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Abstract. We study the interaction between a poroelastic medium and a fracture filled with fluid.
The flow in the fracture is described by the Brinkman equations for an incompressible fluid and the
poroelastic medium by the quasi-static Biot model. The two models are fully coupled via the kinematic
and dynamic conditions. The Brinkman equations are then averaged over the cross-sections, giving rise
to a reduced flow model on the fracture midline. We derive suitable interface and closure conditions
between the Biot system and the dimensionally reduced Brinkman model that guarantee solvability
of the resulting coupled problem. We design and analyze a numerical discretization scheme based
on finite elements in space and the Backward Euler in time, and perform numerical experiments to
compare the behavior of the reduced model to the full-dimensional formulation and study the response
of the model with respect to its parameters.
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1. Introduction

Computational modeling of flows in fractured oil and gas reservoirs is increasingly attracting the at-
tention of the scientific community. Naturally occurring fractures may affect significantly the effective
flow rates. Furthermore, an increasing fraction of hydrocarbon supply for western countries is coming
from shale oil and gas. Hydraulic fracturing is the main technology for extraction of these natural
resources. Efficient exploitation of trapped hydrocarbons requires careful reservoir management.

The problem of modeling fluid injection, flow and fracture propagation through reservoirs is chal-
lenging. Typical fractures are only 10−100µm thin and they extend for 10−100 m. In the process of
creating new fractures or opening existing ones, the injected flow rate in wells can exceed 10−3 m3/s,
namely one liter per second, which induces a significant fracture front propagation speed, up to one
meter per second. These numbers outline a complex dynamic scenario, where fluid flow and solid
mechanics are tightly coupled.

Keywords and phrases: reduced model, fracture flow, poroelasticity
1 Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, USA; partially
supported by NSF grants DMS-1318763 and DMS-1619993.
2 Department of Mathematics, University of Pittsburgh, USA; partially supported by DOE grant DE-FG02-04ER25618
and NSF grant DMS 1418947.
3 Department of Mechanical Engineering and Materials Science, University of Pittsburgh, USA; partially supported
by DOE grant DE-FG02-04ER25618.
4 MOX, Department of Mathematics, Politecnico di Milano, Italy.

c© EDP Sciences, SMAI 1999



2 TITLE WILL BE SET BY THE PUBLISHER

Models that employ Darcy’s law in the fracture and the reservoir have been developed in [1,2,12,15,
26,30,34,35], see also extensions to two-phase flow in [17,25]. More recently, models that account for
faster flow within the fracture have been investigated, including Forchheimer [16], Brinkman [28], and
Reynolds lubrication equations [18,19,21]. Attention has also been given to development of partitioned
non-iterative or iterative algorithms. For example, in [8], a non-iterative Nitsche’s coupling approach
is developed for the Stokes-Biot system using the mixed formulation for Darcy flow, while an operator-
splitting method for a coupled Navier-Stokes - Biot model has been developed in [9]. The Biot system
can be further split into elasticity and flow sub-problems using either non-iterative [8] or iterative
coupling [32].

Geometrical model reduction techniques for coupled flow through fractures and porous media are
commonly used in the literature [2,26,28,30]. In this approach the fractures are modeled as manifolds
of one dimension less than the reservoir. This is done by averaging of the flow equation along the
fracture aperture, in order to reduce the computational cost of coupling the flow through a reservoir
with the one in the fractures, because this approach avoids fine meshing of the fracture domain,
which becomes technically challenging in those cases where the aperture is small. The main issue of
this approach consists in the determination of appropriate interface conditions between reservoir and
fracture, which may depend on the models used in each region.

The objective of this work is to develop a reduced model for coupled flow through fractured reser-
voirs while accounting for the deformation of the porous media. As mentioned above, during the
hydraulic fracturing process, fluid flow and rock mechanics are tightly coupled. Our model is based
on coupling the Brinkman equations in the fracture with the Biot system of poroelasticity [6, 45] in
the reservoir. Our approach is similar to the one in [28], where a reduced model for the interaction
between porous medium and Brinkman model is developed, but no poroelastic effects are considered.
The resulting reduced Brinkman-Biot model is an alternative to the lubrication-Biot model studied
in [18,19,21]. A notable difference between the two approaches is in the continuity condition between
the poroelastic stress in the reservoir and the fluid stress in the fracture. In particular, the Brinkman
model allows for full continuity between the two stress tensors, see (2.11), while with the lubrication
equation the normal poroelastic stress vector is balanced with the normal vector to the interface
scaled by the fluid pressure in the fracture. Furthermore, the Brinkman model requires an additional
interface condition for the tangential fluid stress. While in [28] zero tangential stress was imposed,
here we employ the Beavers-Joseph-Saffman condition [5, 42], which is widely accepted in modeling
coupled Stokes-Darcy flows [13, 20, 27]. We note that full-dimensional Stokes-Biot models have been
studied in [4, 8, 31,44].

To discretize the problem in time, we employ the Backward Euler method for time discretization,
which results in solving a coupled Brinkman-Biot system at each time step. In this work we treat
stationary fractures. Fracture propagation has been modeled using level set methods [10, 22], phase-
field methods [33], or boundary element methods [41]. Incorporating some of these techniques into
the Brinkman-Biot model is a topic of future research.

The rest of the paper is organized as follows. In Section 2 we introduce the governing equations
of the problem. Without loss of generality, but with considerable simplification of the notation,
we present the problem in two spatial dimensions. In Section 3 we present the topological model
reduction technique that enables us to represent the fracture as a curve embedded into the reservoir.
Particular attention is given to the derivation of interface conditions based on closure assumptions
for the pressure and velocity profiles in the fracture cross sections. To our knowledge, this is the
first time this issue is addressed for the case of Brinkman flow coupled with the Biot model for the
reservoir. The variational formulation and its numerical discretization based on finite elements in
space and the Backward Euler in time is presented in Section 4, where the well posedness of the latter
is also discussed. The numerical error of the proposed scheme is analyzed in Section 4.2 following the
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general approach in the sequence of works for the Biot system [37–39], extended here to the coupled
reservoir/fracture problem. Numerical results that validate the correct behavior of the mathematical
model and of the numerical scheme are presented in Section 5. In particular, we verify the convergence
rate of the spatial discretization error, compare the results to the full dimensional model and analyze
the model response to variations of the fluid and rock parameters.

Ωp

n

τ
n2

n1
Ωf

x(s, ξ)

Γ2

Γ1

γ C(s)
δ

τ 1

τ 2

Figure 1. Configuration of the fluid and porous domains, Ωp and Ωf respectively,
and of the curvilinear coordinate system introduced for the definition of the topological
model reduction in the fracture.

2. Description of the problem

Consider a bounded, two-dimensional domain Ω = Ωp ∪ Ωf . Region Ωp is occupied by a fully-
saturated poroelastic matrix and region Ωf represents a fracture filled with fluid. We assume that
Ωf is a non self-intersecting strip with a constant aperture, which is small with respect to the size
of the surrounding poroelastic media. We denote the two long edges of the fracture with Γ1 and Γ2,
see Figure 1. Let Γf = ∂Ωf \ (Γ1 ∪ Γ2) be the union of the two short edges of the fracture. We allow
for none, one, or both of the short edges to be on the outside boundary ∂Ω, corresponding to the
fracture being entirely confined in the poroelastic domain, having one confined end, or splitting the
poroelastic domain in two parts. The dynamics in the poroelastic domain Ωp is described by the Biot
model. The stress tensor of the poroelastic medium is given by σp = σE − αpI, where σE denotes
the elasticity stress tensor, p is the fluid pressure, and the Biot-Willis constant α is the pressure-
storage coupling coefficient. With the assumption that the displacement η = (ηx, ηy) of the skeleton
is connected to stress tensor σE via the linear elastic model, we have σE(η) = 2µD(η)+λtr(D(η))I,
where µ and λ denote the Lamé coefficients for the skeleton. Furthermore, we assume that the
domain Ωp does not change in time and with the hypothesis of infinitesimal deformations, we have
D(η) = (∇η + (∇η)T )/2. Then, the Biot equations read as follows:

−∇ · σp = fp in Ωp × (0, T ], (2.1)

K−1q = −∇p in Ωp × (0, T ], (2.2)

∂

∂t
(s0p+ α∇ · η) +∇ · q = g in Ωp × (0, T ]. (2.3)

System (2.1)-(2.3) consists of the momentum equation for the balance of total forces (2.1), the
Darcy law (2.2), and the storage equation (2.3) for the fluid mass conservation in the pores of the
matrix, where q is the Darcy velocity. The coefficient s0 > 0 is the storage coefficient and K denotes
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a symmetric uniformly positive definite hydraulic conductivity tensor satisfying, for some constants
0 < k0 ≤ k1,

k0ξ
T ξ ≤ ξTKξ ≤ k1ξ

T ξ, ∀ ξ(x) ∈ R2, ∀x ∈ Ωp. (2.4)

Let Γp = ΓDp ∪ΓNp = Γpp∪Γqp be two partitions of Γp = ∂Ωp∩∂Ω. We prescribe the following boundary
conditions on Γp,

η = 0 on ΓDp × (0, T ],

σpnp = sNp on ΓNp × (0, T ],

p = pD on Γpp × (0, T ],

q · np = 0 on Γqp × (0, T ],

where np is the outward unit normal on Γp. In order to guarantee uniqueness of the solution, we
assume that |ΓDp | > 0 and |Γpp| > 0. If Ωp is split by Ωf in two parts, we assume that each part has a

piece of ΓDp and Γpp. We also prescribe the pressure and the displacement fields at the initial time:

p(0) = p0, η(0) = η0 in Ωp.

To model the flow in the fracture, we use the Brinkman model, which is a valid approximation of
the Navier-Stokes equations for incompressible fluids at low Reynolds numbers in presence of friction
due to debris in the fracture bed,

K−1
f u− µf∆u+∇pf = ff in Ωf × (0, T ], (2.5)

∇ · u = h in Ωf × (0, T ]. (2.6)

Here u = (ux, uy) is the fluid velocity, pf is the fluid pressure, Kf is a symmetric uniformly positive
definite hydraulic conductivity tensor (sometimes called drag coefficient, see for example [40]), and
µf is the Brinkman viscosity. We assume that there exist constants 0 < kf,0 ≤ kf,1 such that

kf,0ξ
T ξ ≤ ξTKfξ ≤ kf,1ξT ξ, ∀ ξ(x) ∈ R2, ∀x ∈ Ωf . (2.7)

For simplicity of notation, we introduce

σf = µf∇u− pfI.

We note that σf is not a physical stress tensor, but we may call it that, abusing notation. Fur-
thermore, because we are using ∇u, the coupling conditions below are an approximation. A similar
simplification has been made in [28]. Handling the symmetric gradient would lead to additional
problems in derivation of the closure conditions, which is outside the scope of the paper.

The boundary conditions on Γf = ΓDf ∪ ΓNf are

u = uD on ΓDf × (0, T ],

σfnf = 0 on ΓNf × (0, T ],

where nf is the outward unit normal vector on ∂Ωf . If an edge from Γf is not on the boundary ∂Ω, a
physically reasonable boundary condition is u = 0, which is motivated by the fact that the aperture
is very small and the flux across a short edge is negligible relative to the flux across the transversal
edges. Similar condition is considered in [2]. Alternatively, one can assign the stress-free outflow
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condition σfnf = 0. To guarantee uniqueness of the fluid pressure, we assume that |ΓNf | > 0. Let
τ f be the unit tangential vector on ∂Ωf such that τ f and nf form a positively oriented coordinate
system. To couple the Biot problem (2.1)-(2.3) with the Brinkman equations (2.5)-(2.6), we prescribe
the following coupling conditions on Γi, i = 1, 2.

Mass conservation: the continuity of normal flux yields

u · nf =

(
∂η

∂t
+ q

)
· nf on Γi × (0, T ]. (2.8)

Beavers-Joseph-Saffman condition: the tangential component of the fluid stress is proportional to
the slip velocity

τ f · σfnf = −cBJS(u− ∂η

∂t
) · τ f on Γi × (0, T ]. (2.9)

Balance of normal components of the stress in the fluid phase

nf · σfnf = −p on Γi × (0, T ]. (2.10)

Conservation of momentum: the sum of contact forces at the fracture-poroelastic medium interface
is equal to zero:

σfnf = σpnf on Γi × (0, T ]. (2.11)

3. Derivation of a dimensionally reduced model for the fracture

We assume that Ωf admits a curvilinear, orthogonal coordinate system (see Figure 1) defined by
the arc length s ∈ [0, L] and by a transversal coordinate ξ. For any fixed s ∈ [0, L], let the cross-section
C(s) be the locus of points obtained by varying ξ, and let the length of C(s) be δ, i.e., the aperture
of Ωf . The orthogonal coordinate system is then (s, ξ) ∈ [0, L]× δ

2 [−1, 1] with an orthonormal local
basis τ ,n. Let γ be the midline of Ωf defined as the isoline ξ = 0. More precisely we have,

γ = {(s, 0)}, Γ1 = {(−δ2 )}, Γ2 = {(+δ
2 )}, C = {(s, ξ) : ξ ∈ δ

2
[−1, 1] }, s ∈ [0, L].

Let us denote with n1 and n2 the outward unit normal vectors to Ωp on Γ1 and Γ2, respectively.
According to the notation above (e.g. Figure 1) we also have

n1 = n = −nf , τ 1 = τ = −τ f on Γ1; n2 = −n = −nf , τ 2 = −τ = −τ f on Γ2.

Then, we rewrite the coupling conditions (2.8)–(2.11) using the notation of Figure 1:

u · ni =

(
∂ηi
∂t

+ qi

)
· ni on Γi × (0, T ], (3.1)

τ i · σfni = cBJS(u− ∂ηi
∂t

) · τ i on Γi × (0, T ], (3.2)

ni · σfni = −pi on Γi × (0, T ], (3.3)

σfni = σpni on Γi × (0, T ]. (3.4)

In the Cartesian reference frame x, we denote by dτ , dn the differentials in the direction orthog-
onal and tangential to C, respectively, which correspond to ds, dξ in the local reference frame (s, ξ).
Furthermore, there exists a bijective mapping between points on γ and Γi. As a result, any function
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trace on Γi (i = 1, 2) can be mapped onto Γj (i 6= j) and onto γ. For notational convenience, we
denote this class of three equivalent functions as (·)|∗Γi where |Γi denotes where the trace is defined
and |∗ denotes that it can be mapped on γ and Γj . In this way, in the derivation of the reduced
model we will be able to formally combine traces on Γ1, Γ2, and γ. Furthermore, we only adopt this
notation for variables defined on Γi, while it is implicitly assumed that the variables of the reduced
model for the fracture flow are defined on γ.

For the derivation of the reduced model, we will exploit the following property of integrals along
the curve C,

f(+δ
2 )− f(−δ2 ) =

∫
C

∂f(s, ξ)

∂ξ
dξ =

∫
C

∂f(x)

∂n
dn. (3.5)

To derive a reduced model, we project the Brinkman equations in the fracture on the local orthog-
onal system, and then we average the resulting equations over the corresponding C−curves in Ωf .
We start by projecting the mass conservation equation (2.6) in Ωf on the local orthogonal reference
system:

∇ · u =
∂u

∂n
· n+

∂u

∂τ
· τ = h.

Integrating the latter equation over the corresponding curve C, we get

(u · n)(+δ
2 )− (u · n)(−δ2 ) +

∂

∂s

∫
C
u(s, ξ) · τdξ =

∫
C
hdξ.

Recalling that u(+δ
2 ) ·n = −u ·n2|∗Γ2

and that −u(−δ2 ) ·n = −u ·n1|∗Γ1
and employing the kinematic

coupling condition (3.1) we obtain a one-dimensional mass conservation equation on γ:

δ

(
∂Uτ
∂τ
−H

)
=

(
∂η1

∂t
· n1 + q1 · n1

)∣∣∣∣∗
Γ1

+

(
∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

on γ, (3.6)

where we have defined mean values as follows,

Uτ =
1

δ

∫
C
u · τdn and H =

1

δ

∫
C
hdn. (3.7)

Let R be the orthonormal matrix mapping the canonical basis [e1, e2] onto the local basis [n, τ ]

R =

[
nT

τT

]
=

[
nT

0

]
+

[
0
τT

]
.

