledge of the spatial variation of the
considered problem; moreover, we do not assume the existence of a physical law
governing the system. We though use the PDE in the regularizing term to model
the spatial variation of the phenomenon, learning the anisotropy directly from
the data. Specifically, we consider PDEs that induce a stationary anisotropic
smoothing effect; the parameters in the PDE determine the direction and the
intensity of the anisotropy; these parameters are here considered unknown and
are derived from data. In particular, we select the parameters of the PDE in
the regularizing term by parameter cascading. This generalized profiling esti-
mation procedure was originally introduced by Ramsay et al. (2007) to retrieve
the parameters of an ordinary differential equation (ODE), starting from noisy
measurements of the ODE solution. The same technique has been successfully
applied in other contexts, such as penalized smoothing (Cao and Ramsay, 2007,
2009), dynamical models (Cao et al., 2008) and linear mixed-effects modeling
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(Cao and Ramsay, 2010). Xun et al. (2013) extended parameter cascading to
the estimation of the parameters of a PDE, again starting from noisy measure-
ments of the PDE solution. In our case, we use parameter cascading to obtain
the parameters of a PDE in a more general setting, where the data do not come
from the solution of the PDE itself. In fact, as mentioned earlier, the PDE is not
here used to model the phenomenon which generated the data, but rather as a
regularizing term, to characterize the spatial distribution of the data. Moreover,
spatially varying covariates are included in the model.

Other spatial smoothing techniques which take into account the anisotropy
of the data have been considered by Wood (2000), which describes an anisotropic
thin plate spline smoother, and by Gu (2013), which presents a tensor product
spline model. Unlike these techniques, the method we propose does not use
global radial basis functions, nor tensor-product basis functions. In particular,
likewise Azzimonti et al. (2015), Ramsay (2002) and Sangalli et al. (2013), we
represent the spatial field via finite elements, which provide a non-tensor product
basis for piecewise polynomial surfaces. This enable the method to efficiently
handle data distributed over irregularly shaped domains, featuring concavities
and interior holes, as extensively shown for instance in Bernardi et al. (2017),
Ramsay (2002) and Sangalli et al. (2013), and as here illustrated in a simulation
study. The implementation of the model is based on the R package fdaPDE (Lila
et al., 2016).

We test the performance of anisotropic spatial regression with PDE reg-
ularization (anisotropic SR-PDE) via extensive simulation studies, comparing
it to both isotropic and anisotropic kriging, with various variogram models,
and to the isotropic SR-PDE method described in Ramsay (2002) and Sangalli
et al. (2013). The comparative studies show that, when simulating from an
anisotropic Matérn field, anisotropic SR-PDE has significant lower root mean
square error (RMSE) than isotropic SR-PDE, and it also has significantly lower
RMSE than isotropic and anisotropic kriging. In particular, anisotropic SR-
PDE provides better estimates with respect to anisotropic Matérn kriging, that
should in this simulation setting constitute the best possible model as it assumes
the same space covariance structure used to generate the data. Furthermore,
also when space-varying covariates are added, the proposed anisotropic SR-
PDE provides significantly better estimates than all other considered methods,
including anisotropic universal Matérn kriging. Moreover, anisotropic SR-PDE
outperforms all other methods when generating data from a field defined over
an irregularly shaped domain.

The paper is organized as follows. Section 2 describes the model. Section 3
provides implementation details. Section 4 extends the model for the inclusion
of space-varying covariates. Section 5 is devoted to simulation studies. Section 6
shows the application of the proposed method to the analysis of the Switzerland
rainfall data. Finally, Section 7 draws some directions for future research.

2 Model

Let {p1 = (x1, y1), . . . ,pn = (xn, yn)} be a set of n points on a bounded domain
Ω ∈ R2, whose boundary ∂Ω is a curve of class C2. We denote by |Ω| the area of
the domain Ω. Let zi ∈ R be the value of a variable of interest observed at point
pi. We assume that z1, . . . , zn are noisy observations of an underlying smooth
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function f : Ω→ R. That is, for all i ∈ {1, . . . , n},

zi = f(pi) + εi (1)

where ε1, . . . , εn are independently distributed residuals, with mean zero and
constant variance σ2.

We want to estimate the spatial field f by minimizing the penalized sum-of-
square-error functional

Jρ(f,K) = (1− ρ)
1

n

n∑
i=1

{zi − f(pi)}2 + ρ
1

|Ω|

∫
Ω

{∇ · (K∇f)}2 , (2)

where the operator ∇ is defined as ∇ = (∂/∂x, ∂/∂y)> and K is a symmetric
and positive definite matrix with elements Kij , for i, j ∈ {1, 2}. The inclusion
in the regularizing term of the anisotropic diffusion operator

∇ · (K∇f) = K11
∂2f

∂x2
+ (K12 +K21)

∂2f

∂x∂y
+K22

∂2f

∂y2

provides an anisotropic smoothing effect, where the direction and intensity of
the anisotropy is determined by the matrix K. In particular, the eigenvectors
of K determine the directions of maximum and minimum smoothing, while
the corresponding eigenvalues control the intensity of the smoothing in each
direction, with the ratio between the two eigenvalues determining the intensity
of the anisotropy. Figure 2 illustrates the spatial regularization implied by three
different matrices K, represented via ellipses whose axes are oriented according
to the eigenvectors of K and have length proportional to the corresponding
eigenvalues. In the case considered in the left panel of Figure 2, K is the
identity matrix, and the model reduces to the one presented in Ramsay (2002)
and Sangalli et al. (2013), where the penalty involves the Laplace operator
∆f = ∇ · ∇f = ∂2f/∂x2 + ∂2f/∂y2. In the latter case, the smoothing is
isotropic: the penalization equally weights the curvature of the spatial field
along every direction. The cases considered in the central and right panels of
Figure 2 provide examples of anisotropic penalizations with different angles and
intensities. The smoothing along the direction of the major axis has a longer
range, while the smoothing along the minor axis has a shorter range. This effect
is more pronounced in the example represented in the right panel.

