
MOX-Report No. 45/2015

Improved hybrid/GPU algorithm for solving cardiac
electrophysiology problems on Purkinje networks

Lange, M.; Palamara, S.; Lassila, T.; Vergara, C.; Quarteroni,

A.; Frangi, A.F.

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it

Improved hybrid/GPU algorithm for solving cardiac

electrophysiology problems on Purkinje networks

M. Lange1, S. Palamara2, T. Lassila1, C. Vergara2,
A. Quarteroni3, A.F. Frangi1

September 23, 2015

1 CISTIB, Department of Electronic and Electrical Engineering, The University of

Sheffield, United Kingdom, {m.lange,t.lassila,a.frangi}@sheffield.ac.uk
2 MOX, Dipartimento di Matematica, Politecnico di Milano, Italy,

{simone.palamara,christian.vergara}@polimi.it
3 Chair of Modelling and Scientific Computing, École Polytechnique Fédérale de

Lausanne, Switzerland, alfio.quarteroni@epfl.ch

Keywords: Electrophysiology; Purkinje networks; graphics processing units;
hybrid algorithms

Abstract

The cardiac Purkinje fibres provide an important stimulus to the coordi-
nated contraction of the heart. We present a numerical algorithm for the
solution of electrophysiology problems on the Purkinje network that is effi-
cient enough to be used on realistic networks with physiologically detailed
membrane models. The algorithm is based on operator splitting and is pro-
vided with three different implementations: pure CPU, hybrid CPU/GPU,
and pure GPU. Compared to our previous work based on the model of
Vigmond et al., we modify the explicit gap junction term at network bi-
furcations in order to improve its mathematical consistency. Due to this
improved consistency of the model, we are able to perform a convergence
study against analytical solutions and verify that all three implementations
produce equivalent convergence rates. Finally, we compare the efficiency of
all three implementations on Purkinje networks of increasing spatial reso-
lution using membrane models of increasing complexity. Both hybrid and
pure-GPU implementations outperform the pure-CPU implementation, but
their relative performance difference depends on the size of the Purkinje
network and the complexity of the membrane model used.

1 Introduction

The Purkinje fibres form an extensively branching network of fast conducting
cells within the ventricular sub-endocardium. This network covers large areas

1

of the ventricles and initiates their rhythmic contraction in response to signals
traversing from the atrio-ventricular (AV) node along the His bundle and its
branches [1, 7]. The fibres consists of Purkinje cells with ion channels allow-
ing ion exchange between the intra- and extra-cellular compartments when a
threshold in transmembrane potential difference is reached, triggering a travel-
ing electrical potential wave (the “action potential”) that propagates along the
Purkinje fibre and finally enters the ventricular myocardium at the Purkinje-
muscle junctions (PMJs). Since the action potentials in the Purkinje fibres are
quite different from those of the myocardial cells, the ability to simulate propa-
gation of action potentials based on these ion channels in physiological Purkinje
networks is essential for studies of the whole heart to obtain realistic activation
patterns. In pathological hearts disturbances in the conduction system can alter
the activation pattern greatly, e.g. through bundle branch blocks, and give rise
to different types of arrhythmias due to re-entry into the Purkinje network or ec-
topic beats arising from Purkinje fibre automaticity [3, 4, 8, 18, 20, 25]. Recent
computational studies have also shown that neglecting to model the Purkinje
system at sufficient levels of detail can lead to ventricular activation patterns
that do not correspond to physiological ones [20, 27].

While the importance of Purkinje-myocardium interaction is established in
cardiology, especially in the study of arrhythmias, relatively few computational
heart models incorporate activation in a detailed Purkinje network. Many works
focusing on detailed whole-heart myocardium modelling only consider the posi-
tions of the PMJs as stimulus currents in the myocardium model, or prescribe
unrealistic “apex-only” or “full-endocardium” initial activation patterns. To
simulate the propagation of an action potential in a Purkinje network the bido-
main equation [5], the cable equation with a reaction term [28], and the Eikonal
equation [27] have been used. The latter model is the most basic one, modelling
only the propagation delay from the AV node to the PMJs in order to obtain
the initial myocardial pattern and then proceeding with solving action potentials
only in the myocardium. However, recent computational studies have shown that
the Eikonal approximation is unsatisfactory for the Purkinje network, due to the
existence of a “push-and-pull” -effect at the branching points [19]. Therefore, a
more detailed model is necessary. The approach of Vigmond and Clements [28]
uses the monodomain equation to simulate the conduction in a tree of branching
Purkinje fibres. All of these models currently lack experimental validation due to
difficulties in measuring action potentials in the subendocardial Purkinje cells.
As such, the importance of numerical verification first and foremost has been
identified as a key stepping stone to the wider development and acceptance of
numerical models and methods for simulating Purkinje network activation [11].

We extend our previously developed implementation [12] of the explicit gap
junction model of Vigmond and Clements [28] by modifying the gap junction
terms at network bifurcation points from their original formulation. This proves
to be necessary for the consistency of the method at the limit of h→ 0, so that
the convergence rate of the method can be verified. The algorithmic implemen-

2

tations come in three different versions: CPU only, CPU/GPU hybrid, and GPU
only. In general, a GPU can be used to accelerate the simulations due to the
embarrassingly parallel nature of the membrane model evaluations, as has been
shown before for the monodomain equation in [14, 17]. To ensure that all our
implementations produce identical and reliable results, we develop a verification
test for the Purkinje network electrophysiology solver.

Our method of verification is the same as typically used for numerical solvers:
the difference between an analytical solution and the numerical solution is com-
puted. Once the solution accuracy has been verified, a second comparison is
made on the performance of the different solvers for the same complex problem
[16, 21]. Analytical solutions for the cable equation with simplified membrane
models are known in equilibrium [2, 26] and for travelling waves [10, 21, 22], but
in all cases the solutions are developed on a line without branching points. To
verify the correct behaviour at the branching line segments, we develop equi-
libriums solutions of the cable equation with a simplified membrane model on
a branching structure of 1-D line segments. The temporal dependency of the
solution, i.e. propagation speed and wave front behaviour, are verified on a line
segment without branching.

Finally, we evaluate the performance of the three implementations by simu-
lating activation on four different Purkinje fibre networks and two ionic mem-
brane models of increasing complexity. The Purkinje networks vary in number
of branches, while the complexity of the membrane models varies in the number
of equations. The performance of the different implementations can then be
evaluated with respect to the computational time spent in each of the different
configurations. The developed efficient and parallel GPU-based implementation
of the solver turns out to be especially attractive in conjunction with detailed
membrane models for human Purkinje-cells at the problem sizes required to
simulate realistic whole-heart activation patterns.