To project equation (2.5) on the local orthogonal system, we apply matrix R to (2.5)

RK−1
f RTRu− µfR∆u+R∇pf = Rff . (3.8)

For two vectors a and b ∈ R2 we define M(a, b) = aTK−1
f b. Using this notation and relation

∆u =
∂2u

∂n2
+
∂2u

∂τ 2
,

we split equation (3.8) as follows

M(n,n)u · n+M(n, τ )u · τ − µf
(∂2u

∂n2
+
∂2u

∂τ 2

)
· n+

∂pf
∂n

= ff · n, (3.9)
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M(τ ,n)u · n+M(τ , τ )u · τ − µf
(∂2u

∂n2
+
∂2u

∂τ 2

)
· τ +

∂pf
∂τ

= ff · τ . (3.10)

Integrating equations (3.9) and (3.10) over s-curves C we get

δM(n,n)Un + δM(n, τ )Uτ − µf

(
∂u

∂n
· n
∣∣∣∣∗
Γ2

− ∂u

∂n
· n
∣∣∣∣∗
Γ1

)
− δµf

∂2Un
∂τ 2

+ pf |∗Γ2
− pf |∗Γ1

= δF fn ,

(3.11)

δM(τ ,n)Un + δM(τ , τ )Uτ − µf

(
∂u

∂n
· τ
∣∣∣∣∗
Γ2

− ∂u

∂n
· τ
∣∣∣∣∗
Γ1

)
− δµf

∂2Uτ
∂τ 2

+ δ
∂P

∂τ
= δF fτ , (3.12)

where

Un =
1

δ

∫
C
u · ndn, P =

1

δ

∫
C
pfdn, and F fr =

1

δ

∫
C
ff · rdn, r ∈ {n, τ}.

Since the definition of σf implies that µf
∂u

∂n
· n − pf = n · σfn, employing condition (3.3), equa-

tion (3.11) can be seen as a one-dimensional law for the flow through the fracture,

δ

(
M(n,n)Un +M(n, τ )Uτ − µf

∂2Un
∂τ 2

− F fn
)

= p1

∣∣∗
Γ1
− p2

∣∣∗
Γ2
. (3.13)

Equation (3.12) gives a one-dimensional momentum balance law on γ

δ

(
M(τ ,n)Un +M(τ , τ )Uτ − µf

∂2Uτ
∂τ 2

+
∂P

∂τ
− F fτ

)
= µf

(
∂u

∂n
· τ
∣∣∣∣∗
Γ2

− ∂u

∂n
· τ
∣∣∣∣∗
Γ1

)
. (3.14)

Finally, we average the boundary conditions on the external boundaries of the fracture. Without
loss of generality, we consider a Dirichlet boundary condition at s = 0 and a Neumann boundary
condition at s = L. In particular, letting γD = γ ∩ ΓDf = (0, 0) and γN = γ ∩ ΓNf = (L, 0), we have

Un = UDn =
1

|ΓDf |

∫
ΓDf

uD · n dn, Uτ = UDτ =
1

|ΓDf |

∫
ΓDf

uD · τ dn on γD, (3.15)

µf
∂Un
∂s

= 0, µf
∂Uτ
∂s
− P = 0 on γN . (3.16)

3.1. Interface conditions for problem closure

In order to couple the Biot system with the reduced model for flow in the fracture, described by
equations (3.6), (3.13) and (3.14), additional interface conditions are necessary. More precisely, the
goal is to derive interface conditions using the averaged quantities P , Un, Uτ . This issue has already
been studied for example in [28,30], and it will be addressed here for a more advanced mathematical
model. More precisely, we formulate hypotheses on the cross sectional profiles of pressure, and normal
and tangential components of the velocity in Ωf . Then, we use the mappings identified by (·)|∗Γi to
combine traces of the Biot variables on Γi with the average values P , Un, Uτ , in order to obtain
suitable interface conditions that couple equations on Ωp with the reduced fracture model. To close
the system, we need to prescribe the interface conditions for the shear stress τ i · σpni and the
conditions for the fluid pressure and Darcy velocity in Ωp.
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The basis for the derivation of new interface conditions for the Biot problem in terms of the variables
of the reduced model is the following set of equations, obtained by rearranging (3.1), (3.3) and (3.4):

p1 = −n1 · σfn1 = pf − µf
∂(u · n)

∂n
on Γ1, (3.17)

p2 = −n2 · σfn2 = pf − µf
∂(u · n)

∂n
on Γ2, (3.18)(

∂η1

∂t
· n1 + q1 · n1

)
= u · n on Γ1, (3.19)

−
(
∂η2

∂t
· n2 + q2 · n2

)
= u · n on Γ2, (3.20)

τ 1 · σpn1 = τ 1 · σfn1 = µf
∂(u · τ )

∂n
on Γ1, (3.21)

τ 2 · σpn2 = τ 2 · σfn2 = µf
∂(u · τ )

∂n
on Γ2. (3.22)

We also have

p1 = −n1 · σfn1 = −n1 · σpn1 on Γ1, (3.23)

p2 = −n2 · σfn2 = −n2 · σpn2 on Γ2. (3.24)

Closure assumptions will be used to relate the fluid velocity u and pressure pf to the averaged values
Un, Uτ and P . Note that (3.23)–(3.24) are normal stress interface conditions that are expressed in
terms of the variables on Ωp and do not require closure assumptions. In the following we consider
four cases of closure assumptions that allow us to derive Robin-type conditions interface for the
fluid pressure and the normal component of the Darcy velocity, as well as interface conditions for the
tangential stress in Ωp. We note that the normal interface conditions depend on the closure assumption
for the fracture pressure pf and normal velocity u ·n, while the tangential interface conditions depend
on the closure assumption for the fracture tangential velocity u · τ . The new interface conditions will
be used in the weak formulation to couple the Biot equations with the averaged model for the flow
in fracture.

3.1.1. Cases P0− Un0 and Uτ0: constant pf , u · n, u · τ with respect to ξ along C.

In this case we have pf (s, ξ) = P , u · n(s, ξ) = Un, and u · τ (s, ξ) = Uτ for any ξ ∈ [−1, 1]. As a
result we have

p1|∗Γ1
= p2|∗Γ2

= P, u · n|∗Γ1
= u · n|∗Γ2

= Un, u · τ |∗Γ1
= u · τ |∗Γ2

= Uτ , (3.25)

where we have used (3.17)–(3.18) in the first set of equalities, and (3.19)–(3.22) imply(
∂η1

∂t
· n1 + q1 · n1

)∣∣∣∣∗
Γ1

= u · n1|∗Γ1
= Un, (3.26)

−
(
∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

= −u · n2|∗Γ2
= Un, (3.27)

τ 1 · σpn1|∗Γ1
= 0, (3.28)

τ 2 · σpn2|∗Γ2
= 0. (3.29)
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3.1.2. Cases P0− Un1 and Uτ1: constant pf and linear u · n, u · τ with respect to ξ along C.

Again we have pf (s, ξ) = P . With the hypothesis of linear u ·n(·, ξ) we have, using (3.19)–(3.20),

∂(u · n)

∂n
=
u · n

∣∣∗
Γ2
− u · n

∣∣∗
Γ1

δ
= −

(∂η1
∂t · n1 + q1 · n1

)∣∣∗
Γ1

+
(∂η2
∂t · n2 + q2 · n2

)∣∣∗
Γ2

δ
, (3.30)

Un =
u · n

∣∣∗
Γ1

+ u · n
∣∣∗
Γ2

2
=

(∂η1
∂t · n1 + q1 · n1

)∣∣∗
Γ1
−
(∂η2
∂t · n2 + q2 · n2

)∣∣∗
Γ2

2
. (3.31)

Similarly, with u · τ (·, ξ) linear, we have

∂(u · τ )

∂n
=
u · τ |∗Γ2

− u · τ |∗Γ1

δ
, (3.32)

Uτ =
u · τ |∗Γ1

+ u · τ |∗Γ2

2
.

Adding and subtracting equations (3.17) and (3.18) gives, using (3.30),

p2|∗Γ2
− p1|∗Γ1

= 0, (3.33)

p2|∗Γ2
+ p1|∗Γ1

= 2P +
2µf
δ

((∂η1

∂t
· n1 + q1 · n1

)∣∣∗
Γ1

+
(∂η2

∂t
· n2 + q2 · n2

)∣∣∗
Γ2

)
. (3.34)

Now, combining (3.31) and (3.34), we get(
∂η1

∂t
· n1 + q1 · n1

)∣∣∣∣∗
Γ1

= Un +
δ

4µf
(p2|∗Γ2

+ p1|∗Γ1
− 2P ),(

∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

= −Un +
δ

4µf
(p2|∗Γ2

+ p1|∗Γ1
− 2P ),

which can be rewritten as

δp1|∗Γ1
− 4µf

(
∂η1

∂t
· n1 + q1 · n1

)∣∣∣∣∗
Γ1

= δP − 4µfUn + δ(P − p2|∗Γ2
), (3.35)

δp2|∗Γ2
− 4µf

(
∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

= δP + 4µfUn + δ(P − p1|∗Γ1
). (3.36)

Due to (3.33), the above equations can be further simplified as

− 2µf

(
∂η1

∂t
· n1 + q1 · n1

)∣∣∣∣∗
Γ1

= −2µfUn + δ(P − p2|∗Γ2
), (3.37)

− 2µf

(
∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

= 2µfUn + δ(P − p1|∗Γ1
). (3.38)

To derive the conditions on the tangential stress, we first note that conditions (3.2) and (3.4) yield

(u · τ )|∗Γ1
=

1

cBJS
(τ 1 · σpn1)|∗Γ1

+
∂η1

∂t
· τ 1

∣∣∣∣∗
Γ1

(3.39)
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(u · τ )|∗Γ2
= − 1

cBJS
(τ 2 · σpn2)|∗Γ2

− ∂η2

∂t
· τ 2

∣∣∣∣∗
Γ2

. (3.40)

Now, starting from (3.21)–(3.22) and using (3.32) and (3.39)-(3.40), we obtain

τ 1 · σpn1|∗Γ1
= −

µf
δ

(
τ 2 · σpn2|∗Γ2

cBJS
+
∂η2

∂t
· τ 2

∣∣∗
Γ2

+
τ 1 · σpn1|∗Γ1

cBJS
+
∂η1

∂t
· τ 1

∣∣∗
Γ1

)
,

τ 2 · σpn2|∗Γ2
= −

µf
δ

(
τ 2 · σpn2|∗Γ2

cBJS
+
∂η2

∂t
· τ 2

∣∣∗
Γ2

+
τ 1 · σpn1|∗Γ1

cBJS
+
∂η1

∂t
· τ 1

∣∣∗
Γ1

)
.

Solving the system we get(
δ

µf
+

2

cBJS

)
(τ 1 · σpn1)|∗Γ1

= −∂η2

∂t
· τ 2

∣∣∗
Γ2
− ∂η1

∂t
· τ 1

∣∣∗
Γ1
, (3.41)(

δ

µf
+

2

cBJS

)
(τ 2 · σpn2)|∗Γ2

= −∂η2

∂t
· τ 2

∣∣∗
Γ2
− ∂η1

∂t
· τ 1

∣∣∗
Γ1
. (3.42)

3.1.3. Cases P1− Un1 and Uτ1: linear pf , u · n, u · τ with respect to ξ along C.

For linear pressure along C, we have

P =
pf |∗Γ1

+ pf |∗Γ2

2
.

The derivation of the interface conditions is similar to the case of constant pf and linear u ·n, u · τ ,
with the exception that (3.33) does not hold, so the conditions (3.35)–(3.36) cannot be simplified.
Therefore the conditions in this case are (3.35)–(3.36) and (3.41)–(3.42).

3.1.4. Cases P0− Un2 and Uτ2: constant pf and quadratic u · n, u · τ with respect to ξ along C.

A quadratic u · n along C can be written as

(u · n)(ξ) = aξ2 + bξ + c,

where to determine a, b, and c for any s ∈ [0, L], we have to solve the following system of equations:

(u · n)(−δ2 ) = a
δ2

4
− bδ

2
+ c = u · n|∗Γ1

,

(u · n)(+δ
2 ) = a

δ2

4
+ b

δ

2
+ c = u · n|∗Γ2

,

Un =
1

δ

∫
C
(aξ2 + bξ + c)dξ.

The solution is given by

a = 3
u · n|∗Γ1

+ u · n|∗Γ2
− 2Un

δ2
,

b =
u · n|∗Γ2

− u · n|∗Γ1

δ
,

c =
6Un − u · n|∗Γ1

− u · n|∗Γ2

4
.
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In a similar way we can find coefficients for u · τ . Now we can write

∂(u · n)

∂n

∣∣∣∣∗
Γ1

= −2a
δ

2
+ b = −2

u · n|∗Γ2
+ 2(u · n)|∗Γ1

− 3Un

δ
,

∂(u · n)

∂n

∣∣∣∣∗
Γ2

= 2a
δ

2
+ b = 2

u · n|∗Γ1
+ 2(u · n)|∗Γ2

− 3Un

δ
.

Adding and subtracting equations (3.17) and (3.18) gives

p2|∗Γ2
− p1|∗Γ1

= −6µf
u · n|∗Γ2

+ u · n|∗Γ1
− 2Un

δ
,

p2|∗Γ2
+ p1|∗Γ1

= 2P + 2µf
u · n|∗Γ1

− u · n|∗Γ2

δ
.

Solving this system to obtain Robin boundary conditions, we have(
∂η1

∂t
· n1 + q1 · n1

)∣∣∣∣∗
Γ1

= u · n|∗Γ1
= Un +

δ

6µf
(2p1|∗Γ1

+ p2|∗Γ2
− 3P ),

−
(
∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

= u · n|∗Γ2
= Un +

δ

6µf
(−p1|∗Γ1

− 2p2|∗Γ2
+ 3P ),

which can be rewritten as

2δp1|∗Γ1
− 6µf

(
∂η1

∂t
· n1 + q1 · n1

)∣∣∣∣∗
Γ1

= 2δP − 6µfUn + δ(P − p2|∗Γ2
), (3.43)

2δp2|∗Γ2
− 6µf

(
∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

= 2δP + 6µfUn + δ(P − p1|∗Γ1
). (3.44)

To derive the conditions on the tangential stress, we note that

∂(u · τ )

∂n

∣∣∣∣∗
Γ1

= −2
u · τ |∗Γ2

+ 2(u · τ )|∗Γ1
− 3Uτ

δ
,

∂(u · τ )

∂n

∣∣∣∣∗
Γ2

= 2
u · τ |∗Γ1

+ 2(u · τ )|∗Γ2
− 3Uτ

δ
,

which, combined with (3.21)–(3.22), and using conditions (3.2) and (3.4), imply

τ 1 · σpn1|∗Γ1
= −

2µf
δ

(
−∂η2

∂t
· τ 2

∣∣∗
Γ2
− 1

cBJS
(τ 2 · σpn2)|∗Γ2

+ 2
1

cBJS
(τ 1 · σpn1)|∗Γ1

+ 2
∂η1

∂t
· τ 1

∣∣∗
Γ1
− 3Uτ

)
,

τ 2 · σpn2|∗Γ2
=

2µf
δ

(
∂η1

∂t
· τ 1

∣∣∗
Γ1

+
1

cBJS
(τ 1 · σpn1)|∗Γ1

− 2
∂η2

∂t
· τ 2

∣∣∗
Γ2
− 2

1

cBJS
(τ 2 · σpn2)|∗Γ2

− 3Uτ

)
.

Solving for τ 1 · σpn1|∗Γ1
and τ 2 · σpn2|∗Γ2

we get(
δ

2µf
+

4

cBJS
+

6µf
c2
BJSδ

)
(τ 1 · σpn1)|∗Γ1

=
∂η2

∂t
· τ 2

∣∣∗
Γ2
−
(

2 +
6µf
cBJSδ

)
∂η1

∂t
· τ 1

∣∣∗
Γ1

+ 3

(
1 +

2µf
cBJSδ

)
Uτ ,

(3.45)
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δ

2µf
+

4

cBJS
+

6µf
c2
BJSδ

)
(τ 2 · σpn2)|∗Γ2

=
∂η1

∂t
· τ 1

∣∣∗
Γ1
−
(

2 +
6µf
cBJSδ

)
∂η2

∂t
· τ 2

∣∣∗
Γ2
− 3

(
1 +

2µf
δcBJS

)
Uτ .

