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Abstract

We propose a suitable model reduction paradigm – the certified reduced basis
method (RB) – for the rapid and reliable solution of parametrized optimal con-
trol problems governed by partial differential equations (PDEs). In particular, we
develop the methodology for parametrized quadratic optimization problems with
elliptic equations as constraint. Firstly, we recast the optimal control problem in
the framework of saddle-point problems in order to take advantage of the already
developed RB theory for Stokes-type problems. Then, the usual ingredients of
the RB methodology are provided: a Galerkin projection onto a low-dimensional
space of basis functions properly selected by an adaptive procedure; an affine para-
metric dependence enabling to perform competitive Offline-Online splitting in the
computational procedure; an efficient and rigorous a posteriori error estimate on
the state, control and adjoint variables as well as on the cost functional. Finally,
the reduction scheme is applied to some numerical tests confirming the theoretical
results and showing the efficiency of the proposed technique.

Keywords: reduced basis methods, parametrized optimal control problems, saddle-
point problems, model order reduction, PDE-constrained optimization, a posteriori
error estimate.

1 Introduction

The numerical solution of PDE-constrained optimization problems is usually compu-
tationally demanding, since it requires the solution of a system of PDEs arising from
the optimality conditions – the state problem, the adjoint problem and a further set of
equations ensuring the optimality of the solution. This task becomes even more chal-
lenging whenever the state system (or the cost functional to be minimized) depend on
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a set of parameters – which can specify physical or geometrical properties of interest –
and we are interested to solve an optimal control problem for many different scenarios
corresponding to different sets of parameter values. In this case, standard techniques
built over full-order discretization methods such as the finite element method may yield
an overwhelming computational complexity. Therefore, when performing the optimiza-
tion process for many different parameter values (many-query context) or when, for a
given new configuration, we need to compute the solution in a rapid way (real-time
context), the computational effort may be unacceptably high and, often, unaffordable.
Substantial computational saving becomes possible thanks to a reduced order model
(ROM) which relies on the reduced basis (RB) method [30, 25], which allows to solve
a parametrized PDE problem for any new value of the parameters (inexpensive Online
evaluation) once a set of (full-order) solutions have been computed for selected values
of the parameter set and stored (expensive Offline database construction).
We denote with µ ∈ D ⊂ R

p a p-vector of parameters representing either physical and/or
geometrical quantities of interest, while y represents the state variable, u the control
variable, J the objective functional, and E(·, ·;µ) the residual of the state equation.
The general form of a parametrized optimal control problem reads: given µ ∈ D,

min
y,u

J (y, u;µ) subject to E(y, u;µ) = 0. (OCPµ)

In this work we bound our analysis to the most typical linear/quadratic case, i.e. to op-
timal control problems featuring quadratric cost functionals and linear (scalar coercive)
elliptic PDEs as constraint.
From an abstract point of view, the mapping µ 7→ (y(µ), u(µ)) defines a smooth and
rather low-dimensional parametrically induced manifold M = {(y(µ), u(µ)) ∈ X : µ ∈
D}, where y(µ) and u(µ) are the state and control solutions of (OCPµ) and X is a
suitable functional space. In a classical discretization approach, after introducing an
approximation space XN of (typically very large) dimension N – e.g. a finite element
(FE) space – for every value of the parameters µ we are supposed to solve the whole
optimal control problem in order to compute the solution (yN (µ), uN (µ)), ignoring the
possibly smooth relation between parameters and solutions. A reduced (basis) approach
is premised e.g. upon a classical FE method and consists in a low-order approximation
of the truth manifold MN , based on (i) computation of some snapshots of the truth
manifold MN , and (ii) a Galerkin projection onto the space spanned by the precom-
puted snapshots.
The main ingredients of the reduced basis (RB) methods [25, 30] are the following
ones: (i) a rapidly convergent global approximation (Galerkin projection) onto a space
spanned by solution of the original problem at some selected parameters value; (ii) a
rigorous a posteriori error estimation procedures which provides inexpensive yet sharp
bounds for the error between the RB and the truth solution; (iii) an Offline/Online
computational procedure, i.e. an efficient splitting between a time-consuming and pa-
rameter independent Offline stage and an inexpensive Online calculation for each new
input/output evaluation.

Computational reduction strategies such as RB methods or proper orthogonal de-
composition (POD) have already been employed to speedup the solution of optimal
control, as well as other PDE-constrained optimization problems. First examples of
optimal control problems solved by exploiting computational reduction techniques have
been addressed by Ito and Ravindran, in the context either of (a preliminary version
of) the RB method [18] or of the proper orthogonal decomposition method [27]. Other
recent works dealing with optimal control problems through POD techniques have been
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addressed for instance by Kunisch and Volkwein [20] (and reference therein). More re-
cent contributions dealing with RB methods have been presented in both the elliptic
case by Quarteroni, Rozza and Quaini [26], Tonn, Urban and Volkwein [35], Grepl and
Kärcher [9], and the parabolic case by Dedè [5, 6]. However, in all these works the control
variable is low-dimensional, e.g. a set of real numbers that could be treated themselves
as parameters. We aim at developing a certified reduced framework that enables to han-
dle infinite dimensional (either distributed and/or boundary) control functions. In this
context, designing a strategy for the reduction of the complexity of the optimal control
problem (that is treated as a whole, with respect to all its variables simultaneously)
becomes mandatory.
Furthermore, an efficient and rigorous a posteriori error estimation, necessary both for
constructing the reduced order model and for measuring its accuracy, is still missing for
a large class of optimal control problems. For example, the a posteriori estimators for
the error in the cost functional and in the control variable proposed in some previous
works [5, 6] are efficient in practice but unfortunately lack of rigorousness, whereas the
estimator proposed in [35] is proved to be rigorous but not efficient. Only recently an
efficient and rigorous estimator has been proposed in the case of constant control func-
tion in [9]. In this work we aim at developing both efficient and rigorous a posteriori
error bounds in order to estimate, simultaneously, the errors on the optimal control, the
state variable and the cost functional.
With reference to the basic ingredients of the RB method previously introduced, we
point out that:

(i) in our approach the reduced scheme is built directly over the optimality con-
ditions system rather than on the original optimization problem, following an
optimize-then-discretize-then-reduce approach. Indeed, we first derive the opti-
mality system (optimize step), then we introduce its truth finite element (FE)
approximation (discretize step) and finally we provide the RB approximation for
the whole optimality system (reduce step).

(ii) the reduced basis is made of optimal solutions of the original problem, hence
the computation of each basis function requires the resolution of the FE truth
approximation; moreover, the reduced spaces are built for both the state, control
and adjoint variables.

(iii) to ensure the well-posedness of the RB approximation, and in order to provide an
a posteriori error estimate for the optimal control problem, we take advantage of
the RB theory developed for Stokes-type problems [22, 29, 32] by recasting the
optimal control problem in the framework of saddle-point problems;

(iv) we rely on the the affine parameter dependence assumption, which provides the
possibility to extract the parameter dependent components from our operators
and thus exploit an Offline/Online computational procedure.

The paper is structured as follows. In §2 we introduce the formulation of parametrized
linear/quadratic optimal control problems governed by elliptic coercive PDEs with affine
parameter dependence; after having recast the problem in the framework of saddle-
point problems, we briefly discuss its FE truth approximation, recalling the necessary
assumptions to ensure the well-posedness. In §3 we discuss the RB approximation and
the main features of the method, focusing on the corresponding stability condition for
the RB approximation. Then in §4 we deal with the a posteriori error estimation for
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the RB solution and functional based on the Babuška stability theory [2]. Finally, in §5
some numerical examples are presented.

2 Parametrized optimal control problems

In this section we introduce the parametrized optimal control problems we focus on
and, once recast in the framework of saddle-point problems, we prove a well-posedeness
result. Finally we introduce the truth FE approximation.

