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Abstract

Deep Learning-based Reduced Order Models (DL-ROMs) constitute a consolidated class of techniques that
aim at providing accurate surrogate models for complex physical systems described by Partial Differential
Equations (PDEs) by nonlinearly compressing the solution manifold into a handful of latent coordinates.
Until now, the development of DL-ROMs mainly focused on physically parameterized problems. Within
this work we provide a novel extension of these architectures to problems featuring geometrical variability
and parametrized domains, namely, we propose Continuous Geometry-Aware DL-ROMs (CGA-DL-ROMs).
Specifically, we emphasize that the space-continuous nature of the proposed architecture matches the neces-
sity to deal with multi-resolution datasets, which are quite common in the case of geometrically parametrized
problems. Moreover, CGA-DL-ROMs are endowed with a strong inductive bias that makes them aware of
geometrical parametrization, thus enhancing both the compression capability and the overall performance
of the architecture. Within this work we justify our findings through a suitable theoretical analysis and
we experimentally validate our claims by means of a series of numerical tests encompassing physically-and-
geometrically parametrized differential problems ranging from the unsteady Navier-Stokes equations for fluid
dynamics to advection-diffusion-reaction equations for mathematical biology.

1. Introduction

Nowadays, Partial Differential Equations (PDEs) constitute the most widely used tool to describe complex
physical systems from a mathematical viewpoint and, for this reason, they are of substantial importance in
science and engineering, thus finding application in diverse areas ranging from life sciences to finance and
structural mechanics. Since the analytical solution of PDEs is not in general available in a closed form, in the
last two centuries several efforts were directed towards the development of numerical methods that strive to
approximate the exact solution by means of Full Order Models (FOMs). The latter involve the discretization
of the underlying governing equations on a mesh of step size h > 0, thus yielding Nh degrees of freedom (dofs).
We emphasize that FOMs feature an outstanding accuracy but require substantial computational resources,
for instance when tackling time-dependent problems, nonlinear terms and in the case of a large number of
dofs. The latter constitute a major drawback, especially when dealing with many query applications involving
parametric PDEs – e.g., uncertainty quantification, sensitivity analysis and optimal control – which entail
the repeated solution of the numerical problem for different configurations of the parameters’ instance.

ROMs: an historical perspective. In the last decades, the need of real-time simulations in many-query frame-
works paved the way to the development of Reduced Order Models (ROMs), which provide fast and efficient
alternatives to FOMs while retaining the most essential features of the underlying physical problem. Specif-
ically, ROMs were originally proposed for problems depending on a set of physical parameters µ ∈ P –
and possibly the time variable t ∈ T – where P, T are compacts finite-dimensional sets. Among the most
adopted ROM techniques, we mention classical reduced basis methods (RB) [46, 3, 2, 4], which seek a low
dimensional representation of the solution manifold through linear subspaces. However, we mention that the
trial manifold entailed by RB methods is global and linear: for this reason, it reproduces inefficiently the local
features and the nonlinearities in the solution manifold. Indeed, the speedup of classical RB methods (with
respect to the corresponding FOM) is negligible in the case of real-world applications involving nonlinear
and non-affine terms. The limitations of classical RB methods paved the way to the development of deep
learning-based alternatives. As a matter of fact, in the literature has emerged a wide variety of deep learning



based approaches that include, but are not limited to, Neural Operators [23, 36, 30, 53, 25, 31, 32, 8, 20],
DL-ROMs [14, 15, 43, 42] and transformer architectures [18, 28]. Both Neural Operators and DL-ROMs
are equipped with a strong theoretical background that backs up their outstanding approximation capabil-
ities [37, 26, 25, 23, 7, 11]. On the other hand, even though transformers and attention-based mechanisms
[22, 19, 18] provide state-of-the-art prediction accuracy and grant us the possibility to tackle large datasets,
they are less interpretable and not fully understood from a theoretical viewpoint as only some architectures
are supplied with a comprehensive theoretical study [9, 45]. Nonetheless, we stress that Neural Operators
often consist in complex models featuring a high-dimensional latent space; conversely, DL-ROMs both ac-
curately reproduce the variability of the solution manifold and entail a profound nonlinear dimensionality
reduction, ultimately resolving the underlying dynamics into a handful of latent coordinates.

Surrogate models for geometrically parameterized problems. Recently, many authors’ focus shifted towards
the development of ROMs for challenging differential problems characterized by geometrical parameters and
parametric domain shapes. For instance, classical reduced basis (RB) methods were extended to cope with
geometrically parametrized problems [39, 41, 27, 21, 49, 1]. Alternatively, more efficient solutions were
proposed in the context of deep learning-based ROMs. A first class of strategies comprise the coupling
of proper orthogonal decomposition (POD) and neural networks [50]. However, the discrete nature of the
approach limit the range of possible applications to diffeomorphic meshes with the same resolution. Other
possible approaches make use of operator learning paradigms in infinite-dimensional function spaces, which
are more suitable for parametric domains since they are mesh-agnostic. For example, one may consider
GNN approaches in an operator learning framework [38, 12, 44], which are very expressive and capable to
reproduce the local features of the solution field with high precision. However, GNNs are data eager, that
is, they need a large amount of training data to achieve a suitable accuracy on the test set. Moreover,
their graph-based architecture entails a large memory footprint in the case of complex problems comprising
high-dimensional data. Among other techniques, domain practitioners can take advantage of Implicit Neural
Representations (INR), a class of approaches which is still at its infancy for applications involving PDEs
and therefore is not equipped with theoretical results. We also remark that INR-based strategies such
as [48] may require inference-time optimization and are therefore expensive to evaluate in a many-query
context. For the sake of completeness, we note that some authors crafted suitable transformer-based models
to deal with geometrically parametrized problems [28, 18]. However, these strategies often involve complex
and heavy architectures, and are quite data eager, so that their accuracy is particularly sensitive to the
number of available input-output pairs. More remarkably, several approaches successfully adapted Neural
Operators to handle geometrical parametrization [29, 33, 52, 34]: the proposed frameworks are extensions of
existing architectures but they lack an inductive bias tailored for geometrically parametrized problems. For
this reason, even though they provide strikingly accurate approximations, they often feature large neural
network architectures, which are prone to a slow training and evaluation. On the other hand, DL-ROMs
(and their extensions) usually entail smaller architectures but were originally conceived in the context of
physical variability and they were never adapted to problems featuring geometrical parameters.

Main contributions and work outline. The main contribution of our work consists in the extension of the
classical DL-ROM architecture to widen its range of applications to parametric differential problems featuring
geometrical variability. Specifically,

• We justify the need of devising a space-continuous, infinite-dimensional paradigm to deal with multi-
resolution datasets encountered in problems featuring geometrical variability.

• We propose Continuous Geometry-Aware DL-ROMs (CGA-DL-ROMs), a comprehensive learning
framework to construct DL-ROMs for geometrically parameterized problems, which (i) is based on a
space-continuous formulation to account for multi-resolution datasets, and (ii) leverages on geometry-
aware basis functions that characterize the notable approximation capabilities of the proposed archi-
tecture.