(3.46)

3.2. Unified formulation of the closure conditions

In this section we present a parametrized unified formulation for the interface conditions derived in
the previous sections. Since the normal and tangential closure assumptions can be made independently
of each other, we use two different parameters to describe them. In the cases above, the Robin
boundary conditions for the pressure in the Biot system (3.37)–(3.38), (3.35)–(3.36), and (3.43)–
(3.44), can be written in a general form as

δθnp1|∗Γ1
− 2µf

(
∂η1

∂t
· n1 + q1 · n1

)∣∣∣∣∗
Γ1

= δθnP − 2µfUn + δ(1− θn)(P − p2|∗Γ2
), (3.47)

δθnp2|∗Γ2
− 2µf

(
∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

= δθnP + 2µfUn + δ(1− θn)(P − p1|∗Γ1
), (3.48)

where for θn = 0 we have the P0 − Un1 case (3.37)–(3.38), for θn = 1
2 we have the P1 − Un1 case

(3.35)–(3.36), and for θn = 2
3 we have the P0−Un2 case (3.43)–(3.44). In addition, θn = 0 also gives

the P0− Un0 case (3.26)–(3.27) under the constraint p1|∗Γ1
= p2|∗Γ2

= P .
In a similar way, we write the general conditions for the tangential components of the normal stress

(3.28)–(3.29), (3.41)–(3.42), and (3.45)–(3.46) as(
δ(1− θτ )2

µf
+

2θτ
2

cBJS
+

6θτ (2θτ − 1)µf
c2
BJSδ

)
(τ 1 · σpn1)|∗Γ1

=

((
−1−

6µf
cBJSδ

)
θτ

2 +
6µfθτ (1− θτ )

cBJSδ

)
∂η1

∂t
· τ 1

∣∣∗
Γ1

+ θτ (5θτ − 3)
∂η2

∂t
· τ 2

∣∣∗
Γ2

+ 3θτ (2θτ − 1)

(
1 +

2µf
cBJSδ

)
Uτ , (3.49)

(
δ(1− θτ )2

µf
+

2θτ
2

cBJS
+

6θτ (2θτ − 1)µf
c2
BJSδ

)
(τ 2 · σpn2)|∗Γ2

=

((
−1−

6µf
cBJSδ

)
θτ

2 +
6µfθτ (1− θτ )

cBJSδ

)
∂η2

∂t
· τ 2

∣∣∗
Γ2

+ θτ (5θτ − 3)
∂η1

∂t
· τ 1

∣∣∗
Γ1
− 3θτ (2θτ − 1)

(
1 +

2µf
δcBJS

)
Uτ , (3.50)

where θτ = 0 gives the Uτ0 case (3.28)–(3.29), θτ = 1
2 gives the Uτ1 case (3.41)–(3.42), and θτ = 2

3
gives the Uτ2 case (3.45)–(3.46). The relation between the parameters θn, θτ and the approximation
of the variables pf , u · n, u · τ inside the fracture is summarized in Table 1. We note that normal
conditions part of the table is consistent with Table 1 in [28].

Using a simple calculation, which consists of inverting a 2 × 2 linear system, we can rewrite
(3.49)–(3.50) as follows:

(τ 1 · σpn1)|∗Γ1
= (Cτθτ (5θτ − 3)− Cη) ∂η1

∂t
· τ 1

∣∣∗
Γ1

+ Cτθτ (5θτ − 3)
∂η2

∂t
· τ 2

∣∣∗
Γ2

+ CηUτ , (3.51)

(τ 2 · σpn2)|∗Γ2
= (Cτθτ (5θτ − 3)− Cη) ∂η2

∂t
· τ 2

∣∣∗
Γ2

+ Cτθτ (5θτ − 3)
∂η1

∂t
· τ 1

∣∣∗
Γ1
− CηUτ , (3.52)
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θn pf u · n θτ u · τ
0 C L 0 C

1/2 L L 1/2 L
2/3 C Q 2/3 Q

Table 1. Relation between the values of the parameters θn, θτ and the approximation
of the variables pf , u ·n, u · τ inside the fracture. C denotes constant approximation
of the variables across the interface aperture, L stands for linear approximation and
Q for quadratic.

where

Cτ =
(δ(1− θτ )2

µf
+

2θτ
2

cBJS
+

6θτ (2θτ − 1)µf
c2
BJSδ

)−1
, (3.53)

Cη =


6µfcBJS

cBJSδ + 6µf
, θτ = 2

3 ,

0, θτ ∈ {1
2 , 0}.

(3.54)

Note that Cη is non-zero only when θτ = 2
3 . It is also helpful to analyze the asymptotic behavior of

these constants when the parameters of the problem cBJS and δ vanish (we implicitly assume here
that the fluid viscosity in the fracture µf is a strictly positive parameter). Let us denote as O(x) any
quantity that scales as Cx when x → 0, C being a generic constant. Then, it is straightforward to
show that

Cτ = O(c2
BJS , δ), Cη = O(cBJS). (3.55)

From (3.53) and (3.54) it is easy to see that for θτ = 2/3,

Cτ =
3cBJSδ

2cBJSδ + 4µf
Cη, (3.56)

Cη ≤ cBJS , (3.57)

which will be utilized later in the stability analysis.
Recalling that ∂

∂s = ∂
∂τ and using equations (3.47)-(3.48), we can write the mass conservation

equation in the model for the fracture (3.6) as:

δ

(
∂Uτ
∂s
−H

)
=

δ

2µf
p1|∗Γ1

+
δ

2µf
p2|∗Γ2

− δ

µf
P on γ. (3.58)

Furthermore, the right hand side in equation (3.14) depends on the velocity profile. Employing
conditions (3.21)–(3.22) and (3.51)–(3.52), we obtain

δ

(
M(τ ,n)Un +M(τ , τ )Uτ − µf

∂2Uτ
∂s2

+
∂P

∂s
+

2

δ
CηUτ − F fτ

)
= Cη

(
∂η1

∂t
· τ 1

∣∣∣∣∗
Γ1

− ∂η2

∂t
· τ 2

∣∣∣∣∗
Γ2

)
. (3.59)

Remark 1. We note that the parameter θn in (3.47)–(3.48) can be interpreted as a quadrature weight
and therefore any θn ∈ [0, 1] results in a physically meaningful interface condition of Robin type. This
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feature is similar to the model in [28] and in the earlier work [30]. This is not however the case in
(3.51)–(3.52), which are meaningful only for θτ = 0, 1

2 ,
2
3 .

To summarize, in this section we derived a reduced model for the flow in the fracture based on four
different profile assumptions. The assumptions were used together with the coupling conditions (3.1)–
(3.4), giving rise to equations (3.47)–(3.48), (3.51)–(3.52), (3.58) and (3.59). We note that when
θτ = 0, the Beavers-Joseph-Saffman condition is not being used.

4. Weak formulation of the coupled problem

In this section we couple the Biot system (2.1)–(2.3) with the reduced model for the flow in the
fracture, derived in the previous sections with the suitable closure conditions. We remind the reader
that after averaging across the aperture of the fracture Ωf , the governing equations of the reduced
model are set on the fluid domain midline γ, and depend only on the arc length along this curve,
denoted by s. The coupled model is defined in domain Ω, with the fracture domain Ωf collapsed to its
midline γ, which is in contrast with the approach in [28]. In this case the fracture edges, denoted by
Γi, i = 1, 2 in Figure 1, coincide with γ and Ωp becomes a domain with a slit. Combining (2.1)–(2.3),
(3.13), (3.59) and (3.58) we obtain the following coupled problem: find η, q, p, Un, Uτ and P such that

−∇ · σp(η, p) = fp in Ωp × (0, T ], (4.1)

K−1q = −∇p in Ωp × (0, T ], (4.2)

∂

∂t
(s0p+ α∇ · η) +∇ · q = g in Ωp × (0, T ], (4.3)

δ

(
M(n,n)Un +M(n, τ )Uτ − µf

∂2Un
∂s2

− F fn
)

= p1

∣∣∗
Γ1
− p2

∣∣∗
Γ2

on γ × (0, T ], (4.4)

δ

(
M(τ ,n)Un +M(τ , τ )Uτ − µf

∂2Uτ
∂s2

+
∂P

∂s
+

2

δ
CηUτ − F fτ

)
=

Cη

(
∂η1

∂t
· τ 1

∣∣∣∣∗
Γ1

− ∂η2

∂t
· τ 2

∣∣∣∣∗
Γ2

)
on γ × (0, T ], (4.5)

δ

(
∂Uτ
∂s

+
1

µf
P

)
= δH +

δ

2µf
p1|∗Γ1

+
δ

2µf
p2|∗Γ2

on γ × (0, T ], (4.6)

with the following coupling conditions from (3.23)–(3.24), (3.51)–(3.52), and (3.47)–(3.48) for i = 1, 2,

(ni · σpni)|∗Γi = −pi|∗Γi , (4.7)

(τ 1 · σpn1)|∗Γ1
= (Cτθτ (5θτ − 3)− Cη) ∂η1

∂t
· τ 1

∣∣∗
Γ1

+ Cτθτ (5θτ − 3)
∂η2

∂t
· τ 2

∣∣∗
Γ2

+ CηUτ , (4.8)

(τ 2 · σpn2)|∗Γ2
= (Cτθτ (5θτ − 3)− Cη) ∂η2

∂t
· τ 2

∣∣∗
Γ2

+ Cτθτ (5θτ − 3)
∂η1

∂t
· τ 1

∣∣∗
Γ1
− CηUτ , (4.9)

δθnp1|∗Γ1
− 2µf

(
∂η1

∂t
· n1 + q1 · n1

)∣∣∣∣∗
Γ1

= δθnP − 2µfUn + δ(1− θn)(P − p2|∗Γ2
), (4.10)

δθnp2|∗Γ2
− 2µf

(
∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

= δθnP + 2µfUn + δ(1− θn)(P − p1|∗Γ1
), (4.11)

boundary conditions

η = 0 on ΓDp ,
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σpn = sNp on ΓNp ,

p = pD on Γpp,

q · n = 0 on Γqp,

Un = UDn , Uτ = UDτ , on γD,

µf
∂Un
∂s

= 0, µf
∂Uτ
∂s
− P = 0 on γN ,

and initial conditions
p(0) = p0, η(0) = η0 in Ωp.

We note that in the case when δ → 0, we lose the equation for flow in the fracture and recover the
continuity of Biot pressure, tangential component of displacement and the continuity of the normal
flux.

Remark 2. In the following, for simplicity, we use notation corresponding to the case of a connected
domain Ωp. If Ωp is split into two parts, spaces and integrals in Ωp should be understood as defined
in a piecewise fashion in Ωp,i, i = 1, 2.

Throughout the paper we use standard notation for Sobolev spaces, see e.g. [7, 11, 14]. To write
the weak formulation, we start by introducing the test function spaces related to the Biot problem:

Vη = {ξ ∈ (H1(Ωp))
2 : ξ = 0 on ΓDp },

Vp = {r ∈ H(div; Ωp) : r · n
∣∣∗
Γi
∈ L2(Γi), r · n = 0 on Γqp},

Qp = {ϕ ∈ L2(Ωp) : ϕ
∣∣∗
Γi
∈ L2(Γi)}.

Then, the weak formulation of the Biot system (4.1)–(4.3) reads as follows: find (η(t), q(t), p(t)) ∈
Vη × Vp ×Qp such that for all (ξ, r, ϕ) ∈ Vη × Vp ×Qp∫

Ωp

σE : ∇ξdx− α
∫

Ωp

p∇ · ξdx+

∫
Ωp

K−1q · rdx−
∫

Ωp

p∇ · rdx+

∫
Ωp

s0
∂p

∂t
ϕdx

+α

∫
Ωp

∇ · ∂η
∂t
ϕdx+

∫
Ωp

∇ · qϕdx =

I︷ ︸︸ ︷∫
∂Ωp\Γp

σpnp · ξdx

II︷ ︸︸ ︷
−
∫
∂Ωp\Γp

pr · npdx

+

∫
Ωp

fp · ξdx+

∫
Ωp

gϕdx+

∫
ΓNp

spN · ξdx−
∫

Γpp

pDr · npdx. (4.12)

Let us define U = [Un, Uτ ]T , V = [Vn, Vτ ]T , UD = [UDn , U
D
τ ]T and the following test function spaces

related to the flow in the fracture,

Vf = {V ∈ (H1(γ))2 : V = 0 on γD},
Vf
D = {V ∈ (H1(γ))2 : V = UD on γD},
Qf = L2(γ).

The weak formulation of the flow in the fracture (4.4)–(4.6) is given as follows: find (U(t), P (t)) ∈
Vf
D ×Qf , such that for all (V , R) ∈ Vf ×Qf∫

γ
δ
∂Uτ
∂s

Rds+

∫
γ

δ

µf
PRds+

∫
γ
δ

(
M(n,n)Un +M(n, τ )Uτ − µf

∂2Un
∂s2

)
Vnds
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+

∫
γ
δ

(
M(τ ,n)Un +M(τ , τ )Uτ − µf

∂2Uτ
∂s2

+
∂P

∂s
+

2

δ
CηUτ

)
Vτds =

∫
γ
δHRds

+

∫
γ

δ

2µf

(
p1

∣∣∗
Γ1

+ p2

∣∣∗
Γ2

)
Rds+

∫
γ

(
p1

∣∣∗
Γ1
− p2

∣∣∗
Γ2

)
Vnds+

∫
γ
δF fnVnds+

∫
γ
δF fτ Vτds

+

∫
γ
Cη

(
∂η1

∂t
· τ 1

∣∣∣∣∗
Γ1

− ∂η2

∂t
· τ 2

∣∣∣∣∗
Γ2

)
Vτds. (4.13)

Introduce the matrix M and the vector F defined as

M =

[
M(n,n) M(n, τ )
M(τ ,n) M(τ , τ )

]
, F =

[
F fn
F fτ

]
.

Then, we can write the equation (4.13) as∫
γ
δ
∂Uτ
∂s

Rds+

∫
γ

δ

µf
PRds+

∫
γ
δMU · V ds−

∫
γ
δµf

∂2U

∂s2
· V ds+

∫
γ
δ
∂P

∂s
Vτds

+

∫
γ

2CηUτVτds =

∫
γ

δ

2µf

(
p1

∣∣∗
Γ1

+ p2

∣∣∗
Γ2

)
Rds+

∫
γ

(
p1

∣∣∗
Γ1
− p2

∣∣∗
Γ2

)
Vnds

+

∫
γ
δF · V ds+

∫
γ
δHRds+

∫
γ
Cη

(
∂η1

∂t
· τ 1

∣∣∣∣∗
Γ1

− ∂η2

∂t
· τ 2

∣∣∣∣∗
Γ2

)
Vτds. (4.14)

Integration by parts yields, using the boundary conditions on γD and γN ,∫
γ
δ
∂Uτ
∂s

Rds+

∫
γ

δ

µf
PRds+

∫
γ
δMU · V ds+

∫
γ
δµf

∂U

∂s
· ∂V
∂s

ds−
∫
γ
δ
∂Vτ
∂s

Pds

+

∫
γ

2CηUτVτds =

∫
γ

δ

2µf

(
p1

∣∣∗
Γ1

+ p2

∣∣∗
Γ2

)
Rds

III︷ ︸︸ ︷
+

∫
γ

(
p1

∣∣∗
Γ1
− p2

∣∣∗
Γ2

)
Vnds

+

∫
γ
δF · V ds+

∫
γ
δHRds+

∫
γ
Cη

(
∂η1

∂t
· τ 1

∣∣∣∣∗
Γ1

− ∂η2

∂t
· τ 2

∣∣∣∣∗
Γ2

)
Vτds. (4.15)

We observe, however, that sub-problems (4.12) and (4.15) are not fully coupled yet. More precisely
(4.12) affects (4.15), but the latter does not induce any feedback on (4.12). For this reason, we
need to plug equations (4.7)-(4.11) into (4.12). Decomposing the first two terms on the right hand
side of (4.12), denoted as I, II respectively, into the normal and tangential components, employing
condition (4.7), and combining it with term III from (4.15), we obtain

I + II + III =

∫
γ
(n1 · σpn1)|∗Γ1

(ξ1 · n1)|∗Γ1
dx+

∫
γ
(n2 · σpn2)|∗Γ2

(ξ2 · n2)|∗Γ2
dx

+

∫
γ
(τ 1 · σpn1)|∗Γ1

(ξ1 · τ 1)|∗Γ1
dx+

∫
γ
(τ 2 · σpn2)|∗Γ2

(ξ2 · τ 2)|∗Γ2
dx

−
∫
γ
p1|∗Γ1

(r1 · n1)|∗Γ1
dx−

∫
γ
p2|∗Γ2

(r2 · n2)|∗Γ2
dx+

∫
γ

(
p1

∣∣∗
Γ1
− p2

∣∣∗
Γ2

)
Vnds

=

∫
γ
(τ 1 · σpn1)

∣∣∗
Γ1

(ξ1 · τ 1)
∣∣∗
Γ1
ds+

∫
γ
(τ 2 · σpn2)

∣∣∗
Γ2

(ξ2 · τ 2)
∣∣∗
Γ2
ds
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+

∫
γ
p1

∣∣∗
Γ1

(
Vn − (ξ1 · n1)

∣∣∗
Γ1
− (r1 · n1)

∣∣∗
Γ1

)
ds−

∫
γ
p2

∣∣∗
Γ2

(
Vn + (ξ2 · n2)

∣∣∗
Γ2

+ (r2 · n2)
∣∣∗
Γ2

)
ds.