2.1 Problem definition

Let Ω ⊂ R
d (d = 1, 2, 3) be an open and bounded domain with Lipschitz bound-

ary Γ = ∂Ω, and D ⊂ R
p be a prescribed p-dimensional compact set of parameters

µ = (µ1, . . . , µp), with p ≥ 1. Let Y, U be two Hilbert spaces1 for the state and control
variables y and u respectively, while the Hilbert space Z ⊃ Y shall denote the observa-
tion space. Given another Hilbert space Q, we define the linear constraint equation in
the form

a(y, q;µ) = c(u, q;µ) + 〈G(µ), q〉 ∀q ∈ Q, (1)

where the bilinear form a(·, ·;µ) : Y × Q → R represents a linear elliptic operator, the
bilinear form c(·, ·;µ) : U ×Q → R expresses the action of the control and G(µ) ∈ Q′ is
a linear continuous functional acting as a forcing term. The quadratic cost functional
to be minimized is given by

J(y, u;µ) =
1

2
m(y − yd(µ), y − yd(µ);µ) +

α

2
n(u, u;µ), (2)

where α > 0 is a given constant, yd(x,µ) ∈ Z is a given parameter-dependent obser-
vation function, the bilinear form m(·, ·;µ) : Z × Z → R defines the objective of the
minimization while the bilinear form n(·, ·;µ) : U × U → R acts as a penalization term
for the control variable. The parametrized optimal control problem reads: for any given
µ ∈ D,

min
y,u

J(y(µ), u(µ);µ) s.t. (y(µ), u(µ)) ∈ Y × U solves (1). (3)

Let us specify the assumptions on the linear and bilinear forms introduced above. We
firstly remark that, since we are interested in considering second-order coercive elliptic
equation as constraint, we can assume without loss of generality that Q ≡ Y 2. Then, we
assume that the bilinear form a(·, ·;µ) is bounded and coercive over Y for any µ ∈ D,
i.e. there exists a constant α̃0 > 0 such that

α̃(µ) = inf
z∈Y

a(z, z;µ)

‖z‖2Y
≥ α̃0, ∀µ ∈ D. (4)

We assume that the bilinear form c(·, ·;µ) is symmetric and bounded, and the bilinear
form n(·, ·;µ) is symmetric, bounded and coercive. Moreover, we assume the bilinear

1Typically the state space Y is a closed subspace of H1(Ω) such that H1

0
(Ω) ⊂ Y ⊂ H1(Ω), while

the control space can be given for example by U = L2(ω), being ω a portion of the domain or of the
boundary. We do not treat here the case of control-constrained problems, i.e. problems where the
control space is a closed and convex set in a Hilbert space rather than a Hilbert space itself.

2We therefore limit ourselves to consider Galerkin variational problems as state equations rather
than Petrov-Galerkin problems. We remark that while at the continuous level it seems useless to keep
a different notation for the spaces Y and Q, it will be crucial in order to correctly construct the RB
approximation (as well as to generalize the method to the case Y 6= Q).
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form m(·, ·;µ) to be symmetric, continuous and positive in the norm induced by the
space Z. Holding these assumptions, the existence of a unique solution (y, u) ∈ Y × U

of the optimal control problem (3) can be easily proved by applying either Lions theory
[21] or Lagrange multiplier theory [17, 13]. Here however, in view of the application of
the RB method, we are interested in recasting the problem in the framework of saddle-
point problems.
Before addressing this issue, let us make an additional assumption, crucial to Offline-
Online procedures, by assuming the bilinear and linear forms, as well as the observation
function, to be affine3 in the parameter µ, i.e. for some finite Q̃∗, ∗ ∈ {a, c, n,m, g, d},
they can be expressed as

a(z, q;µ) =

Q̃a∑

q=1

Θ̃q
a(µ) a

q(z, q), c(v, q;µ) =

Q̃c∑

q=1

Θ̃q
c(µ) c

q(v, q),

m(y, z;µ) =

Q̃m∑

q=1

Θ̃q
m(µ)mq(y, z), n(u, v;µ) =

Q̃n∑

q=1

Θ̃q
n(µ)n

q(u, v), (5)

〈G(µ), q〉 =

Q̃g∑

q=1

Θ̃q
g(µ) 〈G

q, q〉, yd(x,µ) =

Q̃d∑

q=1

Θ̃q
d(µ) y

q
d(x),

for given smooth µ-dependent function Θ̃q
∗(µ) and continuous µ-independent bilinear

and linear forms aq(·, ·), cq(·, ·), mq(·, ·), nq(·, ·), nq(·, ·), Gq and functions yqd ∈ Z.

2.2 Saddle-point formulation

In order to formulate the optimal control problem (3) as a saddle-point problem, let
us denote with X = Y × U the product space between the state space Y and the
control space U , equipped with the inner product (x,w)X = (y, z)Y +(u, v)U and norm
‖ · ‖X =

√

(·, ·)X , being x = (y, u) ∈ X, w = (z, v) ∈ X. Furthermore, we define the
bilinear form A(·, ·;µ) : X ×X → R as

A(x,w;µ) = m(y, z;µ) + αn(u, v;µ), ∀x,w ∈ X,

and the bilinear form B(·, ·;µ) : X ×Q → R as

B(w, q;µ) = a(z, q;µ)− c(v, q;µ), ∀w ∈ X, q ∈ Q.

By defining the linear functional F (µ) = m(yd(µ), ·;µ) ∈ X ′, we can express the cost
functional as J(y, u;µ) = J (x;µ) + t(µ), where t(µ) = 1

2m(yd(µ), yd(µ);µ) and

J (x;µ) =
1

2
A(x, x;µ)− 〈F (µ), x〉. (6)

Since for any fixed µ ∈ D the constant term t(µ) does not affect the minimizer of
J(·, ·;µ), we can reformulate the problem (3) as follows: given µ ∈ D,

min
x∈X

J (x;µ) subject to B(x, q;µ) = 〈G(µ), q〉 ∀q ∈ Q. (7)

It is well known (see for instance [11, 33]) that the constrained optimization problem (7)
falls into the framework of saddle-point problems, for which the existence and uniqueness
of a solution is well-established by Brezzi theorem [4] under the following conditions:

3If this assumption does not hold, it could be recovered through the so-called Empirical Interpolation

Method (EIM); see [31] for an application to optimal control problems.
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(i) the bilinear form A(·, ·;µ) is continuous over X ×X:

γa(µ) = sup
x∈X

sup
w∈X

A(x,w;µ)

‖w‖X‖x‖X
< +∞, ∀µ ∈ D;

(ii) the bilinear form A(·, ·;µ) is coercive over X0 = {w ∈ X : B(w, q;µ) = 0 ∀q ∈
Q} ⊂ X, i.e. there exists a constant α0 > 0 such that

α(µ) = inf
x∈X0

A(x, x;µ)

‖x‖2X
≥ α0, ∀µ ∈ D;

(iii) the bilinear form B(·, ·;µ) is continuous over X ×Q

γb(µ) = sup
w∈X

sup
q∈Q

B(w, q;µ)

‖w‖X‖q‖Q
< +∞, ∀µ ∈ D;

(iv) the bilinear form B(·, ·) satisfies the inf-sup condition over X ×Q, i.e. there exists
a constant β0 > 0 such that

β(µ) = inf
q∈Q

sup
w∈X

B(w, q;µ)

‖w‖X‖q‖Q
≥ β0, ∀µ ∈ D; (8)

(v) the bilinear form A(·, ·;µ) is symmetric and non-negative over X.

Holding these assumptions, the optimal control problem has a unique solution x(µ) ∈ X

for any µ ∈ D, and that solution can be determined by solving the following saddle-
point problem (i.e. the optimality system): given µ ∈ D, find (x(µ), p(µ)) ∈ X × Q

such that
{

A(x(µ), w;µ) + B(w, p(µ);µ) = 〈F (µ), w〉 ∀w ∈ X,

B(x(µ), q;µ) = 〈G(µ), q〉 ∀q ∈ Q,
(9)

where p(µ) is the Lagrange multiplier (i.e. the adjoint variable) associated to the con-
straint. In fact, if we introduce the Lagrangian functional L(·;µ) : X ×Q → R

L(x, p;µ) = J (x,µ) + B(x, p;µ)− 〈G(µ), p〉, (10)

the equations in (9) are nothing but the first-order necessary (and sufficient4) optimality
conditions for the unconstrained optimization problem of finding saddle-points (x, p) ∈
X ×Q of the Lagrangian, i.e. (9) is equivalent to

∇L(x(µ), p(µ);µ)[w, q] = 0, ∀(w, q) ∈ X ×Q. (11)

Furthermore, we remark that the optimality system (9) is in fact the usual optimality
system given by the state equation, the adjoint equation and the optimality equation.
Let us now verify the fulfillment of the hypotheses (i)-(v).

