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Abstract

We describe the k-mean alignment procedure, for the joint align-
ment and clustering of functional data and we apply it to the analysis of
AneuRisk65 data. Thanks to the efficient separation of the variability
in phase variability and within/between clusters amplitude variabil-
ity, we are able to discriminate subjects having aneurysms in different
cerebral districts and identifying different morphological shapes of In-
ner Carotid Arteries, unveiling a strong association between arteries
morphologies and the aneurysmal pathology.

1 K-mean alignment

We here summarize the k-mean alignment procedure that we shall use in
Section 2 to analyze the AneuRisk65 data. This procedure, introduced in
Sangalli, Secchi, Vantini, and Vitelli (2010), is able to efficiently align and
cluster in k groups a set of curves. The procedure can be seen as a continuous
alignment with k ≥ 1 templates, or equivalently as a k-mean clustering of
curves with warping allowed. In fact, if the number of clusters k is set equal
to 1, the algorithm implements the Procrustes aligning procedure described
in Sangalli et al. (2009), whereas, if no alignment is allowed, it implements
a functional k-mean clustering of curves (see, e.g., Tarpey and Kinateder
(2003)).

The described procedure merges the goal of alignment, i.e., decoupling
phase and amplitude variability, with the goal of k-mean clustering, i.e.,
decoupling within and between-cluster amplitude variability. The k-mean
alignment is also able to disclose clustering structures in the phase even
though this is not one of the stated goals of the procedure. Overall, the
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technique has the capacity to point out features that can neither be cap-
tured by simple k-mean clustering without alignment nor by simple curve
alignment without clustering.

1.1 A problem-specific definition of phase and amplitude

variabilities

Consider a set F of (possibly multidimensional) curves f(s) : R → R
d.

Continuously aligning f1 ∈ F to f2 ∈ F means finding a warping func-
tion h(s) : R → R, of the abscissa parameter s, such that the two curves
f1 ◦ h and f2 are the most similar or equivalently the less dissimilar (with
(f ◦ h)(s) := f(h(s))); see, e.g., Ramsay and Silverman (2005). It is thus
necessary to specify a similarity index ρ(·, ·) : F × F → R that translates
the concept of similarity between two functional data for the problem un-
der study (or equivalently a dissimilarity index E(·, ·) : F × F → R that
measures the dissimilarity between two functional data), and a class H of
warping functions h (such that f ◦h ∈ F , for all f ∈ F and h ∈ H) that indi-
cates which transformations for the abscissa are admissible for the considered
problem. Aligning f1 to f2, according to (ρ,H), means finding h∗ ∈ H that
maximizes ρ(f1 ◦h, f2) (or equivalently that minimizes E(f1 ◦h, f2)). The
chosen index of similarity/dissimilarity and class of warping functions de-
fine univocally what are phase and amplitude variabilities for the problem
being analyzed. The choice of the couple (ρ,H), or equivalently (E ,H), must
hence be problem-specific.

The couple similarity/dissimilarity index and class of warping functions
must satisfies the following properties, that we deem minimal requirements
for coherence:

(a) The similarity index ρ is bounded from above, with maximum value
equal to 1. Moreover, ρ is

reflexive: ρ(f, f)=1, ∀ f ∈ F ;

symmetric: ρ(f1, f2)=ρ(f2, f1), ∀ f1, f2 ∈ F ;

transitive:
[

ρ(f1, f2)=1 ∧ ρ(f2, f3)=1
]

⇒ ρ(f1, f3)=1
∀ f1, f2, f3 ∈ F .

Equivalently, the dissimilarity index E is bounded from below, with
minimal value equal to 0, and the properties above are suitably refor-
mulated.

(b) The class of warping functions H is a convex vector space and has a
group structure with respect to function composition ◦.

(c) The index ρ and the class H are consistent in the sense that, if two
curves f1 and f2 are simultaneously warped along the same warping
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function h ∈ H, their similarity does not change

ρ (f1, f2) = ρ (f1◦h, f2◦h) , ∀ h ∈ H,

and the same property can of course be formulated for the dissimi-
larity E . This guarantees that it is not possible to obtain a fictitious
increment of the similarity between two curves f1 and f2 by simply
warping them simultaneously to f1◦h and f2◦h. This property is also
referred as parallel-orbit property or isometry of the action of H (e.g.,
Srivastava et al., 2011).