Beside the matrix K, which controls the direction and intensity of the
regularization, there is another tuning parameter: the smoothing parameter
ρ ∈ (0, 1), which weighs the contribution of the data fitting term (the least
squares) against the regularization term, in the estimation of the spatial field.
The higher ρ is, the more we control the roughness of the spatial field f through
the anisotropic diffusion operator, forcing the estimated spatial field to be char-
acterized by the anisotropy defined by K; the smaller the ρ, the more we locally
adapt to the data. The way we parametrize the smoothing parameter in this
work is different with respect to the one considered in Azzimonti et al. (2015),
Ramsay (2002) and Sangalli et al. (2013). The new parametrization of the
smoothing parameter in the functional (2) is introduced to more efficiently bal-
ance the least squares term and the regularizing term, using a parameter that
has a bounded range; moreover, the least squares and the regularizing term are
both normalized respectively by the number of observations and the area of the
domain.
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Figure 2: Graphical representation of the smoothing effect implied by stationary
isotropic (left) and anisotropic (center and right) penalizations. The anisotropy
matrix K is represented by ellipses: its eigenvectors (the ellipses axes) identify
the direction of the anisotropy, while the eigenvalues (proportional to the axes
lengths) determine the intensity of the anisotropy. The angles of the first eigen-
vectors are π/6 and π/3, respectively, for the second and third case, while the
ratios between the eigenvalues are 5 and 25, respectively.

We want to solve the non-convex optimization problem of minimizing the
functional Jρ(f,K) with respect to f and K, with a value of ρ chosen to properly
weigh the effect of the regularization and to accurately identify the optimal
anisotropy matrix K. We here propose a two-step algorithm which alternates
between the optimal selection of the anisotropy K and the estimation of spatial
field f . The optimal anisotropy matrixK is selected using a parameter cascading
approach, as described in Section 2.1. Hence, the spatial field f is estimated
using the anisotropy matrix K selected in the previous step of the algorithm.
In particular, in Section 2.2 we show that, for any given K, the estimation of
the spatial field f , minimizing the functional Jρ(f,K), has a unique solution.
This infinite-dimensional estimation problem is discretized via finite elements,
as detailed in the Sections 2.3 and 2.4.

2.1 Selection of the anisotropy matrix K via parameter
cascading

To select the anisotropy matrix K we use parameter cascading. Ramsay et al.
(2007) and Xun et al. (2013) use this technique respectively to estimate the pa-
rameters of an ordinary differential equation and of a partial differential equa-
tion, starting from noisy observations of the solution of the differential equation
itself. In our case, the data do not come from the solution of the differen-
tial equation, but this is used as a convenient model to describe the spatial
anisotropy characterizing the distribution of the data. Our final goal is the
accurate fit of the spatial field. The different focus and the different setting
considered here require some modification of the implementation of parameter
cascading with respect to Ramsay et al. (2007) and Xun et al. (2013). This will
be further detailed in Section 3.2.

The parameter cascading algorithm distinguishes two classes of parameters:
the structural parameters, which are the parameters of direct interest for the
analysis, and the nuisance parameters, which are essential for fitting the data,
but are not of direct interest. In our setting, when selecting the anisotropy
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matrix K, the structural parameter is K, and the nuisance parameters are the
coefficients of the expansion used to represent f . The estimates of the nuisance
parameters are obtained minimizing the functional Jρ(f,K) with respect to f

for a fixed K. The solution is called f̂ρ,K and it is an implicit function of the
structural parameter: each time K is changed, the functional Jρ(f,K) is re-
optimized with respect to f alone. The structural parameter is then obtained
by the optimization of the functional

H(K) =

n∑
i=1

{zi − f̂ρ,K(pi)}2, (3)

which depends on K implicitly, through f̂ρ,K . Since f̂ρ,K is already regular-
ized, H does not include the regularization term, and is simply the data fitting
criterion.

The minimization of the criterionH(K) does not have a closed-form solution,
so its optimization is performed numerically. The minimization of the criterion
Jρ(f,K) with respect to f , for a fixed K, can instead be characterized similarly
to Azzimonti et al. (2015) and Sangalli et al. (2013), as detailed in the following
sections.

2.2 Estimation of the spatial field f for a given anisotropy
matrix K

Consider the Sobolev space H2(Ω) of functions f such that f and its first and
second derivatives belong to L2(Ω); see, e.g., Rudin (1991). The functional
Jρ(f,K) in (2) is well defined for f ∈ H2(Ω).Moreover, as shown in the following
proposition, given a symmetric and positive definite matrix K, the minimizer
of Jρ(f,K) exists and is unique for f ∈ H2(Ω) with appropriate boundary
conditions. In particular, the boundary conditions ensure the uniqueness of
the solution. Various boundary conditions may be considered, concerning for
instance the value of f and/or the value of the normal derivative of f at the
boundary ∂Ω, thus enabling a very flexible modeling of the behavior of the field
at the boundary of the domain of interest. Specifically, Dirichlet conditions
control the value of the function at the boundary, i.e., f |∂Ω = γD; Neumann
conditions set the value of the normal derivative of the function at the boundary,
i.e., (K∇f · ν)|∂Ω = γN , where ν is the outward unit normal vector to ∂Ω,
thus controlling the flow across the boundary; Robin conditions involve a linear
combination of the value of the first derivative and the value of the function at
the boundary, i.e., (K∇f ·ν+χf)|∂Ω = γR. Different boundary conditions may
be imposed on different portions of the boundary, that form a partition of ∂Ω.
All the admissible boundary conditions can be summarized as f = γD on ΓD,