• We analyze the proposed framework, thus describing its main properties and assessing its performance
against suitable baselines both in light of the theory and by means of involved numerical experiments.
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The present work is organized as follows. In §2 we describe the general formulation of problems featuring
geometrical variability; on top of that, in §3 we characterize CGA-DL-ROMs for geometrically parameterized
problems. Moreover, in §4 we describe the main features of CGA-DL-ROMs, focusing on the analysis of their
peculiar geometry-aware basis functions, and we show how to parametrize such basis functions with neural
networks. We report in §5 a series of suitable numerical experiments that validate the theoretical claims on
benchmarks and assess the generalization capabilities on challenging applications. Finally, we draw some
conclusions on the present work, providing also an outline over possible future developments.

2. Geometrically parametrized PDEs: formulation and properties

Within the present work we consider differential problems parametrized by a set of physical parameters,
namely µ ∈ P ⊂ Rp, and a set of geometrical parameters, represented by ξ ∈ G ⊂ Rg for some p, g ≥ 0: ∂tu+N [µ, ξ](u) = 0, Ω(ξ)× (0, T ]

B[µ, ξ](u) = 0, ∂Ω(ξ)× (0, T ]
u(0,µ, ξ)− u0(µ, ξ) = 0, Ω(ξ),

(1)

where T > 0, N is a generic nonlinear operator, whereas B enforces the boundary conditions and u0(µ, ξ)
is the initial datum. For the sake of the well-posedness of the problem, from hereon we consider P and
G as compact subsets of Rp and Rg, respectively. Then, we define T = [0, T ] as the time domain. We
emphasize that the domain shape is parametrized, that is, Ω = Ω(ξ) ⊂ Rd, for d > 0: we refer the reader to
Fig. 1 for a visualization of an example of parametric domains. Then, we highlight that the solution field
u = u(x; t,µ, ξ) ∈ R depends on both physical and geometrical parameters as well as the time variable t, for
any x ∈ Ω(ξ). We also remark that from hereon we assume that the solution field is scalar for the sake of
simplicity, but we observe that the results can be generalized to vector problems.

Figure 1. Visualization of the diffeomorphism and a set of parametric domains. The geometrical parameter ξ regulates the
radius of the hole.

2.1. Abstract setting

Within this section we aim at proposing a suitable abstract setting for the analysis of the theoretical
properties and the well-posedness of problem (1). The main difficulty of the aforementioned analysis orig-
inates from the fact that, for any instance ξ ∈ G of the geometrical parameter, u(t,µ, ξ) refer to different,
parametrized domains Ω(ξ). In this respect, in the following we show that it is possible to perform a change
of variables to cast the differential problem entailed by (1) in a pre-defined reference configuration Ω̃ that
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does not depend on the geometrical parameter ξ. To do that, we introduce a special mapping that charac-
terizes the deformation from the original configuration Ω(ξ) onto the reference domain Ω̃ (and viceversa),
namely,

Assumption 2.1. Let ξ̃ ∈ G and define Ω̃ = Ω(ξ̃) as the reference domain. Then, there exists (x, ξ) 7→
Z(x; ξ) which is a Cr-diffeomorphism (r ≥ 1) as function of x ∈ Rd and Lipschitz as function of ξ ∈ G, such
that:

Ω(ξ) = {x = Z−1(x̃; ξ) ∈ Rd, for any x̃ ∈ Ω̃}, ∀ξ ∈ G.

Thus, we define ζ(x; ξ) := |∇xZ(x; ξ)| as the Jacobian of the transformation Z.

In Assumption 2.1 we do not only aim at providing a definition of the mapping Z, but we also characterize
its regularity. To this end, we stress that requiring (·, ξ) 7→ Z(·, ξ) to be at least homeomorphic, for any ξ ∈ G,
ensures that the deformation from the original configuration Ω(ξ) and the reference domain Ω̃ preserves its
topological invariants such as connectedness and compactness. In this way, it is straightforward to conclude
that all the parametric domains share the same topological properties. However, being homeomorphic is not
usually sufficient. Indeed, we must require Z(·, ξ) and its inverse to be sufficiently smooth in order to cast
(1) in the reference configuration by performing the change of variable x = Z−1(x̃; ξ), namely,

∂tũ+ Ñ [µ, ξ](ũ) = 0, Ω̃× (0, T ]

B̃[µ, ξ](ũ) = 0, ∂Ω̃× (0, T ]

ũ(0,µ, ξ)− ũ0(µ, ξ) = 0, Ω̃,

(2)

where ũ(x̃; t,µ, ξ) = u(Z−1(x̃; ξ); t,µ, ξ) for any x = Z−1(x̃; ξ) ∈ Ω(ξ) and Ñ and B̃ are the counter-
parts of the nonlinear operator N and the linear operator B on the reference domain, namely Ñ [x̃;µ, ξ] =
N [Z−1(x̃; ξ);µ, ξ] and B̃[x̃;µ, ξ] = B[Z−1(x̃; ξ);µ, ξ]. We stress that the smoothness coefficient r ≥ 1 is
related to the highest derivative degree entailed by N and B. It is now evident that problem (2) is no longer
geometrically parametrized: indeed, in problem (2) ξ ∈ G plays the role of a mere physical parameter. For
this reason, it is possible to proceed through classical arguments to establish the well-posedness of problem
(2): we refer the interested reader to [46] and to Appendix A for insights on the formal proof. As a final
remark, even though within the present section we only considered the strong formulation for the sake of
simplicity, we mention that a similar analysis can be carried out by employing the variational formulation.

We are now equipped with suitable theoretical tools to adequately characterize geometrical variability in
differential problems: such tools are essential in the following sections to describe the synthetic data gener-
ation phase and provide further insights on how the geometrical variability impacts on the dimensionality
reduction task.

2.2. Synthetic data generation

Within the present section, we aim at characterizing the training/testing dataset generation in the context
of problems featuring geometrical variability. Specifically, since, in general, the exact solution of problem
(1) is not available in exact form, we harness a high-fidelity solver to obtain a suitably accurate numerical
approximation. Specifically, in the following we distinguish two different strategies to synthetically generate
data samples.

We emphasize that if the pair (Z, Ω̃) is known and fixed a priori, it is possible to systematically generate
the realizations of ξ 7→ Ω(ξ). In the literature several approaches were proposed to suitably define Z; among
them, we mention Free-Form Deformations (FFD) [39, 41, 27], Radial Basis Function (RBF) interpolation
[39, 50, 10] or mesh motion techniques [40]. When dealing with such strategies, it is in general possible
to generate high-fidelity solutions by deforming (through Z) an adequately rich set of high-fidelity basis
functions defined on the reference domain. Formally, being W a suitable Hilbert space, we characterize the
fixed resolution approach through the following Assumption, namely,

Assumption 2.2. We suppose that for any ε > 0 there exist Nh and a finite dimensional subspace W 3
Wh = span{φ̃i}Nhi=1, where ψ∗i ∈ L∞(Ω̃) for i = 1, . . . , Nh, such that

sup
(t,µ,ξ)∈T ×P×G

‖u(t,µ, ξ)− uh(t,µ, ξ)‖∗ < ε,

4



where ‖ · ‖∗ is a suitable norm and uh(x; t,µ, ξ) =
∑Nh
i=1 uh,i(t,µ, ξ)φ̃∗i (Z(x, ξ)) for any t ∈ T ,µ ∈ P, ξ ∈ G

and x ∈ Ω(ξ).