Together, (b) and (c) imply the following property

(d) For all h1 and h2 ∈ H,

ρ (f1 ◦ h1, f2 ◦ h2) = ρ
(

f1 ◦ h1 ◦ h
−1
2 , f2

)

= ρ
(

f1, f2 ◦ h2 ◦ h
−1
1

)

.

This means that a change in similarity between f1 and f2 obtained by
warping simultaneously f1 and f2, can also be obtained by warping
the sole f1 or the sole f2.

Many indexes for measuring similarity (dissimilarity) between functions
have been considered in the literature on functional data analysis (see, e.g.,
Ferraty and Vieu, 2006, for a proficient mathematical introduction to the
issue). Table 1 reports some possible choices of couples (dissimilarity in-
dex, class of warping functions) that satisfy properties (a)-(d). Equivalent
similarity indexes can of course be considered. For instance, the normal-
ized Pearson correlation <f1,f2>

||f1||2||f2||2
is a similarity index naturally induced

by the dissimilarity (semi-metric)
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||f2||

∣
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, where < ·, · > denotes the

inner product in L2 and || · || the corresponding norm. A multivariate ex-

tension of the similarity
<f ′

1
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2
>

||f ′
1
||2||f ′

2
||2
, i.e., a normalized Pearson correlation of

first derivatives, induced by the dissimilarity (semi-metric)
∣

∣
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∣
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1
||
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∣
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∣
,

is introduced in Section 2 to analyze the AneuRisk65 data set; see, eq. (2).

1.2 Aligning to k templates

Consider the problem of aligning and clustering a set of n curves {f1, . . . , fn}
with respect to a set of k template curves µ = {µ1, . . . , µk}. For each
template curve µj , define its domain of attraction

∆j(µ) = {f ∈ F : sup
h∈H

ρ(µj , f ◦h) ≥ sup
h∈H

ρ(µr, f ◦h), ∀ r 6= j}, j = 1, . . . , k ,

and the labeling function λ(µ, f) = min{r : f ∈ ∆r(µ)}. Thus µλ(µ,fi)
indicates the template which the curve f can be best aligned to and hence
λ(µ, f) the cluster which f should be assigned to.
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dissimilarity E class H
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Table 1: Examples of coherent couples (dissimilarity index, class of warping
functions).

If the k templates µ = {µ1, . . . , µk} were known, then aligning and clus-
tering the set of n curves {f1, . . . , fn} with respect to µ would simply mean
to assign fi to the cluster λ(µ, fi) and align it to the corresponding template
µλ(µ,fi), for i = 1, . . . , n. Here we are interested in the more complex case
when the k templates are unknown. Ideally, if our aim is aligning and clus-
tering the set of n curves {f1, . . . , fn} with respect to k unknown templates,
we should first solve the following optimization problem

(i) find µ = {µ1, . . . , µk} ⊂ F and h = {h1, . . . , hn} ⊂ H such that

1

n

n
∑

i=1

ρ(µλ(µ,fi), fi◦hi) ≥
1

n

n
∑

i=1

ρ(ψλ(ψ,fi), fi◦gi),

for any other set of k templates ψ = {ψ1, . . . , ψk} ⊂ F and any other
set of n warping functions g = {g1, . . . , gn} ⊂ H,

and then, for i = 1, . . . , n,

(ii) assign fi to the cluster λ(µ, fi) and warp fi along hi.

The optimization problem (i) describes a search both for the set of opti-
mal k templates, and for the set of optimal n warping functions. Note that
the solution (µ,h) to (i) has mean similarity 1

n

∑n
i=1 ρ(µλ(µ,fi), fi◦hi) equal
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to 1 if and only if it is possible to perfectly align and cluster in k groups
the set of n curves, i.e., if and only if there exists h = {h1, . . . , hn} ⊂ H
and a partition P = {P1, . . . , Pk} of {1, . . . , n} in k elements, such that
ρ(fi◦hi, fj◦hj) = 1 for all i and j belonging to the same element of P.

It should also be noted that, thanks to property (c), if {µ1, . . . , µk} and
{h1, . . . , hn} provide a solution to (i), then also {µ1 ◦ g1, . . . , µk ◦ gk} and
{

h1 ◦ gλ(µ,f1), . . . , hn ◦ gλ(µ,fn)

}

is a solution to (i), for any {g1, . . . , gk} ⊂

H. Moreover, this solution identifies the same clusters (i.e., is associated to
the same partition P = {P1, . . . , Pk} of {1, . . . , n}).