(4.16)

Employing conditions (4.8)-(4.9), the first two terms on the right hand side of equation (4.16) are
given as follows ∫

γ
(τ 1 · σpn1)|∗Γ1

(ξ1 · τ 1)|∗Γ1
ds+

∫
γ
(τ 2 · σpn2)|∗Γ2

(ξ2 · τ 2)|∗Γ2
ds

= −
∫
γ
Cτθτ (3− 5θτ )

[(
∂η1

∂t
· τ 1

) ∣∣∣∣∗
Γ1

+

(
∂η2

∂t
· τ 2

) ∣∣∣∣∗
Γ2

] [
(ξ1 · τ 1)

∣∣∗
Γ1

+ (ξ2 · τ 2)
∣∣∗
Γ2

]
ds

−
∫
γ
Cη

[(
∂η1

∂t
· τ 1

) ∣∣∣∣∗
Γ1

(ξ1 · τ 1)
∣∣∗
Γ1

+

(
∂η2

∂t
· τ 2

) ∣∣∣∣∗
Γ2

(ξ2 · τ 2)
∣∣∗
Γ2

]
ds

+

∫
γ
CηUτ

(
(ξ1 · τ 1)

∣∣∗
Γ1
− (ξ2 · τ 2)

∣∣∗
Γ2

)
ds.

We impose (4.10)–(4.11) weakly as follows: for all ϕ ∈ Qp,∫
γ
ϕ1

∣∣∗
Γ1

(
δθn
2µf

p1|∗Γ1
+
δ(1− θn)

2µf
p2|∗Γ2

− δ

2µf
P −

(
∂η1

∂t
· n1 + q1 · n1

)∣∣∣∣∗
Γ1

+ Un

)
ds

+

∫
γ
ϕ2

∣∣∗
Γ2

(
δθn
2µf

p2|∗Γ2
+
δ(1− θn)

2µf
p1|∗Γ1

− δ

2µf
P −

(
∂η2

∂t
· n2 + q2 · n2

)∣∣∣∣∗
Γ2

− Un

)
ds = 0.

When θn <
1
2 , a stabilization term is needed, which enforces weakly the condition p1

∣∣∗
Γ1

= p2

∣∣∗
Γ2

= P

through the following equation, for all ϕ ∈ Qp and R ∈ Qf ,

χ0

∑
i=1,2

δ

2µf

∫
γ

(
p
∣∣∗
Γi
− P

)(
ϕ
∣∣∗
Γi
−R

)
ds = 0,

where χ0 is a function of θn such that

χ0 =

{
1− 2θn if θn ∈ [0, 1/2),

0 if θn ∈ [1/2, 1].

Adding this equation guarantees the stability of the scheme, as shown in Theorem 1.
We define the following bilinear forms:

ae(η, ξ) = 2µ

∫
Ωp

D(η) : D(ξ)dx+ λ

∫
Ωp

(∇ · η)(∇ · ξ)dx,

aτe(η, ξ) =

∫
γ
Cτθτ (3− 5θτ )

[
(η1 · τ 1) |∗Γ1

+ (η2 · τ 2) |∗Γ2

] [
(ξ1 · τ 1)

∣∣∗
Γ1

+ (ξ2 · τ 2)
∣∣∗
Γ2

]
ds,

aηe(η, ξ) =

∫
γ
Cη
[
(η1 · τ 1) |∗Γ1

(ξ1 · τ 1) |∗Γ1
+ (η2 · τ 2) |∗Γ2

(ξ2 · τ 2) |∗Γ2

]
ds,

aq(q, r) =

∫
Ωp

K−1q · rdx,
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af (U ,V ) =

∫
γ
δMU · V ds+

∫
γ
δµf

∂U

∂s
· ∂V
∂s

ds,

aηf (U ,V ) =

∫
γ

2CηUτVτds,

bp(r, ϕ) =

∫
Ωp

ϕ∇ · rdx,

bf (V , R) =

∫
γ
δ
∂Vτ
∂s

Rds,

bηγ(ξ,V ) =

∫
γ
CηVτ

(
(ξ1 · τ 1)

∣∣∗
Γ1
− (ξ2 · τ 2)

∣∣∗
Γ2

)
ds,

cp(p, ϕ) =

∫
γ

[
(1− θn)δ

2µf

(
p1

∣∣∗
Γ1

+ p2

∣∣∗
Γ2

)(
ϕ1

∣∣∗
Γ1

+ ϕ2

∣∣∗
Γ2

)
+ (2θn − 1 + χ0)

δ

2µf

(
(p1ϕ1)

∣∣∗
Γ1

+ (p2ϕ2)
∣∣∗
Γ2

)]
ds

cP (P,R) =

∫
γ
(1 + χ0)

δ

µf
PRds,

cγ(R,ϕ) =
∑
i=1,2

∫
γ
(1 + χ0)

δ

2µf
ϕ
∣∣∗
Γi
Rds,

mγ(ζ, ϕ) =
∑
i=1,2

∫
γ
ϕ
∣∣∗
Γi

(ζ · ni)|∗Γids,

mγ(V , ϕ) =

∫
γ

(
ϕ1

∣∣∗
Γ1
− ϕ2

∣∣∗
Γ2

)
Vn ds

s0(p, ϕ) =

∫
Ωp

s0pϕ dx.

Note that the bilinear form mγ has a different definition depending on the type of its first compo-
nent. Before proceeding, we substitute into aτe(η, ξ), aηe(η, ξ), aηf (U ,V ) and bηγ(ξ,U) the asymptotic

expressions (3.55) for Cτ and Cη. It is straightforward to verify that all these bilinear forms are fully
robust in the limit cBJS , δ → 0.

The variational form of equations (4.1)-(4.11) is given as follows: given initial conditions p(0) = p0

and η(0) = η0, for any t ∈ (0, T ], find (η(t), q(t),U(t), P (t), p(t)) ∈ WD = Vη ×Vp×Vf
D ×Qf ×Qp

(displacement, Darcy velocity, fracture velocity, fracture pressure, and reservoir pressure, respectively)
such that

ae(η, ξ) + aτe(∂tη, ξ) + aηe(∂tη, ξ)− bηγ(ξ,U)− αbp(ξ, p) +mγ(ξ, p) = Lηξ, ∀ ξ ∈ Vη,

aq(q, r)− bp(r, p) +mγ(r, p) = Lqr, ∀ r ∈ Vp,

af (U ,V ) + aηf (U ,V )− bf (V , P )− bηγ(∂tη,V )−mγ(V , p) = LUV , ∀V ∈ Vf ,

bf (U , R) + cP (P,R)− cγ(R, p) = LPR, ∀R ∈ Qf ,
s0(∂tp, ϕ) + cp(p, ϕ) + αbp(∂tη, ϕ) + bp(q, ϕ)− cγ(P,ϕ)−mγ(∂tη + q −U , ϕ) = Lpϕ, ∀ϕ ∈ Qp,
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where

Lηξ =

∫
Ωp

fp · ξdx+

∫
ΓNp

sNp · ξdx, Lqr = −
∫

Γpp

pDr · npdx,

LUV =

∫
γ
δF · V ds, LPR =

∫
γ
δHRds, Lpϕ =

∫
Ωp

gϕdx.

With a little abuse of notation the bilinear form mγ(∂tη + q − U , ϕ) has been combined, which
prescribes the weak enforcement of normal flux continuity across the fracture interface. The coupled
variational problem in the operator form is equivalent to the following equation,


0
0
0
0

s0∂tp

+


Ae + (Aτe +Aηe)∂t 0 −

(
Bηγ
)T

0 −
(
αBp −Mγ

)T
0 Aq 0 0 −

(
Bp −Mγ

)T
−Bηγ∂t 0 Af +Aηf −

(
Bf
)T −

(
Mγ

)T
0 0 Bf CP −

(
Cγ
)T(

αBp −Mγ

)
∂t Bp −Mγ Mγ −Cγ Cp


︸ ︷︷ ︸

operator A


η
q
U
P
p

 =


Lη
Lq
LU
LP
Lp


︸ ︷︷ ︸
L

,

(4.17)

where the matrix entries are the operators corresponding to the bilinear forms. For the terms contain-
ing time derivatives we have adopted the notation aηe(∂tη, ξ) ≡ Aηe∂tη · ξ (also equivalent to ∂tAηeη · ξ
since all the bilinear forms have constant coefficients in time).

Now, we can write the coupled problem (4.12) and (4.15) as follows: given initial conditions
p(0) = p0 and η(0) = η0, for any t ∈ (0, T ], find X(t) = (η, q,U , P, p) ∈ WD such that

s0(∂tp, ϕ) +A(X(t),Y) = L(Y), ∀Y ∈ W = Vη × Vp × Vf ×Qf ×Qp, (4.18)

where A(·, ·) is the bilinear form corresponding to the operator A in (4.17).

4.1. The semi-discrete formulation

We focus only on the spatial discretization of the coupled problem, since the presence of different
regions with different spatial discretizations and interface conditions requires careful stability and
convergence analysis. The extension of the analysis to the fully-discrete formulation with Backward
Euler time discretization is relatively straightforward. To discretize the problem in space, we use the
finite element method. Let Th be a shape-regular finite element partition [11] of Ωp with maximum
element diameter h such that the traces of the partition on Γ1 and Γ2 coincide. These traces define a
one dimensional mesh on γ. To simplify the notation, assume that UD = 0. We introduce conforming

finite element spaces Vη
h ⊂ Vη,Vp

h ⊂ Vp,Qph ⊂ Q
p,Vf

h ⊂ Vf , and Qfh ⊂ Q
f based on Th. Let

Wh = Vη
h×Vp

h×Vf
h×Q

f
h×Q

p
h. More precisely, let Vη

h consists of continuous Lagrangian elements of
polynomial order r1 ≥ 1, let Vp

h ×Q
p
h be an inf-sup stable pair of Darcy mixed finite element spaces

containing polynomials of degree r2 ≥ 0 and l2 ≥ 0, respectively, and let Vf
h×Q

f
h be an inf-sup stable

pair of Stokes elements containing at least polynomials of degree r3 ≥ 1 and r3 − 1, respectively.
Examples of admissible Darcy elements include the Raviart-Thomas and the Brezzi-Douglas-Marini
spaces, and examples of Stokes elements include the Taylor-Hood elements, the MINI elements, and
the Crouzeix-Raviart elements, see, e.g. [7].

Since the finite element spaces Vf
h×Q

f
h are inf-sup stable, they satisfy the Fortin criterion, see [14]

(Lemma 4.19), i.e., there exists an interpolation operator Πf
h : (H1(γ))2 → Vf

h such that for all
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V ∈ Vf ,

bf (V −Πf
hV , Rh) = 0 ∀Rh ∈ Qfh, ‖Πf

hV ‖H1(γ) . ‖V ‖H1(γ), (4.19)

where a . b denotes a ≤ Cb with the positive constant C being unspecified, but uniformly independent
on the characteristic mesh size h. Similarly, for inf-sup stable Darcy mixed finite elements Vp

h ×Q
p
h,

it is known e.g. [7], that there exists an interpolation operator Πp
h : H(div; Ωp) ∩ (Hs(Ωp))

2 → Vp
h,

s > 0, such that for all r ∈ H(div; Ωp) ∩ (Hs(Ωp))
2,

bp(r−Πp
hr, ϕh) = 0,

∫
∂Ωp

(r−Πp
hr)·np ϕh dx = 0 ∀ϕh ∈ Qph, ‖Πp

hr‖L2(Ωp) . ‖r‖Hs(Ωp)+‖∇·r‖L2(Ωp).

(4.20)
The semi-discrete problem is given as follows: given initial conditions ph(0) and ηh(0), find Xh(t) =

(ηh, qh,Uh, Ph, ph) ∈ Wh such that for any t ∈ (0, T ],

s0(∂tph(t), ϕh) +A(Xh(t),Yh) = L(Yh), ∀Yh ∈ Wh. (4.21)

Since (4.21) is based on a conforming approximation, namely Wh ⊂ W, the discrete problem is
strongly consistent with the continuous problem (4.18), i.e., (4.21) is also satisfied by X(t), the solution
of (4.18).

Let us group the unknowns as Xh = [Uh,Ph], Uh = [ηh, qh,Uh] ∈ Vh := Vη
h × Vp

h × Vf
h, Ph =

[Ph, ph] ∈ Qh = Qfh × Q
p
h, as well as the test functions Yh = [Vh,Qh], Vh = [ξh, rh,V h] ∈ Vh,

Qh = [Rh, ϕh] ∈ Qh. It is convenient to rewrite the operator A in the compact matrix form

A =

Ã+ Ãη∂ηt −
(
B̃
)T

B̃∂ηt C̃

 ,
where the matrix blocks are defined as

Ã :=


Ae 0 0

0 Aq 0

0 0 Af

 , Ãη :=


Aτe +Aηe 0 −

(
Bηγ
)T

0 0 0

−Bηγ 0 Aηf

 ,

B̃ :=

[
0 0 Bf

αBp −Mγ Bp −Mγ Mγ

]
, C̃ :=

[ CP −CTγ

−Cγ Cp

]
,

and the operator ∂ηt denotes the time derivative applied only to the variable η, i.e.

Ãη∂ηt ≡ Ãη
∂t 0 0

0 1 0
0 0 1

 =


(
Aτe +Aηe

)
∂t 0 −

(
Bηγ
)T

0 0 0

−Bηγ∂t 0 Aηf

 .
In what follows, we utilize notational equivalence between matrices and discrete bilinear forms, for

example VTh ÃUh = Ã(Uh,Vh).
We pursue the analysis of problem (4.21) in the general case where the parameter s0 ≥ 0. We make

the restrictive assumption pD = 0, because bounding the term Lqr = −
∫

Γpp
pDr ·npdx requires control
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of ‖∇ · q‖L2(Ωp). This can be done by establishing a bound on ‖∂tp‖L2(Ωp) (see for example [36]), but
we choose not to consider it here in order to keep the paper focused.

For any Yh = [ξh, rh,V h, Rh, ϕh] ∈ Wh we define the following norms,

|||Yh|||2A := ‖ξh‖2H1(Ωp) + ‖rh‖2L2(Ωp) + ‖
√
δV h‖2H1(γ) + ‖

√
δRh‖2L2(γ) + ‖ϕh‖2L2(Ωp) + ‖ϕh‖2L2(γ),

where ‖ϕh‖2L2(γ) is a shorthand notation for
∑

i=1,2 ‖ϕh
∣∣∗
Γi
‖2L2(γ). Given the decomposition Yh =

[Vh,Qh], we split the norm |||Yh|||A into its velocity and pressure parts,

|||Vh|||2V := ‖ξh‖2H1(Ωp) + ‖rh‖2L2(Ωp) + ‖
√
δV h‖2H1(γ),

|||Qh|||2Q := ‖
√
δRh‖2L2(γ) + ‖ϕh‖2L2(Ωp) + ‖ϕh‖2L2(γ).

It is convenient to introduce the time dependent versions of the above norms, for any t ∈ [0, T ],

|||Vh|||2V,t := ‖ξh(t)‖2H1(Ωp) +

∫ t

0

(
‖rh‖2L2(Ωp) + ‖

√
δV h‖2H1(γ)

)
dτ,

|||Qh|||2Q,t :=

∫ t

0

(
‖
√
δRh‖2L2(γ) + ‖ϕh‖2L2(Ωp) + ‖ϕh‖2L2(γ)

)
dτ,

|||Yh|||2A,t := |||Vh|||2V,t + |||Qh|||2Q,t.

We also set the following norms on [0, T ]×Υ (where Υ stands for Ωp or γ and the usual notation for
Bochner spaces is adopted)

‖ · ‖2L2(L2(Υ)) :=

∫ T

0
‖ · ‖2L2(Υ); ‖ · ‖2L2(H1(Υ)) :=

∫ T

0
‖ · ‖2H1(Υ); ‖ · ‖2L∞(H1(Υ)) := sup

t∈[0,T ]
‖ · ‖2H1(Υ),

and define

|||Yh|||2A,T := ‖ξh‖2L∞(H1(Ωp)) + ‖rh‖2L2(L2(Ωp)) + ‖
√
δV h‖2L2(H1(γ))

+ ‖
√
δRh‖2L2(L2(γ)) + ‖ϕh‖2L2(L2(Ωp)) + ‖ϕh‖2L2(L2(γ)).

In the analysis we will employ the Young’s inequality

∀ a, b ∈ R, ∀ ε > 0, ab ≤ ε

2
a2 +

1

2ε
b2. (4.22)

Lemma 1. The following properties hold with constants independent of h for all t ∈ (0, T ]:

(i) Positivity of Ã : ∃a > 0, a0 > 0 such that ∀Vh(t) ∈ Vh,∫ t

0
Ã(Vh, ∂ηt Vh)dτ ≥ a|||Vh|||2V,t − a0‖ξh(0)‖2H1(Ωp). (4.23)

(ii) Non-negativity of C̃: C̃(Qh,Qh) ≥ 0, ∀Qh ∈ Qh.