2 Numerical scheme for computing action potentials
in 1-D networks

2.1 Definition and modification of the explicit gap junction model

To solve the action potential in the Purkinje fibres, we improve our previously
published algorithm [12], which is described below. It is based on the one-
dimensional monodomain equation

∂x (σi∂xVm) = β(Cm∂tVm + Iion(Vm, ξ)), (1)

where Vm is the transmembrane potential, Iion the total current through the ionic
channels on the cell membrane, ξ are the state variables of the membrane model,
β is the surface-to-volume ratio of the cell membrane, Cm the cell membrane
capacitance, σi the intracellular conductivity tensor, and x the local spatial
coordinate.

3

The one-dimensional cable equation needs to be extended to describe the
propagation of the potential at the branching points. Each Purkinje branch
is modelled as a separate problem on a one-dimensional line segment, which
is then coupled to other branches by interface conditions determined by the
continuity of potential and Kirchhoff’s current law. For the latter, the input and
output currents at the branching points are needed, which can either be obtained
from a numerical derivative of the potential, or by the use of a finite difference
approximation for the derivative. The numerical problem in this work is solved
with a finite element (FE) scheme using Hermite basis functions, such that the
derivatives of the solutions are degrees of freedom (DOF) in the formulation.

To close the monodomain equations approximated using Hermite basis func-
tions, the concept of explicit gap junction models is introduced. Gap junctions
are specialised intercellular connections between two or more Purkinje cells at
their ends (see Fig. 1). In the classical monodomain model for the myocardium,
the effect of these gap junctions is hidden in the conductivity tensor by a formal
homogenisation process [6], whereas in the Purkinje network the gap junctions
are explicitly modelled [28, 19, 12] in order to correctly capture the “push-and-
pull” -effect.

Cell FEM Node Ghost Node

Vg, IgV− V+

Gap junction

Rg/2 Rg/2

Step 1

Transmembrane Potential in Ghost Nodes
Vn

± = Vn
g ∓ (IngRg)/2

Step 2

Solve Ionic Models at Ghost Nodes

V
n+1/2
± = Vn

± − Iion(V
n
±,ξ)

Cm
∆t.

Step 3
Recover Current and Potential

I
n+1/2
g =

V
n+1/2
+ −V

n+1/2
−

Rg

V
n+1/2
g =

V
n+1/2
+ +V

n+1/2
−

2

Step 4

Solve the Linear System

Correct right hand side
Solve di�usion over all node points

(κM1 − K̃)V n+1
g = κM2V

n+1/2
g

Figure 1: Illustration of three Purkinje branches and the gap junctions that
links together the Purkinje cells. The four steps of the algorithm to solve elec-
trophysiological problems are shown. In the middle of the gap junction are the
intra cellular potential Vg and the current Ig. Additional nodes (ghost nodes)
are defined to compute the cell membrane model in the cell. All equations are
explained in the text.

Let us consider the case of two Purkinje cells connected by a gap junction

4

(inset of Fig. 1). Then the DOFs of the problem are the intracellular potential
Vg and the current Ig across the gap junction, which are formally located in the
middle of the gap junction (in red in Fig. 1). The ionic channel current Iion is
calculated in the cells at the ghost nodes (in blue in Fig. 1), which means for
each node point the cell membrane model needs to be evaluated twice.

The relation between the intracellular potential φi and the transmembrane
potential in the cells V± is given by Ohm’s law

V± = φi − φe ∓
IgRg

2
,

where Rg is the gap junction resistance and φe is the extracellular potential. The
latter is assumed to be constant in this work. Furthermore, up to a multiplicative
factor Ig represents the derivative of φi by Ohm’s law. The difference between
intra- and extra cellular potential is the transmembrane potential Vg = φi − φe.

The values φi, Ig at the branching point are repeated in order to allow each
segment to be solved separately. The three endpoints of the segments are then
assumed to connect in the gap junction of the three cells (see Fig. 2). In contrast
to our previously published method [12], each of the points gets only one cell
membrane model associated with it instead of two. The single cell membrane
model will then be solved in the corresponding cell segment. The currents are
given from each cell to the branching point as indicated in Fig. 2. This adjust-
ment is necessary because in the previous work there are six ghost nodes in each
branching point, but only three actual cells. To get a more accurate comparison
with analytical solutions we have modified our method accordingly.

Once the explicit gap junction model is in place, we need to ensure the
compatibility of the macroscopic conductivity tensor with the gap junction re-
sistance. Therefore, we assume that σi is the intracellular conductivity without
any effect of gap junctions and introduce the equivalent conductivity under the
assumption of a cylindric volume conductor σ∗i = (σil)/(`+ σiRπρ

2), where ` is
the length of the Purkinje cell and ρ its radius. Note that this assumes that any
discretisation has a step length h = Z`, which is an integer multiple Z of the
cell length `. In this notation (1) becomes

∂xσ
∗
i ∂xV± = β(Cm∂tV± + Iion(V±, ξ±)). (2)

To approximate the solution of (2) in time we introduce a time discretisation,
where the superscript n refers to the numerical solution computed at time tn.
The algorithm to obtain the solution at tn+1 from the solution at tn has four
steps (Fig. 1), and uses of the operator splitting scheme as follows{

∂tV + L1(V) = 0
∂tV + L2(V) = 0

, (3)

where L1 = Iion, L2 = ∂x (σ∗i ∂x) and V being one of the unknown potentials.
The first three steps address the first equation, starting with Ohm’s law to obtain

5

VgV 1
−

V 2
+

V 3
+

Rg/3

R g
/3

R
g /3

I1 = (V 1
− − Vg)/Rg/3

I2 = (Vg − V 2
+)/Rg/3

I3 = (Vg − V 3
+)/Rg/3

Ghost node

FEM node

Figure 2: Detail of the branching node point in the finite element (FE) node
points and ghost nodes. The currents I1,2,3 are defined from the ghost node the
FE nodes.

the transmembrane potential V n
± in the cells from the potential V n

g and current
Ing at the gap junctions

V n
± = (φni − φne)∓

IngRg

2
.

The algorithm then proceeds to the second step, in which the membrane
models are solved

V
n+1/2
± = V n

± −
Iion(V n

± , ξ)

Cm
∆t.