The non-linear optimization problem (i) is not analytically solvable in its
complete generality. For this reason, in Sangalli et al. (2010) we proposed to
simultaneously deal with (i) and (ii) via a k-mean alignment algorithm that
iteratively alternates template identification steps, assignment and align-
ment steps and normalization steps. In the template identification step, we
estimate the set of k templates associated to the k clusters identified at the
previous assignment and alignment step. The jth template can be identified
as the curve µj , in some set of curves C, that maximizes the total similarity
within the jth cluster:

argmaxµj∈C
∑

i: fi ∈ jth cluster

ρ(µj , fi). (1)

Two choices for set of curves C are particularly natural: C may coincide with
the entire considered functional space F , in which case the templates are
the within cluster Frechet templates, or C may coincide with the observed
sample of curves, {f1, . . . , fn}, in which case the templates coincide with
the within cluster medoids, or Karcher templates. In the assignment and
alignment step, we align the n curves to the set of the k templates obtained
in the previous template identification step, as described above. The k-
mean alignment algorithm also considers the problem of non-uniqueness of
the solution, by targeting a specific solution via a normalization step. The
algorithm is initialized with a set of initial templates, and stopped when, in
the assignment and alignment step, the increments of the similarity indexes
are all lower than a fixed threshold.

In many practical situations (e.g., the AneuRisk65 data set), functional
data are not available on the entire real axis but observed on arbitrary inter-
vals and thus both the template identification step and the assignment and
alignment step have to be carried out in an approximated way. In this case,
the similarities between two functions are computed over the intersection
of the domains of the two functions; and, if the template identification is
carried out on the entire space F , the Frechet mean (no longer analytically
available) is approximated by a local mean.

Details for the practical implementation of a k-mean alignment proce-
dure are given in Sangalli et al. (2010). The procedure is coded in the fdakma
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R package downloadable from CRAN (see Patriarca et al., 2013b).

1.3 Shape Invariant Models

When analyzing the AneuRisk65 data, it makes sense to consider two vessel
centerlines to be perfectly aligned if they are identical except for a shifting
and/or a dilation along the three space coordinates. Because location of
the scanned volume and proportions of the skull change across patients
(see the data presentation), different shifting and/or dilation for each space
coordinate must be permitted. For this reason, Sangalli et al. (2009, 2010),
used the following bounded similarity index between two curves f1, f2 ∈ F ,
where F = {f : f ∈ L2(R;Rd), f ′ ∈ L2(R;Rd), f ′ 6= 0}:

ρ(f1, f2) =
1

d

d
∑

p=1

∫

R
c′1p(t)c

′
2p(t)dt

√

∫

R
c′1p(t)

2dt
√

∫

R
c′2p(t)

2dt
, (2)

with cip indicating the pth component of fi, fi = {ci1, . . . , cid}. Geomet-
rically, (2) represents the average of the cosines of the angles between the
derivatives of homologous components of f1 and f2, which is a possible mul-
tidimensional extension of the univariate similarity index reported at the
sixth row of Table 1. This index assumes its maximal value 1 when the two
curves are identical except for shifts and dilations of their components

ρ(f1, f2) = 1 ⇔
for p = 1, . . . , d, ∃ap ∈ R

+, bp ∈ R :
c1p(t) = apc2p(t) + bp.

(3)

This similarity index is coherent, in the sense of property (c), with the
following class H of warping functions of the abscissa

H = {h : h(t) = mt+ q with m ∈ R
+, q ∈ R} (4)

i.e., the group of strictly increasing affine transformations.
For f = {c1, . . . , cd} ∈ F , assume the existence of µ = {µ1, . . . , µd} ∈ F

and of a parameter vector (a1, . . . , ad, b1, . . . , bd,m, q), with ap ∈ R
+ and

bp ∈ R for p = 1, . . . , d, m ∈ R
+, q ∈ R, such that

cp(t) = apµp(mt+ q) + bp for p = 1, . . . , d. (5)

We shall write f ∈ SIM(µ), since the condition (5) means that f falls within
a shape invariant model (SIM), with characteristic shape curve µ. For d = 1,
SIM models were introduced by Lawton et al. (1972). For further details,
see Kneip and Gasser (1988). SIM models are strongly connected with the
couple (ρ,H) defined in (2) and (4). Indeed,