(iii) Continuity of Ã : ∃A > 0 such that ∀Uh(t),Vh(t) ∈ Vh,

Ã(Uh,Vh) ≤ A|||Uh|||V |||Vh|||V , (4.24)∫ t

0
Ã(Uh, ∂ηt Vh)dτ ≤ A

(
|||Uh|||V,t |||Vh|||V,t +

∫ t

0
‖∂tηh‖H1(Ωp)‖ξh‖H1(Ωp)dτ
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+‖ηh(0)‖H1(Ωp)‖ξh(0)‖H1(Ωp)

)
. (4.25)

(iv) Continuity of L : ∃CL ≥ 0 such that ∀Yh(t) ∈ Wh,∫ t

0
L(∂ηt Yh)dτ ≤ CL

(
|||Yh|||A,t +

(∫ t

0
‖ξh‖2H1(Ωp)dτ

)1/2

+ ‖ξh(0)‖L2(Ωp)

)
, (4.26)

where

CL = CL(‖∂tfp‖L2(L2(Ωp)), ‖fp‖L∞(L2(Ωp)), ‖∂tsNp ‖L2(L2(ΓNp )), ‖sNp ‖L∞(L2(ΓNp )),

‖
√
δF ‖L2(L2(γ)), ‖

√
δH‖L2(L2(γ)), ‖g‖L2(L2(Ωp))).

Proof. (i) For any Vh ∈ Vh we have, using (2.4) and (2.7),

Ã(Vh, ∂ηt Vh) = ae(ξh, ∂tξh) + aq(rh, rh) + af (V h,V h)

≥ 1

2
∂tae(ξh, ξh) + k−1

1 ‖rh‖
2
L2(Ωp) + k−1

f,1‖
√
δV h‖2L2(γ) + µf

∥∥∥∥√δ ∂V h

∂s

∥∥∥∥2

L2(γ)

. (4.27)

Property (i) follows by integrating over [0, t] and employing the Poincaré - Friedrichs and Korn
inequalities, see for example [14]. These hold since |ΓDp | > 0 (or |∂Ωp,i ∩ ΓDp | > 0) and imply the
existence of a constant CPFK > 0 such that

‖D(ξh)‖2L2(Ωp) ≥ CPFK‖ξh‖
2
H1(Ωp).

(ii) Consider first the case θn ∈ [1/2, 1]. For any Qh ∈ Qh, C̃(Qh,Qh) = cP (Rh, Rh) + cp(ϕh, ϕh)−
2cγ(Rh, ϕh). In this case χ0 = 0 and we have

cP (Rh, Rh) + cp(ϕh, ϕh) =
1

µf
‖
√
δRh‖2L2(γ) +

(1− θn)

2µf
‖
√
δ(ϕ1,h

∣∣∗
Γ1

+ ϕ2,h

∣∣∗
Γ2

)‖2L2(γ)

+
(2θn − 1)

2µf

(
‖
√
δϕ1,h|∗Γ1

‖2L2(γ) + ‖
√
δϕ2,h|∗Γ2

‖2L2(γ)

)
. (4.28)

Furthermore, using the Cauchy-Schwarz and Young’s inequalities with ε = 1/2 we have

2cγ(Rh, ϕh) =

∫
γ

δ

µf

(
ϕ1,h

∣∣∗
Γ1

+ ϕ2,h

∣∣∗
Γ2

)
Rhds

≤ 1

4µf

∥∥∥√δ(ϕ1,h

∣∣∗
Γ1

+ ϕ2,h

∣∣∗
Γ2

)
∥∥∥2

L2(γ)
+

1

µf
‖
√
δRh‖2L2(γ). (4.29)

Combining equation (4.28) with (4.29), we get

C̃(Qh,Qh) ≥ 1

4µf
(1− 2θn)‖

√
δ(ϕ1,h

∣∣∗
Γ1

+ ϕ2,h

∣∣∗
Γ2

)‖2L2(γ)

+
(2θn − 1)

2µf

(
‖
√
δϕ1,h|∗Γ1

‖2L2(γ) + ‖
√
δϕ2,h|∗Γ2

‖2L2(γ)

)
. (4.30)
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Now using the triangle inequality, it is easy to check that

C̃(Qh,Qh) ≥ (2θn − 1)

4µf

(
‖
√
δϕ1,h

∣∣∗
Γ1
‖L2(γ) − ‖

√
δϕ2,h

∣∣∗
Γ1
‖L2(γ)

)2
≥ 0.

We next consider the case θn ∈ [0, 1/2), where χ0 = 1− 2θn. A direct calculation shows that

C̃(Qh,Qh) =
(1− 2θn)

4µf
‖
√
δ(ϕ1,h

∣∣∗
Γ1

+ ϕ2,h

∣∣∗
Γ1
− 2Rh)‖2L2(γ) ≥ 0.

(iii) Inequality (4.24) follows easily from the Cauchy-Schwarz inequality. To prove (4.25), we note
that ∫ t

0
Ã(Uh, ∂ηt Vh)dτ =

∫ t

0
(ae(ηh, ∂tξh) + aq(qh, rh) + af (Uh,V h)) dτ (4.31)

and focus on the first term on the right. Integration by parts gives∫ t

0
ae(ηh, ∂tξh)dτ = −

∫ t

0
ae(∂tηh, ξh)dτ + ae(ηh, ξh)

∣∣∣t
0
. (4.32)

Bound (4.25) follows from applying the Cauchy-Schwarz inequality to the terms on the right in (4.32)
and the last two terms on the right in (4.31).

(iv) Assuming sufficient smoothness of the data, the continuity bound (4.26) follows by integration
by parts in time in the terms

∫
Ωp
fp · ∂tξh and

∫
ΓNp
sNp · ∂tξh, and then applying the Cauchy-Schwarz

inequality for all terms, using also the trace inequality [14]

‖ξ‖L2(∂Ωp) . ‖ξ‖H1(Ωp), ∀ ξ ∈ H1(Ωp). (4.33)

�

In the following we use the shorthand notation

‖ξh · τ‖2L2(γ) :=
∑
i=1,2

‖(ξi,h · τ i)∗Γi‖
2
L2(γ),

as well as the jump notation [ξh · τ ] = (ξ1,h · τ 1)
∣∣∗
Γ1

+ (ξ2,h · τ 2)
∣∣∗
Γ2

Lemma 2. The following properties of Ãη are satisfied. When θτ = 0, Ãη = 0. When θτ = 1/2,

Ãη(Vh,Vh) =
Cτ

4
‖[ξh · τ ]‖2L2(γ), (4.34)

Ãη(Uh,Vh) ≤ Cτ

4
‖[ηh · τ ]‖L2(γ)‖[ξh · τ ]‖L2(γ). (4.35)

When θτ = 2/3, provided that δ > 0, there exist a positive constant Aη such that

Ãη(Vh,Vh) + 10δ−1cBJS‖
√
δV h‖2L2(γ) ≥

1

6
Cη‖ξh · τ‖2L2(γ), (4.36)

Ãη(Uh,Vh) ≤ Aη
(
Cη‖ηh · τ‖L2(γ)‖ξh · τ‖L2(γ) + δ−1cBJS‖

√
δUh‖L2(γ)‖

√
δV h‖L2(γ)

+δ−
1
2
√
cBJS

√
Cη
(
‖
√
δUh‖L2(γ)‖ξh · τ‖L2(γ) + ‖

√
δV h‖L2(γ)‖ηh · τ‖L2(γ)

))
. (4.37)
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Proof. When θτ = 0, 1/2 only the term Aτe of Ãη is active, i.e. Ãη(Vh,Vh) = aτe(ξh, ξh), and (4.34)
follows directly from the definition of aτe(ξh, ξh), since it is non-negative. The upper bound (4.35)
follows from the Cauchy-Schwarz inequality.

In the case θτ = 2
3 , the coefficient in aτe(·, ·) is negative and all entries of Ãη are active. Using

Young’s inequality (4.22) for bηγ(V h, ξh), we obtain

Ãη(Vh,Vh) = aηe(ξh, ξh) + aηf (V h,V h) + aτe(ξh, ξh)− 2bηγ(V h, ξh)

≥ 2

(
ε− 1

ε

)
Cη‖Vτ,h‖2L2(γ) + (1− ε)Cη

∑
i=1,2

‖ξi,h · τ i‖2L2(γ) −
4

9
Cτ

∑
i=1,2

‖ξi,h · τ i‖2L2(γ)

≥ 2

(
ε− 1

ε

)
Cη‖Vτ,h‖2L2(γ) + (

1

3
− ε)Cη

∑
i=1,2

‖ξi,h · τ i‖2L2(γ),

where we have used (3.56) and the fact that 1 − 2δcBJS
3cBJSδ+6µf

≥ 1
3 in the last inequality. Inequality

(4.36) follows by taking ε = 1/6 and using (3.57) and the assumption δ > 0. The continuity bound
(4.37) is obtained using the Cauchy-Schwarz inequality. �

Lemma 3. The operator (B̃)T is inf-sup stable, that is: there exists β > 0 independent of h such that
∀Qh = [Rh, ϕh] ∈ Qh, there exists Vh = [0, rh,V h] ∈ Vh such that

(B̃)T (Qh,Vh) ≥ |||Qh|||2Q, |||Vh|||V ≤ β|||Qh|||Q. (4.38)

Proof. We first note that for any Rh ∈ Qfh, there exists V = (0, Vτ ) ∈ Vf such that

bf (V , Rh) ≥ ‖
√
δRh‖2L2(γ), ‖

√
δV ‖H1(γ) . ‖

√
δRh‖L2(γ),

which can be achieved by noting that bf (V , Rh) =
∫
γ δ

∂Vτ
∂s Rh ds, and choosing Vτ =

∫ s
0 Rh(ζ)dζ.

Taking V h = Πf
hV and using the properties (4.19) of Πf

h, we conclude that

bf (V h, Rh) ≥ ‖
√
δRh‖2L2(γ), ‖

√
δV h‖H1(γ) . ‖

√
δRh‖L2(γ). (4.39)

Next, for any ϕh ∈ Qph, there exists r ∈ Vp such that, for some s > 0,

bp(r, ϕh)−mγ(r, ϕh) ≥ ‖ϕh‖2L2(Ωp) +‖ϕh‖2L2(γ), ‖r‖Hs(Ωp) +‖∇·r‖L2(Ωp) . ‖ϕh‖L2(Ωp) +‖ϕh‖L2(γ),

(4.40)
which can be achieved by taking r = ∇ψ, where ψ is the solution to the problem

∆ψ = ϕh in Ωp,

∇ψ · ni = −ϕi,h on Γi, i = 1, 2,

ψ = 0 on Γpp,

∇ψ · np = 0 on Γqp.

(4.41)

The above problem is well posed, since |Γpp| > 0 (or |∂Ωp,i∩Γpp| > 0). The first part of (4.40) is satisfied
by construction, while the second part is guaranteed by the elliptic regularity of problem (4.41) [23,29].
We now choose rh = Πp

hr and, using the properties (4.20) of Πp
h, we conclude that

bp(rh, ϕh)−mγ(rh, ϕh) ≥ ‖ϕh‖2L2(Ωp) + ‖ϕh‖2L2(γ), ‖rh‖L2(Ωp) . ‖ϕh‖L2(Ωp) + ‖ϕh‖L2(γ). (4.42)
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Finally, we note that Vn,h = 0 implies that mγ(V h, ϕh) = 0. Combining (4.39) and (4.42) we obtain

(B̃)T (Qh,Vh) = bf (V h, Rh) + bp(rh, ϕh)−mγ(rh − V h, ϕh)

≥ ‖
√
δRh‖2L2(γ) + ‖ϕh‖2L2(Ωp) + ‖ϕh‖2L2(γ) = |||Qh|||2Q

and

|||Vh|||2V = ‖
√
δV h‖2H1(γ) + ‖rh‖2L2(Ωp) . ‖

√
δRh‖2L2(γ) + ‖ϕh‖2L2(Ωp) + ‖ϕh‖2L2(γ) = |||Qh|||2Q.

�

We are now ready to prove the following stability result.

Theorem 1. Under the assumptions of Lemma 2 and under the additional condition that when
θτ = 2/3, cBJS is small enough such that a − 10δ−1cBJS ≥ α1 > 0, then the solution of (4.21)
satisfies

s0‖ph‖2L∞(L2(Ωp)) + |||Xh|||2A,T + χθτ,1C
τ‖[∂tηh · τ ]‖2L2(L2(γ)) + χθτ,2C

η‖∂tηh · τ‖2L2(L2(γ))

. (CL)2 + ‖ηh(0)‖2H1(Ωp) + ‖ph(0)‖2L2(Ωp), (4.43)

where χθτ,1 = 1 when θτ = 1/2, χθτ,1 = 0 otherwise, and χθτ,2 = 1 when θτ = 2/3, χθτ,2 = 0 otherwise.

Proof. Let us take in (4.21) YP,h = [∂ηt Uh − ε1VP,h,Ph], where VP,h ∈ Vh is the velocity field con-
structed in Lemma 3 with data Ph and ε1 > 0 is a small parameter to be determined. Integration in
time gives ∫ t

0
(s0(∂tph, ph) +A(Xh,YP,h)) dτ =

∫ t

0
L(YP,h)dτ. (4.44)

We have

A(Xh,YP,h) = Ã(Uh, ∂ηt Uh − ε1VP,h) + Ãη∂ηt (Uh, ∂ηt Uh − ε1VP,h)

− (B̃)T (Ph, ∂ηt Uh − ε1VP,h) + B̃∂ηt (Uh,Ph) + C̃(Ph,Ph)

= Ã(Uh, ∂ηt Uh)− ε1Ã(Uh,VP,h) + Ãη(∂ηt Uh, ∂
η
t Uh)− ε1Ãη(∂ηt Uh,VP,h)

+ ε1(B̃)T (Ph,VP,h) + C̃(Ph,Ph). (4.45)

We next estimate each of the terms on the right in the above equality. Lemma 1 (i), (ii), and Lemma
3 imply, respectively, ∫ t

0
Ã(Uh, ∂ηt Uh)dτ ≥ a|||Uh|||2V,t − a0‖ηh(0)‖2H1(Ωp), (4.46)

∫ t

0
C̃(Ph,Ph)dτ ≥ 0, (4.47)

and ∫ t

0
(B̃)T (Ph,VP,h)dτ ≥ |||Ph|||2Q,t. (4.48)

Recalling that VP,h = [0, rh,V h], we have∫ t

0
Ã(Uh,VP,h)dτ =

∫ t

0
(aq(qh, rh) + af (Uh,V )) dτ ≤ A|||Uh|||V,t |||VP,h|||V,t
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≤ (4ε′1)−1A|||Uh|||2V,t + ε′1Aβ
2|||Ph|||2Q,t, (4.49)

where A is the constant from (4.24) and we have used (4.38) and Young’s inequality (4.22) with
ε = 2ε′1.