Lemma 1. The bilinear forms A(·, ·) and B(·, ·) satisfy the Brezzi assumptions (i)-(v).

4We recall that in the linear/quadratic case the usual second order sufficient optimality condition
– requiring the second derivative of the Lagrangian functional to be coercive on the null space of the
linearized state equation [17, 13] – reduces to the assumption (ii) stated above.
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Proof It is sufficient to exploit the assumptions made on the bilinear forms a(·, ·;µ),
c(·, ·;µ), m(·, ·;µ) and n(·, ·;µ), see for instance [11]. In view of the design of a suitable
RB scheme it is useful to show here the proof of the fulfillment of the inf-sup condition
for the bilinear form B(·, ·). We exploit the fact that Y ≡ Q and the coercivity property
of the bilinear form a(·, ·;µ)

sup
0 6=w∈X

B(w, q;µ)

‖w‖X
= sup

0 6=(z,v)∈Y×U

a(z, q;µ)− c(v, q;µ)

(‖z‖2Y + ‖v‖2U )
1/2

≥
(z,v)=(q,0)

a(q, q;µ)

‖q‖Y
≥ α̃(µ)‖q‖Y = α̃(µ)‖q‖Q.

Note that the inequality β(µ) ≥ α̃(µ) plays a crucial role in the following.

Then, for any µ ∈ D, the optimal control problem (3) is equivalent to the saddle-
point problem (9) and the latter admits a unique solution (x(µ), p(µ)) ∈ X ×Q. More-
over, the solution satisfies the stability estimate

‖x(µ)‖X + ‖p(µ)‖Q ≤ C(‖F (µ)‖X′ + ‖G(µ)‖Q′) ∀µ ∈ D,

where C is a positive constant (possibly µ-dependent).
Let us finally observe that, thanks to the affine parameter dependence assumption

(5), an affine decomposition holds also for the bilinear and linear forms in (9), i.e. for
some finite Qa, Qb, Qf , Qg, they can be expressed as

A(x,w;µ) =

Qa∑

q=1

Θq
a(µ)A

q(x,w), B(w, p;µ) =

Qb∑

q=1

Θq
b(µ)B

q(w, p) (12)

〈G(µ), q〉 =

Qg∑

q=1

Θq
g(µ) 〈G

q, q〉, 〈F (µ), w〉 =

Qf∑

q=1

Θq
f (µ) 〈F

q, w〉, (13)

where the coefficients Θq(µ) and the µ-independent linear and bilinear forms are related
to those appearing in (5). For example, Qa = Q̃m+Q̃n, Θ

q
a(µ) = Θ̃q

m(µ) and Aq(x,w) =

mq(y, z) for 1 ≤ q ≤ Q̃m, while Θq+Q̃m
a (µ) = Θ̃q

n(µ) and Aq+Q̃m(x,w) = nq(u, v) for
1 ≤ q ≤ Q̃n.

2.3 Truth approximation

Let TN be a triangulation of the domain Ω, we denote V r
N the space of globally contin-

uous functions that are polynomials of degree r on the single elements of the triangula-
tion. Then we define Y N = Y ∩ V r

N , QN ≡ Y N and UN = U ∩ V r
N in such a way that

XN = Y N × UN ⊂ X, QN ⊂ Q are sequences of FE approximation spaces. Moreover
we indicate with N the global dimension – typically very “large” – of the product space
XN ×QN , i.e. N = NX +NQ where NX = NY +NU and NY = NQ.

Following an optimize-then-discretize approach – rather than a discretize-then-optimize
approach, see e.g. [10] – we introduce the truth Galerkin-FE approximation of the op-
timality system (9): given µ ∈ D, find (xN (µ), pN (µ)) ∈ XN ×QN such that

{

A(xN (µ), w;µ) + B(w, pN (µ);µ) = 〈F (µ), w〉 ∀w ∈ XN ,

B(xN (µ), q;µ) = 〈G(µ), q〉 ∀q ∈ QN .
(14)
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Provided Y N ≡ QN , the bilinear form A(·, ·;µ) remains continuous over XN × XN

and coercive over XN
0 = {w ∈ XN : B(w, q;µ) = 0 ∀q ∈ QN }, and the bilinear

form B(·, ·;µ) remains continuous and inf-sup stable over XN ×QN , i.e. there exists a
constant β0 > 0 such that

βN (µ) = inf
q∈QN

sup
w∈XN

B(w, q;µ)

‖w‖X‖q‖Q
≥ β0, ∀µ ∈ D. (15)

In particular, mimicking the proof of Lemma 1 we can easily show that βN (µ) ≥ α̃N (µ),
being α̃N (µ) the FE coercivity constant of the bilinear form a(·, ·;µ). Therefore, thanks
to Brezzi theory, also the FE approximation (14) is well-posed.

Let us now investigate the structure of the algebraic system associated to the Galerkin

approximation (14). We denote with {ϕ
j
∈ XN }NX

j=1, {φk ∈ QN }
NQ

k=1, the basis functions

of the spaces XN , QN , respectively. Then, (14) is equivalent to the linear system
(
A(µ) BT (µ)
B(µ) 0

)

︸ ︷︷ ︸

K(µ)

(
xN (µ)
pN (µ)

)

=

(
F(µ)
G(µ)

)

, (16)

where xN (µ) and pN (µ) denotes the vectors of the coefficients in the expansion of
x(µ) and p(µ), while, for example, the elements of the matrix A are given by Aij(µ) =
A(ϕ

j
, ϕ

i
;µ) for 1 ≤ i, j ≤ NX . Let us notice that also the matrices appearing in (16)

inherit the same affine decompositions (12), so that

A(µ) =

Qa∑

q=1

Θq
a(µ)A

q, B(µ) =

Qb∑

q=1

Θq
b(µ)B

q,

where the µ-independent matrices Aq, Bq represent the discrete counterparts of the
corresponding bilinear. Analogously for the vectors F(µ) and G(µ).

For the resolution of the linear system (16) several strategies can be employed (see
for instance [17, 1]): a popular alternative is based on the so called reduced Hessian
methods, in which block elimination on the state and adjoint variables yields a re-
duced5 system for the control variable whose matrix is the Schur complement of the
optimality system. A radically alternative strategy consists of using full space (also
called all-at-once) methods, where the optimality system is solved simultaneously for
the state, adjoint and control variables. Both approaches present advantages and disad-
vantages and require problem-tailored design of suitable preconditioners and iterative
linear solvers. Yet, beside the choice of the favorite solution algorithm, it is well known
that the numerical solution of an optimal control problem entails large computational
costs and may be very time-consuming already in the non-parametric case. Therefore,
when performing the optimization process for many different parameter values or else
when, for a new given configuration, the solution has to be computed in a rapid way,
reducing the computational complexity is mandatory. This is why we advocate using
suitable model order reduction techniques.

3 The reduced basis approximation

The idea of the RB method is to efficiently compute an approximation of (xN (µ),
pN (µ)) by using approximation spaces made up of well-chosen solutions of (14), i.e.

5Here reduced must not be understood in the sense of reduced order model.
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corresponding to specific choices of the parameter values. As already mentioned in the
introduction, the main assumption is that the solution of (14) depends smoothly on the
parameters, thus implying the parametric manifoldMN to be smooth and approximable
by selecting some snapshot FE solutions.

3.1 Construction of RB approximation spaces and stability prop-

erties

Let us suppose that we are given a set of hierarchical RB approximation subspaces
XN ⊂ XN and QN ⊂ QN , N ∈ [1, Nmax], made up of properly selected FE solutions.
By using Galerkin projection onto the low-dimensional subspaceXN×QN , we obtain the
following reduced basis approximation: given µ ∈ D, find (xN (µ), pN (µ)) ∈ XN ×QN

such that
{

A(xN (µ), w;µ) + B(w, pN (µ);µ) = 〈F (µ), w〉 ∀w ∈ XN ,

B(xN (µ), q;µ) = 〈G(µ), q〉 ∀q ∈ QN .
(17)

The existence, uniqueness and stability of the solution to problem (17) depend on the
properties of the RB spaces XN and QN , that are analyzed in the following.