Figure 2. Example of parametric domains with different resolutions (the geometrical parameter ξ is the radius of the hole).

We remark that Assumption 2.2 relies on the assumption that the pair (Z, Ω̃) must be known explicitly,
which is not always the case in real applications. Moreover, it is worth remarking that within this approach
the number of dofs Nh is the same for all data samples: for this reason it is quite common in the ROM
literature since the majority of techniques rely on a space-discrete formulation. However, while certain
domain configurations may require fine discretizations in order to capture possible low-scale effects, for other
domain instances a more coarse discretization is sufficient to properly grasp the underlying physics. Thus,
in order to limit the dataset size by avoiding the storage of redundant information, we may choose to focus
on multi-resolution datasets, namely,

Assumption 2.3. We suppose that for any ε > 0 and any ξ ∈ G there exist Nh = Nh(ξ) and a finite
dimensional subspace W 3Wh = span{φi(ξ)}Nhi=1, where φi(ξ) ∈ L∞(Ω(ξ)) for i = 1, . . . , Nh, such that

sup
(µ,t)∈T ×P

‖u(t,µ, ξ)− uh(t,µ, ξ)‖∗ < ε,

where ‖ · ‖∗ is a suitable norm and uh(x; t,µ, ξ) =
∑Nh
i=1 uh,i(t,µ, ξ)φi(x, ξ) for any t ∈ T ,µ ∈ P, ξ ∈ G and

x ∈ Ω(ξ).

We then emphasize that, differently from the fixed resolution approach, the multi-resolution synthetic
data generation does not require the availability of (Z, Ω̃) in a closed form.

Nevetheless, with either the fixed resolution or multi-resolution approach we obtain an high-fidelity
formulation of the semidiscretized problem that readsß

∂tuh + N[µ, ξ](uh) = 0, (0, T ]
u(0,µ, ξ)− u0(µ, ξ) = 0,

(3)

where uh := uh(t,µ, ξ) ∈ RNh is the solution vector, N : RNh → RNh is a generic nonlinear mapping that
encodes the contribution of both N and B at a discrete level, whereas u0(µ, ξ) is the parameter-dependent
initial condition. We emphasize that, subject to the choice of the discretization strategy, Nh possibly depends
on ξ. Since the discretization is in principle parameter dependent (see Fig. 2), in the following we cannot
harness a finite-dimensional formulation: the entire content of this paper is therefore based upon a infinite-
dimensional setting, allowing us to handle generic datasets obtained through multi-resolution-based synthetic
data generation.
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2.3. An infinite-dimensional setting for dimensionality reduction

In the following, we first define a suitable infinite-dimensional functional setting and then characterize
the solution manifold of the parametric problem defined in Eq. (1). We stress that the following results are
relative to the L2 setting but can be extended to other separable Hilbert spaces. Specifically, for any ξ ∈ G
we define

L2
ζ(Ω(ξ)) =

ß
f : Ω(ξ)→ R

∣∣∣ ∫
Ω(ξ)

f(x)2ζ(x, ξ)dx < +∞
™
,

identifying the scalar product as (·, ·)L2
ζ(Ω(ξ)) and its induced norm as ‖·‖L2

ζ(Ω(ξ)). Thus, we aim at delineating

a proper solution manifold as a bounded subset of a single separable Hilbert space. However, it is evident
that the collection

S = {u(t,µ, ξ) ∈ L2
ζ(Ω(ξ)) | µ ∈ P, t ∈ T , ξ ∈ G}.

is an ill-defined solution manifold in a conventional sense since each solution u(t,µ, ξ) is characterized on
a different, parameter-dependent Hilbert space, namely L2

ζ(Ω(ξ)). On the other hand, we observe that,
thanks to Z(·, ξ) being a Cr-diffeomorphism (r ≥ 1), the following change of variable formula holds for any
f ∈ L2

ζ(Ω(ξ)), ∫
Ω(ξ)

f(x)2ζ(x, ξ)dx =

∫
Ω̃

f(Z−1(x̃, ξ))2dx̃. (4)

Thus, it is possible to show that, for any f, g ∈ L2
ζ(Ω(ξ)), it is valid that

(f, g)L2
ζ(Ω(ξ)) =

∫
Ω(ξ)

f(x)g(x)ζ(x, ξ)dx

=

∫
Ω̃

f(Z−1(x̃, ξ))g(Z−1(x̃, ξ))dx̃ = (f ◦ Z−1(ξ), g ◦ Z−1(ξ))L2(Ω̃),

where f̃(x̃, ξ) = f(Z−1(x̃, ξ)) and g̃(x̃, ξ) = g(Z−1(x̃, ξ)), for any ξ ∈ G and x̃ ∈ Ω̃. Thus, upon defining the
(linear) morphing operators

Zξ : L2(Ω̃) → L2
ζ(Ω(ξ)) as f̃ 7→ f̃ ◦ Z(ξ)

Z−1
ξ : L2

ζ(Ω(ξ)) → L2(Ω̃) as f 7→ f ◦ Z−1(ξ),

the latter equality allows us to properly delineate the solution manifold of the parametric problem defined
in Eq. (1) in a conventional manner, namely,

S̃ := {Z−1
ξ (u(t,µ, ξ)) ∈ L2(Ω̃) | µ ∈ P, t ∈ T , ξ ∈ G} ⊂ L2(Ω̃).

We refer the reader to Fig. 3 for a visualization of the action of the operator Z−1
ξ and to Appendix B

for a more technical analysis of Zξ and Z−1
ξ , which are proven to be linear bounded operators. We also

emphasize that Zξ and its inverse enable us to morph back and forth from the original configuration Ω(ξ)

onto the reference setting Ω̃, namely,

S = {Zξ(ũ) | ũ ∈ S̃}, S̃ = {Z−1
ξ (u) | u ∈ S}.

It is straightforward that the latter observation allows us to set the dimensionality reduction framework in
the reference configuration, thus enabling us to address the problem from a classical point of view since S̃ is
a proper subset of L2(Ω̃) (see §3 and §4 for more details on the matter).

Thanks to the present functional setting, in the following we aim at providing a general framework to
construct DL-ROMs in infinite dimensions specifically suited for problems featuring geometrical variability.

3. CGA-DL-ROMs in an infinite-dimensional setting

Within this section we provide the architecture design of the CGA-DL-ROM architecture. Specifically,
we characterize its distinguishing traits, namely (i) the linear dimensionality reduction in an infinite-
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Figure 3. Solution of a physically and geometrically parametrized advection diffusion reaction equation on parametric domains
(first row) and action of the morphing operator Z−1

ξ (second row).

dimensional setting, (ii) the nonlinear autoencoder, and (iii) the reduced network. We refer to Fig. 4 for
a schematic representation of the full architecture.