K∇f · ν = γN on ΓN ,
K∇f · ν + χf = γR on ΓR,

where γD, γN , γR, ΓD, ΓN , and ΓR have to satisfy some regularity conditions to
obtain a well-defined functional Jρ(f,K). See Azzimonti et al. (2014) for details.
For simplicity of exposition, in the following we consider homogeneous condi-
tions, i.e., null γD, γN and γR. All other boundary conditions may be handled
similarly to Azzimonti et al. (2014). We denote by V (Ω) the subspace of H2(Ω)
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characterized by the chosen boundary conditions. We set z = (z1, . . . , zn)> and,
for any function h : Ω→ R, we set hn = (h(p1), . . . , h(pn))>. The estimator is
characterized by the following proposition.

Proposition 1. Given a symmetric and positive definite matrix K, there exists
a unique estimator f̂ ∈ V (Ω) which minimizes (2). Moreover, f̂ satisfies, for
every h ∈ V (Ω),

(1− ρ)
1

n
h>n f̂n + ρ

1

|Ω|

∫
Ω

{∇ · (K∇h)}{∇ · (K∇f̂)} = (1− ρ)
1

n
h>n z. (4)

Proof. The result follows from Theorem 2 in Azzimonti et al. (2014), by ap-
propriate reparametrization of the smoothing parameter ρ, and by setting L =
∇ ·K∇f and u = 0.

The fourth-order problem (4) can be rewritten as a coupled system of sec-
ond order problems. Then, using Green’s theorem (integration by parts), it is
possible to obtain an equivalent reformulation of the problem that involves only
first order derivatives. See the Appendix for details. This reformulation of the
problem can thus be discretized via finite elements. This allows us to approx-
imate the infinite dimensional estimation problem by a finite dimensional one,
and to reduce the estimation problem to the solution of a linear system.

2.3 Finite elements

To construct a finite element space, we first obtain a regular triangulation T of
the domain Ω where adjacent triangles share either a vertex or a complete edge.
Thus, the domain Ω is approximated by the union of all triangles ΩT , and the
boundary ∂Ω is approximated by a polygon (or multiple polygons in case of a
domain with holes).

As an example, the left panel of Figure 3 shows the triangulation for the
Switzerland rainfall data. As a preprocessing step, we obtain a simplified bor-
der for the data in order to have a small number of points defining the boundary
of the domain and, therefore, a simpler triangulation. We can discard the precise
definition of the boundary since, in this application, the border has no influence
on the phenomenon under study: rainfall is not correlated with the political
borders of Switzerland. This simplified boundary is shown in gray in the figure,
where the black line instead represents the actual border of Switzerland, and the
black dots indicate the data locations. We first obtain a constrained Delaunay
triangulation selecting as vertices the locations of the data and the points defin-
ing the simplified boundary; the triangulation is then refined with additional
vertices imposing a constraint on the maximum value of the triangle areas. The
constrained Delaunay triangulation and the refined mesh are obtained using the
R package fdaPDE (Lila et al., 2016). The final triangulation is shown in gray
in the figure.

On the triangulation T , we define the finite element space V rT (Ω), with r ∈
{1, 2, . . .}, as the space of continuous surfaces over ΩT that are polynomials of
degree r when restricted to any triangle in T . To define a set of N basis functions
ψ1, . . . , ψN , that span such space, it is convenient to consider the so-called nodes
of the triangulation, denoted by ξ1, . . . , ξN . For linear finite elements, the nodes
coincide with the vertices of the triangles in T . For higher order finite elements,
the nodes are a super-set of the triangle vertices; for instance, for quadratic finite
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Figure 3: Left: domain and locations of Switzerland rainfall data, with simplified
domain boundary and triangulation in gray. Right: Example of linear finite
element basis function.

elements the nodes coincide with the triangle vertices and the middle points of
the triangle edges. For each j ∈ {1, . . . , N}, the basis ψj is then associated
with one node ξj , and is a locally supported piecewise polynomial function of
order r, that takes value 1 at the associated node and 0 on all other nodes, i.e.,
ψj(ξi) = δji, where δji = 1 if j = i and δji = 0 if j 6= i. Bases associated
with nodes in ΓD and ΓR, where homogeneous Dirichlet or Robin conditions
are imposed, are discarded. For the simulation studies and for the application
here presented, we use linear finite elements. The right panel of Figure 3 shows
an example of linear finite element basis function.

Let ψ = (ψ1, . . . , ψN )> be the N -vector of the basis functions. Then we can
represent any function h ∈ V rT (Ω) as an expansion on this basis system, viz.

h(p) = h>ψ(p),

where h = (h1, . . . , hN ) is the vector of coefficients of the basis expansion. It
turns out that h coincides with the evaluations of the function h at the N mesh
nodes, i.e., h = (h(ξ1), . . . , h(ξN ))

>
. In fact,

h(ξi) =

N∑
j=1

hjψj(ξi) =

N∑
j=1

hjδij = hi.