The third step generates from the transmembrane potentials V
n+1/2
± the cur-

rent and potential in the gap junction I
n+1/2
g , V

n+1/2
g . The last step solves the

operator equation ∂tV + L2(V) = 0 with the FE model, therefore we use the
relation

Vg = φ
n+1/2
i − φn+1/2

e =
V
n+1/2
+ +V

n+1/2
−

2

6

and since the equations (2) are linear in V± we obtain:

βCm
(φn+1
i − φn+1

e)− (φ
n+1/2
i − φne)

∆t
= ∂xσi∂xφ

n+1
i . (4)

In the FEM this translates into the following matrix formulation of the problem:

(κM −K)φ̃n+1
i = κM(φ̃ni + (φ̃n+1

e − φ̃ne)), (5)

where κ = βCm/∆t, M is the mass matrix, K is the stiffness matrix and φ̃i is
the vector of unknowns, which contains the potential and the derivative of the
potential at each node. This is due to the fact that we are using Hermite basis
functions, which include as a DOF also the value of the derivative in each node.

In the stiffness matrix of the FE model, the triplicated branching points of
line segments are used to enforce the interface conditions and thus couple to-
gether the solutions obtained from the different line segments. In the case that
segment 1 branches into segments 2 and 3, we enforce the continuity of the po-
tential φ1 = φ2 = φ3 and the conservation of current I1 = I2 + I3. In contrast
to Vigmond and Clements [28], our implementation covers the case where seg-
ments 1 and 2 join to form segment 3 and thus giving our algorithm the ability
to solve physiological networks with loops. In this case the coupling condition
of the currents is I1 = I3− I2. These boundary conditions are introduced in the
FEM stiffness matrix associated to (5) and the right hand side.

2.2 Hardware implementation

In the following section, we detail the different characteristics of the three im-
plementations. They are all performed using the LifeV library1, which provides
methods to assemble the FE stiffness and the mass matrices. Furthermore, linear
solvers and preconditioners are provided through the Trilinos2 linear algebra
library.

In all implementations the linear system is solved with the generalised mini-
mal residual method (GMRES) with ILU factorisation for preconditioning of the
linear system. The GMRES method was used as the system matrices are not
symmetric due to the coupling condition enforcement at the junctions. The pure
CPU implementation was parallelised with the help of the OpenMPI framework,
which allows in the proposed algorithm to perform Steps 1 to 3 in a distributed
way with linear partitioning. The linear system is solved with one OpenMPI
process to eliminate communication between CPUs while solving the linear sys-
tem. Furthermore, the computational most expensive step in the algorithm is
Step 2. This implies that all other processes need to send their data to the serial

1The LifeV (http://www.lifev.org) finite element library is the joint collaboration between
four institutions: EPFL, Politecnico di Milano, INRIA, and Emory University.

2http://www.trilinos.org

7

process and after solving the problem the solution needs to be redistributed (see
Fig. 3 for the workflow).

In the CPU/GPU hybrid implementation the membrane models are com-
puted with the GPU. Therefore, before Step 2 the transmembrane potential
is copied to the GPU, then the membrane model variables are updated, and
the transmembrane potential is copied back from the GPU to the CPU. These
three tasks are generated and queued in a CUDA streams, which allow for asyn-
chronous GPU tasks. After the CPU has scheduled all task groups, it waits for
their completion, and subsequently returns to Steps 3 and 4 on the CPU.

The third implementation does all the computation on the GPU, thus there
is no memory copy between the steps. Steps 1 and 3 use the same code on
the GPU as on the CPU, and in Step 2 we reuse the code from the hybrid
implementation, but without the memory copy. To solve the linear system in
Step 4, the mass matrix and the stiffness matrix are built on the CPU with the
LifeV framework, and the resulting sparse matrices are copied to the GPU. The
same is done for the preconditioner, which is built on the CPU and then copied
to the GPU. The GMRES method on the GPU is the same as on the CPU,
but uses cuSPARSE and cuBLAS for the matrix operation. In each iteration, the
preconditioned linear system is solved with a forward and backward solver. The
CUDA framework provides a parallel implementation of this [15].

There are two different hybrid and GPU implementations in the performance
test, which are due to different precision used. GPUs are designed for single
precision and thus have much higher number of floating point operations in
single precision than in double precision mode. Therefore, we implemented the
same GPU code using both double precision, and selectively dropping down to
single precision where numerical stability was verified not to be affected. This
is referred to as mixed-mode.

All computations were performed with a Dell Precision-WorkStation-T7500
featuring two Intel(R) Xeon(R) CPUs E5620 at 2.40GHz and a NVIDIA Quadro
4000 GPU with 256 CUDA Cores.

3 Verification of the proposed numerical method

Two verification tests are performed. The first evaluates the accuracy of the
solution in equilibrium against an analytical solution, and the second uses a
travelling pulse to verify the dynamic solution.

3.1 Numerical error and convergence in equilibrium

In the first experiment we seek an equilibrium solution for the monodomain
equation (2), of a caricature model [26] given by

∂tV = pV, (6)

8

C
P
U

Step 1 on

all MPI

processes

Step 2 on

all MPI

processes

Step 3 on

all MPI

processes

Copy all

unknowns

to MPI

process 0

MPI process

0 does step 4

Copy result

to all MPI

processes

H
y
b
r
id C
P
U

&
G
P
U

Step 1
Copy potential

to GPU

Copy potential

to CPU

Step 2 on all CUDA cores

Step 3

with CPU

Step 4

with CPU

G
P
U

Step 1 Step 2 Step 3 Step 4

Figure 3: The workflow for the CPU (above), CPU/GPU hybrid (middle), and
GPU (lower) implementation. The CPU needs to copy the transmembrane po-
tential in the gap junctions and the current, while the CPU/GPU hybrid needs
to copy the potential of the ghost nodes. In the GPU implementation there is
no copy required.

where V is the transmembrane potential and p is a model parameter. Depending
on p the cells are stable (p < 0) and return exponential to 0 from any deflec-
tion, or they are unstable (p > 0) and the transmembrane potential increases
exponentially. The cell membrane model is then applied to two different test ge-
ometries. The first geometry is a finite one-dimensional line segment (Fig. 4, left)
D1 = [−M,M], M > 1, which is divided in three subparts D1,1 = [−M,−1],
D1,2 = [−1, 1], and D1,3 = [1,M]. In D1,1 and D1,3 the cell membrane model is
chosen to be stable while in D1,2 it is unstable

p(x) =

{
p1 for x ∈ D1,2

−p2 else where
,

where pi > 0. The simplified cell membrane model is then introduced in the
monodomain equation (1). Letting δ = σi/β and assuming that the conductivity
σi has no spatial dependency the problem to be solved becomes

Cm∂tV = δ∂2xV − p(x)V,
V1(−1) = V2(−1) , V2(1) = V3(1),
V ′1(−1) = V ′2(−1) , V ′2(1) = V ′3(1),
V1(−M) = 0 , V3(M) = 0.