Let us take, for givenN ∈ [1, Nmax], a finite set of parameter values SN = {µ1, . . . ,µN}
and consider the corresponding FE solutions {(xN (µn), pN (µn))}Nn=1, the so called
snapshots of the corresponding optimal control problem. We (naively) define the RB
spaces for the state, control and adjoint variables respectively as

YN = span{ζn := yN (µn), n = 1, . . . , N},

UN = span{λn := uN (µn), n = 1, . . . , N},

QN = span{ξn := pN (µn), n = 1, . . . , N},

(18)

and denote XN = YN ×UN . Let us discuss the well-posedness of the RB approximation
(17). While the continuity properties of the bilinear forms over the RB spaces are
automatically inherited from the parents spaces (i.e. the FE spaces), the coercivity
property of the bilinear form A(·, ·;µ) over

XN
0 = {w ∈ XN : B(w, q;µ) = 0 ∀q ∈ QN}

and the fulfillment of the inf-sup condition of B(·, ·;µ) are not granted and have to be
proved. In particular, the problem (17) has to satisfy the following RB inf-sup condition:
there exists β0 > 0 such that

βN (µ) = inf
q∈QN

sup
w∈XN

B(w, q;µ)

‖w‖X‖q‖Q
≥ β0, ∀µ ∈ D. (19)

The first idea in order to prove the fulfillment of (19) is to mimic the proof already used
for the continuous problem and its FE approximation, see Lemma 1. Unfortunately,
while in the continuous case (respectively for the FE approximation) the state and
adjoint spaces Y and Q (respectively Y N and QN ) are equivalent, with the choice (18)
we lose this property on the corresponding RB spaces, i.e. YN 6= QN .

In order to recover the stability of the RB approximation, we therefore need to
enrich in some way at least one of the RB spaces involved. This is not surprising when
dealing with the RB approximation of a saddle-point problem, since the structure of
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this class of problems – in particular the requirement to fulfill the inf-sup condition –
implies that building the RB approximation spaces solely from snapshots is not always
sufficient. In fact, there are at least two other examples where a similar treatment shows
to be necessary: the application of the RB method to parametrized Stokes equations
[28, 32, 29, 8] and to parametrized variational inequalities [12]. Two possible strategies
to achieve the stability of the approximation are either the use of a suitable supremizer
operator or the use of the same (properly defined) space for the state and adjoint
variables. While the first option can be seen as a trial to mimic what has been done in
the case of the Stokes problem, the second option follows naturally from the discussion
above and has been already considered in some previous works [5, 19] (even if not
specifically for this reason). We chose to pursue the second one, being aware that these
issues deserve further investigations in order to explore also other strategies, that might
be more convenient from the computational point of view.

We thus define the following aggregated space for the state and adjoint variables

ZN = span{ζn := yN (µn), ξn := pN (µ), n = 1, . . . , N}, (20)

and we let
YN = ZN , XN = YN × UN , QN = ZN . (21)

Lemma 2. If the reduced spaces XN and QN are chosen as in (20)-(21), then the bi-
linear form B(·, ·;µ) satisfies the inf-sup condition (19). Moreover we have the estimate

βN (µ) ≥ α̃N (µ), ∀µ ∈ D,

where α̃N (µ) is the coercivity constant associated to the FE approximation of the bilinear
form a(·, ·;µ).

Proof It is sufficient to follow the proof of Lemma 1. In fact,

βN (µ) = inf
q∈QN

sup
w∈XN

B(w, q;µ)

‖w‖X‖q‖Q
= inf

q∈ZN

sup
(z,v)∈ZN×UN

a(z, q;µ)− c(v, q;µ)

‖(z, v)‖X‖q‖Q

≥
(z,v)=(q,0)

inf
q∈ZN

a(q, q;µ)

‖q‖Q
= α̃N (µ) ≥ α̃N (µ) > 0.

Note that the choice z = q is allowed because both z and q belong to the space ZN .

The well-posedness of the RB approximation is ensured by the following

Proposition 1. If the reduced spaces XN and QN are chosen as in (20)-(21), then,
for any µ ∈ D, the RB approximation (17) has a unique solution (xN (µ), pN (µ)) ∈
XN ×QN depending continuously on the data.

Proof It suffices to check that the assumptions of Brezzi theorem hold. As already
mentioned, the continuity properties of the bilinear and linear forms over the RB space
are automatically inherited from the parents spaces (i.e. the FE spaces). The fulfillment
of the inf-sup condition of the bilinear form B(·, ·;µ) has been proved in Lemma 2, while
the fulfillment of the coercivity condition of the bilinear form A(·, ·;µ) can be proved
using the same arguments as in Lemma 1.
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3.2 Algebraic formulation and Offline-Online computational pro-

cedure

Let us now investigate the algebraic formulation associated to the enriched spaces in-
troduced in the previous section. Let {τj}

2N
j=1 = {ζj}

N
j=1 ∪ {ξj}

N
j=1 such that ZN =

span{τj , j = 1, . . . , 2N}, we can express the RB state, adjoint and control solutions as

xN (µ) =
3N∑

j=1

xNj(µ)σj , pN (µ) =
2N∑

j=1

pNj(µ)τj .

where σj = (τj , 0) for j = 1, . . . , 2N , while σj = (0, λj) for j = 2N + 1, . . . , 3N , in
such a way that XN = span{σj , j = 1, . . . , 3N}. Hence, given a parameter µ, the RB
solution of the problem (17) can be written as a combination of basis functions with
weights given by the following reduced basis linear system:

(
AN (µ) BT

N (µ)
BN (µ) 0

)

︸ ︷︷ ︸

KN (µ)

(
xN (µ)
pN (µ)

)

=

(
FN (µ)
GN (µ)

)

, (22)

where AN (µ) =
∑

Θq
a(µ)A

q
N , BN (µ) =

∑
Θq

b(µ)B
q
N and the submatrices Aq

N and B
q
N

are given by (AN )qij = Aq(σj , σi), (BN )qli = Bq(σi, τl), for 1 ≤ i, j ≤ 3N , 1 ≤ l ≤ 2N .
In order to state the connection between the RB linear system (22) and the FE

discretization (16), let us define the basis matrices Zz = (τ1 | · · · | τN ) ∈ R
N×2N , Zu =

(λ1 | · · · |λN ) ∈ R
N×N and

Zx =

(
Zz 0
0 Zu

)

∈ R
2N×3N , Z =





Zz 0 0
0 Zu 0
0 0 Zz



 ∈ R
3N×5N .

Then, the matrix KN = ZTKZ is given by

KN =

(
AN BT

N

BN 0

)

=

(
ZT
x AZx ZT

x B
TZz

ZT
z BZx 0

)

. (23)

Thus the matrix KN is still symmetric, with saddle-point structure and has dimension
5N × 5N . Although being dense (rather than sparse as in the FE case), the system
matrix is very small, with a size independent of the FE space dimension N ; for this
reason the RB linear system can be easily solved using direct solvers. Furthermore, to
keep under control the condition number of the matrix KN we have adopted the Gram-
Schmidt orthonormalization procedure [30]. In particular we apply the Gram-Schmidt
procedure separately on the basis functions of the space ZN and on the basis functions
of the space UN .

Thanks to the assumption of affine parameter dependence, we can decouple the
formation of the matrix KN (µ) in two stages, the Offline and Online stages, that enable
the efficient resolution of the system (22) for each new parameter µ.
In particular, in the Offline stage, performed only once, we first compute and store the
basis function {τi}

2N
i=1 and {λj}

N
j=1, and form the µ-independent matrices Aq

N , 1 ≤ q ≤
Qa, B

q
N , 1 ≤ q ≤ Qb and the vectors F q

N , 1 ≤ q ≤ Qf , G
q
N , 1 ≤ q ≤ Qg. The operation

count depends on N , Qa, Qb, Qf , Qg and N .
In the Online stage, performed for each new value µ, we use the precomputed matrices
A

q
N , Bq

N and vectors F q
N , Gq

N to assemble the (full) matrix KN and the vectors FN , GN
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appearing in (22); we then solve the resulting system to obtain (xN ,pN ). The Online
operation count depends on N , Qa, Qb, Qf , Qg but is independent of N . In particular
we need O((Qa + Qb)N

2) and O((Qf + Qg)N) operations to assemble matrices and
vectors, and O((5N)3) operations to solve the RB linear system (22).