For an introduction to finite elements, see, e.g., Gockenbach (2006) and
Quarteroni (2010).

2.4 Discretization of the spatial field f via finite elements

Let Ψ be the n×N matrix evaluating the N basis functions ψ1, . . . , ψN at the
n data locations p1, . . . ,pn:

Ψ =

ψ1(p1) . . . ψN (p1)
...

...
...

ψ1(pn) . . . ψN (pn)

 .
Moreover, let R0 and R1 be the following N ×N matrices:

R0 =

∫
ΩT

ψψ>, R1 =

∫
ΩT

∇ψ(K∇ψ)>.
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The following proposition states that, once recast in the finite element space,
finding the estimator f̂ , for a given K, reduces to solving a linear system. See
the Appendix for details.

Proposition 2. Given a symmetric and positive definite matrix K, the estima-
tor f̂ ∈ V rT (Ω) exists and is unique and is given by f̂ = f̂ψ, where[

−(1− ρ)Ψ>Ψ/n ρR1/|Ω|
R1 R0

] [
f̂
h

]
=

[
− (1− ρ)Ψ>z/n

0

]
.

Proof. The existence and uniqueness of the solution are ensured by the invert-
ibility of the matrices R0 and {(1− ρ)/n}Ψ>Ψ + (ρ/|Ω|)R1R

−1
0 R1.

From Proposition 2, we obtain the following expression for f̂ , the vector of
coefficients of the basis expansion for the spatial field estimate f̂ :

f̂ =

{
(1− ρ)

1

n
Ψ>Ψ + ρ

1

|Ω|
P

}−1

(1− ρ)
1

n
Ψ>z,

where P = R1R
−1
0 R1 represents the discretization of the penalty term in Eq. (2).

The discretization of the penalty term only involves first order derivatives,
thanks to the weak formulation (8) of the estimation problem, derived in the
Appendix.

3 Implementation details

3.1 Parametrization of the anisotropy matrix K

Various choices are possible for the parametrization of the anisotropy matrix
K. In this work, we parametrize K with the parameter θ = (α, γ), where α
represents the direction of the anisotropy and γ its intensity. The matrix K(θ)
is then uniquely defined by setting its determinant equal to 1. Given α and γ,
the matrix K is constructed exploiting its eigendecomposition, as follows:

K(θ) = Q(α)Σ(γ)Q(α)−1,

where

Q(α) =

[
cos(α) − sin(α)
sin(α) cos(α)

]
and Σ(γ) =

1
√
γ

[
1 0
0 γ

]
.

The choice of this parametrization implies a periodicity of the functional H
in (3) with respect to the parameter α; the numerical implementation of the
optimization method appropriately takes this point into account.

3.2 Implementation of the algorithm and selection of the
optimal smoothing parameter ρ

We here discuss the automatic choice of the smoothing parameter ρ. Note that
the value of ρ that enables the optimal selection of the anisotropy matrix K
differs from the optimal value of ρ for the estimation of the spatial field f, for a
given value of K. In fact, when selecting the anisotropy matrix K, ρ should be
large enough to imply a significant effect of the anisotropy in the estimated field;
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instead, when estimating the spatial field f , the smoothing parameter ρ should
be chosen to properly balance the effect of the penalization and the adherence
to the data, and this is typically found in correspondence of rather small values
of ρ. Indeed, in all the simulation studies and in the application we carried
out, the value of ρ that enabled the optimal selection of K was at least one
order of magnitude larger than the optimal value of ρ for the estimation of f .
Specifically, we proceed as follows.

Having no knowledge of the right amount of regularization to impose for the
optimal selection of the anisotropy matrix K, we consider a grid of d possible
values for the smoothing parameter ρ1, . . . , ρd spanning regularly the interval
(0,1). The grid we use in the simulations and in the analysis of the Switzer-
land rainfall data is as follows: (0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9). For each value of the smoothing parameter in this grid, the optimal
anisotropy matrix is found, thus leading to the identification of d anisotropy ma-
trices K1, . . . ,Kd. At this point, the choice of the optimal anisotropy matrix,
among K1, . . . ,Kd, is led by the goal of our analysis: the optimal estimation of
the spatial field. In particular, we want to select the anisotropy matrix lead-
ing to the best estimation of the spatial field. To do so, we estimate an f for
each of the d possible anisotropy matrices {K1, . . . ,Kd}, obtaining the spatial

field estimates f̂1, . . . , f̂d; to obatin these estimate we choose in each case the
smoothing parameter ρ via generalized cross validation (GCV). We then select,
among the d anisotropy matrices K1, . . . ,Kd and the corresponding estimated
spatial fields f̂1, . . . , f̂d, the couple K, f̂ having the smallest GCV value.

The GCV index is available in closed-form for this model, and is

GCV(ρ) =
n

{n− tr(S)}2
(z− ẑ)>(z− ẑ),

where S is the smoothing matrix, which maps the vector of observed values z
to the vector of fitted values ẑ: ẑ = Sz, i.e.,

S = Ψ

{
(1− ρ)

1

n
Ψ>Ψ + ρ

1

|Ω|
P

}−1

(1− ρ)
1

n
Ψ>.