We next estimate the terms involving Ãη. These terms are zero when θτ = 0. Let us consider the
case θτ = 1/2. Thanks to Lemma 2 and using that VP,h = [0, rh,V h], the following properties hold
true,

Ãη(∂ηt Uh, ∂
η
t Uh) =

Cτ

4
‖[∂tηh]‖2L2(γ), (4.50)

Ãη(∂ηt Uh,VP,h) = aτe(∂tηh,0) = 0. (4.51)

Combining (4.45)–(4.51), we obtain∫ t

0
(s0(∂tph, ph) +A(Xh,YP,h)) dτ + a0‖ηh(0)‖2H1(Ωp) +

s0

2
‖ph(0)‖2L2(Ωp)

≥
(
a− ε1(4ε′1)−1A

)
|||Uh|||2V,t + ε1

(
1− ε′1Aβ2

)
|||Ph|||2Q,t +

s0

2
‖ph(t)‖2L2(Ωp)

+ χθτ,1
Cτ

4

∫ t

0
‖[∂tηh · τ ]‖2L2(γ)dτ. (4.52)

We next consider the case θτ = 2/3. Owing to Lemma 2 and in particular (4.36), we have∫ t

0
Ãη(∂ηt Uh, ∂

η
t Uh)dτ ≥

∫ t

0

(
1

6
Cη‖∂tηh · τ‖2L2(γ) − 10δ−1cBJS‖

√
δUh‖2L2(γ)

)
dτ

≥
∫ t

0

1

6
Cη‖∂tηh · τ‖2L2(γ)dτ − 10δ−1cBJS |||Uh|||2V,t. (4.53)

We note that the last term in the previous inequality does not involve ∂ηt , because this operator is
the identity for variables on Ωf . Using (4.37) and recalling that VP,h = [0, rh,V h] the upper bound

of Ãη(∂ηt Uh,VP,h) reads as follows,∫ t

0
Ãη(∂ηt Uh,VP,h)dτ

≤ Aη
∫ t

0

(
δ−1cBJS‖

√
δUh‖L2(γ)‖

√
δV h‖L2(γ) + δ−1/2√cBJS

√
Cη‖
√
δV h‖L2(γ)‖∂tηh · τ‖L2(γ)

)
dτ

≤ Aη
(
δ−1/2√cBJS |||Uh|||V,t +

(∫ t

0

√
Cη‖∂tηh · τ‖2L2(γ)dτ

)1/2
)
δ−1/2√cBJS |||VP,h|||V,t

≤ Aηδ−1cBJS(4ε′1)−1|||Uh|||2V,t +Aη(4ε′1)−1

∫ t

0

√
Cη‖∂tηh · τ‖2L2(γ)dτ + 2Aηε′1δ

−1cBJSβ
2|||Ph|||2Q,t,

(4.54)

where we have used (4.38) and Young’s inequality (4.22) with ε = 2ε′1. Combining (4.45)–(4.49) and
(4.53)–(4.54), we obtain∫ t

0
(s0(∂tph, ph) +A(Xh,YP,h)) dτ + a0‖ηh(0)‖2H1(Ωp) +

s0

2
‖ph(0)‖2L2(Ωp)
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≥
(
a− 10δ−1cBJS − ε1(4ε′1)−1(A+Aηδ−1cBJS)

)
|||Uh|||2V,t

+

(
1

6
− ε1(4ε′1)−1Aη

)∫ t

0
Cη‖∂tηh · τ‖2L2(γ)dτ

+ ε1
(
1− ε′1

(
A+ 2Aηδ−1cBJS

)
β2
)
|||Ph|||2Q,t +

s0

2
‖ph(t)‖2L2(Ωp). (4.55)

We now consider (4.52) for θτ = 0, 1/2 and (4.55) for θτ = 2/3. First we fix ε′1 sufficiently small so
that the coefficient of |||Ph|||2Q,t is strictly positive. Then we take ε1 small enough so that the rest
of the coefficients on the right hand sides are strictly positive. To be able to do this in the case of
θτ = 2/3, we need to assume that a− 10δ−1cBJS ≥ α1 > 0. Then in both cases we conclude that

s0‖ph‖2L2(Ωp) + |||Xh|||2A,t + χθτ,1

∫ t

0
Cτ‖[∂tηh · τ ]‖2L2(γ)dτ + χθτ,2

∫ t

0
Cη‖∂tηh · τ‖2L2(γ)dτ

.
∫ t

0
(s0(∂tph(t), ph) +A(Xh,YP,h)) dτ + ‖ηh(0)‖2H1(Ωp) + ‖ph(0)‖2L2(Ωp), (4.56)

which provides a coercivity bound for the left hand side in (4.44). The upper bound on the right
hand side in (4.44) follows from Lemma 1 (iv):∫ t

0
L(YP,h)dτ =

∫ t

0
L([∂ηt Uh − ε1VP,h,Ph])dτ

≤ (1 + ε1β)CL

(
|||Xh|||A,t +

(∫ t

0
‖ηh‖2H1(Ωp)dτ

)1/2

+ ‖ηh(0)‖L2(Ωp)

)
, (4.57)

where we have also used (4.38). The statement of the theorem follows from combining (4.44), (4.56),
and (4.57), and employing Young’s inequality (4.22) with sufficiently small ε for the first term on the
right in (4.57) and Gronwall’s inequality for the second term. �

4.2. Error analysis

The error introduced in the approximation of (4.18) with (4.21) requires particular attention be-
cause we are dealing with a coupled problem on dimensionally heterogeneous domains. More precisely,
the transmission conditions between the fracture and the reservoir involve traces of the reservoir
pressure p on the fracture edges. As a result the natural pressure space on Ωp, namely Qp, requires
additional regularity for the traces on the interface between the reservoir and the fracture. Moreover,
the discrete space Qph ⊂ Q

p can not provide optimal approximation properties on Ωp and Γi, i = 1, 2
simultaneously. As a result, some degree of suboptimality is expected in the approximation properties
of the scheme.

In addition to the velocity mixed finite element interpolants Πp
h and Πf

h defined in the previous

section, let Iηh and Ifh be the Scott-Zhang interpolants for H1 functions into the finite element spaces

Vη
h and Qfh, respectively [43], and let Iph be the L2-projection into Qph. The interpolants satisfy the

approximation bounds [7, 43]

‖η − Iηhη‖H1(Ωp) . h
r1 |η|Hr1+1(Ωp), (4.58)

‖q −Πp
hq‖L2(Ωp) . h

r2+1|q|Hr2+1(Ωp), (4.59)

‖p− Iphp‖L2(Ωp) + h1/2‖p− Iphp‖L2(γ) . h
l2+1|p|Hl2+1(Ωp), (4.60)

‖U −Πf
hU‖H1(Ωf ) . h

r3 |U |Hr3+1(γ), (4.61)
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‖P − IfhP‖L2(Ωf ) . h
r3 |P |Hr3 (γ). (4.62)

The bound on ‖p− Iphp‖L2(γ) in (4.60) follows from the local trace inequality [14], for all E ∈ Th,

‖ξ‖L2(∂E) . h
−1/2
E ‖ξ‖L2(E) + h

1/2
E |ξ|H1(E), ∀ ξ ∈ H1(E) (4.63)

as follows. Letting Ĩph be the Scott-Zhang interpolant into Qph, we have, for all E ∈ Th,

‖p− Iphp‖L2(∂E) . h
−1/2
E ‖p− Iphp‖L2(E) + h

1/2
E |p− I

p
hp|H1(E)

. h−1/2
E ‖p− Iphp‖L2(E) + h

1/2
E (|p− Ĩphp|H1(E) + |Ĩph − I

p
hp|H1(E))

. h−1/2
E (‖p− Iphp‖L2(E) + ‖Ĩph − I

p
hp‖L2(E)) + h

1/2
E |p− Ĩ

p
hp|H1(E)

. hl2+1/2
E |p|Hl2+1(Ẽ),

where we have also used a local inverse inequality for finite element functions [11] and Ẽ is the

neighborhood of E used in the definition of Ĩph.
Let us denote the global error as E(t) = X(t)−Xh(t) = [eη, eq, eU , eP , ep]. We next state and prove

the main convergence result.

Theorem 2. Let ph(0) = Iphp0 and ηh(0) = Iηhη0. Under the assumptions of Theorem 1, assuming
that δ > 0 and that the solution X(t) of (4.18) is sufficient regular, the solution Xh(t) of (4.21)
satisfies

√
s0‖ep‖L∞(L2(Ωp)) + |||E|||A,T . hr1

(
‖∂tη‖L2(Hr1+1(Ωp)) + ‖η‖L∞(Hr1+1(Ωp)) + ‖∂tη‖L∞(Hr1+1(Ωp))

)
+ hr2+1‖q‖L2(Hr2+1(Ωp))+h

l2+1
(
‖p‖L2(Hl2+1(Ωp)) + ‖∂tp‖L2(Hl2+1(Ωp)) + ‖p‖L∞(Hl2+1(Ωp))

)
+ hl2+1/2

(
δ−1/2‖p‖L2(Hl2+1(Ωp)) + ‖∂tp‖L2(Hl2+1(Ωp)) + ‖p‖L∞(Hl2+1(Ωp))

)
+ hl2‖p‖L2(Hl2+1(Ωp))

+ hr3‖P‖L2(Hr3 (γ)) + hr3‖U‖L2(Hr3+1(γ)). (4.64)

Proof. To study the space discretization error, we first derive the error equation for (4.21) and combine
it with the stability properties of the scheme. In this way, we bound the total error in terms of the
finite element approximation error. Problem (4.21) is strongly consistent with (4.18), so the error
equation follows from testing (4.18) with the test functions from the finite element space Wh and
subtracting it from the semi-discrete problem (4.21):

s0(∂tep(t), ϕh) +A(E(t),Yh) = 0, ∀Yh ∈ Wh. (4.65)

Let Πh denote a collection of projectors, such that ΠhX = [Iηhη,Π
p
hq,Π

f
hU , I

f
hP, I

p
hp], one for each

component of X. We define the approximation error as

F = X−ΠhX = [fη,f q,fU , fP , fp]

and we exploit the decomposition of the global error into approximation error and error residual,

E = F + Gh where Gh = ΠhX− Xh = [gη,h, gq,h, gU,h, gP,h, gp,h].

As a result, the error equation can be easily rewritten in the following form, more suitable for pursuing
the error analysis

s0(∂tgp,h(t), ϕh) +A(Gh(t),Yh) = −s0(∂tfp(t), ϕh)−A(F(t),Yh) ∀Yh ∈ Wh. (4.66)
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The error estimate (4.64) is obtained following the approach in the stability Theorem 1. Let us denote

Gh = [GUh ,GPh ], GUh = [gη,h, gq,h, gU,h], GPh = [gP,h, gp,h]; F = [FU,FP], FU = [fη,f q,fU ], FP = [fP , fp].

Similarly to Theorem 1, we take in (4.66) Yh = Wh := [∂ηt GUh − ε2Vh,GPh ], where Vh = [0, rh,V h]
is the velocity field constructed in Lemma 3 associated to GPh and satisfying for all t ∈ (0, T ]∫ t

0
(B̃)T (GPh ,Vh) dτ ≥ |||GPh |||

2
Q,t, |||Vh|||V,t ≤ β|||GPh |||Q,t. (4.67)

The above inequalities follow from time integration in (4.38). The second inequality is true, since the
first component of Vh is zero. Integration in time on [0, T ] in (4.66) with the choice Yh = Wh gives∫ T

0
(s0(∂tgp,h, gp,h) +A(Gh,Wh)) dτ =

∫ T

0
(−s0(∂tfp, gp,h)−A(F,Wh)) dτ. (4.68)

As in Theorem 1, the error estimate (4.64) is obtained through two fundamental steps. The first is
a lower bound of the left hand side of (4.68). The second is an upper bound of the right hand side,
featuring terms that can be either hidden into the left hand side or depend on the approximation
error.

The argument in Theorem 1 leading to (4.56) implies that for sufficiently small ε2, we obtain

s0‖gp,h‖2L∞(L2(Ωp)) + |||Gh|||2A,T + χθτ,1C
τ‖[∂tgη,h · τ ]‖2L2(L2(γ)) + χθτ,2C

η‖∂tgη,h · τ‖2L2(L2(γ))

.
∫ T

0
(s0(∂tgp,h, gp,h) +A(Gh,Wh)) dτ, (4.69)

using that gp,h(0) = 0 and gη,h(0) = 0.
We continue with the second step, derivation of an upper bound for the right hand side of (4.68).

For each term we will be employing the Cauchy-Schwarz and Young’s inequalities, placing a small
weight ε3 in the terms that will be absorbed by the left hand side of (4.69). Some of the bounds will
involve ‖gη,h‖L2(H1(Ωp)), which will be controlled via Gronwall’s inequality.

For the first term on the right in (4.68) we have∫ T

0
s0(∂tfp, gp,h)dτ . ε3‖gp,h‖2L2(L2(Ωp)) + ε−1

3 ‖∂tfp‖
2
L2(L2(Ωp)). (4.70)

Using the definition (4.17) of A we have

A(F,Wh) = Ã(FU, ∂
η
t GUh − ε2Vh) + Ãη(∂ηt FU, ∂

η
t GUh − ε2Vh)

− (B̃)T (FP, ∂
η
t GUh − ε2Vh) + B̃(∂ηt FU,GPh) + C̃(FP,GPh) (4.71)

We next bound each of the terms in (4.71). Using (4.25), we have∫ T

0
Ã(FU, ∂

η
t GUh) dτ ≤ A

(
|||FU|||V,T |||GUh |||V,T +

∫ T

0
‖∂tfη‖H1(Ωp)‖gη,h‖H1(Ωp)dτ

)
. ε3|||GUh |||

2
V,T + ε−1

3 |||FU|||2V,T + ‖gη,h‖2L2(H1(Ωp)) + ‖∂tfη‖2L2(H1(Ωp)). (4.72)
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Recalling that Vh = [0, rh,V h], similarly to (4.49) we obtain∫ T

0
Ã(FU,Vh)dτ ≤ A|||FU|||V,T |||Vh|||V,T . ε3|||GPh |||

2
Q,T + ε−1

3 |||FU|||2V,T , (4.73)

where we have also used (4.67). We continue with the bounds on the terms involving Ãη. These
terms are zero when θτ = 0. Let us consider θτ = 1/2. Using (4.35) we have∫ T

0
Ãη(∂ηt FU, ∂

η
t GUh) dτ ≤ 1

4

∫ T

0
Cτ‖[∂tfη · τ ]‖L2(γ)‖[∂tgη,h · τ ]‖L2(γ)dτ

. ε3C
τ‖[∂tgη,h · τ ]‖2L2(L2(γ)) + ε−1

3 Cτ‖[∂tfη · τ ]‖2L2(L2(γ)). (4.74)

Since Vh = [0, rh,V h],

Ãη(∂ηt FU,Vh) = aτe(∂tfη,0) = 0. (4.75)

Next consider θτ = 2/3, in which case all terms of Ãη are active. Using (4.37), we have

∫ T

0
Ãη(∂ηt FU, ∂

η
t GUh − ε2Vh) dτ . ε3(|||GUh |||

2
V,T + Cη‖∂tgη,h · τ‖2L2(L2(γ)) + |||GPh |||

2
Q,T )

+ ε−1
3

(
|||∂ηt FU|||2V,T+Cη‖∂tfη · τ‖2L2(L2(γ))

)
, (4.76)

where we have also used (4.67). Using the definition of C̃, we obtain∫ T

0
C̃(FP,GPh)dτ . ε3|||GPh |||

2
Q,T + ε−1

3 |||FP|||2Q,T . (4.77)

We proceed with the off-diagonal terms. We consider −(B̃)T (FP, ∂
η
t GUh) + B̃(∂ηt FU,GPh) and bound

its various components.

• Estimate on
(
αBp −Mγ

)
∂t −

(
αBp −Mγ

)T
:

∫ T

0

((
αBp −Mγ

)
(∂tfη, gp,h)−

(
αBp −Mγ

)T
(fp, ∂tgη,h)

)
dτ

= α

∫ T

0

∫
Ωp

gp,h∇ · ∂tfηdx dt− α
∫ T

0

∫
Ωp

fp∇ · ∂tgη,hdx dt

−
∑
i

(∫ T

0

∫
γ
gp,h,i

∣∣∗
Γi

(∂tfη · ni)|∗Γids dt−
∫ T

0

∫
γ
fp,i
∣∣∗
Γi

(∂tgη,h · ni)|∗Γids dt
)
.

Then, proceeding term by term, we get∣∣∣∣∣
∫ T

0

∫
Ωp

gp,h∇ · ∂tfηdx dt

∣∣∣∣∣ . ε3‖gp,h‖2L2(L2(Ωp)) + ε−1
3 ‖∂tfη‖

2
L2(H1(Ωp)),

∣∣∣∣∣
∫ T

0

∫
Ωp

fp∇ · ∂tgη,hdx dt

∣∣∣∣∣ =

∣∣∣∣∣−
∫ T

0

∫
Ωp

∂tfp∇ · gη,hdx dt+

∫
Ωp

fp∇ · gη,hdx
∣∣∣∣T
0

∣∣∣∣∣
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. ε3‖gη,h‖2L∞(H1(Ωp)) + ε−1
3 ‖fp‖

2
L∞(L2(Ωp)) + ‖gη,h‖2L2(H1(Ωp)) + ‖∂tfp‖2L2(L2(Ωp)),

∣∣∣∣∣∑
i

∫ T

0

∫
γ
gp,h,i

∣∣∗
Γi

(∂tfη · ni)|∗Γids dt

∣∣∣∣∣ . ε3‖gp,h‖2L2(L2(γ)) + ε−1
3 ‖∂tfη‖

2
L2(H1(Ωp)),

∣∣∣∣∣∑
i

∫ T

0

∫
γ
fp,i
∣∣∗
Γi

(∂tgη,h · ni)|∗Γids dt

∣∣∣∣∣
=

∣∣∣∣∣−∑
i

∫ T

0

∫
γ
∂tfp,i

∣∣∗
Γi

(gη,h · ni)|∗Γids dt+

∫
γ
fp,i
∣∣∗
Γi

(gη,h · ni)|∗Γids
∣∣∣∣T
0

∣∣∣∣∣
. ε3‖gη,h‖2L∞(H1(Ωp)) + ε−1

3 ‖fp‖
2
L∞(L2(γ)) + ‖gη,h‖2L2(H1(Ωp)) + ‖∂tfp‖2L2(L2(γ)).