3.3 Sampling strategy

For the construction of the hierarchical Lagrange RB approximation spaces – and thus
the optimal choice of the sample points µn, 1 ≤ n ≤ N – we rely on the sampling
strategy based on the standard greedy algorithm [30, 29]. Let Ξtrain ⊂ D be a finite
dimensional sample set, called the set of train samples. The cardinality of Ξtrain will
be denoted with ntrain, that we assume to be sufficiently large such that Ξtrain be a
good approximation of the set D (a finite dimensional surrogate for D). The idea of
the greedy procedure is that, starting with a train sample Ξtrain, we adaptively select
(in the sense of minimizing a suitable error indicator) N parameters µ1, . . . ,µN and
form the hierarchical sequence of reduced basis spaces XN , QN as in (20)-(21). At each
iteration N , the greedy algorithm appends to the previously retained snapshots that
particular candidate – over all candidate snapshots (xN (µ), pN (µ)), µ ∈ Ξtrain – which
is least well approximated by the “old” RB space XN−1 ×QN−1. The key ingredient of
this adaptive procedure is a rigorous, sharp and inexpensive estimator ∆N (µ) for the
RB error such that

(
‖xN (µ)− xN (µ)‖2X + ‖pN (µ)− pN (µ)‖2Q

)1/2
≤ ∆N (µ), (24)

where (xN (µ), pN (µ)) is the RB approximated solution associated with the generic
RB space XN × QN . The construction of the a posteriori error estimator ∆N will be
described in detail in §4.

Given such an estimator, we can state precisely the steps required by the greedy
algorithm. By denoting εtol a chosen tolerance for the stopping criterium, the greedy
sampling strategy can be implemented as reported in Algorithm 3.1.

S1 = {µ1}, compute (xN (µ1), pN (µ1) by solving the truth approximation (14)
U1 = span{uN (µ1)}, Z1 = span{yN (µ1), pN (µ1)}
X1 = Z1 × U1, Q1 = Z1

for N = 2 : Nmax do

µN = argmaxµ∈Ξtrain
∆N−1(µ)

εN−1 = ∆N−1(µ)
if εN−1 ≤ εtol

Nmax = N − 1
end if

compute (xN (µN ), pN (µN ) by solving the truth approximation (14)
SN = SN−1 ∪ {µN}
UN = UN−1 ∪ span{uN (µN )}, ZN = ZN−1 ∪ span{yN (µN ), pN (µN )}
XN = ZN × UN , QN = ZN

end for

Algorithm 3.1: Greedy algorithm for parametrized optimal control problems.

We underline again that the key point in the algorithm is to exploit an a posteriori error
bound ∆N (µ) efficiently computable, since at each iteration the algorithm requires to
evaluate ∆N (µ) for all µ ∈ Ξtrain.
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4 Rigorous a posteriori error estimates

In the RB framework a posteriori error estimates plays a crucial role in order to guarantee
the efficiency and reliability of the method. As regards efficiency, the error bound
is essential in the sampling procedure, by allowing an exhaustive exploration of the
parameters domain and a proper selection of the basis functions. As regards reliability,
at the Online stage for each new value of parameter µ ∈ D, the a posteriori estimator
permits to bound the error of the RB approximation with respect to the underlying
truth approximation.

Different strategies can be pursued in order to provide a posteriori error estimation
for parametrized optimal control problems. In [5] an efficient yet not rigorous estimator
has been proposed dealing with time-dependent optimal control problems, while recently
in [19] similar techniques combined with some previous results proposed in [36] have
been applied to the same problem considered here, providing an efficient and rigorous
estimator. In this work, we propose a new a posteriori error estimate that can be
easily obtained exploiting the structure of the optimality system. In particular, once
the saddle-point structure of the optimality system has been highlighted, one can apply
three different approaches, already proposed in the RB context: (i) to exploit Brezzi
stability theory [4]; (ii) to use the Nečas-Babuška stability theory [2, 23]; (iii) or to adopt
a penalty approach [11]. While the approaches (i) and (iii) have been only recently
applied in the RB context, respectively in [8] and [7], the second approach is quite
standard in the RB context [30]. We thus choose to pursue the latter, exploiting the
analogies with the RB scheme proposed for affinely parametrized Stokes equations in
[32, 29].

In §4.1 we construct a rigorous and inexpensive (i.e. N -independent) a posteriori
error bound ∆N (µ) such that

(
‖xN (µ)− xN (µ)‖2X + ‖pN (µ)− pN (µ)‖2Q

)1/2
≤ ∆N (µ). (25)

Then in §4.2, using the same ingredients, we construct a rigorous and inexpensive a
posteriori error bound ∆J

N (µ) for the error on the cost functional, i.e.

|J(yN (µ), uN (µ);µ)− J(yN (µ), uN (µ);µ)| ≤ ∆J
N (µ). (26)

4.1 Bound for the solution

Since saddle point problems can be regarded as a particular case of weakly coercive
(also called noncoercive) problems, the construction of the error estimator ∆N (µ) can
be carried out by using the Nečas-Babuška stability theory [2, 23].

Upon defining the space X = X ×Q, the bilinear form B(·, ·;µ) : X × X → R,

B(x,w;µ) := A(x,w;µ) + B(w, p;µ) + B(x, q;µ), (27)

and the linear continuous functional F(·;µ) : X → R,

F(w;µ) = 〈F (µ), w〉+ 〈G(µ), q〉, (28)

where x = (x, p) ∈ X and w = (w, q) ∈ X , problem (9) can equivalently be reformulated
as: given µ ∈ D,

find x ∈ X s.t: B(x,w;µ) = F(w;µ) ∀w ∈ X . (29)
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According to Nečas theorem, the problem (29) is well posed if for any µ ∈ D the bilinear

form B(·, ·;µ) is continuous and weakly coercive, i.e. there exists a constant β̂0 > 0 such
that6

β̂(µ) = inf
w∈X

sup
x∈X

B(x,w;µ)

‖x‖X ‖w‖X
≥ β̂0. (30)

Moreover, holding these assumptions, for any µ ∈ D the unique solution satisfies the
following stability estimate

‖x(µ)‖X ≤
1

β̂(µ)
‖F(·;µ)‖X ′ . (31)

Actually, since the bilinear forms A(·, ·;µ) and B(·, ·;µ) satisfy the hypotheses of Brezzi
theorem, it can be shown (see e.g. [37, 11]) that the the compound form B(·, ·;µ) is
bounded and weakly coercive. Similarly, the FE and RB approximations satisfy the
same inf-sup condition,

β̂N (µ) := inf
w∈XN

sup
x∈XN

B(x,w;µ)

‖x‖X ‖w‖X
≥ β̂N

0 > 0, ∀µ ∈ D, (32)

β̂N (µ) := inf
w∈XN

sup
x∈XN

B(x,w;µ)

‖x‖X ‖w‖X
≥ β̂N

0 > 0, ∀µ ∈ D, (33)

where XN = XN × QN and XN = XN × QN . Moreover the stability estimate (31)
holds also for the FE and RB approximations, in particular

‖xN (µ)‖X ≤
1

β̂N (µ)
‖F(·;µ)‖X ′ , ∀µ ∈ D. (34)

The construction of the a posteriori error estimation is based on two main ingredients
(as usual in RB context): an effective calculation of a lower bound for the Babuška inf-

sup constant β̂N (µ) and the calculation of the dual norm of the residual [24]. As
regards the first one, we suppose to have at our disposal a µ-dependent lower bound
β̂LB(µ) : D → R such that

β̂N (µ) ≥ β̂LB(µ) ≥ β̂0 > 0, ∀µ ∈ D, (35)

and the Online computational time to evaluate µ → β̂LB(µ) is independent of N . The

calculation of β̂LB(µ) can be carried out using the Natural Norm Successive Constraint
Method, an improvement of the SCM algorithm specifically tailored for noncoercive
problems, see e.g. [14, 29] for a detailed explanation of this procedure as well as for
many numerical tests.
As regards the second ingredient, the residual r(·;µ) ∈ (XN )′ is defined as

r(w;µ) := F(w;µ)− B(xN ,w;µ) ∀w ∈ XN .