Figure 4. Schematic representation of the CGA-DL-ROM architecture.

CGA projection and lifting. The purpose of the outermost block of the architecture is to provide a
finite-dimensional representation of the infinite-dimensional solution field through a linear projection. To do
that, we employ the space-continuous projection operator V†ξ : L2

ζ(Ω(ξ)) → RN and the space-continuous

lifting operator Vξ : RN → L2
ζ(Ω(ξ)). Owing to §2.3, it is possible to decompose the action of each one of
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the operators V†ξ and Vξ into two separate steps, namely,

V†ξ : L2
ζ(Ω(ξ))

Z−1
ξ−−−−−−→

morphing
L2(Ω̃) −−−−−−−→

projection
RN

Vξ : RN −−−−→
lifting

L2(Ω̃)
Zξ−−−−−−→

morphing
L2
ζ(Ω(ξ)).

Thus, it is evident that, in practice, the effective projection and lifting operations concern only the reference
configuration Ω̃. Thanks to this observation, we define {vCGAn (ξ)}Nn=1 ⊂ L2(Ω̃), a set global of basis functions
that are defined on the reference configuration and that depend on ξ, and provide a formal definition of

V†ξ(f) := {(Z−1
ξ (f), vCGAn (ξ))L2(Ω̃)}Nn=1, ∀f ∈ L2

ζ(Ω(ξ))

Vξ(a) := Zξ

Å∑N
n=1 anv

CGA
n (ξ)

ã
, ∀a = {an}Nn=1 ∈ RN .

Then, owing to the change of variable formula of §2.3 and to the linearity of the morphing operator Zξ, we
can derive a more compact, alternative definition of space-continuous projection and lifting operators,

V†ξ(f) := {(f,Zξ(vCGAn (ξ)))L2
ζ(Ω(ξ))}Nn=1, ∀f ∈ L2

ζ(Ω(ξ))

Vξ(a) :=
∑N
n=1 anZξ(vCGAn (ξ)), ∀a = {an}Nn=1 ∈ RN .

We emphasize that the compressive capabilities of the couple (Vξ,V†ξ) strongly depends on how we

characterize the dependence on the geometrical parameters of the global basis functions {vCGAn (ξ)}Nn=1: we
discuss about the latter aspect in §4.1. Nonetheless, since the collection {Zξ(vCGAn (ξ))}Nn=1 is not in general
available in a closed form, we remark that within this work we model it through neural networks of weights
and biases θv and we refer the interested reader to §4.2 for a more comprehensive outlook on the matter.

Nonlinear autoencoder. The purpose of the autoencoder architecture is to further compress the repre-
sentation entailed by (V†ξ ,Vξ) into a set of l > 0 latent coordinates. Thus, we configure the autoencoder

architecture as the couple (ψ†, ψ), where ψ† : RN → Rl and ψ† : Rl → RN are such that ψ† ◦ ψ ≈ Id.
Normally, we parametrize the autoencoder (ψ†, ψ) with (deep) neural networks and we indicate with θAE

the entailed collection of weights and biases. We mention that in the literature, both dense and convolutional
architectures have proven to be effective for this purpose [14, 15].

Reduced network. We design the reduced network as a feed-forward neural network architecture φ[θφ] :
Rp+g+1 → Rl, which is parametrized by its weights and biases θφ and strives to approximate the reduced
parametric map (t,µ, ξ) 7→ ψ† ◦ V†(u(t,µ, ξ)).

Thus, the resulting CGA-DL-ROM architecture is parametrized by (θv, θAE , θφ), which are the weights
and biases of the geometry-aware basis functions, the autoencoder, and the reduced network, respectively.
We emphasize that the optimization phase of CGA-DL-ROMs consists in seeking the optimal set of neural
network weights (and biases) with respect to the following per-example loss functional (for any µ ∈ P, ξ ∈
G, t ∈ T ),

LCGA(t,µ, ξ) = ‖Vξ ◦ ψ ◦ φ(t,µ, ξ)− u(t,µ, ξ)‖2L2
ζ(Ω(ξ))+

+ ‖φ(t,µ, ξ)− ψ† ◦ V†ξ(u(t,µ, ξ))‖22
(5)

which is composed of two different additive terms. The purpose of the first term is to control the squared
reconstruction error; on the other hand, the second term strives to constrain the architecture to find a suitable
latent representation. It is worth emphasizing that the CGA basis function are learnt in an unsupervised
manner and that the encoder network is required only during the training phase and can be discarded at
inference time. As a final remark, we mention also that in practice we are not able to compute exactly the
integrals over Ω(ξ), so that we replace (5) with its empirical counterpart.

We stress that, while the nonlinear autoencoder and the reduced network have been analyzed in previous
works [7, 11], the impact of the novel proposed CGA projection and lifting is still to be studied.
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4. Characterization of CGA basis functions

In the following section we propose an extensive analysis of CGA projection and lifting, providing also a
characterization of its compressive capabilities. Specifically, our purpose is to show that only a small number
N of CGA basis functions is sufficient to capture the variability of the solution manifold (see §4.1). This
ensures a light neural network architecture and aims at enhancing the overall approximation capabilities.
Moreover, since such basis functions are not analytically available, we provide in §4.2 a suitable approximation
through neural networks.

4.1. The compressive capabilities of CGA basis functions

Before presenting rigorously the CGA approach, in order to fully appreciate the compressive capabilities
of CGA basis functions, we first describe the classical POD framework, which is the baseline we want to
compare our approach with. First, we stress that, thanks to the results of the previous sections, we are allowed
to delineate the dimensionality reduction problem on the reference configuration Ω̃. Thus, we characterize
the POD formalism through a result cast in a Hilbert context, relying on the theoretical setting reported in
[35, 51], namely,

Lemma 4.1. We define the POD cost functional as

JPOD({wn}Nn=1) =

∥∥∥∥Z−1
ξ (u)−

N∑
k=1

(Z−1
ξ (u), wn)L2(Ω̃)wn

∥∥∥∥2

L2(T ×P×G;L2(Ω̃))

,

where WN = {{wn}Nn=1 ∈ L2(Ω̃) : (wn, wm)L2(Ω̃) = 1, ∀n,m ∈ {1, . . . , N}}. Then,

EPOD(N) = min
{wn}Nn=1∈WN

JPOD({wn}Nn=1) = JPOD({vPODn }Nn=1) =
∑
n>N

ln < +∞, (6)

where (vPODn , ln)n ⊂ L2(Ω̃)× R are the POD eigenpairs collecting the orthonormal basis of singular vectors
and the singular values of the compact linear operator K = L2(T × P × G) → L2(Ω̃) defined as Kg =
(u(x), g)L2(T ×P×G), for any g ∈ L2(T × P × G).