As a result we obtain

|
∫ T

0

((
αBp −Mγ

)
(∂tfη, gp,h)−

(
αBp −Mγ

)T
(fp, ∂tgη,h)

)
dτ |

. ε3
(
‖gη,h‖2L∞(H1(Ωp)) + ‖gp,h‖2L2(L2(Ωp)) + ‖gp,h‖2L2(L2(γ))

)
+ ε−1

3

(
‖∂tfη‖2L2(H1(Ωp)) + ‖fp‖2L∞(L2(Ωp)) + ‖fp‖2L∞(L2(γ))

)
+ ‖gη,h‖2L2(H1(Ωp)) + ‖∂tfp‖2L2(L2(Ωp)) + ‖∂tfp‖2L2(L2(γ)) (4.78)

• Estimate on
(
Bp −Mγ

)
−
(
Bp −Mγ

)T
:

∫ T

0

((
Bp −Mγ

)
(f q, gp,h)−

(
Bp −Mγ

)T
(fp, gq,h)

)
dτ =

∫ T

0

∫
Ωp

gp,h∇·f qdx dt−
∫ T

0

∫
Ωp

fp∇·gq,hdx dt

−
∑
i

(∫ T

0

∫
γ
gp,h,i

∣∣∗
Γi

(f q,i · ni)|∗Γids dt−
∫ T

0

∫
γ
fp,i
∣∣∗
Γi

(gq,h,i · ni)|∗Γids dt
)
.

Using the property (4.20) of Πp
h, we have that∫ T

0

∫
Ωp

gp,h∇ · f qdx dt = 0,
∑
i

∫ T

0

∫
γ
gp,h,i

∣∣∗
Γi

(f q,i · ni)|∗Γids dt = 0.

The orthogonality of the L2-projection Iph and the property ∇ · Vp
h = Qph of the Darcy mixed finite

element spaces implies that ∫ T

0

∫
Ωp

fp∇ · gq,hdx dt = 0.

For the remaining term we have∣∣∣∣∣∑
i

∫ T

0

∫
γ
fp,i
∣∣∗
Γi

(gq,h,i · ni)|∗Γids dt

∣∣∣∣∣ . ε3‖gq,h‖2L2(L2(Ωp)) + ε−1
3 h−1‖fp‖2L2(L2(γ)),
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where we used the discrete trace inequality (4.63). In conclusion, we obtain that

|
∫ T

0

((
Bp −Mγ

)
(f q, gp,h)−

(
Bp −Mγ

)T
(fp, gq,h)

)
dτ | . ε3‖gq,h‖2L2(L2(Ωp)) + ε−1

3 h−1‖fp‖2L2(L2(γ)).

(4.79)

• Estimate on Mγ −
(
Mγ

)T
:

|
∫ T

0

(
Mγ(fU , gp,h)−MT

γ (fp, gU,h)
)
dτ |

=

∣∣∣∣∫ T

0

∫
γ
(gp,h,1

∣∣∗
Γ1
− gp,h,2

∣∣∗
Γ2

)(fU )nds dt−
∫ T

0

∫
γ
(fp,1

∣∣∗
Γ1
− fp,2

∣∣∗
Γ2

)(gU,h)nds dt

∣∣∣∣
. ε3

(
‖gp,h‖2L2(L2(γ)) + ‖

√
δgU,h‖2L2(L2(γ))

)
+ ε−1

3

(
‖δ−1/2fp‖2L2(L2(γ)) + ‖fU‖2L2(L2(γ))

)
. (4.80)

• Estimate on Bf −
(
Bf
)T

:

|
∫ T

0

((
Bf (fU , gP,h)− BTf (fP , gU,h)

)
dτ | =

∣∣∣∣∫ T

0

∫
γ
δ ∂s(gU,h)τfP ds dt−

∫ T

0

∫
γ
δ ∂s(fU )τgP,h ds dt

∣∣∣∣
. ε3

(
‖
√
δgU,h‖2L2(H1(γ)) + ‖

√
δgP,h‖2L2(L2(γ))

)
+ ε−1

3

(
‖
√
δfU‖2L2(H1(γ)) + ‖

√
δfP ‖2L2(L2(γ))

)
. (4.81)

Combining (4.78)–(4.81), we obtain

|
∫ T

0

(
−(B̃)T (FP, ∂

η
t GUh) + B̃(∂ηt FU,GPh)

)
dτ | . ε3|||Gh|||2A,T + ‖gη,h‖2L2(H1(Ωp))

+ ε−1
3

(
‖∂tfη‖2L2(H1(Ωp)) + ‖fp‖2L∞(L2(Ωp)) + ‖fp‖2L∞(L2(γ)) + h−1‖fp‖2L2(L2(γ))

+ ‖δ−1/2fp‖2L2(L2(γ)) + ‖fU‖2L2(H1(γ)) + ‖fP ‖2L2(L2(γ))

)
+ ‖∂tfp‖2L2(L2(Ωp)) + ‖∂tfp‖2L2(L2(γ)). (4.82)

where a factor proportional to 1 + δ has been absorbed in the generic constant, without loss of
generality. Recalling that Vh = [0, rh,V h], we obtain in a similar way

|
∫ T

0
(B̃)T (FP,Vh)dτ | . ε3|||GPh |||

2
Q,T + ε−1

3

(
h−1‖fp‖2L2(L2(γ)) + ‖δ−1/2fp‖2L2(L2(γ)) + ‖fP ‖2L2(L2(γ))

)
,

(4.83)

where we have also used (4.67). Combining (4.68)–(4.83), taking ε3 sufficiently small, and employing
Gronwall’s inequality, we obtain

s0‖gp,h‖2L∞(L2(Ωp)) + |||Gh|||2A,T . H(F)2, (4.84)

where H(F)2 = Hfη(F)2 +Hfq(F)2 +Hfp(F)2 +HfU (F)2 +HfP (F)2,

Hfη(F)2 := ‖∂tfη‖2L2(H1(Ωp)) + ‖fη‖2L∞(H1(Ωp)) + ‖∂tfη‖2L∞(H1(Ωp)),

Hfq(F)2 := ‖f q‖2L2(L2(Ωp)),

Hfp(F)2 := ‖∂tfp‖2L2(L2(Ωp)) + ‖fp‖2L∞(L2(Ωp)) + ‖∂tfp‖2L2(L2(γ))
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+ ‖fp‖2L∞(L2(γ)) + ‖fp‖2L2(L2(Ωp)) +
(
1 + h−1 + δ−1

)
‖fp‖2L2(L2(γ)),

HfU (F)2 := ‖fU‖2L2(H1(γ)),

HfP (F)2 := ‖fP ‖2L2(L2(γ)).

Using the approximation bounds (4.58)–(4.62) and observing that 1 + δ−1 . δ−1, we obtain

Hfη(F) . hr1
(
‖∂tη‖L2(Hr1+1(Ωp)) + ‖η‖L∞(Hr1+1(Ωp)) + ‖∂tη‖L∞(Hr1+1(Ωp))

)
,

Hfq(F) . hr2+1‖q‖L2(Hr2+1(Ωp)),

Hfp(F) . hl2+1
(
‖p‖L2(Hl2+1(Ωp)) + ‖∂tp‖L2(Hl2+1(Ωp)) + ‖p‖L∞(Hl2+1(Ωp))

)
+hl2+1/2

(
δ−1/2‖p‖L2(Hl2+1(Ωp)) + ‖∂tp‖L2(Hl2+1(Ωp)) + ‖p‖L∞(Hl2+1(Ωp))

)
+ hl2‖p‖L2(Hl2+1(Ωp)),

HfU (F) . hr3‖U‖L2(Hr3+1(γ)),

HfP (F) . hr3‖P‖L2(Hr3 (γ)).

The proof of the theorem is completed by combining (4.84) with the above approximation bounds
and employing triangle inequality. �

Remark 3. The lowest order term of (4.64) is hl2‖p‖L2(Hl2+1(Ωp)). It entails that the convergence

rate of the proposed scheme is one order lower than the optimal one. This is due to the term
h−1/2‖fp‖L2(L2(γ)), which results from the bound on

∫
γ fp,i

∣∣∗
Γi

(gq,h,i · ni)|∗Γids, where half order is lost

for each of the two terms. An improved estimate can be obtained by employing a Lagrange multiplier
space for the trace of the Darcy pressure p on γ to enforce the continuity of flux. This space can be
chosen to be of higher order and an optimal interpolant on the interface can be utilized, see, e.g. [3].

This approach is a subject of forthcoming work. We also note that the term involving δ−1/2 results
from bounding

∫
γ(fp,1

∣∣∗
Γ1
−fp,2

∣∣∗
Γ2

)(gU,h)nds, since only ‖
√
δgU,h‖L2(H1(γ)) is controlled by the method.

We note that the use of a Lagrange multiplier space and an interface interpolant would result in this
term depending on the norm of p1

∣∣∗
Γ1
− p2

∣∣∗
Γ2

on γ, which goes to zero with δ, due to (4.4).

5. Numerical results

In this section we focus on the numerical verification of the theoretical results and on the application
of the proposed scheme to solving a representative problem in geomechanics. For this purpose, we
consider four examples. The first one is an academic benchmark problem proposed in [28]. In the
second example we consider the same configuration, but we use more realistic physical parameters
taken from [18]. The third and fourth examples concern numerical experiments for curved fracture
configurations. In all examples we take θn = θτ and consider only the discrete values 0, 1

2 ,
2
3 . The

numerical solver for problem (4.21) was implemented in FreeFem++ [24]. To discretize the problem
in time we have adopted the Backward Euler scheme on a uniform partition of the time interval (0, T ]
in time steps tn := n∆t for n = 1, . . . , N, where T = N∆t is the final time. The time derivative of
the displacement is discretized using the first order approximation ∂tη

n+1
h ≈ ∆t−1(ηn+1

h − ηnh). For
the space discretization we have used continuous piecewise linears for Vη

h with r1 = 1, the Raviart-
Thomas elements RT1 for Vp

h × Q
p
h with r2 = l2 = 1, and the P2 − P1 Taylor-Hood elements for

Vf
h ×Q

f
h with r3 = 2. The discrete problem is solved using GMRES with a preconditioner consisting

of diagonal blocks of the system matrix given in (4.17).
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5.1. Example 1: numerical validation

To validate our numerical scheme, we consider a benchmark problem investigated by Lesinigo et al
in [28], Section 7.2. The computational domain consists of two unitary squares separated by a fracture
of width δ, with midline γ. The squares represent the poroelastic domains Ω1 and Ω2 (see Figure 2).

Ω1 Ω2

Γ1
1 Γ1

2

Γ3
1

Γ4
1

Γ3
2

Γ2
2γ

Figure 2. Example 1: Reference domain for the test problem.

We assume that there are no external forces or mass sources. On the left and right boundaries,
namely Γ4

1 and Γ2
2 in Figure 2, we impose homogeneous Dirichlet pressure and homogeneous Dirichlet

displacement conditions, while on the remaining external boundaries we impose zero normal flux
and zero normal poroelastic stress. In the fracture, on the bottom boundary Γ1

1 ∩ Γ1
2 we impose the

Dirichlet boundary condition (3.15) for the tangential velocity, UDτ = 10 (m/s), and the homogeneous
Neumann boundary condition (3.16) for the normal velocity, µf

∂Un
∂s = 0. On the top boundary Γ3

1∩Γ3
2,

we impose the homogeneous Neumann conditions (3.16) for the normal stress. Values of parameters
used in this example are given in Table 2. The problem is solved over the time interval [0, 1](s) with
time step ∆t = 0.01(s). The space discretization step is h = 0.05 (m).

Parameter Symbol Units Values

Young’s modulus E (KPa) 103

Poisson’s ratio σ 0.3
Hydraulic conductivity K (m2/KPa s) I
Mass storativity coeff. s0 (KPa−1) 1
Biot-Willis constant α 1
Friction coefficient cBJS 10−4

Hydraulic conductivity Kf (m2/KPa s) 0.1I
Fracture width δ (m) 0.1
Brinkman viscosity µf (KPa s) 1
Table 2. Example 1: Poroelasticity and fluid parameters.

We compare the results obtained by the reduced model with θn = θτ = 1/2 to the ones obtained
using a non-reduced model, where the flow in the fracture is fully resolved on Ωf using the Brinkman
equation. The full model was solved using a scheme based on Nitsche’s approach presented in [8].
Figure 3 shows a comparison of the average pressure P (left) along the fracture midline γ and the
average tangential velocity Uτ (right) obtained using the two models at time T=1 (s). In particular,
for the full model pressure and velocity profiles are plotted along the meanline of the fluid domain
Ωf . In the bottom panel of Figure 3 we show the pressure in the transversal direction, visualized
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Figure 3. Example 1. Top left panel: Average pressure P along the midline γ. Top
right panel: Average tangential velocity Uτ along the fracture midline γ. The values
of the reduced model in the top panel are obtained with θn = θτ = 1

2 . Bottom panel:
pressure profiles for the full and reduced model (calculated using different values of
θn = θτ =: θ) along a transversal section of the domain at height y = 0.25 (m). The
results are shown at T=1 (s).

along the line y = 0.25 (m). We observe a significant jump between the pressure in the fracture and
pressure in the reservoir. For all values of θn = θτ , a good comparison with the full model is achieved.
Figure 4 shows a comparison of the pressure and displacement of the porous medium. The pressure is
superimposed to the Darcy velocity vector field, while the displacement modulus is superimposed to
the displacement vector field. In both figures we observe an excellent agreement between the results
obtained using the reduced model and the results obtained using a full model. Furthermore, the
computed pressure and velocity are in agreement with the results in [28].

On the same benchmark problem we test the spatial convergence of the scheme. Table 3 shows
the convergence in space for the Darcy pressure and velocity, the displacement, and the fracture
fluid velocity, where we have used the numerical solution with h = 1/80 (m) as a reference solution.
According to (4.64), the convergence rate with r1 = 1, r2 = l2 = 1, and r3 = 2 should be at least
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Figure 4. Example 1. Left: Pressure p in the pores obtained using the reduced model
(top) and the full model (bottom). The Darcy velocity field q is superimposed to the
pressure. Right: Magnitude of the displacement η obtained using the reduced model
with θn = θτ = 1/2 (top) and the full model (bottom). The displacement vector field
is superimposed to the displacement magnitude. The results are shown at T=1 (s).

Test case δ = 0.1, θn = θτ = 0, 1
2 ,

2
3 .

h ‖ep‖l∞(L2(Ωp)) rate ‖eη‖l∞(H1(Ωp)) rate ‖eq‖l2(L2(Ωp)) rate ‖eU‖l2(H1(γ)) rate

1/10 3.4e− 2 - 1.0e− 1 - 2.6e− 2 - 9.2e− 4 -
1/20 8.9e− 3 1.9 5.3e− 2 0.9 9.8e− 3 1.4 3.2e− 4 1.5
1/40 2.2e− 3 2.0 2.7e− 2 1.0 3.3e− 3 1.6 1.7e− 4 0.9

Table 3. Example 1: Convergence in space for different values of the parameters θn = θτ .

linear. Higher orders of convergence are actually observed in some cases. All the convergence tests
have been performed for the three admissible values of θn = θτ = 0, 1/2, 2/3 and no significant
differences have been detected among these variants of the model.

Finally, we study the accuracy of the reduced model with in the approximation of the interface
conditions. We focus in particular on the flow balance in the direction orthogonal to the interface,
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i.e. equation (2.8). In the case of the full model, we define the following residual on each side of the
fracture Γi = Ωf ∩ Ωp,i , i = 1, 2, for i, j = 1, 2, i 6= j:

RΓi(ui,ηi, qi) :=

∫
Γi

(
ui · ni −

(∂ηi
∂t

+ qi) · ni
)
,

while for the reduced model the previous definition must be modified as

Rγ,i(U i,ηi, qi) :=

∫
γ

(
δθn
2µf

pi|∗Γi +
δ(1− θn)

2µf
pj |∗Γj −

δ

2µf
P −

(
∂ηi
∂t
· ni + qi · ni −U · ni

)∣∣∣∣∗
Γi

)
.

The results of Table 4 show that the reduced model asymptotically satisfies the kinematic condi-
tions, however it is less accurate than the full model. We have calculated the residuals for all values
θn = θτ = 0, 1/2, 2/3 and for two values of δ = 0.1, 0.2 (m). It appears that the accuracy of the model
is insensitive to θn, θτ , while it is affected by δ. More precisely, Table 4 confirms that the reduced
model is more accurate for fractures with smaller aperture.

Full model Reduced model

h, δ = 0.1, θn = θτ = 0, 1
2 ,

2
3 RΓ1 RΓ2 rate Rγ,1 Rγ,2 rate

1/10 5.63e− 3 5.63e− 3 − 1.98e− 2 1.98e− 2 −
1/20 1.44e− 3 1.44e− 3 1.97 1.13e− 2 1.13e− 2 0.81
1/40 3.63e− 4 3.63e− 4 1.99 6.08e− 3 6.08e− 3 0.89

h, δ = 0.2, θn = θτ = 0, 1
2 ,

2
3 RΓ1 RΓ2 rate Rγ,1 Rγ,2 rate

1/10 3.78e− 2 3.78e− 2 − 3.95e− 2 3.95e− 2 −
1/20 1.22e− 2 1.22e− 2 1.63 2.25e− 2 2.25e− 2 0.81
1/40 3.07e− 3 3.07e− 3 1.99 1.21e− 2 1.21e− 2 0.89

Table 4. Example 1: The behavior of the indicators RΓi and Rγ,i when varying the
characteristic mesh size at time T=1 (s).