∃h ∈ H : ρ(f ◦ h, µ) = 1 ⇔ f ∈ SIM(µ); (6)
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this follows directly from (3) and (4). Note that, thanks to property (d),
the roles of f and µ can be swapped. Now, consider a set of n curves
{f1, . . . , fn} ⊂ F , such that fi ∈ SIM(µ) for i = 1, . . . , n; then, the following
property follows immediately:

(f) For all fi, fj , with i, j = 1, . . . , n, ∃hi ∈ H, hj ∈ H such that

ρ (fi ◦ hi, fj ◦ hj) = ρ (fi ◦ hi, µ) = ρ (fj ◦ hj , µ) = 1 ∀ i, j = 1, . . . , n.

Because of (6), when using the couple (ρ,H) defined in (2) and (4), it is
possible to perfectly align and cluster in k groups a set of n curves if there
exist k characteristic shape curves, µ1, . . . , µk, such that

∀ i = 1, . . . , n, ∃ li ∈ {1, . . . , k} : fi ∈ SIM(µli).

In this case the optimization problem (i) is solved by setting µλ(µ,fi) ≡ µli ,
and its objective function achieves the maximum total similarity 1.

1.4 Theoretical framework

The introduction, in a functional data analysis, of a metric E (and thus a
similarity) and of a group H of warping functions, with respect to which
the metric is invariant (i.e., property (d) in Section 1.1), provides a math-
ematical framework where a sound and not ambiguous definition of phase
and amplitude variability can be given. Indeed in this framework, we can
prove that the analysis of a continuously-registered functional data set can
be re-interpreted as the analysis of a set of suitable equivalence classes as-
sociated to unaligned functions and induced by the group of the warping
functions. The properties, pertaining to the metric E and to the group H
of warping functions, needed to obtain this coherent formalization of the
problem of registration are detailed in Vantini (2012). The most impor-
tant one is the H-invariance of the metric E (Sangalli et al. (2009, 2010))
which indeed induces property (d) of Section 1.1. H-invariance provides the
quotient set made by the orbits induced by the action of H over F with
a natural metric δ (dependent on the joint choice of E and H) defined as
follows: δ([fi], [fj ]) := minhi,hj∈H E(fi ◦ hi, fj ◦ hj).

The introduction of a quotient set provided with a natural metric jointly
induced by the original metric E and by the group H enables a not am-
biguous definition of Phase Variability and Amplitude Variability. Phase
variability is defined as that occuring between functions belonging to the
same equivalence class, i.e. the variability within equivalence classes, and
the amplitude variability is the one between functions not belonging to the
same equivalence class and not imputable to phase variability, i.e. the vari-
ability between equivalence classes. Moreover, within this mathematical
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framework the k-mean alignment algorithm is an implementation of a k-
mean clustering algorithm on the n equivalence classes {[f1],[f2], . . . , [fn]}
induced by the action of H over the functional data set {f1,f2, . . . , fn}
performed by using the naturally defined metric δ.

2 K-mean alignment of AneuRisk65 data

2.1 Decoupling phase and amplitude variability in the AneuRisk65

data by 1-mean alignment
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Figure 1: Top-left: First derivatives of the original ICA centerlines. The
thick black lines indicate the first derivatives of the estimated template.
Bottom-left: First derivatives of the 2-mean aligned ICA centerlines. The
thick black lines indicate the first derivatives of the estimated templates.
Top-right: in the first panel boxplots of similarity indexes for unaligned
curves and k-mean aligned curves, k = 1, 2, 3; in the second panel means
of similarity indexes obtained by k-mean alignment and by k-mean with-
out alignment. Bottom-right: Warping functions. The identity function is
plotted in black.
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Figure 2: Radius (top) and curvature (bottom) profiles of the 65 patients
respectively before (left) and after (right) alignment using the optimal warp-
ing functions displayed in Figure 1. Solid black lines show mean curves. On
top of each picture is also displayed the estimate of the probability density
function of the location of aneurysms along the ICA.

To enable meaningful comparisons across subjects in the AneuRisk study,
it is necessary to first efficiently decouple the phase and the amplitude vari-
ability. As described in the data presentation, in this application phase
variation is mainly due to differences in the dimension of skulls among sub-
jects, whereas the amplitude variation is mainly due to differences in the
carotid morphological shapes. We shall in particular explore if the morpho-
logical features of these vessels relates with aneurysms presence and location,
contrasting subjects in the Upper group and subjects in the Lower and No-
aneurysm groups, often joined in a unique ”Lower-No” group, as indicated
in the data description.