(7)

The solution can be deduced with the canonical ansatz Vi(x) = c1 exp(kx) +

9

-M
0

M

2a

-M

-M

0
M

M
2a

Figure 4: Problem domains for the equilibrium solutions, where the dashed area
are unstable cells. Left for a line segment and right for symmetric bifurcation

c2 exp(kx), as shown by Artebrant et al. [2]. For a line segment the solution is:

V (x) =


sinh(κ(M + x)) , x ∈ D1,1

d cos(kx) , x ∈ D1,2

sinh(κ(M − x)) , x ∈ D1,3

, (8)

where d = sinh(κ(M − 1))/cos(k) and parameters κ =
√
p1/δ and k =

√
p2/δ.

To satisfy the differentiability conditions V′1(x)|x=−1 = V′2(x)|x=−1, V′2(x)|x=1 =
V′3(x)|x=1, in (7) the relation

k tan(k) =
κ

tanh(κ(M − 1))

must hold.
The second problem is a symmetric domain D2 with a branching and joining

point (Fig. 4, right). The domain consists of five line segments, the first two,
D2,1 = [−M,−1] and D2,2 = [−M,−1], join the segment D2,3 = [−1, 1], which
branches into two further segments D2,4 = [1,M] and D2,5 = [1,M]. As in the
first domain, the middle segment D2,3 has unstable cells while the outer branches
D2,1, D2,2, D2,4, and D2,5 are stable. The problem is symmetric at zero, so we
will look at the negative domain only. Furthermore, D2,1 and D2,2 are equal,
thus it is sufficient to find the solution on one of them. This means we need to
solve the following problem

δV ′′1 − p1V1 = 0 ∀ x ∈ D2,1

δV ′′3 + p2V3 = 0 ∀ x ∈ D2,3

V1(−1) = V3(−1), 2V ′1(x)|x=−1 = V3′(x)|x=−1, V1(−M) = 0
,

where the first two equations are due to Kirchoff’s current law, which states that
the current sum of the first and second branch need to equal the third branch.

Following an exponential ansatz, we constrain the solution to be unique by
choosing the maximum amplitude V (0) = 1, which leads to

V1,2 = c1 sinh(κ(M + x)),

V3 = cos(kx), (9)

V4,5 = c1 sinh(κ(M − x)),

10

where c1 = cos(−k)/ sinh(λ1(M − 1)) and the relation between κ and k changes
to

k tan(k) =
2κ

tanh(κ(M − 1))
.

3.1.1 Numerical solution in equilibrium

For the numerical solution we choose δ = 1, which imposes the condition 1 =
σ∗/β. With a physiological cell length of ` = 62.5 µm, diameter 16.0 µm,
and chosen gap-junction resistance R = 0.1 kΩ, the intracellular conductivity
becomes 1967.5 kS/cm. Furthermore, the spatial step size h is chosen as an
integer multiples of the cell length `.

On the line D1 we choose parameters p2 = 0.0946441, M = 20, and the
capacitance of the cell membrane Cm = 1 µF. For the branching domain D2 we
choose M = 10, p2 = 1, and δ = 1.

The resulting error distribution over the line and the branching domain is
shown in Fig. 5, where the largest contribution of the error comes from the
passive cell region. The convergence test shows that with decreasing spatial step
size the L2-error reduces faster than linearly for the single-interval domain D1

(Fig. 5) and linearly for the example in the branching domain D2. Note that
without the modification introduced in Sect. 2.1 only sub-linear convergence
behaviour was obtained for the branching domain case (compare with Fig. 3
from [12]), indicating that the modification is required for the consistency of the
numerical method.

3.2 Analytical solution for a travelling pulse

In this section the convergence of the dynamic solution is investigated. There-
fore, an analytic solution for a travelling wave of the linearised FitzHugh-Nagumo
(FHN) equation [22, 13] is constructed and then solved numerically.

For the construction of the solution to the FHN model we follow the work of
Rinzel and Keller [22], who used the two variable model, with the transmembrane
potential V and the recovery variable w

∂tV = Iion = f(V) + w
∂tw = bV
f = V (α− V)(1− V)

, (10)

where f can be linearised to f = V −H(V −α), with 0 ≤ a ≤ 1/2 and H is the
Heaviside function. The solution of the linearised problem (10) on an infinite
line is well-known [10, 22].

We consider the monodomain equation (2) over an infinite line under the
assumption that σ∗i does not depend on x and couple it to the linearised FHN

11

−20 0 20

0

0.5

1

x

R
e
la
t
iv
e
E
r
r
o
r

−10 0 10

0

0.5

1

x

10−3 10−2
100

101

102

Step size h

L
2
-E

rr
o
r

10−3 10−2

10−1

100

Step size h

Figure 5: Error obtained with different numerical implementations. Upper row:
relative error obtained for the pure-GPU implementation. Solution over one line
segment D1 on the left, over the branching configuration D2 on the right. Blue
dotted line corresponds to error for a step size of 0.1 mm, the green solid line
the error (scaled by 10) for step size of 0.00625 mm. The red zone corresponds
to the domain of active cells. Lower panel: L2 error as a function of spatial step
size h for different implementations; black solid line for CPU, yellow dashed line
for hybrid, green dotted line for GPU, and red dashed line the comparison with
linear convergence rate.

12

cell membrane model

Cm∂tV =
σ∗i
β ∂

2
xV − f(V)− w

∂tw = bV , b ≥ 0
f(V) = V −H(V − a) , 0 ≤ a ≤ 1/2

. (11)

To be in the condition of the approach in [22] we assume in the following σ∗i /β = 1
and Cm = 1.

By differentiating the first equation in (11) with respect to time, the system
can be rewritten in one equation

∂2t V = ∂t∂
2
xV − ∂tf(V)− ∂tw,

⇒ ∂2t V = ∂t∂
2
xV − ∂tf(V)− bV. (12)

To solve this problem the travelling wave ansatz V (x, t) = vc(z) where z =
x + ct with c > 0 is introduced. Furthermore, we assume that vc(0) = a and
lim|z|→∞ vc(z) → 0, and from the intermediate value theorem follows the exis-
tence of a z1 6= 0 with vc(z1) = a. The system to be solved can be rewritten
as

c2v′′c = cv′′′c − cf ′(vc)v′c − bv
0 = v′′′c − cv′′c − f ′(vc)v′c − (b/c)v

0 =

{
v′′′c − cv′′c − v′c − (b/c)v ∀z ∈ R\{0, z1}
v′′′c − cv′′c − (b/c)v z ∈ {0, z1} , (13)

with boundary condition lim|z|→∞ vc(z) → 0 and where ′ indicates a derivative
with respect to z. The solution can be obtained in the three regions z < 0,
0 ≤ z ≤ z1 and z > z1. Following an exponential ansatz for the differential
equation we need to find the roots of the cubic polynomial

p(λ) = λ3 − λ2 − λ− (b/c). (14)

If the discriminant is non-negative there are three distinct real solution, while for
a negative discriminate two of the solutions are complex. Let λ1 be the positive
real solution while λ2 and λ3 are the possible complex. Than the solution to the
differential equation (13) is [10]

vc =


a exp(λ1x) z < 0
(a− p′(λ1))−1 exp(λ1x)− p′(λ2)−1 exp(λ2x)− p′(λ3)−1 exp(λ3x) 0 ≤ z ≤ z1
p′(λ2)

−1(exp(−λ2z1)− 1) exp(λ2x) + p′(λ3)
−1(exp(−λ3z1)− 1) exp(λ3x) z > z1

.