5.2. Example 2: model response to parameters

In this section we investigate the behavior of the reduced model with θn = θτ = 1/2 when the
parameters are modified, moving towards the values that resemble the characteristic ones for flow
in a fractured reservoir. In particular, we progressively update the parameters δ, K, s0, p|t=0 and
the Young’s modulus E, starting from the reference values considered in the previous section for
numerical validation. The corresponding grid of new parameters is reported in Table 5. As in the
previous example, we take α = 1 and µf = 1 (KPa s). The reservoir boundary conditions are
modified to be suitable for a typical case of hydraulic fracturing. In particular, we enforce no flow on
the entire reservoir boundary, while we prescribe zero displacement on Γ4

1, Γ2
2 and zero normal stresses

on Γ1
1, Γ3

1, Γ1
2, Γ3

2. As in the previous example, on the bottom boundary of the fracture Γ1
1 ∩ Γ1

2 we
impose the Dirichlet boundary condition (3.15) for the tangential velocity, UDτ = 10 (m/s), and the
homogeneous Neumann boundary condition (3.16) for the normal velocity, µf

∂Un
∂s = 0. On the top

boundary of the fracture Γ3
1 ∩ Γ3

2, we impose the homogeneous Neumann conditions (3.16) for mean
stress. The final simulation time is T = 100 (s).

The results of cases A, B, C, D, E in Table 5 are reported in Figure 5 at the final time. On the left
panels we show pressure, flow and displacement fields in the reservoir, on the right panel we show the
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δ (m) K (m2/KPa s) s0 (KPa−1) p(0) (KPa) E (KPa)

A 10−4 1 1 0 103

B 10−4 10−3 1 0 103

C 10−4 10−3 10−2 0 103

D 10−4 10−3 10−2 103 103

E 10−4 10−3 10−2 103 1010

Table 5. Example 2: Grid of parameters used in the numerical simulations of cases A,B,C,D,E.

pressure and velocity profile in the fracture. These results confirm that the scheme responds correctly
to large changes in the parameter values as discussed below. We observe that in all cases, the flow
and deformations are generated by injection of Q = δUτ = 10−3 (m3/s) of fluid into the fracture.

Flow analysis:

Case A: Due to the large value of hydraulic conductivity in equation (2.2), the pressure gradient
is small, as confirmed by the pressure surface plot. Under the assumption of the uniform pres-
sure field and small displacements, the mass balance equation (2.3) reduces to Q = |Ω|s0∂tp,
which entails that ∂tp = 5 × 10−4. As a result, at the final time T = 100 (s) we expect that
p ' 5× 10−2, which is confirmed by the numerical simulation.

Case B : Since the permeability decreases by three orders of magnitude, we expect to observe
larger pressure gradients. From a visual inspection of the results, we notice that (max p −
min p) = 0.3 for case B, while (max p−min p) = 0.4×10−3 in case A, which is consistent with
the prescribed perturbation.

Case C : We superimpose to the previous effects a small mass storativity, which increases the
pressure rate of change due to injection, according to equation (2.3). Proceeding as in case A
we conclude that ∂tp = 5 × 10−2 and after 100 s we expect to see p(T ) − p(0) ' 5, which is
indeed the case.

Case D,E : We analyze here the sensitivity of the model to the pressure initial conditions, which
are increased to the level of 1000 (KPa) (i.e. 1 (MPa)) to mimic the high pressure conditions
of a real reservoir. For a very stiff material, as in case E, we notice that the pressure field
turns out to be the superposition of pressure fields B, C on top of a baseline pressure equal
to 1000 (KPa), giving rise to max p ' 1005.3. The linear superposition of pressure fields is
not exactly satisfied for case D, which corresponds to a soft material. We believe that this
effect depends on the interaction of the pressure and displacement governed by equation (2.3).
More precisely, the pressure time derivative is not only affected by flow ∇ · q, but also by the
volumetric deformation rates α∇ · ∂tη.

Mechanical analysis:

Cases A,B,C : We notice that the displacement directly increases with the magnitude of the
pressure. The displacement field of case B is different from A and C. We attribute this
effect to the relative pressure gradient (i.e. the pressure gradient normalized with respect to
the pressure magnitude), which is non negligible only for case B, leading to a non-symmetric
distribution of stresses and deformations with respect to the layout of the boundary conditions.
In all these cases, the displacement to pressure ratio is almost equivalent to the Young’s
modulus. As a result, we infer that for low pressure values, the poroelastic effects are governed
by the coupling of the flow with the pressure time derivative, namely by equation (2.3), as
illustrated in case C, while the mechanical deformations are mostly determined by the elastic
stresses, namely σE .
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5.48 1

Figure 5. Example 2: Response of the model to variations of its parameters. Cases
A, B, C, D, E of Table 5 are shown at the final time T = 100 (s) from top to bottom.
Contour and vector plots on the left show the pressure p superimposed to the reservoir
flow q depicted in Ω1 combined with displacement magnitude and orientation in Ω2.
On the right we show the pressure and flow profile along the fracture γ.
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Cases D,E : The behavior of the system changes considerably for high pressures, as shown by
cases D and E. In this regime, the fluid pressure and elastic mechanical stresses are comparable
and they interact by means of the constitutive law σp = σE − αpI. This justifies why for
large pressure values the displacement to pressure ratio and the Young’s modulus are no
longer directly related. In particular, we observe that the Young modulus of cases D and
E differ by seven orders of magnitude, while the displacement changes by a factor two only,
suggesting that in this case the component αpI dominates over σE . For test case D we have
run simulations with α = 0 instead of α = 1, with the purpose of investigating the impact
of poroelastic coupling on the displacement and flow fields. The results (not reported here)
show that the variation of the parameter α has a noticeable effect on the orientation of the
displacement field and we also observe a small variation in the pressure field.

5.3. Curved fracture configurations

We finally test our approach to model curved fractures. We consider two test cases. In the former
we compare the flow and displacement fields calculated using the dimensionally reduced model with
the full model for a curved fracture configuration where the fracture represents a preferential way for
flow, namely its permeability is significantly higher than the one of the surrounding reservoir. In the
latter, we address a fracture featuring a variable hydraulic conductivity and test different fracture
boundary conditions, including a fracture that is completely confined into the reservoir.

5.3.1. Example 3: comparison of the dimensionally reduced with the full model

The model parameters are δ = 0.1 (m),K = 10−3 (m2/KPa s), s0 = 10−2 (KPa−1), p(0) = 0 (KPa),
E=1010 (KPa), σ = 0.3, Kf = I, cBJS = 10−4, α = 1 and µf = 1 (KPa s). The computational
domain is obtained from the one of Figure 2, after modifying the profile of γ to be curved. The extrema
of the fracture are however unchanged. On the boundary Γ4

1 we enforce a uniform flow q · n = −1
(m/s), on the horizontal sides we set q ·n = 0 and on Γ2

2 null pressure is imposed. As in the previous
example, we prescribe zero displacement on Γ4

1, Γ2
2 and zero normal stress on Γ1

1, Γ3
1, Γ1

2, Γ3
2. At the

fracture boundaries we impose zero normal stress (3.16). As a result, this test case represents the
flow through a reservoir that is cut by a fracture open at both endpoints. We expect the fracture to
act as a gateway for flow, by carrying out the fluid injected from the left side of the domain. The
final simulation time is T = 100 (s). We used ∆t = 1 (s) and h = 0.042 (m).

The results for both the dimensionally reduced and the thick fracture models at T=100s are shown
in Figure 6. They confirm a very good qualitative agreement of the full and dimensionally reduced
models. As expected, in both cases most of the flow penetrating from the left side escapes through the
fracture. Only a negligible amount of fluid extravasates to the right side of the domain. We observe
that the flow direction in the neighborhood of the fracture deviates from the horizontal, because it is
sensitive to the fracture configuration.

For a more quantitative comparison, we analyze mass conservation and the pressure variation across
the interface. A flow rate Qin =

∫
Γ4
1
q ·n = −1 (m/s) is injected into the reservoir from the left. The

peak velocity at both fracture endpoints is about |U | ' 5 (m/s) in the vertical direction. Then we get
Qout ' 2δ|U | = 1 (m2/s), confirming that the computed velocity field along the fracture is physically
reasonable. In Figure 7 we study the comparison of the pressure profile (top) and the normal velocity
(bottom) of the dimensionally reduced model and the full model, along a horizontal line cutting the
interface γ from left to right. For visualization purposes only the interval x ∈ (−0.2, 0.2), y = 0.1 is
considered, in order to restrict the range of variation of the pressure. As expected, the pressure varies
linearly on the left of the interface (located at x = 0), corresponding to a uniform flow towards the
fracture, while the pressure profile is flat on the right, because there is almost no flow on the right. We
observe that there is a small pressure jump across the fracture, according to the interface conditions
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Figure 6. Example 3: Comparison of simulations for dimensionally reduced fracture
model (left) and thick fracture model (right) at at T=100 (s). Computational meshes,
pressure contour plot and velocity fields, displacement magnitude and orientation are
shown from top to bottom. Vector fields in Ω1 are visualized in black, those in Ω2 in
white and those in Ωf or γ in red.

(4.10)–(4.11). The pressure profiles corresponding the parameters values θn = θτ = 0, 1
2 ,

2
3 , are also

compared. Small differences are observed in the values obtained using different closure conditions.
In particular, the case θn = θτ = 0 results in the smallest pressure jump, since the profiles for both
pressure and velocity across the fracture are assumed constant. Of the other two cases, the case
θn = θτ = 1

2 corresponds to a linear pressure profile and thus leads to a larger pressure jump when

compared to the case θn = θτ = 2
3 , even though the latter case assumes a quadratic velocity profile.

The profile assumptions have even smaller effect on the normal velocity. Overall, the differences
between the values obtained using different closure assumptions do not have a significant influence
on the solution.

5.3.2. Example 4: analysis of a fracture with variable conductivity.

Here we investigate how to adapt the model in order to describe multiple fractures embedded into
the reservoir. Indeed, an embedded fracture can be modeled by means of no-flow boundary conditions



42 TITLE WILL BE SET BY THE PUBLISHER

Figure 7. Example 3: Comparison of pressure profiles (top) and normal velocity
(bottom) for θn = θτ = 0, 1/2, 2/3 along a horizontal line x ∈ (−0.2, 0.2), y = 0.1 in
the fracture and reservoir at T=100 (s).

at the endpoints (3.15) that corresponds to conditions Uτ = 0, Un = 0. Furthermore, multiple (almost
independent) embedded fracture segments can be modeled using a small hydraulic conductivity Kf

at some regions of a connected fracture. In particular, Kf is equal to the permeability K of the
surrounding material in the impervious regions, while it is higher elsewhere. As a result, away from
the impervious regions, the fracture is more permeable than the surrounding rock. In this example
we consider a curved fracture with hydraulic conductivity profile shown in Figure 8. The model
parameters used in the simulation are δ = 0.1 (m), K = 10−3 (m2/KPa s), s0 = 10−2 (KPa−1),
p(0) = 0 (KPa), E=1010 (KPa), σ = 0.3, cBJS = 10−4, α = 1, µf = 1 (KPa s) Kf = K = 10−3

(m2/KPa s) in the impervious regions, Kf = 10−1 (m2/KPa s) elsewhere. The boundary conditions
are the same as in Example 3.

The results in Figure 9 suggest that the reduced model captures well the behavior of both open
and closed (or embedded) fractures. In particular, in all cases it can be observed that the fracture
represents a preferential path for the flow either in the longitudinal and transversal directions, in the
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Figure 8. Example 4: The profile of the curved fracture where the impervious regions
are highlighted with dark bars.

regions of high conductivity. Conversely, the fracture represents an obstacle in the impervious regions.
The comparison of panels A and B or C and D of Figure 9 illustrates the sensitivity of the model
with respect to the fracture aperture δ. According to mass conservation law, smaller aperture means
higher velocity field in the fracture. However, the total flow rate carried by the fracture decreases.

It is interesting to notice that for this new problem configuration, which features more complex
and computationally challenging flow conditions, we observe a dependence of the numerical solution
on the parameters θn, θτ used in the model reduction technique. Panels E and F of Figure 9 show
the velocity field in the fracture for θn = θτ = 0 (color black), θn = θτ = 1/2 (color blue) and
θn = θτ = 2/3 (color black). It is apparent that the first case differs from the others, which are
almost superposed. In particular, while in the cases θn = θτ = 1/2, 2/3 the flow in the fracture is
mostly tangential, it seems that in the case θn = θτ = 0 the normal component of the flow is not
negligible. This interpretation is supported by the analysis of the residual of the interface conditions,
reported in Table 6. These data suggest that when θn = θτ = 0 is used, the scheme can hardly
satisfy the balance of normal components of velocities across the fracture, which is quantified by the

indicator −
∫
γ(∂ηi∂t · ni + qi · ni −U · ni)|∗Γi . This property is more accurately satisfied by the other

values of θ, which enable a better approximation of the flow inside the fracture. Although the flow
seems to be physically reasonable and almost equivalent for θn = θτ = 1/2 and 2/3, interestingly,
among these values the one with smallest residuals is the former.

Remark 4. In Example 4, we also analyzed the response of the model to the friction coefficient cBJS
by performing a similar set of simulations using the value cBJS = µf/

√
K, which is five orders of

magnitude larger that the former. We observed no significant differences from visual inspection of
the results, thus concluding that the model is rather insensitive to changes of the friction coefficient.
Results from the simulations with cBJS = µf/

√
K are not shown.

6. Conclusions

We have addressed the problem of modeling the flow into a fracture surrounded by a permeable
poroelastic material. The main application is the simulation of hydraulic fracturing, which is a
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Figure 9. Example 4: Comparison of different model configurations for a fracture
with variable permeability. Impervious regions are marked with dark bars. In panel A
and B the fracture endpoints are open to flow, owing to boundary conditions (3.16),
namely µf∂sUτ − P = 0, µf∂sUn = 0. The parameters θn, θτ have been set to θn =
θτ = 2/3. For visualization purposes, different scaling factors have been adopted for
the vector fields in Ω1, γ,Ω2. In panel A the fracture aperture is δ = 0.1(m) and the
velocity in Ω1 has been scaled by a factor 0.1, the one in γ by a factor 0.05 and the
one in Ω2 by a unit factor. The background color represents the pressure, namely pp.
In panel B the aperture is δ = 0.001(m) and the velocity in Ω1, Ω2 has been scaled
by a factor 0.1, the one in γ by a factor 0.003. In panels C and D, we modify the
boundary conditions to (3.15), namely Uτ = 0, Un = 0 (m/s) to model a fracture
that is completely contained into the reservoir. In this plot, the scaling factor used
for visualization of the vector fields is uniform and equal to 0.1. In panel D, for the
same boundary conditions as in panel C, we modify the fracture aperture to δ = 0.01
(m). Here, the scaling factor of the velocity in the fracture has been reduced to 0.05.
In panel E we fix δ = 0.1 (m) and we vary θn, θτ . Only the fracture velocity profile
is shown. Simulations performed using θn = θτ = 0 are reported in red, those using
θn = θτ = 1/2 are blue and the ones with θn = θτ = 2/3 are black. Panel F shows a
zoom of these vector fields.
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θn = θτ −
∫
γ(∂ηi∂t · ni + qi · ni −U · ni)|∗Γi Rγ1

0 1.076e+00 8.672e-01
1/2 -5.314e-03 -5.456e-03
2/3 -8.542e-02 -9.919e-03

Table 6. Example 4: The residuals of the interface conditions for the reduced model
in the case of different values of θn = θτ .

significant challenge, considering the extreme conditions under which this technology operates. In
this work, we have shown that dimensional model reduction is a successful approach to account for
the very heterogeneous scales of the problem in a coupled formulation. We have addressed for the first
time, to our best knowledge, the topological reduction approach in the case of a poroelastic material
coupled with a fracture flow model of Stokes/Brinkman type. Several variants of interface conditions
have been analyzed and cast into a unified formulation depending on the parameter θn and θτ . The
model has been complemented with a state of the art numerical scheme that has been analyzed.
Numerical experiments confirm the validity of the approach and highlight the importance of using a
poroelastic material formulation in hydraulic fracturing. In the three first examples, there were no
significant differences between the results obtained using different values of θn = θτ . However, in
Example 4, θn = θτ = 0 yields results that seem less accurate than θn = θτ = 1/2 and θn = θτ = 2/3.
Furthermore, we did not notice significant differences in the results for different values of the coefficient
cBJS . Some considerable difficulties are only partially addressed here, such as modeling the tips of
embedded fractures, and modeling the effect of material deformation on the aperture and on the flow
into the fracture.
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