First derivatives of the vessel centerlines have been aligned by the 1-
mean alignment, using the similarity index (2) and the class of warping
functions (4). The variability captured by the optimal warping functions
found during this alignment process is analyzed in Sangalli et al. (2009) and
is not found to be associated to the aneurysmal pathology. In particular,
no significant difference exists between the warping functions of subjects in
the Upper and Lower-No groups. Subsequent analysis may hence focus on
the aligned data. The optimal warping functions can be used to correspond-
ingly align the radius and curvature profiles; see Figure 2. After alignment
it is possible to start appreciating a common pattern for the curvature pro-
files (center right panel) that was not visible before alignment (center left
panel). The registered radius and curvature profiles highlight many inter-
esting aspects. Figure 2 shows that the vessel gets progressively narrower
toward the terminal bifurcation of the ICA; this is the so-called tapering
effect. Tapering concerns all arteries, but it is particularly apparent close
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to the terminal bifurcation of the ICA, where the artery has to enter in-
side the skull. The figure also shows that most ICAs display two peaks
of curvature in the terminal part of the vessel; these peaks of curvature
are in correspondence with the carotid syphon. The same figure displays
also Gaussian kernel density estimates of the aneurysm location along the
ICA, before and after alignment (left and right, respectively), based on data
from patients having an aneurysm along the ICA or at its terminal bifur-
cation. The majority of ICA aneurysms are located in the terminal part of
the vessel, where tapering is stronger, and after the main curvature peak.
These results support the conjecture concerning the influence of the vessel
morphology and the aneurysm onset, via the hemodynamics. In fact, the
tapering of the vessel and the peak in its curvature determine hemodynamic
regimes that may facilitate aneurysm formation and development. The den-
sity estimates of the aneurysm location shows that, after alignment, the
locations of ICA aneurysms cluster in two neatly separated groups, before
and after –13 mm from the vessel terminal bifurcation. This fact suggest
that this is the average position of the dural ring, i.e., the hole in the skull
bone the ICA goes through to enter inside the skull. Notice that this ring
cannot be detected directly through angiographies, but indications of the
location of aneurysms relative to the dural ring may be of great importance,
since aneurysms within the skull are more dangerous, as explained in the
data description.

The autocovariance structures of aligned radius and curvature profiles
are thus explored separately by means of FPCA, in order to estimate their
main uncorrelated modes of variability. Since the 65 curves are observed
on different abscissa intervals, these analyses focus on the interval where all
curves are available, i.e., for values of the abscissa between –3.37 cm and
–0.78 cm. Figure 3 shows the first two eigenfunctions of the autocovariance
function for radius and for curvature, respectively, and the percentage of
total variance explained is printed over each graph. Figure 3 also reports, for
each considered principal component, the distributions of the corresponding
scores for subjects in the Upper group and subjects in the Lower-No group.
These scores may be used to discriminate the two groups of patients. In fact,
the distribution of FPCA scores have significantly different means and/or
variances for the two groups, as confirmed by appropriate t-tests and F-
tests for equality of means and variances. According to these differences,
Upper group patients tend to have wider, more tapered and less curved
ICA’s compared to patients belonging to the Lower-No group. Moreover the
variance of these geometrical features is significantly smaller in the Upper
group than in the Lower-No group. The Upper group is indeed very well
characterized in terms of the geometrical features represented by the first
two principal components of aligned radius and curvature profiles: using the
corresponding scores in order to discriminate the two groups of patients via
quadratic discriminant analysis (QDA), it is possible to correctly identify
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Figure 3: Estimates of the first (left) and the second (right) eigenfunctions
for radius (top) and curvature (bottom), and boxplots of the corresponding
scores for the two groups (red for the Lower-No group and blue for the Upper
group).

31 out of the 33 patients in the Upper group (see Sangalli et al., 2009, for
details). This gives strong statistical evidence in favor of the conjecture
explored within the project.

2.2 Identifying ICA with different morphological shapes by

k-mean alignment

The problem at hand might suggest the presence of more than one prototype
of morphological shape of ICA. To evaluate this possibility we use k-mean
alignment.