More informally, the POD approach ultimately aims at providing the best set of basis functions on
average with respect to the physical and geometrical parameters, according to the projection error metric.
However, it is worth noticing that geometrical parameters usually cause a slow eigenvalue decay, that is,
lN exhibits a polynomial decay as N → ∞ [13]. The latter scenario requires the user to employ a large
number N of reduced basis functions to suitably reconstruct the variability of solution manifold, which is
extremely inefficient from a computational viewpoint. In this respect, the CGA approach aims at mitigating
the aforementioned inefficiency by ultimately providing, for any instance of the geometrical parameter ξ ∈ G,
a set of modal basis functions that is optimal for the chosen parameter ξ. More formally, we characterize
the CGA optimization problem through

Lemma 4.2. We define CGA cost functional as

JCGA(ξ, {wn}Nn=1) :=

∥∥∥∥Z−1
ξ (u)−

N∑
n=1

(Z−1
ξ (u), wn)L2(Ω̃)wn

∥∥∥∥2

L2(T ×P;L2(Ω̃))

,

where B = {v ∈ L2(Ω̃) : ‖v‖L2(Ω̃) = 1}. Then, the CGA optimization problem

min
{wn}Nn=1∈[B]N

JCGA(ξ, {wn}Nn=1), (7)

is well-defined, that is, there exists ξ 7→ {vCGAn (ξ)}Nn=1 which attains the minimum.

We refer the interested reader to Appendix C for the proof. Nonetheless, we highlight that, thanks to
the functional setting provided in §2.3, it is straightforward to prove through the change of variable formula
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the following equalities, which show that the optimization problem defined in Eqs. (6) and (7) can be
equivalently cast in the original configuration Ω(ξ), namely,

JPOD({wn}Nn=1) =

∥∥∥∥u−∑N
n=1(u,Zξ(wn))L2(Ω̃)Zξ(wn)

∥∥∥∥2

L2(T ×P×G;L2
ζ(Ω(ξ))

JCGA(ξ, {wn}Nn=1) =

∥∥∥∥u−∑N
n=1(u,Zξ(wn))L2(Ω̃)Zξ(wn)

∥∥∥∥2

L2(T ×P;L2
ζ(Ω(ξ))

.

Then, we can prove the main result of the present section, which showcases the superiority of the CGA basis
functions when compared to POD modes.

Proposition 4.1. For any N <∞, we define the POD and CGA best approximation errors as

BAECGA(N) :=
∫
G JCGA(ξ, {vCGAn }Nn=1)dξ

BAEPOD(N) := JPOD({vPODn }Nn=1).

Then, we can prove that
BAECGA(N) ≤ BAEPOD(N).

Proof. We recall that WN = {{wn}Nn=1 ∈ L2(Ω̃) : (wn, wm)L2(Ω̃) = 1, ∀n,m ∈ {1, . . . , N}} and that B

is the unit ball in L2(Ω̃). Then, it is easy to see that WN ⊂ [B]N , so that vPOD ∈ [B]N . Thus, by an
optimality argument, for any ξ ∈ G it is valid that

JCGA(ξ, {vCGAn }Nn=1) = min
{wn}Nn=1∈[B]N

JCGA(ξ, {wn}Nn=1) ≤ JCGA(ξ, {vPODn }Nn=1).

Then, by integrating all the sides over G, we derive the inequality∫
G
JCGA(ξ, {vCGAn }Nn=1)dξ ≤

∫
G
JCGA(ξ, {vPODn }Nn=1)dξ.

Moreover, by definition of BAECGA(N), we can state that,

BAECGA(N) ≤
∫
G
JCGA(ξ, {vPODn }Nn=1)dξ.

Finally, since for any {wn}Nn=1 ∈ [B]N it is valid that∫
G
JCGA(ξ, {wn}Nn=1)dξ = JPOD(ξ, {wn}Nn=1),

we derive the thesis, namely,

BAECGA(N) ≤
∫
G
JCGA(ξ, {vPODn }Nn=1)dξ = JPOD(ξ, {vPODn }Nn=1) = BAEPOD(N).

The superiority of the CGA basis functions when compared to the POD modes becomes evident in the
cases where the geometrical parametrization is the only cause of the slow (polynomial) POD eigenvalue
decay [13], which entails that EPOD(N) = O(N−α) for some α > 0. On the other hand, if we consider the
CGA approach involving ad hoc basis functions for each geometrical parameter instance, the latter scenario
entails that JCGA(ξ, {vCGAn }Nn=1) = O(e−βN ) for some β > 0, independently of ξ ∈ G. Then, by definition,
ECGA(N) = O(e−βN ), so that we can conclude that a small amount of CGA basis functions suffices to
capture the solution manifold variability in this scenario, where a large amount of POD modes are necessary
to obtain the same level of compression.
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4.2. Modeling CGA basis functions with neural networks

Despite having proved better compressive capabilities when compared to POD modes, in practical ap-
plications CGA basis functions are not available in a closed form, that is, the minimum in (7) cannot
be explicitly attained and needs to be suitably approximated. In this respect, within the present section
we aim at providing a way to surrogating such CGA basis functions with neural networks. Specifically,
the main existence result consists in proving that it is possible to construct a suitable neural network
(x, ξ) 7→ {v̂CGAn (x, ξ)}Nn=1 ≈ {Zξ(vCGAn (x, ξ))}Nn=1 such that the associated CGA projection error is arbi-
trarily close to the minimum in (7). More formally,

Proposition 4.2. We let N < ∞ and assume that (x, ξ) 7→ {vCGAn (x, ξ)}Nn=1 ∈ W 1,2(Ω̃ × G). Then,
there exists ε∗ > 0 such that for any ε ∈ (0, ε∗), it is possible to design a neural network architecture
(x, ξ) 7→ {v̂CGAn (x, ξ)}Nn=1 ≈ {Zξ(vCGAn (x, ξ))}Nn=1 such that∫

G
JCGA(ξ, {Z−1

ξ (v̂CGAn (ξ))}Nn=1)dξ < BAECGA(N) + ε.

We refer the interested reader to Appendix C for the proof. Anyway, we emphasize that (x, ξ) 7→
{v̂CGAn (x, ξ)}Nn=1 ≈ {Zξ(vCGAn (x, ξ))}Nn=1 approximates both the geometry-aware basis functions and the
action of the morphing operator Zξ, so that we do not require the diffeomorphism to be explicitly known in
practical applications.

As a final remark, we highlight that we focus solely on the analysis of JCGA and, by extension, of
BAECGA. Indeed, we neglect the contribution of the approximation capabilities of the reduced network and
the decoder, and the effectiveness of the representation entailed by the encoder, whose analyses are beyond
the purpose of the present work; for further details on this latter aspect, we refer the reader to [5, 7, 11, 26].
Notwithstanding, it is possible to show that BAECGA is a lower bound for the approximation error, that is,
through an optimality argument we obtain,

Eappx : = ‖u− û‖L2(T ×P×G;L2
ζ(Ω(ξ))

=

∥∥∥∥u− Vξ ◦ ψ ◦ φ(t,µ, ξ)

∥∥∥∥
L2(T ×P×G;L2

ζ(Ω(ξ)))

=

∥∥∥∥u− N∑
n=1

(u,Zξ(v̂CGAn ))L2(Ω(ξ))Zξ(v̂CGAn )

∥∥∥∥
L2(T ×P×G;L2

ζ(Ω(ξ)))

=

ï ∫
G
JCGA(ξ, {v̂CGAn }Nn=1)2dξ

ò1/2
≥
ï ∫
G

min
{vCGAn }Nn=1∈[B]N

JCGA(ξ, {vCGAn }Nn=1)2dξ

ò1/2
= BAECGA(N),

where we recall ψ, φ are the decoder and the reduced network, respectively.