The selection of the anisotropy matrix K for a grid of d possible smoothing
parameters ρ also helps the numerical optimization of the functional H. Indeed,
the functionalH as a function of θ shows different levels of regularity for different
values of ρ: for lower values of ρ, the surface is smooth and has a quadratic
behavior, while, for higher values of ρ, it is almost flat in some regions and has a
narrow ridge corresponding to its minimum. As an example, Figure 4 shows the
surfaces H{K(θ)} for two extremes values of ρ (ρ = 0.01 and ρ = 0.9), for the
Switzerland rainfall data. The optimization algorithm based on gradient descent
can easily identify the global minimum for the first surface (corresponding to
ρ = 0.01), but needs a starting point within the basin of attraction of the
minimum to reach the global minimum of the second surface (corresponding to
ρ = 0.9). In order to improve the performance of the optimization algorithm
and to avoid local minima, for each value ρj , for j ∈ {2, . . . , d}, we provide,
as initial value of θ in the optimization of H{K(θ)}, the optimum for θ that
was obtained from the optimization for the value ρj−1. Since the complexity
of the optimization surface increases as ρ increases, the initial values provided
by the optimization carried out for with the previous value of ρ guarantee to
remain in the basin of attraction of the global minimum. In the numerical
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tests we performed, we never experienced any problem of convergence of the
optimization algorithm.

Figure 4: Surface H{K(θ)} for two values of the smoothing parameter: ρ = 0.01
(left panel) and ρ = 0.9 (right panel).

4 Inclusion of space-varying covariates

The method described in the previous sections can be extended to handle space-
varying covariates. Let wi = (wi1, . . . , wiq)

> be a q-vector of covariates observed
at pi. The model in Eq. (1) can be modified to include an additive term which
takes into account the contribution of the covariates. Specifically, we consider
the semi-parametric generalized additive model defined, for all i ∈ {1, . . . , n},
by

zi = w>i β + f(pi) + εi, (5)

where β ∈ Rq contains regression coefficients. The penalized sum-of-square-
error functional becomes

Jρ(β, f,K) = (1− ρ)
1

n

n∑
i=1

{zi−w>i β− f(pi)}2 + ρ
1

|Ω|

∫
Ω

{∇ · (K∇f)}2 . (6)

The proposed two-step algorithm separately selects the matrix K and esti-
mates the couple β, f . The anisotropy matrix K is selected using a parameter
cascading approach, minimizing the functional:

H(K) =

n∑
i=1

{zi −w>i β̂ρ,K − f̂ρ,K(pi)}2,

where β̂ρ,K and f̂ρ,K are implicit functions of the structural parameter K, and
are in turn obtained minimizing the functional Jρ(β, f,K) with respect to β
and f, for the given K.

As for the estimation of f and β, given the chosen anisotropy matrix K,
we can prove, in a similar way to the one described in Section 2 and in the
Appendix, that the estimation problem is well posed: the solution exists and is
unique. Let W be a n × q matrix whose ith row is the vector wi of covariates
at location pi. We assume W has full rank. Let P = W (W>W )−1W> be
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the matrix that projects orthogonally on the subspace of Rn generated by the
columns of W and let Q = I − P , where I is the identity matrix.

Proposition 3. There exists a unique pair {β̂ ∈ Rq : f̂ ∈ V (Ω)} which min-
imize (6) for a fixed symmetric and positive definite matrix K. Moreover,

β̂ = (W>W )−1W>(z− f̂n) and f̂ satisfies, for every h ∈ V (Ω),

(1− ρ)
1

n
h>nQf̂n + ρ

1

|Ω|

∫
Ω

{∇ · (K∇h)}{∇ · (K∇f̂)} = (1− ρ)
1

n
h>nQz.

Proof. The estimator β̂ is obtained by differentiating the functional Jρ(β, f,K)

in (6) with respect to β; then, plugging the estimate β̂ of β in (6) reduces

the estimation problem to the minimization of Jρ(β̂, f,K) over f in V (Ω), and
the result follows similarly as in the proof of Proposition 1. In particular, the
imposition of boundary conditions in the space V (Ω) ensures the uniqueness of

f̂ , and thus of β̂ as well. A detailed derivation of this result can be obtained
combining Proposition 1 in Sangalli et al. (2013) and Theorem 2 in Azzimonti
et al. (2014).

Analogously to the case without covariates, after introducing the discretiza-
tion with finite elements, we obtain the following result.

Proposition 4. Given a fixed symmetric and positive definite matrix K, the

estimators
{
β̂ ∈ Rq, f̂ ∈ V rT (Ω)

}
that solve the discrete counterpart of the es-

timation problem exist and are unique. Moreover, β̂ = (W>W )−1W>(z − f̂n)

and f̂ = f̂ψ, where f̂ satisfies[
−(1− ρ)Ψ>QΨ/n ρR1/|Ω|

R1 R0

] [
f̂
h

]
=

[
− (1− ρ)Ψ>Qz/n

0

]
.

Proof. The existence and uniqueness of the solution are ensured by the invert-
ibility of the matrices R0 and [{(1− ρ)/n}Ψ>QΨ + (ρ/|Ω|)P ].

Solving the system for f̂ leads to the following expression for the vector of
coefficients of the basis expansion for the spatial field estimate f̂ :

f̂ =

{
(1− ρ)

1

n
Ψ>QΨ + ρ

1

|Ω|
P

}−1

(1− ρ)
1

n
Ψ>Qz.