Finally, let us define the error between the “truth” FE approximation and the RB
approximation, e(µ) := x

N (µ)−xN (µ). We can now formulate an a posteriori estimator
for the error e(µ).

6In the following we will refer to the inf-sup constant β̂(µ) (30) as the Babuška inf-sup constant,
in contrast to the Brezzi inf-sup constant β(µ) (8); similar notation will be used for their FE and RB
approximations.
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Proposition 2. For any given µ ∈ D, N ∈ [1, Nmax], and β̂LB(µ) satisfying (35), we
define

∆N (µ) =
‖r(·;µ)‖X ′

β̂LB(µ)
. (36)

Then, ∆N (µ) is an upper bound for the error e(µ),

‖e(µ)‖X ≤ ∆N (µ), ∀µ ∈ D, ∀N ∈ [1, Nmax]. (37)

Proof The problem statement for the FE solution x
N (µ) and for the RB solution

xN (µ) and the bilinearity of B(·, ·;µ) imply that the error e(µ) statisfy the following
equation: B(e(µ),w;µ) = r(w;µ), ∀w ∈ XN . Then it suffices to apply the stability
estimate (31) and exploit the lower bound (35) for the Babuška inf-sup constant.

As usual (see for instance [30, 29]), the computation of the dual norm of the residual
can be decomposed in two stages: an expensive, µ-independent Offline stage and an
inexpensive Online stage. As a result, given µ ∈ D, the evaluation of ‖r(·;µ)‖X ′ requires
O(25N2Q2

B + 5NQBQf +Q2
F ) operations, independent of N .

4.2 A posteriori error bound for the cost functional

To develop an a posteriori error bound on the cost functional J(y, u;µ), we firstly observe
that this is equivalent to provide an estimator for the error on J (x;µ), since J (·;µ) and
J(·, ·;µ) differ only in a constant term once µ ∈ D is fixed. Although the cost functional
J (·;µ) is a quadratic functional, thanks to the structure of the optimal control problem
we can avoid to use the techniques of error estimation for quadratic outputs already
proposed in the RB context, see for instance [34, 15, 22]. Rather, following the work
in [5] we may use a goal-oriented analysis, a standard tool for the development of a
posteriori error estimates for optimal control problems.

The error on the cost functional evaluated with respect to the FE and RB approxi-
mations will be denoted with

JN (µ)− JN (µ) = J(yN (µ), uN (µ);µ)− J(yN (µ), uN (µ);µ).

Recalling the definition of the Lagrangian functional (10), we observe that we can use
a different formalism to express the gradient of the Lagrangian as

∇L(x;µ)[w] = B(x,w;µ)− F(w;µ), ∀w ∈ X . (38)

Then, we can show the following result.

Proposition 3. For any given µ ∈ D, N ∈ [1, Nmax], and β̂LB(µ) satisfying (35), we
define

∆J
N (µ) =

1

2

‖r(·;µ)‖2X ′

β̂LB(µ)
. (39)

Then, ∆J
N (µ) is an upper bound for the error on the cost functional,

|JN (µ)− JN (µ)| ≤ ∆J
N (µ), ∀µ ∈ D, ∀N ∈ [1, Nmax]. (40)

Proof The RB error on the cost functional can be rewritten as (see e.g. [3, 5])

JN (µ)− JN (µ) =
1

2
∇L(xN (µ);µ)[xN (µ)− xN (µ)].
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Thanks to (38) we have that

∇L(xN ;µ)[xN − xN ] = B(xN , xN − xN ;µ)− F(xN − xN ;µ) = r(xN − xN ;µ).

By exploiting the continuity of the residual r(·;µ) and the estimate (37) we obtain the
required bound (40).

Note that the error estimator ∆J
N (µ) does not need any further ingredients besides

those already available: the efficient computation of the dual norm of the residual and
the calculation of a lower bound for the Babuška inf-sup constant.

5 Numerical examples

In this section we discuss three numerical examples in order to verify the properties
– and to test the performances – of the proposed RB scheme. In the cases in which
we consider a parametrized geometry we firstly define an “original” problem (subscript
o) posed over a parameters dependent domain, then we trace back the problem to a
reference domain through suitable affine geometrical mappings (see [30, 29, 22] for the
details) in order to recover the formulation (9). The implementation of the method has
been carried out in the Matlab R© environment using an enhanced version of the rbMIT
library [16]7.

5.1 Test 1: distributed optimal control for the Laplace equation

with geometrical parametrization

We consider an “original” domain Ωo(µ) = Ω1
o ∪ Ω2

o(µ) given by a rectangle separated
in two subdomains, with the first one parameter independent, as shown in Figure 1.
We consider two parameters µ = (µ1, µ2), being µ1 related to the geometry of Ω2

o

while µ2 is such that yd(µ) = 1 in Ω1
o and yd(µ) = µ2 in Ω2

o(µ), i.e. the observation
function is parameter dependent (constant on each subdomain). The set spanned by
the parameters is given by D = [1, 3.5]× [0.5, 2.5].

Ω1
o Ω2

o(µ)

(1 + µ1, 0)

(1 + µ1, 1)(1, 1)(0, 1)

(0, 0) (1, 0)

Figure 1: Test 1: “original” domain Ωo(µ).

We consider the following optimal control problem:

min
yo.uo

J(yo(µ), uo(µ);µ) =
1

2
‖yo(µ)− yd(µ)‖

2
L2(Ωo)

+
α

2
‖uo(µ)‖

2
Uo
,

s.t.

{

−∆yo(µ) = uo(µ) in Ωo(µ),

yo(µ) = gD on Γo
D(µ) = ∂Ωo(µ),

(41)

7Since the problems we deal with are of small size, all the required linear systems (in particular in
the Offline stage) will be solved using the direct solver provided by Matlab. All the computations are
performed on a personal computer with an Intel Core i5-2400S CPU and 16 GB of RAM.
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where yo and uo are the state and control functions defined on the original domain,
while the Dirichlet boundary condition is given by gD = 1. We denote with Yo and Uo

the spaces H1
0 (Ωo) and L2(Ωo) respectively, moreover Qo ≡ Yo. By tracing the problem

back to a reference domain Ω = Ωo(µref) (with the arbitrary choice µref = (1, 1)) we
obtain the parametrized formulation (9) where the affine decompositions (12) (13) hold
with Qa = 2, Qb = 3, Qf = 2, Qg = 3.

Computations are based upon a finite element approximation on P
1 spaces for the

state, control and adjoint variables; the total number of degrees of freedom, i.e. the
dimension of the space XN = Y N × UN × QN , is N = 5982, obtained using a mesh
of 4 136 triangular elements. The regularization parameter is kept fixed and equal to
α = 0.01. In Figure 2 a representative solution for a fixed value of the parameters is
given.

Figure 2: Test 1: representative solution for µ = (0.6, 3); on the left the state variable yN ,
on the right the optimal control uN .

1 1.5 2 2.5 3 3.5
0

0.05

0.1

β̂LB(µ)

β̂N (µ)

β̂N (µ)

Figure 3: Test 1: lower bound for the Babuška inf-sup constant β̂N (µ) as a function of the
geometrical parameter µ1 (on the x-axis).

With a fixed tolerance εtol = 5 · 10−4, Nmax = 12 basis functions have been selected
by the greedy algorithm, thus resulting in a RB linear system of dimension 60× 60. In
Figure 3 we show the lower bound for the Babuška inf-sup constant β̂N (µ) (defined in
(32)) obtained using the natural norm SCM algorithm, which requires in this case the
solution of 10 + 2QB eigenproblems of dimension N (see [14, 29] for further details).