5. Numerical experiments

Within this section we direct our efforts toward the implementation of numerical experiments supporting
our theoretical findings and showcase the potential of the CGA-DL-ROM technique. More precisely,

(i) we motivate the usage of CGA basis functions by demonstrating their superiority in terms of compres-
sive capability when compared to POD;

(ii) we compare the CGA-DL-ROM with suitable baselines present in the literature;

(iii) we test the accuracy of CGA-DL-ROM when tackling applications stemming from more-involved in-
dustrial benchmarks and challenges.
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We remark that the accuracy of the predictions is measured by means of two relative error metrics, namely,

ER =

Ntests∑
j=1

Å∑Nh(ξj)

i=1 (u(xi;µj , tj , ξj)− û(xi;µj , tj , ξj))
2

ã1/2Å∑Nh(ξj)

i=1 u(xi;µj , tj , ξj)
2

ã1/2
,

E =

(∑Ntests
j=1

∑Nh(ξj)

i=1 (u(xi;µj , tj , ξj)− û(xi;µj , tj , ξj))
2∑Ntests

j=1

∑Nh(ξj)

i=1 u(xi;µj , tj , ξj)
2

)1/2

,

where û is the approximation of the ground truth u. We stress that ER is the most widely used metric in
the field literature, while E is a metric which is consistent with POD/CGA optimization problems. For
this reason the latter is only employed to test the superiority of CGA basis functions with respect to POD
modes. Unless otherwise specified, (i) our numerical experiments are performed on a NVIDIA A100 80GB
GPU, (ii) we employ Adam as optimizer, and (iii) we use 80% of the generated data for training and the
rest is split in equal parts for validation and testing.

Stenosis Hyper-elasticity NS obstacle Heat exchanger

(§5.1) (§5.2) (§5.3) (§5.4)

ROM
dimensions

latent dim. l 4 20 20 17

red. dim. N 4 30 50 70

Architecture
specifics

{v̂CGA
n }Nn=1 RDense(120, 10) RDense(180, 11) RDense(220, 10) RDense(150, 10)

encoder ψ† Dense(150, 5) Dense(150, 5) Conv2d(4) Dense(50, 5)

decoder ψ Dense(150, 5) Dense(150, 5) Conv2dT(4) Dense(150, 5)

red. network φ Dense(50, 5) Dense(50, 5) Dense(100, 5) Dense(80, 5)

Computational
burden

# NN weights 196k 397k 943k 298k

Training time 0.3h 0.8h 3h 4h

Inference time
(per instance)

1ms 0.5ms 1ms 5ms

Dataset
specifics

# samples Ns 1000 2000 100 100

splitting 80%/10%/10% 50%/40%/10% 80%/10%/10% 80%/10%/10%

# timesteps Nt − − 300 60

# dofs Nh 7.8k 972 31k ÷ 34k 100k ÷ 110k

Table 1. Hyperparameters of best results obtained with CGA-DL-ROM in every experiment. We denote with Dense(w, d) the
dense network of d layers with maximum width w and with RDense(w, d) the same architecture with residual connections. On
the other hand, Conv2d(d) (Conv2dT(d)) indicates a convolutional block consisting of d convolutional (transposed convolutional)
layers and two dense layers at input and output to correctly match input and output dimensions.

5.1. Stationary flow in a stenotic channel

We first consider a benchmark test case to demonstrate the superior compressive and generalization
capabilities of the proposed CGA-DL-ROM architecture when compared its POD counterpart. In this
respect, we immediately stress that if we substitute CGA basis functions with POD modes, we obtain the
POD-DL-ROM architecture [15], which indeed is the baseline we would like to compare our novel approach
with.

The present numerical experiment involves a fluid flowing in a 2D blood vessel over a stenosis and is
usually employed as a simplified model for studying coronary artery diseases, which are of great interest in
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haemodynamics [50]. Specifically, we revisit numerical experiment 6.4 of [39], namely,

− ν∆u+ (u · ∇)u+∇p = 0, in Ω(ξ)

∇ · u = 0, in Ω

u = [Ay(1− y), 0, 0], on ΓIN

u = 0, on ΓW (ξ)

− pn+ ν(∇u)n = 0, on ΓOUT ,

(8)

where ΓIN and ΓOUT are the inlet and outlet of the blood vessel, whereas ΓW (ξ) = ∂Ω(ξ) \ (ΓIN ∪ ΓOUT ).
Moreover, we emphasize that the problem is physically parametrized by the fluid viscosity ν ∈ [0.002, 0.004]
and the inlet magnitude A ∈ [2, 4]. We parametrize the geometry of the artery’s lower wall by means of the
function

w(y; ξ) =

 ξ1 cos

Å
π

2ξ2
(y − ξ3)

ã
, x ∈ (ξ3 − ξ2, ξ3 + ξ2)

0, otherwise,

where ξ = (ξ1, ξ2, ξ3) ∈ [0.25, 0.4]× [0.5, 0.75]× [2, 3] collects the geometrical parameters which regulate the
stenosis severity and position (see Fig. 5 for more details).

Figure 5. Stenosis test case: visualization of the effect of the geometrical parameters on the domain shape.

Figure 6. Stenosis test case: analysis of the compressive capabilities of CGA-DL-ROM and POD-DL-ROM. We also show the
POD projection error for reference.
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Figure 7. Stenosis test case: comparison of CGA-DL-ROM and POD-DL-ROM predictions and errors in the case of N = 4.

We generate a set of Ns = 1000 samples collecting only the x-velocity and y-velocity components,
which are the fields that we would like to reconstruct. To do that, we make use of FEniCS [24] and gmsh

[16], employing a mixed P1b − P1 finite element space and a Newton solver to deal with the nonlinearity.
Generating all the samples takes 35 minutes on a Intel Core i7 13th gen 32GB RAM laptop.