5 Simulation studies

In this section, we present the results of three simulation studies that show
the performances of the proposed method (anisotropic SR-PDE) and compare
it to isotropic smoothing with penalization of the L2-norm of the Laplacian,
as described in Sangalli et al. (2013) (isotropic SR-PDE), and to isotropic and
anisotropic kriging. Isotropic and anisotropic SR-PDE are implemented using
the R package fdaPDE (Lila et al., 2016), considering homogeneous Neumann
boundary conditions, i.e., null flow across the boundary. The isotropic kriging
estimates, both ordinary and universal, are obtained with the function krige

of the R package gstat (Pebesma, 2004), estimating the parameters of the vari-
ogram with the function fit.variogram of the same package, using the starting
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values suggested by the empical variogram, as common practice in kriging. The
anisotropic kriging estimates, both ordinary and universal, are obtained with the
function krige.conv of the R package geoR (Ribeiro Jr and Diggle, 2016), esti-
mating the parameters of the variogram with the function likfit of the same
package. We use four classical variogram models: Matérn, Gaussian, Spher-
ical and Exponential. For some simulation replicates, we observed numerical
instability in the estimation by anisotropic Matérn and Gaussian kriging: the
estimation of the variogram parameters performed with the function likfit

failed, not returning any valid result; in these cases, we re-run likfit with dif-
ferent initial values for the parameters, until finite estimates are attained. For
some instances the instability could not be avoided; these simulation repetitions
were excluded from the analysis, thus giving an implicit advantage to kriging
over SR-PDE. For SR-PDE we instead never experienced any numerical insta-
bility. For all the simulation studies, we also performed isotropic and anisotropic
filtered kriging with the function Krig of the R package fields (Nychka et al.,
2015) for the variogram models implemented in the package (Matérn and Expo-
nential), but we did not find any significant difference with respect to standard
kriging (as confirmed by pairwise Wilcoxon test on the RMSE). Hence, to save
space, the results for filtered kriging are not included.

5.1 First simulation study: Matérn field with varying an-
isotropy

In the first simulation study, we generate 200 Matérn fields characterized by
varying anisotropy, using the function RFsimulate of the R package RandomFields
(Schlather et al., 2016). The anisotropy matrices are randomly generated by
sampling the angle and the first element of the diagonal from two uniform dis-
tributions with ranges [0, π] and [0.2, 0.5] respectively; the second element of
the diagonal is fixed to 1. The smoothness parameter ν is fixed to 2. Figure 5
shows three fields generated for this first simulation study.

angle = 0.63π
first diagonal element = 0.23

angle = 0.57π
first diagonal element = 0.34

angle = 0.27π
first diagonal element = 0.47

Figure 5: First simulation study. Three generated Matérn fields with different
anisotropy angles and intensities.
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Figure 6: First simulation study. First row: true field (left) and sampled data
(right), with the triangulation used for SR-PDE estimates in gray. Second row:
estimates provided by isotropic SR-PDE and isotropic Matérn kriging. Third
row: estimates provided by anisotropic SR-PDE and anisotropic Matérn kriging.

Within a squared domain of side length 10, we uniformly sample 200 points,
imposing a minimum distance of 0.1 among them. Each generated random field
is then sampled at these 200 locations, adding a gaussian noise with mean 0 and
standard deviation 0.2 (which corresponds approximately to 5% of the range of
the data).

Note that the parametrization of the anisotropy matrix used in the data gen-
eration and in the estimation by kriging is not the same as the one considered by
anisotropic SR-PDE. To make these matrices comparable, one should consider
the squared root of K, normalized in order to have first eigenvalue equal to 1.

The top right panel of Figure 6 shows the data obtained in the first simulation
replicate, corresponding to the true field represented in the top left panel of
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the same figure. The central and bottom rows of the same figure compare
the field estimates obtained by isotropic and anisotropic SR-PDE and isotropic
and anisotropic Matérn kriging. Superimposed to the true field and to the
corresponding estimates are ellipses respectively representing the true and the
selected anisotropy matrices. In particular, to allow the visual comparison of
the true anisotropy matrix, the anisotropy matrix selected by anisotropic kriging
and the one selected by anisotropic SR-PDE, for the latter method we plot the
squared root of K, normalized in order to have first eigenvalue equal to 1, thus
considering the same parametrization for all anisotropy matrices. To help the
interpretation of this figure, we also superimpose circles to isotropic estimates.
Anisotropic estimates clearly better capture the behavior of the true field with
respect to the corresponding isotropic estimates.

To evaluate the goodness of the fit, we compute the RMSE of the estimated
spatial field over the 200 simulation replicates. The RMSE is computed on a
fine regular squared grid spanning the whole domain with spacing 0.05. Figure
7 shows the boxplots of the RMSE of the estimates obtained with the different
methods. The gray boxplot corresponds to the proposed method. Anisotropic
SR-PDE has better performances with respect to all isotropic techniques. In-
deed, pairwise Wilcoxon tests confirm that the RMSE of the estimates obtained
with anisotropic SR-PDE are significantly smaller than those associated with
any of the isotropic methods, with p-values of the order of 10−16. Moreover,
anisotropic SR-PDE has also significantly smaller RMSE than anisotropic krig-
ing, with p-values of pairwise Wilcoxon tests of the order of 10−3 for the com-
parison with the Matérn and Spherical kriging, and of the order of 10−5 for the
comparison with Exponential and Gaussian kriging. In particular, it should be
noticed that the RMSE of the estimates obtained with the proposed method are
significantly smaller than the RMSE of the estimates obtained by anisotropic
Matérn kriging, which should, in this simulation setting, be the best possible
model, since it assumes the same covariance structure used to generate the data.
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Figure 7: First simulation study. Boxplots of the RMSE, over the 200 simulation
replicates, of the spatial field estimates obtained by isotropic and anisotropic SR-
PDE and by isotropic and anisotropic kriging with different variogram models
(Matérn, Gaussian, Spherical and Exponential).
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5.2 Second simulation study: Matérn field with varying
anisotropy and inclusion of covariates

In this simulation study, we consider the same simulation setting described in
Section 5.1, but we add a space-varying covariate. Specifically, for 200 simula-
tion replicates, we generate from the semiparametric model (5), with f equal to
one of the 200 Matérn fields generated for the first simulation study, β = 1 and
wi = 2 sin{(xi/5− 1)1.5π} cos{(yi/5− 1)1.5π}.