Top-right panels of Figure 1 give an indication of how many clusters
k should be considered, i.e., how many morphological shapes of ICA are
present in the datasest. The first panel reports the boxplot of the similarity
indexes between the unaligned centerlines and their estimated mean curve
(“unaligned”), and the boxplots of the similarity indexes between the k-mean
aligned centerlines and the associated k estimated templates, for k = 1, 2, 3.
The second panel displays the corresponding means of the similarity indexes
(orange circles linked by orange lines). The same plot also shows the means
of the similarity indexes that would be obtained by the simple k-mean algo-
rithm without alignment (black circles linked by black lines). As highlighted
by this figure, 1-mean alignment leads to a large increase in the similarities,
with respect to the similarities of the unaligned centerlines, but a further sig-
nificant gain can be obtained by setting k=2 in the aligning and clustering
procedure; instead, a choice of k=3 would not be justified by any additional
increase in the similarities. Thus the k-mean alignment algorithm suggests

11



Figure 4: 3D image of the estimated
templates of the 2 amplitude clus-
ters, found by 2-mean alignment of
ICA centerlines. The template of the
orange cluster is the prototype of an
Ω-shaped ICA (single-bend siphon),
whereas the one of the green cluster
is the prototype of an S-shaped ICA
(double-bend siphon).

Figure 5: 3D image of the estimated
templates of the 2 clusters found
by simple 2-mean clustering with-
out alignment of ICA centerlines.
The two templates have almost the
same morphological shape and differ
mainly in their phase. Clustering,
without joint alignment, is driven by
the predominant phase variability.

the presence of k = 2 amplitude clusters within the analyzed centerlines.
The bottom-left panels of Figure 1 show the results of 2-mean alignment of
these three-dimensional curves. Figure 4 gives a three-dimensional visual-
ization of the estimated templates of the two amplitude clusters. These two
templates indeed identify two prototypal shapes of ICA commonly used in
the medical literature, see e.g. Krayenbuehl et al. (1982), and the two clus-
ters can be described as the Ω-shaped ICA’s cluster (35 curves in orange),
whose siphons feature just one bend, and S-shaped ICA’s cluster (30 curves
in green), whose siphons are characterized by two bends. As displayed in the
right panel of Figure 5, the simple k-mean clustering of these data, without
joint alignment, leads instead to uninteresting classification results, failing
to identify ICA with different morphological shapes.

It is very interesting to note that the clustering found by 2-mean align-
ment seems indeed to be relevant for the aneurysmal pathology, in the sense
that there is statistical evidence of a dependence between cluster member-
ship and aneurysm presence and location. Looking at how subjects in the
Upper, Lower and No-aneurysm group have been allocated to respectively
to the Ω-shaped ICA’s and S-shaped ICA’s clusters, we obtain the following
conditional contingency table.

Upper group (33) Lower group (25) No-aneurysm (7)

Ω 70% 48% 0%

S 30% 52% 100%

Note that the 7 subjects in the No-aneurysm group all display S-shaped
ICA’s and that among the 33 patients in the Upper group only a minority
has an S-shaped ICA, whilst the majority (70%) has an Ω-shaped one.
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This prompted us to conjecture that the ICA syphons act as flow energy
dissipators. While S-shaped (double bend syphon) ICAs are expected to be
very effective in dissipating the flow energy, Ω-shaped (single-bend syphon)
ICA’s would not be as efficient. An higher flow energy downstream of Ω-
shaped ICA would result in an overloaded mechanical stress for downstream
arteries, creating more stimuli for aneurysm onset and development. More
results in support of this conjecture are reported in Passerini et al. (2012),
where the relationship between morphological and hemodynamical features,
and their impact on aneurysm pathology, is further explored.

3 Discussion

In this work, after the decoupling of phase and amplitude variabilities by
k-mean alignment, we focussed the reader attention on amplitude variabil-
ity and on clustering in the amplitude. This is because, in the study of
the aneurysmal pathology, the phase variability, which is mostly due to
the different dimensions of patients skulls, seems not to be relevant for the
pathology. In other applications, though, the clustering might be in the
phase, rather than in the amplitude, or even in both phase and amplitude.
It is thus important to mention that the alignment and clustering procedure
here described, beside correctly detecting true amplitude clusters, it is also
able to simultaneously disclose clustering structures present in the phase, as
illustrated for instance in Sangalli, Secchi, Vantini, and Vitelli (2010) and
in Bernardi et al. (2013b,a); Patriarca et al. (2013a), via both simulations
and applications to real data.
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