In Figure 3 the RB Babuška inf-sup constant β̂N (µ) defined in (33) is also reported,

in particular we can observe that β̂N (µ) ≥ β̂N (µ), thus indicating the good stability
property of the RB approximation.
Furthermore, as regards the stability properties, in Figure 4 we give some numerical
results on the discrete Brezzi inf-sup constants βN (µ) and βN (µ), also compared with
the coercivity constant α̃(µ) of the bilinear form a(·, ·;µ) in the state equation. In
Figure 4a we report some results obtained in a preliminary numerical investigation
without any enrichment option, i.e. using different RB spaces YN and QN (see §3.1).
We compare the discrete Brezzi inf-sup constant and coercivity constant for the FE
and RB approximation. We can confirm that, as claimed in §2.3 (see also Lemma 1),
βN (µ) ≥ α̃N (µ). Moreover we observe that

βN (µ) ≥ α̃N (µ) ≥ βN (µ) ≥ α̃N (µ),

hence (as expected) we cannot bound from below the RB inf-sup constant βN (µ) with
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similar quantities related to the FE approximations. We note also that in this case the
RB coercivity constant α̃N (µ) is in fact an inf-sup constant, since we are approximating
the state equation with a Petrov-Galerkin scheme, i.e.

α̃N (µ) = inf
q∈QN

sup
y∈YN

a(y, q;µ)

‖q‖Q‖y‖Y
, ∀µ ∈ D.

1 1.5 2 2.5 3 3.5

0.3

0.4

0.5

0.6

βN (µ)

α̃N (µ)

βN (µ)

α̃N (µ)

1 1.5 2 2.5 3 3.5

0.4

0.5

0.6

βN (µ)

α̃N (µ)

βN (µ)

α̃N (µ)

(a) (b)
Figure 4: Test 1: comparison of the FE and RB discrete Brezzi inf-sup constant β(µ) and
coercivity constant of the state equation α̃(µ). The two quantities are given as function only of
µ1, since µ2 does not appear in the affine expansion of B(·, ·;µ). (a) No enrichment: YN 6= QN .
(b) Aggregated space: YN = QN = ZN with ZN defined as in (20).

In Figure 4b we compare the RB stability factors obtained using the aggregated space
ZN for the state and adjoint variables. In this case we have a numerical evidence of the
result proven in Lemma 2, that is

βN (µ) ≥ α̃N (µ) ≥ α̃N (µ) > 0, ∀µ ∈ D.

Finally in Figure 5 we compare the a posteriori error bound ∆N (µ) with the true error
‖xN (µ)− xN (µ)‖X and the a posteriori error bound ∆J

N (µ) with the true error on the
cost functional |JN (µ)− JN (µ)|.

As regards the computational performances, the Offline computational time is equal
to t

offline
RB = 139s, the (average) Online evaluation time is tonlineRB = 8.5 ms comprehen-

sive of the evaluation of the a posteriori error estimation; we remark that most of the
Offline time is spent performing the SCM and greedy algorithms, the former requiring
around 88 seconds while the latter requiring around 46 seconds. The evaluation time
for the FE approximation is equal to about tonlineFE = 1 s taking into account the time
needed for assembling the FE matrices and vectors.

5.2 Test 2: distributed optimal control for a Graetz convection-

diffusion problem with physical parametrization

As a second example we consider a distributed optimal control problem for the Graetz
conduction-convection equation. With respect to the previous test we consider here a
simple physical parametrization instead of a geometrical one; in particular, µ1 will be the
Péclet number, while µ2 and µ3, similarly to the previous example, are such that yd(µ) =
µ2 in Ω̂1 and yd(µ) = µ3 in Ω̂2, where the spatial domain (shown in Figure 6) is the
rectangle Ω = [0, 2.5]× [0, 1]. The parameter domain is D = [3, 20]× [0.5, 1.5]× [1.5, 2.5].
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Figure 5: Test 1. Average and max computed errors and estimate between the truth FE
solution and the RB approximation, for N = 1, · · · , Nmax (left). Average computed errors and
estimate ∆J

N (µ) between JN (µ) and JN (µ), for N = 1, · · · , Nmax (right). Here Ξtrain is a
sample of size ntrain = 1000 and Nmax = 12.

Ω̂1 Ω̂2

(2.5, 0)

(2.5, 1)(1, 1)(0, 1)

(0, 0) (1, 0)

ΓN

ΓD2

ΓD2ΓD1

ΓD1

ΓD1

Figure 6: Test 2: domain Ω (the observations subdomains are denoted with Ω̂1 and Ω̂2).

We consider the following optimal control problem:

min
y,u

J(y, u;µ) =
1

2
‖y(µ)− yd(µ)‖

2
L2(Ω̂)

+
α

2
‖u(µ)‖2L2(Ω),

s.t.







−
1

µ1
∆y(µ) + x2(1− x2)

∂y(µ)

∂x1
= u(µ) in Ω

1

µ1
∇y(µ) · n = 0 on ΓN

y(µ) = 1 on ΓD1, y(µ) = 2 on ΓD2,

(42)

where y(µ) is the temperature field, the control u(µ) acts as a heat source and Ω̂ =
Ω̂1 ∪ Ω̂2 is the observation domain. The problem admits an affine decomposition with
Qa = 1, Qb = 2, Qf = 2, Qg = 2 components. For the computation we fixed α = 0.01
and used piecewise linear finite elements for the FE approximation, the dimension of
the global FE space XN used is N = 10 494.
With a fixed tolerance εreltol = 10−4, Nmax = 19 basis functions have been selected, thus
resulting in a RB linear system of dimension 95 × 95. In Figure 7a we show the lower
bound for the Babuška inf-sup constant β̂N (µ) obtained using the natural norm SCM
algorithm; SCM requires in this case the solution of 28 + 2QB eigenproblems. Once
again we can observe that β̂N (µ) ≥ β̂N (µ), thus indicating the good stability property
of the RB approximation.
In Figure 7b we compare the Brezzi inf-sup constants βN (µ) and βN (µ) and the coerciv-
ity constants α̃N (µ) and α̃N (µ) of the bilinear form a(·, ·;µ). As in the previous example
we have confirmed numerically that βN (µ) ≥ α̃N (µ) ≥ α̃N (µ). Finally in Figure 8 we
compare the a posteriori error bound ∆N (µ) with the true error ‖xN (µ) − xN (µ)‖X
and the a posteriori error bound ∆J

N (µ) with the true error on the cost functional
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Figure 7: Test 2: stability factors as functions of the physical parameter µ1. (a) Lower bound
for the discrete Babuška inf-sup constant β̂N (µ). (b) Comparison of discrete Brezzi inf-sup
constant β(µ) and coercivity constant α̃(µ) for the FE and RB approximations.

Table 1: Numerical details for Test 2. The RB spaces have been built by means of the greedy
procedure and N = 19 basis functions have been selected.

Approximation data Computational performances

Number of FE dof N 10 494 Linear system size reduction 110:1
Number of parameters P 3 Offline total time 417 s
Error tolerance greedy εtol 10−4 Offline SCM time 315 s
Affine operator components QB 3 Offline greedy time 90 s

|JN (µ)− JN (µ)|.
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Figure 8: Test 2. Average and max computed errors and bound between the truth FE solution
and the RB approximation (left). Average true error and bound ∆J

N (µ) between JN (µ) and
JN (µ) (right).

As regards the computational performances, while the average Online time needed
to compute and certify the RB solution is approximately equal to the one reported in
the previous test, the Offline computational time required to build all the ingredients is
now equal to t

offline
RB = 417s. Notice that here performing the SCM algorithm requires

around the 75% of the overall Offline time, a percentage that can further increase rapidly
when the number of parameters P , the number of terms QB in the affine decomposition
or the number of FE degrees of freedom N increase. In the next example we will discuss
an alternative strategy for the construction of the lower bound β̂LB(µ), in order to avoid
this computational bottleneck in the Offline stage.
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Figure 9: Test 3: “original” domain Ωo(µ).