(15)

In the following we show that vc is real, even with complex eigenvalues λ2, λ3.
We use that Re(λ2) = Re(λ3) and Im(λ2) = −Im(λ3), where i =

√
−1.

⇒ vc =


a exp(λ1x) z < 0
exp(λ1x)
(a−p′(λ1)) − (e(iIm(λ2)x)

(p′(Re(λ2)+iIm(λ2))
+ e(−iIm(λ2)x)

p′(Re(λ2)−iIm(λ2))
)e(Re(λ2)x) 0 ≤ z ≤ z1

eλ2(x−z1)−e(λ2)x
p′(λ2)

+ eλ3(x−z1)−eλ3x
p′(λ3)

z > z1

,

(16)

13

⇒ vc =


a exp(λ1x) z < 0
exp(λ1x)
(a−p′(λ1)) − (α−iβ

α2+β2 e
(iIm(λ2)x) + α+iβ

α2+β2 e
(−iIm(λ2)x))e(Re(λ2)x) 0 ≤ z ≤ z1

eλ2(x−z1)

p′(λ2)
+ eλ3(x−z1)

p′(λ3)
−
(
e(λ2)x

p′(λ2)
+ eλ3x

p′(λ3)

)
z > z1

,

(17)

α = 3(Re(λ2)
2 − (Im(λ2)

2)− 2Re(λ2)− 1,

β = 6(Re(λ2))(Im(λ2))− 2(Im(λ2)).

Note that α, β ∈ R. Then applying Euler’s formula

(a+ bi)e−ci + (a− bi)eci = 2(a cos(c) + b sin(c)) , a, b, c ∈ R. (18)

to write the formula in the region 0 ≤ z ≤ z1 as real expression

⇒ vc =


a exp(λ1x) z < 0
exp(λ1x)
(a−p′(λ1)) − 2(α

α2+β2 cos(Im(λ2)x) + β
α2+β2 sin(Im(λ2)x))e(Re(λ2)x) 0 ≤ z ≤ z1

eλ2(x−z1)

p′(λ2)
+ eλ3(x−z1)

p′(λ3)
−
(
e(λ2)x

p′(λ2)
+ eλ3x

p′(λ3)

)
z > z1

,

(19)

α = 3(Re(λ2)
2 − (Im(λ2)

2)− 2Re(λ2)− 1,

β = 6(Re(λ2))(Im(λ2))− 2(Im(λ2)).

For the term in z > z1 we apply twice the steps we used in the region 0 ≤ z ≤ z1,
which results in the real expression

vc =


a exp(λ1x) z < 0
exp(λ1x)
(a−p′(λ1)) − 2(α

α2+β2 cos(Im(λ2)x) + β
α2+β2 sin(Im(λ2)x))e(Re(λ2)x) 0 ≤ z ≤ z1

2(α
α2+β2 cos(Im(λ2)(x− z1)) + β

α2+β2 sin(Im(λ2)(x− z1)))e(Re(λ2)(x−z1))− z > z1

−2(α
α2+β2 cos(Im(λ2)x) + β

α2+β2 sin(Im(λ2)x))e(Re(λ2)x)

(20)

Rintzel and Keller showed that the above solution (15) holds true only if the
parameters a(b, c) satisfies the following relation with the parameter b and c.
The relation assumes we know the eigenvalues λi i = 1, 2, 3 for given b, c, which
then define the function

f(s) = 2− s+
p′(λ1)

p′(λ2)
s(−λ2/λ1) +

p′(λ1)

p′(λ3)
s(−λ3/λ1).

The root s0 of the function f defines

a =
1− s0
p′(λ1)

. (21)

This relation can be satisfied for any b with at most two ci, where c1 ≤ c2. The
slow pulse c1 is an unstable solution, while c2 is a stable solution [10, 22]. To
obtain the value of z1 for the given set of parameter a, b, c the following equation
needs to be solved

exp(−λ1z1s0) = 1− ap′(λ1). (22)

14

3.2.1 Numerical simulation of the traveling wave

For the verification of the dynamic solution we use the solution for a = 0.2250646
mV, c = 1.2 cm/ms , b = 0.2 and z1 = 6.63395 cm. In the numerical problem
the parameter σi = 1967.5, β = 1, R = 0.1 kΩ and Cm = 1 µF are used. We use
the solution (15) to initialise our numerical solution at the time 0 ms on a line of
length 160 cm, and origin at 85 cm. With these values the wave exits the domain
at 50 ms. The final time is chosen such that the wave in the numerical simulation
stabilises in shape and then propagates for about 20 ms. All simulation use a
temporal time step of 0.001 ms.

The first experiment was performed for spatial resolution of 0.00625 mm,
where the L2-error was calculated at each time step and plotted against the
time for all three solvers (Fig. 6). For the first iterations the error increases
slower compared to the error increase after about 20 ms. Thereafter, a linear
increase of the error is observed. This can be explained with the plot of the
L2-norm of the solution (Fig. 6), which is changing until 20 ms and thereafter
can be considered as constant. The changes are due to the fact that the maximal
amplitude of the wave is changing. The stable, slightly larger pulse, has after 20
ms a higher conduction velocity of about c = 1.20132 m/s, which is responsible
for the linearly increasing error over time.

We conclude the verification with a convergence test in the L2 error and the
conduction velocity for the dynamic simulation. Therefore, the L2 error and the
conduction velocity after 40 ms have been evaluated for different step discreti-
sations h = {1 mm, 0.5 mm, 0.25 mm, 0.125 mm, 0.0625 mm}. The L2 error
converges superlinearly. More importantly, the conduction velocity approaches
the theoretical value of 1.2 m/s at a step size of 0.0625 mm (Fig. 6). Again,
the improved method of Sect. 2.1 remains consistent and subsequently exhibits
proper convergence to the exact conduction velocity.