Figure 8 shows, in the first row, the Matérn field in the first simulation
replicate and the space-varying covariate; the total field, obtained adding the
Matérn field and the covariate, is represented in the first panel of the second
row. The right panel of the second row shows the data obtained in the first
simulation replicate. The following rows of the same figure compare the corre-
sponding estimates provided by isotropic and anisotropic SR-PDE and isotropic
and anisotropic universal Matérn kriging. Figure 9 shows the boxplots of the
RMSE of the spatial field estimates obtained with the different methods over
the 200 replicates. As expected, taking into account the anisotropy significantly
improves the fitting. In particular, the RMSE of the fields estimated with
anisotropic SR-PDE are significantly lower than those obtained with any of the
isotropic techniques, with p-values of pairwise Wilcoxon tests of the order of
10−14 for the comparison with isotropic SR-PDE, and of the order of 10−16 for
the comparison with isotropic universal kriging. Furthermore, anisotropic SR-
PDE has also better performances with respect to anisotropic universal kriging
with the different variogram models, with p-values of pairwise Wilcoxon tests
of the order of 10−16. It should here be remarked that surprisingly anisotropic
SR-PDE does significantly better even than universal Matérn kriging, which
exactly assumes the same covariance structure used to generate the data.
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Figure 8: Second simulation study. First row: true Matérn field and space-
varying covariate. Second row: total field and sampled data, with the trian-
gulation used for SR-PDE estimates represented in gray. Third row: estimates
provided by isotropic SR-PDE and isotropic universal Matérn kriging. Fourth
row: field estimates provided by anisotropic SR-PDE and by anisotropic uni-
versal Matérn kriging.

17



●

●

●

●

●

●

●

●

S
R

−
P

D
E

M
at

ér
n 

kr
ig

.

G
au

ss
ia

n 
kr

ig
.

S
ph

er
ic

al
 k

rig
.

E
xp

on
en

tia
l k

rig
.

0.20

0.25

0.30

0.35

0.40

0.45
Isotropic

●

●

●

●

●

●

●

●●
●

S
R

−
P

D
E

M
at

ér
n 

kr
ig

.

G
au

ss
ia

n 
kr

ig
.

S
ph

er
ic

al
 k

rig
.

E
xp

on
en

tia
l k

rig
.

Anisotropic

   
   

   
   

 R
M

S
E

Figure 9: Second simulation study. Boxplots of the RMSE of the spatial field
estimates obtained by isotropic and anisotropic SR-PDE and by isotropic and
anisotropic universal kriging with different variogram models (Matérn, Gaus-
sian, Spherical and Exponential).

5.3 Third simulation study: Field over irregular domain

In this simulation study, we want to test the performances of the considered
methods in estimating the spatial field represented in the top left panel of Figure
10 from its noisy measurements. The field is defined on a rectangular domain
with an elongated rectangular hole within it. The values of the field on the two
sides of the hole are different; therefore the geometry of the domain should be
taken into account to properly estimate this field.

Within the domain of side lengths 8 and 4, we uniformly sample 300 loca-
tions, imposing a minimum distance of 0.2 among them. We then sample the
field at these 300 locations, adding a gaussian noise with mean 0 and standard
deviation 0.1 (which corresponds to 5% of the range of the data). We repeat
the simulation for 200 independent realizations of the additive gaussian noise.

The top right panel of Figure 10 shows the data obtained in the first sim-
ulation replicate. The central and bottom rows of the same figure show the
field estimates provided by isotropic and anisotropic SR-PDE and isotropic and
anisotropic Matérn kriging. In contrast to kriging, SR-PDE is able to properly
take into account the shape of the domain, while kriging smooths across the
internal boundaries, closely connecting data points that are separated by the
hole in the domain. Anisotropic SR-PDE improves the performances of isotropic
SR-PDE, providing estimated fields with more regularity along the direction of
anisotropy.

We then compare the various methods on the base of the RMSE of the spatial
field estimates, over the 200 simulation replicates. The RMSE is computed
on a fine regular squared grid of step 0.05 spanning the whole domain. The
boxplots of the RMSE displayed in Figure 11, and the Wilcoxon pairwise tests
confirm that the RMSE of the estimates obtained with anisotropic SR-PDE
are significantly smaller than those of isotropic SR-PDE, and of isotropic and
anisotropic kriging with any variogram model.
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Figure 10: Third simulation study. First row: true field and sampled data,
with the triangulation used for SR-PDE estimates in gray. Second row: field
estimates provided by isotropic SR-PDE and isotropic Matérn kriging. Third
row: field estimates provided by anisotropic SR-PDE and anisotropic Matérn
kriging.
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Figure 11: Third simulation study. Boxplots of the RMSE over the 200 sim-
ulation replicates of the estimates obtained by isotropic and anisotropic SR-
PDE and by isotropic and anisotropic kriging with different variogram models
(Matérn, Gaussian, Spherical and Exponential).

6 Application to the analysis of the Switzerland
rainfall data

We apply the proposed method to the analysis of the dataset of 467 daily rainfall
measurements recorded in Switzerland on May 8, 1986; this dataset was used19



for the Spatial Interpolation Comparison 97 (Dubois et al., 2003). The data are
shown in Figure 1.