We remark that, for the sake of simplicity, we make use of a fixed-resolution approach and a RBF strategy
to morph the meshes, thus entailing a total of Nh = 7600 dofs for each sample. The latter simplification
facilitates the comparison of CGA-DL-ROM with its POD counterpart because it is possible to pre-compute
POD basis functions by means of SVD. Specifically, we train for 500 epochs a series of CGA-DL-ROMs and
POD-DL-ROMs to reconstruct both the velocity components of for varying reduced dimension N ∈ {2m :
m = 0, . . . , 6} and evaluate their accuracy on the test set. Also, we set the latent dimension l = min(N, 10).
From the analysis’ results displayed in in Fig. 6, it is evident that CGA-DL-ROMs are more accurate
than POD-DL-ROMs for any value of N : this behaviour is particularly evident for lower values of N , thus
corroborating our theoretical derivations. We also point out that E(N) reaches a plateau for both the
analyzed paradigms. However, CGA-DL-ROM saturates earlier (N ≥ 4) than POD-DL-ROM (N ≥ 16) and
the plateau value of CGA-DL-ROM is 3× smaller than the one relative to the POD counterpart. Finally,
we emphasize that a only a small number of CGA basis functions (N = 4) is required to obtain a suitable
accuracy. On the other hand, the same number of POD modes is not capable to suitably capture the solution
manifold’s variability. Indeed, POD-DL-ROM struggles especially in the proximity of the stenosis where the
impact of the geometrical parameters is more evident (see Fig. 7).

5.2. Hyper-elasticity equations

Within the present numerical experiment we aim at comparing the proposed approach with baselines
present in the literature. More precisely, we focus on the numerical experiment proposed in [29] that involves
an hyper-elastic material described by the solid body equation

∂2u

∂t2
+∇ · σ = 0

where u and σ are the displacement and the stress field, respectively, and the equation is endowed with a
Rivlin-Saunders constitutive model. The body shape consists of a unit square with a parametric void at
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the center; the void is centered in (0.5, 0.5) and is characterized by the radius prior r = 0.2 + 0.2
1+exp(r∗)

(where r∗ ∼ N (0, 42(−∇ + 33)−1), yielding a total of 42 geometrical parameters per sample. The body is
subject to the tensile traction [0, 100] imposed at the top edge y = 1. Within the present test case we aim
at reconstructing the stress given an input geometry consisting of a point cloud.

Relative error Latent space
dimension

# NN weights and
biases (in millions)

CGA-DL-ROM 1 .24 × 10−2 20 0.40

Geo-FNO [29] 2.20× 10−2 4608 1.55

GraphNO [29] 1.26× 10−1 − 0 .57

DeepONet [29] 9.65× 10−2 256 1.03

DAFNO [34] 1.09× 10−2 4608 2.37

Coral [48] 1.64× 10−2 128 0.53

F-FNO [52] 1.74× 10−2 4608 8.87

GNOT [18] 8.65× 10−3 − > 2

Table 2. Elasticity test case: comparison against baselines (less is better: first, second, third). The latent space dimension of
FNO-based models is l = #modesd ×width, where d is the number of spatial dimensions. The latent space of DeepONet is its
number of basis functions. The reported results are taken from the associated paper and/or code.

Figure 8. Hyper-elasticity test case: CGA-DL-ROM prediction and error for a test sample.

We train CGA-DL-ROM on 1000 data samples for 3000 epochs with a batch size of 8 and using a learning
rate of 3 × 10−4. As shown in Table 2, CGA-DL-ROMs are extremely efficient surrogate models. Indeed,
they showcase an excellent accuracy on the test set (composed of 200 samples), almost on par with state-
of-the-art paradigms, while having a smaller architecture (in terms of number of parameters) consisting of
a remarkably low number of CGA basis functions (N = 30) and an even lower latent dimension (l = 20).
On the other hand, transformer architectures deliver the best results in terms of accuracy, at the expense
of heavy models. The only paradigm entailing a number of neural network parameters which is comparable
with CGA-DL-ROM is Coral, but it features a worse accuracy and requires an inference-time optimization
[48]. Finally, we further validate qualitatively the outstanding approximation and generalization capabilities
of CGA-DL-ROM thanks to Fig. 8.
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5.3. Navier-Stokes flow around an obstacle

The present numerical experiment involves the reconstruction of the velocity field of a fluid flowing in a 2D
rectangular channel [0, 3]× [0, 0.5] past a circular obstacle. The domain shape is geometrically parameterized
by means of ξ = {yc, rc}, where yc ∈ [0.15, 0.35] and rc ∈ [0.05, 0.1] are respectively the y-position of the
center of the obstacle and the radius of the obstacle. The inlet boundary is ΓIN = {(x, y) ∈ ∂Ω(ξ) : x = 0},
while the outlet boundary is ΓOUT = {(x, y) ∈ ∂Ω(ξ) : x = 3}. The problem formulation reads

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = 0, in Ω(ξ)× (0, T ]

∇ · u = 0, in Ω(ξ)× (0, T ]

u = [h(y;A), 0], on ΓIN (ξ)× (0, T ]

u = 0, on ∂Ω(ξ) \ (ΓIN ∪ ΓOUT )× (0, T ]

− pn+ ν(∇u)n = 0, on ΓOUT (ξ)× (0, T ]

u0 = ustokes, in Ω(ξ)

(9)

where T = 0.8 is the time horizon, ustokes is the steady Stokes simulation on the same configuration,
ν ∈ [1× 10−3, 2× 10−3] is the fluid viscosity and h(y;A) = 4A(0.5− y)y is the inlet profile that is regulated
by the maximum amplitude A ∈ [1.52, 5 · 1.52]. For the sake of clarity, we represent the physical parameters
with the vector µ = [A, ν] ∈ R2. We highlight that with the present choice of the physical parameters, since
Re ≈ 550 ÷ 5625, we witness vortex shedding phenomena for any of the sample instances, especially as t
approaches the time horizon. The high-fidelity simulations are obtained with FEniCS [24] and gmsh [16] by
discretizing the problem by means of P2 − P1 couple of finite element spaces and by employing the Chorin-
Temam splitting scheme, yielding a total of more than 3×104 dofs. For the time-advancing scheme, we chose
∆t = T/3000 to ensure the stability of the numerical solution, but we save the solution snapshots only each
10 iterations in order to limit the memory footprint of the dataset, while retaining the essential features of
the temporal evolution of the solution fields. The elapsed time to generate the high-fidelity dataset is 23h
on a Intel Core i7 13th gen 32GB RAM laptop.

Figure 9. NS obstacle test case: accuracy of CGA-DL-ROM’s prediction for two different test instances. By comparing the two
instances, it is evident the large variability of the solution manifold entailed by the physical and geometrical parametrization.

We train a CGA-DL-ROM for 65 epochs, using a batch size of 15. We evaluate the accuracy of the trained
network on a test set consisting of unseen geometries, obtaining ER = 4.99× 10−2, which suggests a precise
reconstruction of the parameter-to-solution map despite the fact that only 80 different geometries are seen
during the training phase. We also report in in Fig. 9 a visualization of the ROM prediction, highlighting
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Figure 10. Heat exchanger test case: domain shape corresponding to an instance of the geometrical parameters.

that CGA-DL-ROM are able to suitably reconstruct even the low scale features occurring in the proximity of
the obstacle’s wake, which is a region of the domain that is heavily influenced by the geometrical parameters.
We stress that Fig. 9 shows the prediction of two different test instances so that the reader can appreciate
the accurate reconstruction of the solution manifold despite the extremely high variability entailed by the
physical and geometrical parametrization.