4 Computational efficiency

Finally, the performance of the different implementations is evaluated to choose
the most efficient one on problems of varying size and complexity. The number of
DOFs are varied either by increasing the complexity of the Purkinje fibre network
(spatial complexity), or by the switching to a more complex cell membrane model
(model complexity).

The spatial complexity varies over four different Purkinje fibre networks,
which are generated with the fractal rule presented in [23]. In order of increasing
complexity, the first Purkinje network consists of the main Purkinje branches
only, the second one has another level of branching giving a physiological covering
of the LV, and the third network has another level of Purkinje branches added to
increase the density of the end-junctions, resulting in a physiological network for
the left ventricle. The fourth case is a dense Purkinje network for both the left
and right ventricles. All Purkinje networks have a spatial resolution of 0.1 mm

15

0 10 20 30 40 50

0

1

2

3

·10−2

Time in ms

L
2
-E
rr
o
r

CPU

GPU

Hybrid

0 10 20 30 40 50

22.48

22.49

Time in ms

L
2
-N
o
rm

o
f
th
e
S
o
lu
ti
o
n

CPU

GPU

Hybrid

10−3 10−2

10−1

100

101

Step size hcm

L
2
-E

rr
o
r
a
ft
e
r
4
0
m
s

CPU

GPU

Hybrid

Linear

10−3 10−2

1.2

1.4

1.6

Step size h cm

C
o
n
d
u
c
ti
o
n
v
e
lo
c
it
y
c
cm

/
m
sCPU

GPU

Hybrid

Theory

Figure 6: Simulation results with the traveling wave. On the upper panel the
development of characteristics of the numerical solution over time is shown. Left
hand the L2 error and on the right L2-Norm of the solution. The solution was
obtained with the CPU (solid), hybrid (dashed) and the GPU (dotted), data
shown for a spatial step size of 0.00625 mm. The lower panel shows at the
left the L2 error and at the right the conduction velocity after 40 ms against
the step discretisation, obtained with the CPU (solid), hybrid (dashed) and the
GPU (dotted)

16

and are generated without loops for compatibility with other solvers (see Fig. 7).
Two different cell membrane models were used to test the influence of model

complexity. The first and simpler Di Francesco-Noble model [9], which has
been used in previous works [28], has 15 state variables. The model has been
obtained from the CellML database and used without modification to the initial
states or constants. The second membrane model used here has been published
by Stewart et al. [24], is based on modifications to the ten Tusscher-Panfilov
model, and has 20 state variables. The model was obtained from CellML, and
the initial conditions were changed (Appendix Tab. 1). The change of the
initial condition was necessary to avoid the early self-excitation that is present
in Purkinje cells but should not manifest itself under physiological conditions.
For both membrane models a cell length of 0.01 mm, cell radius of 0.00 5mm,
and an intracellular conductivity of 40 Ω−1cm−1 were assumed, were the last two
values are chosen to obtain a realistic conduction velocity between 3 m/s and 4
m/s. The gap junction resistance was chosen as 500 kΩ. For the simulation a
temporal step size of 0.01 ms has been used and the simulation was run for 50
ms, after which all networks were fully depolarised. The meshes corresponding
to the Purkinje networks can be downloaded as VTK3 files, including the local
activation times as supplemental material.

In the CPU implementation eight processes are run in parallel, while the
hybrid and GPU implementations are run using one CPU process. The simu-
lations were run in two different configurations on the GPU, the first in double
precision, while the second was in single precision. For all simulations, we mea-
sure the time spend on setting up the problem, which includes reading the mesh
and assembling the matrices and preconditioners. We report the time needed
for solving the ionic membrane models and the diffusion equation in Fig. 7.

As expected the hybrid and GPU implementations are faster than the CPU
implementation (Fig. 7), and a further speed-up is observed moving from double
precision to single precision in the GPU implementation. The reason for the
speed-up with the single precision in the GPU implementation is that the par-
ticular GPU used has roughly twice the number of floating point operations in
single precision than it has in double precision. The reduction of computational
time achieved with the hybrid implementation was only limited. One possible
reason for this might be that the particular GPU used is able to handle the
entire double precision problem without full occupation, and the second reason
might be that the transmembrane potential needs to be converted from double
precision to single precision, which is done in serial on the CPU.

The amount of time needed for the reaction part of the problem varies consid-
erably between the CPU, hybrid, and GPU implementations. The CPU imple-
mentation is always the slowest, but the hybrid implementation performs more
favourably on less complex membrane models, while the GPU implementation
performs better with more complex membrane models. This is much more evi-

3The Visualization Toolkit (http://www.vtk.org)

17

dent in the single precision versions. A possible reason for this can be found in
the workflow of the hybrid and GPU implementations (Fig. 3), where a memory
copy from the GPU to the CPU takes place in each time step of the hybrid
implementation. In the GPU implementation this is unnecessary because values
are used on the GPU only. This explains why the GPU implementation performs
better with increasing complexity of the membrane model. Similar behaviour is
observed for the diffusion step.

Solving the diffusion step with the GPU implementation is nearly always the
slowest. We note that the hybrid implementation is faster than the CPU, as in
the CPU implementation the transmembrane potential and the current need to
be sent from all the OpenMPI nodes to the master node and the results commu-
nicated back. The linear system itself is solved in the same way in the CPU and
the GPU/CPU hybrid cases, while in the GPU implementation the same algo-
rithm is used, but the matrix operations are performed on the GPU. For small
Purkinje systems, meaning very sparse and small matrices, the performance of
the GPU implementation is behind the CPU and hybrid implementations. With
increasing spatial complexity the GPU performance becomes better compared
to the CPU performance, which likely is related to the size of the problem. Due
to the overhead introduced by each CUDA operation, for very small problem
sizes the benefits of GPU parallelism are lost.

5 Conclusion

We have presented an improved parallel algorithm for solving the monodomain
cardiac electrophysiology equations on one-dimensional branching Purkinje fi-
bre networks that is suitable for simulating activation on realistic Purkinje fibre
networks in human-size hearts. Three different implementations of the algo-
rithm were tested: pure-CPU, pure-GPU, and hybrid. The main contributions
of this work were (i) a modification to the previously published algorithm for the
monodomain equations on Purkinje fibre networks with improved consistency at
branching points,(ii) a change in the equivalent conductivity to be consistent
with the cell length and mesh discretisation . (iii) formal verification of numeri-
cal solutions and their appropriate order of convergence, and (iiii) computational
efficiency comparison of the three different implementations on Purkinje net-
works of varying spatial complexity coupled to different cell membrane models
of increasing complexity.

The verification of the numerical solution showed no notable difference in
convergence rates between the three different implementations.