The data include the elevation at the 467 locations, that we use here as
a covariate since intuition suggests that the orography of the region may play
an important role in the rainfall phenomenon; see Figure 12 that shows the
elevation over Switzerland. However, when implementing the anisotropic SR-
PDE model using the elevation as a covariates, it turns out that elevation is not
significant in the model; the approximate 95% confidence interval for β (see,
e.g., Sangalli et al., 2013; Azzimonti et al., 2015) includes 0. This is probably
due to the fact that the effect of elevation on rainfall is not linear; the apparent
anisotropy in the distribution of rainfall is the result of the complex interaction
between the geomorphology and atmospheric circulation. Unfortunately, data
about wind streams and atmospheric circulation are not included in this dataset.
We thus discard the elevation from the model and compute the SR-PDE estimate
without this covariate.

1000

2000

3000

4000

Figure 12: Elevation in the Switzerland region. This plot is obtained with the
R package geostatsp (Brown, 2015).

The left panel of Figure 13 displays the selected anisotropy matrix, superim-
posed to the data, and the right panel of the same figure shows the corresponding
field estimate. The proposed method correctly identifies the anisotropy and pro-
vides a smooth field that is able to capture the important features of the data,
with the well defined elongated regions of homogeneous values.
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Figure 13: Left panel: ellipse representing the anisotropy matrix selected for the
Switzerland rainfall data. Right panel: field estimate obtained by the proposed
method.

7 Possible model extensions and directions of
future research

The SR-PDE method can be extended to handle spatio-temporal data, gener-
alizing the model proposed by Bernardi et al. (2017), and to deal with areal
data instead of geostatistical data, following a similar approach as in Azzimonti
et al. (2015). Another possible extension is to data observed over curved do-
mains, combining the method here proposed with the one described in Ettinger
et al. (2016). This extension would be particularly interesting in the field of
geosciences and environmental sciences, since data are often observed over re-
gions presenting a complex orography. Furthermore, another very interesting
generalization of the proposed approach would consist in integrating it with the
model framework introduced by Azzimonti et al. (2015), where the regulariz-
ing term involves a more complex PDE, Lf = u, suggested by prior knowledge
and the phenomenon behavior, and that includes anisotropic and non-stationary
diffusion, transport and reaction terms:

Lf = −∇ · {K(p,θ)∇f}+ b(p,η) · ∇f + c(p, ζ)f. (7)

In Azzimonti et al. (2015) the parameters θ, η and ζ in the diffusion, trans-
port and reaction terms in (7) are fixed on the base of their physical meaning,
thanks to the prior knowledge of the problem under study. In many instances,
however, the prior knowledge of the phenomenon is not as detailed and does
not indicate the specific values for these parameters. In such contexts, these
parameters could be derived from data, generalizing the methodology presented
in this paper. This would enable us to combine prior knowledge and observed
data in the definition of the anisotropic and non-stationary spatial variation of
the phenomenon. In particular, the use of prior knowledge would avoid un-
identifiability issues, which would otherwise be inevitably involved in such a
flexible modeling of anisotropic and non-stationary spatial variation. See also
Fuglstad et al. (2015), that extend the approach based on Gaussian random
fields and stochastic PDEs introduced in Lindgren et al. (2011). In the ap-
plication to Switzerland rainfall data, if information about wind stream or air
circulation were available, it could be used to define a PDE with anisotropic
and non-stationary diffusion and transport terms; in particular, the transport

21



terms can be used to induce unidirectional smoothing effects in the direction of
the wind streams.

A Estimation of f for a given anisotropy matrix
K and discretization via finite elements

As shown in Azzimonti et al. (2014), by introducing an auxiliary variable g,
we can write the fourth-order problem (4) as a coupled system of second order
problems:{

∇ · (K∇f̂) = g in Ω,

Bcf̂ = 0 on ∂Ω, ρ 1
|Ω|∇ · (K∇g) = −(1− ρ)

n∑
i=1

(f̂ − zi)δpi
/n in Ω,

B∗c g = 0 on ∂Ω,

where Bc are general boundary conditions, and B∗c are the boundary conditions
associated with the adjoint problem, i.e., g = 0 on ΓD,

K∇g · ν = 0 on ΓN ,
K∇g · ν + χg = 0 on ΓR.

See Azzimonti et al. (2014) for details. For homogeneous boundary conditions,
integrating the differential equations against test functions h, v, and exploiting
Green’s theorem, or integration by parts, we then obtain the following weak
formulation of the problem: find f, g such that

(1− ρ)
1

n
h>n f̂n − ρ

1

|Ω|

∫
Ω

(∇g ·K∇h) = (1− ρ)
1

n
h>n z,

∫
Ω

gv +

∫
Ω

(∇v ·K∇f̂) = 0

(8)
for any h, v. This reformulation of the estimation problem involves only first
order derivatives and it is well suited to be solved numerically by discretization
via the finite element space V rT (Ω) described in Section 2.3. This allow to reduce
the infinite-dimensional problem to a finite-dimensional one, and to reduce the
estimation to the solution of a linear system. Indeed, taking the functions
f, g, h, v in the finite element space V rT (Ω), we obtain the following expressions
for the integrals in (8):∫

ΩT

(∇g ·K∇h) = g>R1h,

∫
ΩT

gv = g>R0v,

∫
ΩT

(∇v ·K∇f̂) = v>R1f̂ .

This leads to Proposition 2.
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