5.3 Test 3: boundary optimal control for a Graetz flow with

both physical and geometrical parametrization

This third example deals again with a control problem for a Graetz flow, however this
time we consider a boundary control instead of a distributed one and we consider both
a geometrical and physical parametrization. The original domain is shown in Figure
9, we consider 3 parameters: µ1 is the Péclet number, µ2 is the geometrical parameter
(the length of second portion of the channel) and µ3 is such that yd(µ) = µ3χΩ̂o

,

being Ω̂o(µ) the observation domain Ω̂o(µ) ⊂ Ω2
o(µ). The parameter domain is D =

[6, 20]× [1, 3]× [0.5, 3].
We consider the following optimal control problem

min
yo,uo

J(yo(µ), uo(µ);µ) =
1

2
‖yo(µ)− yd(µ)‖

2
L2(Ω̂o)

+
α

2
‖uo(µ)‖

2
Uo
,

s.t.







−
1

µ1
∆yo(µ) + xo2(1− xo2)

∂yo(µ)

∂xo1
= 0 in Ωo(µ)

yo(µ) = 1 on Γo
D

1

µ1
∇yo(µ) · n = uo(µ) on Γo

C(µ)

1

µ1
∇yo(µ) · n = 0 on Γo

N (µ),

(43)

where we impose constant Dirichlet conditions on the inlet boundary of the channel, ho-
mogeneous Neumann condition on the outlet boundary and finally a Neumann condition
equal to the control function uo on Γo

C . We denote with Yo and Uo the spaces H1
0 (Ωo)

and L2(Γo
C) respectively, moreover Qo ≡ Yo. By tracing the problem back to a reference

domain we obtain the parametrized formulation (9) where the affine decompositions
(12) (13) hold with Qa = 1, Qb = 5, Qf = 1, Qg = 4.

1 1.5 2 2.5 3

0

0.5

1

1.5

Figure 10: Test 3: representative solution for µ = (12, 2, 2.5). We report the state variable
yN (left), the adjoint variable pN (middle) and the optimal control uN on Γo

C (right); thanks
to the symmetry of the problem the control variable has the same values on the boundaries
ΓC ∩ {x2 = 0} and ΓC ∩ {x2 = 1}.

As mentioned in §5.2, in order to avoid the time-consuming SCM algorithm, we seek
for an alternative strategy to compute a lower bound of the inf-sup constant β̂N (µ).
As recently proposed in [22], we consider – rather than a rigorous lower bound – a
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Figure 11: Test 3: comparison between lower bound and interpolant surrogate for the discrete
Babuška inf-sup constant β̂N (µ). On the left: β̂N (µ) as a function of µ1, (µ2, µ3) = (1.5, 3)
fixed; on the right: β̂N (µ) as a function of µ2, (µ1, µ3) = (9, 1) fixed.

Table 2: Numerical details for Test 3 (α = 0.07). Comparison between the use of SCM
algorithm and the interpolation procedure.

SCM algorithm Interpolation surrogate

Number of eigenvalue problems 239 120
“Lower bound” computation time 3523 s 24 s

Greedy algorithm comput. time 349 s 175 s
Number of RB functions N 36 27
Linear system size reduction 39:1 53:1

surrogate of β̂N (µ) given by an interpolation procedure. We (arbitrary and a priori)
select a (possibly small) set of interpolation points Ξβ ⊂ D and compute the inf-sup

constant β̂N (µ) by solving the related eigenproblem for each µ ∈ Ξβ . Then we compute

a suitable interpolant surrogate β̂S(µ) such that

β̂S(µ) = β̂N (µ), ∀µ ∈ Ξβ .

Depending on the number of parameters and their range of variation, different inter-
polation methods can be employed. Here we use a simple linear interpolant and an
equally spaced grid of interpolation points in the parameter space. Actually, since the
parameter µ3 does not affect the value of β̂N (µ), we perform just a two dimensional
interpolation with respect to the parameters µ1 and µ2.

We present here a first test comparing the performances of this alternative strategy
with respect to the SCM algorithm. We fixed α = 0.07 and used piecewise linear fi-
nite elements for the FE approximation, the dimension of the global FE space XN is
N = 7156. In Figure 11 we show a comparison between the lower bound for the Babuška
inf-sup constant β̂N (µ) obtained using the SCM algorithm and the interpolant surro-

gate β̂S(µ); SCM takes around 1 hour to be performed, while the computation of the
interpolant surrogate needs only 24 seconds using 120 sampling points in the parameter
space. Furthermore, the interpolant surrogate is a much sharper approximation of the
true FE inf-sup constant – despite not being a rigorous lower bound – thus resulting
also in a sharper a posteriori error estimate (see Figure 12). For this reason, with a
fixed tolerance εreltol = 5 · 10−4, the greedy algorithm selects Nmax = 36 basis functions
when using the lower bound given by the SCM, while only Nmax = 27 basis functions
are selected when employing the interpolant surrogate. A detailed comparison of the
computational costs is given in Table 2.

Finally, we have performed a further test using a smaller regularization constant
α = 8 · 10−3 and a finer triangulation of the spatial domain, resulting in a global FE
space XN of dimension N = 22 792. We use β̂S(µ) as surrogate for the lower bound

22



5 10 15 20 25 30 35

10
4

10
1

10
−2

10
−5

N

average error SCM

∆N average SCM

average error INTERP

∆N average INTERP

10 20

10
2

10
−3

10
−8

10
−12

N

average error

∆J
N average
max error

(a) (b)
Figure 12: Test 3 (α = 0.07). (a) True error and error estimate between the FE solution and
the RB approximation: the quantities in red are obtained using the interpolant surrogate β̂S(µ)
instead of β̂LB(µ). (b) Average true error and bound ∆J

N (µ) between JN (µ) and JN (µ) using
β̂S(µ) in the estimate.
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Figure 13: Test 3 (α = 8 · 10−3). (a) Interpolant surrogate for the discrete Babuška inf-sup
constant β̂N (µ) as a function of µ1, (µ2, µ3) = (1.5, 3) fixed. (b) Average and max true errors
and estimate on the solution variables.

of the FE inf-sup constant β̂N (µ): with 120 equally distributed interpolation points we

obtain a sharp approximation of β̂N (µ) (see Figure 13a), yet requiring less than two
minutes to be computed in the Offline stage (all the numerical details are given in Table
3). The greedy algorithm selects Nmax = 35 basis functions in order to guarantee the
relative error of the RB solution (with respect to the FE approximation) to be under
the desired tolerance εreltol = 5 · 10−4. In Figure 13b we compare the a posteriori error
bound ∆N (µ) with the true error ‖xN (µ)− xN (µ)‖X .

6 Conclusions

In this work we have developed a reduced basis framework for the efficient solution
of parametrized linear-quadratic optimal control problems governed by elliptic coercive
PDEs. A rigorous well-posedness analysis has been carried out by exploiting a suitable
saddle-point formulation. On the other hand, the certified error bounds on the solution

Table 3: Numerical details for Test 3 (α = 8 · 10−3).

Approximation data Computational performances

Number of FE dof N 22 792 Linear system size reduction 130:1
Number of parameters P 3 RB solution 2.5 ms
Affine operator components QB 6 Offline interpolation time 102 s
Number of RB functions N 35 Offline greedy time 860 s
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variables as well as on the cost functional have been obtained by recasting the problem
in the form of weakly coercive problems and then applying standard arguments based
on Nečas-Babuška stability theory. Finally, we have also provided a full Offline-Online
decomposition strategy ensuring the Online efficiency of the method. Our numerical
tests showed the possibility to obtain large computational savings (a speedup of at least
two order of magnitude) in the Online stage with respect to classical high-fidelity dis-
cretization methods. In particular, the proposed error estimators demonstrate to be
sharp enough to enable an efficient exploration of the parameter space through the
Greedy algorithm, thus resulting in the selection of a reasonably small number of basis
functions.
A possible drawback resides in the Offline stage, that demands for large computational
resources. To alleviate this problem, we have provided a detailed (empirical) analy-
sis of the computational costs required by the main operations to be performed, i.e.
the computation of a lower bound for the inf-sup constant (via the SCM algorithm)
and the construction of the RB spaces through the Greedy algorithm. Since the main
computational effort is required by the former, we have proposed the use of a suitable
interpolant surrogate instead of a rigorous lower bound. This alternative strategy is
signicantly more efficient, resulting in both a substantial computational saving in in the
Offline stage and a sharper approximation of the true stability factor.
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