The largest benefit of the parallel pure-GPU implementation was obtained
either when a fully detailed biventricular (spatially complex) network was used,
or when sufficiently complex membrane models were used, such as the Stewart
et al. 2009 model considered in this study. For simpler LV-only models or
when using simpler membrane models, such as the Di Francesco-Noble model

18

Spatial

C
el
l
M
o
d
el

complexity

6251 16 024 31 319 43 748

Di Francesco-

Nobel model

with 15 equa-

tions

200

400

600

800

1,000

1,200

ti
m
e
in

s

Start-up

Di�usion

Reaction

T
o
t
a
l
t
im

e
:
1
8
2
3

T
o
t
a
l
t
im

e
:
2
6
9
1

Stewart model

with 20 equa-

tions

C
P
U

H
y
b
ri
d
-D

H
y
b
ri
d
-M

G
P
U
-D

G
P
U
-M

0

200

400

600

800

1,000

1,200

ti
m
e
in

s

C
P
U

H
y
b
ri
d
-D

H
y
b
ri
d
-M

G
P
U
-D

G
P
U
-M

T
o
ta
l
ti
m
e:

1
2
1
1

C
P
U

H
y
b
ri
d
-D

H
y
b
ri
d
-M

G
P
U
-D

G
P
U
-M

T
o
ta
l
ti
m
e:

2
3
5
0
.5

C
P
U

H
y
b
ri
d
-D

H
y
b
ri
d
-M

G
P
U
-D

G
P
U
-M

T
o
ta
l
ti
m
e:

1
4
5
4

T
o
ta
l
ti
m
e:

3
4
8
2

Figure 7: Performance test for two different cell models and four Purkinje net-
works.

19

considered in this study, the hybrid implementation may be more attractive. In
either case the benefits of GPU-accelerated computation of action potentials in
the fast conduction system have been demonstrated. While in this study we only
considered the simplified monodomain equations, extensions could be made to
incorporate similar algorithms for the bidomain equations to explore e.g. the
effect of defibrillation on Purkinje fibres. Further work is also ongoing to extend
the Purkinje cell model to account for the presence of ischemia in the heart.
We hope to have convinced the cardiac modelling community that large-scale
numerical simulation of action potentials in the Purkinje fibre system is both
feasible and important.

Acknowledgement

Simone Palamara has been funded by “Fondazione Cassa di Risparmio di Trento
e Rovereto” (CARITRO) within the project “Numerical modelling of the elec-
trical activity of the heart for the study of the ventricular dyssynchrony”. Alfio
Quarteroni and Christian Vergara have been partially supported by the Italian
MIUR PRIN09 project no. 2009Y4RC3B 001.

20

Appendix

Table 1: Initial conditions used for the Stewart et al. 2009 model

V Transmembrane potential [mV] -75.6095
Ki Potassium dynamics [mMol] 136.757
Nai Sodium dynamics [mMol] 0.80211
Cai Intracellular calcium [mMol] 1.47164e-4
y y gate 0.00780153
Xr1 Rapid time dependent potassium current 0.382558
Xr2 Rapid time dependent potassium current 0.37373
Xs Slow time dependent potassium current 3.85284e-2
m m gate 1.24135e-2
h h gate 0.361832
j j gate 0.102063

Cass Calcium dynamics [mMol] 5.49319e-4
d L type Ca current d 1.21585e-4
f L type Ca current f 0.611603
f2 L type Ca current f2 0.861484
fcass L-type Ca current 0.985735
s Transient outward current s 0.925862
r Transient outward current r 6.46602e-4

CaSR Calcium in sarcoplasmic reticulum [mMol] 3.17519
Rprime Calcium dynamics 0.851882

21

References

[1] A. Ansari, S.Y. Ho, and R.H. Anderson. Distribution of the Purkinje fibres
in the sheep heart. Anat. Rec., 254(1):92–97, 1999.

[2] R. Artebrant, A. Tveito, and G.T Lines. A method for analyzing the stabil-
ity of the resting state for a model of pacemaker cells surrounded by stable
cells. Math. Biosci. Eng., 7(3):505–526, 2010.

[3] O. Berenfeld and J. Jalife. Purkinje-muscle reentry as a mechanism of poly-
morphic ventricular arrhythmias in a 3-dimensional model of the ventricles.
Circ. Res., 82(10):1063–1077, 1998.

[4] F. Bogun, E. Good, S. Reich, D. Elmouchi, P. Igic, D. Tschopp, S. Dey,
A. Wimmer, K. Jongnarangsin, H. Oral, A. Chugh, F. Pelosi, and
F. Morady. Role of Purkinje fibers in post-infarction ventricular tachy-
cardia. J. Am. Coll. Cardiol., 48(12):2500–2507, 2006.

[5] R.M. Bordas, K. Gillow, D. Gavaghan, B. Rodriguez, and D. Kay. A bido-
main model of the ventricular specialized conduction system of the heart.
SIAM J. Appl. Math., 72(5):1618–1643, 2012.

[6] P Colli Franzone, L.F. Pavarino, and S. Scacchi. Mathematical cardiac elec-
trophysiology, volume 13 of Modeling, Simulation & Applications. Springer
Cham Heidelberg New York Dordrecht London, 2014.

[7] L.L. Cooper, K.E. Odening, M.-S. Hwang, L. Chaves, L. Schofield, C.A.
Taylor, A.S. Gemignani, G.F. Mitchell, J.R. Forder, B.-R. Choi, and G. Ko-
ren. Electromechanical and structural alterations in the aging rabbit heart
and aorta. Am. J. Physiol. Heart Circ. Physiol., 302(8):H1625–H1635, 2012.

[8] M. Deo, P.M. Boyle, A.M. Kim, and E.J. Vigmond. Arrhythmogenesis by
single ectopic beats originating in the Purkinje system. Am. J. Physiol.
Heart Circ. Physiol., 299(4):H1002–H1011, 2010.

[9] D. DiFrancesco and D. Noble. A model of cardiac electrical activity incor-
porating ionic pumps and concentration changes. Philos. Trans. R. Soc.
Lond. B Biol. Sci., 307(1133):353–398, 1985.

[10] J. Keener and J. Sneyd. Mathematical Physiology I: Cellular Physiology,
volume 8(I) of Interdisciplinary Applied Mathematics. Springer New York,
New York, NY, 2nd edition, 2009.

[11] S. Krishnamoorthi, L.E. Perotti, N.P. Borgstrom, O.A. Ajijola, A. Frid,
A.V. Ponnaluri, J.N. Weiss, Z. Qu, W.S. Klug, D.B. Ennis, et al. Sim-
ulation methods and validation criteria for modeling cardiac ventricular
electrophysiology. PlOS ONE, 9(12):e114494, 2014.

22

[12] M. Lange, S. Palamara, T. Lassila, C. Vergara, A. Quarteroni, and A.F.
Frangi. Efficient numerical schemes for computing cardiac electrical activa-
tion over realistic purkinje networks: method and verification. In: H. van
Assen, P. Bovendeerd, T. Delhaas (Eds.) Proc. 8th Int. Conf. Functional
Imag. Model. Heart (FIMH 2015), June 25–27, Maastricht, 2015.

[13] H.P McKean Jr. Nagumo’s equation. Adv. Math., 4(3):209–223, 1970.

[14] A. Mena and J.F. Rodriguez. Using graphic processor units for the study
of electric propagation in realistic heart models. In IEEE Computing in
Cardiology, volume 39, pages 37–40, 2012.

[15] M. Naumov. Parallel solution of sparse triangular linear systems in the
preconditioned iterative methods on the GPU. Technical Report NVR-
2011-001, NVIDIA, 2011.

[16] S.A. Niederer, E. Kerfoot, A.P. Benson, M.O. Bernabeu, O. Bernus,
C. Bradley, E.M. Cherry, R. Clayton, F.H. Fenton, A. Garny, E. Heiden-
reich, S. Land, M. Maleckar, P. Pathmanathan, G. Plank, J.F. Rodŕıguez,
I. Roy, F.B. Sachse, G. Seemann, O. Skavhaug, and N.P. Smith. Veri-
fication of cardiac tissue electrophysiology simulators using an N-version
benchmark. Philos. Trans. A. Math. Phys. Eng. Sci., 369(1954):4331–51,
2011.

[17] V. Nimmagadda, A. Akoglu, S. Hariri, and T. Moukabary. Cardiac simula-
tion on multi-GPU platform. J. Supercomput., 59(3):1360–1378, 2012.

[18] A. Nogami. Purkinje-related arrhythmias part I: Monomorphic ventricular
tachycardias. Pacing Clin. Electrophysiol., 34(5):624–650, 2011.

[19] S. Palamara, M. Lange, C. Vergara, T. Lassila, A.F. Frangi, and A. Quar-
teroni. A coupled 3D-1D numerical monodomain solver for cardiac electri-
cal activation in the myocardium with detailed Purkinje network. Technical
Report MOX-Report No. 19/2015, Politecnico di Milano, 2015.

[20] S. Palamara, C. Vergara, D. Catanzariti, E. Faggiano, C. Pangrazzi,
M. Centonze, F. Nobile, M. Maines, and A. Quarteroni. Computational
generation of the Purkinje network driven by clinical measurements: the
case of pathological propagations. Med. Biol. Eng. Comput., 30(12):1558–
1577, 2014.

[21] P. Pathmanathan and R.A. Gray. Verification of computational mod-
els of cardiac electrophysiology. Int. J. Numer. Methods Biomed. Engr.,
30(5):525–544, 2014.

[22] J. Rinzel and J.B. Keller. Traveling wave solutions of a nerve conduction
equation. Biophys. J., 13(12):1313–37, 1973.

23

[23] R. Sebastian, V. Zimmerman, D. Romero, and A.F. Frangi. Construction
of a computational anatomical model of the peripheral cardiac conduction
system. IEEE Trans. Biomed. Eng., 58(12):3479–82, 2011.

[24] P. Stewart, O.V. Aslanidi, D. Noble, P.J. Noble, M.R. Boyett, and H. Zhang.
Mathematical models of the electrical action potential of Purkinje fibre cells.
Philos. Trans. A. Math. Phys. Eng. Sci., 367(1896):2225–55, 2009.

[25] K.H.W.J. Ten Tusscher and A.V. Panfilov. Modelling of the ventricular
conduction system. Prog. Biophys. Mol. Biol., 96(1):152–170, 2008.

[26] A. Tveito and G.T. Lines. A condition for setting off ectopic waves in
computational models of excitable cells. Math. Biosci., 213(2):141–50, 2008.

[27] C. Vergara, S. Palamara, D. Catanzariti, F. Nobile, E. Faggiano, C. Pan-
grazzi, M. Centonze, M. Maines, A. Quarteroni, and G. Vergara. Patient-
specific generation of the Purkinje network driven by clinical measurements
of a normal propagation. Med. Biol. Eng. Comput., 52(10):813–826, 2014.

[28] E.J. Vigmond and C. Clements. Construction of a computer model to
investigate sawtooth effects in the Purkinje system. IEEE Trans. Biomed.
Eng., 54(3):389–99, 2007.

24

MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

44/2015 Antonietti, P.F.; Houston, P.; Smears, I.
A note on optimal spectral bounds for nonoverlapping domain decomposition
preconditioners for hp-Version Discontinuous Galerkin methods

43/2015 Deparis, S.; Forti, D.; Gervasio, P.; Quarteroni, A.
INTERNODES: an accurate interpolation-based method for coupling the
Galerkin solutions of PDEs on subdomains featuring non-conforming
interfaces

42/2015 Brugiapaglia, S.; Nobile, F.; Micheletti, S.; Perotto, S.
A theoretical study of COmpRessed SolvING for advection-diffusion-reaction
problems

41/2015 Quarteroni, A.; Veneziani, A.; Vergara, C.
Geometric multiscale modeling of the cardiovascular system, between theory
and practice

40/2015 Patelli, A.S.; Dedè, L.; Lassila, T.; Bartezzaghi, A.; Quarteroni, A.
Isogeometric approximation of cardiac electrophysiology models on surfaces:
an accuracy study with application to the human left atrium

39/2015 Guglielmi, A.; Ieva, F.; Paganoni, A.M.; Quintana, F.A.
A semiparametric Bayesian joint model for multiple mixed-type outcomes: an
Application to Acute Myocardial Infarction

38/2015 Grasso, M.; Menafoglio, A.; Colosimo, B.M.; Secchi, P.
Using Curve Registration Information for Profile Monitoring

36/2015 Fedele, M.; Faggiano, E.; Barbarotta, L.; Cremonesi, F.; Formaggia, L.; Perotto, S.
Semi-Automatic Three-Dimensional Vessel Segmentation Using a Connected
Component Localization of the Region-Scalable Fitting Energy

37/2015 Aletti, M.; Perotto, S.; Veneziani, A.
Educated bases for the HiMod reduction of advection-diffusion-reaction
problems with general boundary conditions

35/2015 Manzoni, A.; Pagani, S.
A certified reduced basis method for PDE-constrained parametric
optimization problems by an adjoint-based approach

	qmox45-copertina
	mox-2015924213137
	qmox45-terza_di_copertina