5.4. Fluid temperature in a heat exchanger

The purpose of this numerical experiment is to test the proposed framework with a relevant real-world
application involving a large-scale 3D setting. More precisely, we are interested in describing the temperature
field of a fluid flowing through the heat exchanger. We remark that the present test case extends the numerical
experiment proposed in §5 of [7] by introducing a geometrical parameterization.

The heat exchanger shape Ω = Ω(ξ) is parametrized by a set of geometrical parameters ξ = {ξk}14
k=1

(for details, we refer the reader to Table 3). The boundary of the heat exchanger is characterized by its
three baffles Γi(ξ) (for i = 1, 2, 3), the inlet ΓIN (ξ), the outlet ΓOUT (ξ) and the wall ΓW (ξ) = ∂Ω(ξ) \
(∪3
j=1Γj(ξ) ∪ ΓIN (ξ) ∪ ΓOUT (ξ)). A sample

Parameter Description Values
ξ1 x-position of the first heater [0.5,0.9]
ξ2 length of the first heater [0.1, 0.2]
ξ3 width of the first heater [0.6, 0.7]
ξ4 height of the first heater [0.3, 0.4]
ξ5 x-position of the second heater [1.3, 1.7]
ξ6 length of the second heater [0.1, 0.2]
ξ7 width of the second heater [0.6, 0.7]
ξ8 height of the first heater [0.3, 0.4]
ξ9 x-position of the third heater [2.1, 2.5]
ξ10 length of the third heater [0.1, 0.2]
ξ11 width of the third heater [0.45, 0.55]
ξ12 height of the third heater [0.25, 0.35]
ξ13 width of the inlet and the outlet [0.4, 0.6]
ξ14 height of the inlet and the outlet [0.25, 0.35]

Table 3. Heat exchanger test case: details on the geometrical parametrization

To generate the high-fidelity dataset, we model the temperature u of the fluid with an advection-diffusion
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equation, namely, 

∂u

∂t
−D∆u+ v · ∇u = 0, in Ω(ξ)× (0, T ]

u =

3∑
j=1

gj1Γj(ξ), on ∪3
j=1 Γj(ξ)× (0, T ]

u = 0, on (ΓIN (ξ) ∪ ΓW (ξ))× (0, T ]

∇u · n = 0, on ΓOUT (ξ)× (0, T ]

u0 = 0, in Ω(ξ),

(10)

where T = 2 is the time horizon, D ∈ [0.01, 0.1] is the thermal diffusivity of the fluid, while g1, g2, g3 ∈ [1, 11]
are the imposed temperatures on the corresponding baffle. We remark that v is the advection field due to
the fluid flow, which is described by a stationary Navier-Stokes model,

− ν∆v + (v · ∇)v +∇p = 0, in Ω(ξ)

∇ · v = 0, in Ω

v = [h(y, z;A), 0, 0], on ΓIN (ξ)

v = 0, on ∪3
j=1 Γj ∪ ΓW (ξ)

− pn+ ν(∇v)n = 0, on ΓOUT (ξ),

(11)

where ν is the viscosity of the fluid and

h(y, z;A) = 0.15−2 · 16A(0.75− y)(y − 0.25)(0.4− z)(z − 0.1).

represents the inlet profile regulated by the maximum amplitude A ∈ [1, 2]. For the sake of readability, we
collect the physical parameters in the vector µ = [A, ν, g1, g2, g3, D] ∈ R6. We employ a three-step scheme
for the computation of the high-fidelity solution, namely, for any parameter instance (i) we solve the Navier
Stokes equations with P1b − P1 couple of Finite Element spaces, handling the nonlinearity with a Newton
solver; we remark that we choose the Stokes solution on the same configuration as the initial guess of the
nonlinear solver, (ii) we interpolate the velocity field onto a P2 space on the same mesh, and (iii) we solve
the advection-diffusion problem with P2 elements. We emphasize that the entire synthetic data generation
phase is implemented in python, using FEniCS [24] and gmsh [16], and takes 5h on a Intel Core i7 13th gen
32GB RAM laptop.

We train the architecture for a total of 100 epochs with a learning rate of 10−3 and a batch size of 5.
Then, we test the trained CGA-DL-ROM on a test dataset consisting of unseen geometries, thus obtaining an
accuracy of ER = 5.20×10−2. The qualitative results displayed in Fig. 11 further validate the approximation
and generalization capabilities of CGA-DL-ROMs: indeed the proposed architecture is able to suitably
capture the moving fronts of the temperature due to the imposed advection field. Nonetheless, we emphasize
that the variability of the solution manifold is correctly reproduced as CGA-DL-ROM is capable of grasping
the strong effect of the geometrical parametrization and the diffusive/advective behaviour.

Conclusion

Within this work, we design and analyze the CGA-DL-ROM architecture to tackle problems featuring
geometrical variability and parametrized domain shapes. Aside from the already analyzed DL-ROM core,
consisisting of a nonlinear autoencoder and a reduced network, the main novelties of CGA-DL-ROM consists
in their characteristic CGA basis functions that make the proposed method

• space-continuous: we cast CGA-DL-ROM in an infinite-dimensional framework, allowing for multi-
resolution datasets, which are quite common for problems featuring geometrical variability. Moreover,
we complement the proposed framework with an abstract analysis of geometrically parametrized prob-
lems and a characterization of the main properties, including the well-posedness of the dimensionality
reduction problem;
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Figure 11. Heat exchanger test case: comparison between CGA-DL-ROM’s prediction and ground truth on the plane z = 0.25
at t = 1.93s. We emphasize the notable effects of the geometrical parametrization on the domain shape.

• geometry-aware: we inform such basis functions with the underlying geometrical parameters, thus
creating a suitable inductive bias that strengthens the compressive capabilities, thus allowing domain
practitioners to design light architectures with competitive prediction accuracy.

We showcase the versatility of the proposed framework through a series of numerical tests encompass-
ing a diverse range of geometrically parametrized problems featuring generic multi-resolution datasets, thus
validating CGA-DL-ROMs’ remarkable approximation and generalization capabilities. Then, encouraged by
the promising results of this novel framework on industrial benchmarks (cf. NS obstacle and Heat Exchanger
test cases), in the future we aim at testing our proposed framework with large scale real-world applications.
Nonetheless, another line of research may entail the analysis and the design of an extension of CGA-DL-
ROM to deal with non-parametric geometrical variability, where the domain shapes are parametrized by a
set of unknown (possibly infinite-dimensional) geometrical parameters. Finally, we remark that the char-
acterization of CGA basis functions is not limited to DL-ROMs and can be further extended to different
architectures: this topic may constitute a promising direction for future research.
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Appendices
A. Well-posedness of geometrically parametrized problems

We stress that the proof of well-posedness of problem (2) is case-dependent and goes beyond the purpose
of the present work: we refer the reader to [46] for more details on the subject. For the sake of simplicity,
here we assume that there exists a unique classical solution such that

sup
x̃∈Ω̃

|ũ(x̃; t1,µ1, ξ1)− ũ(x̃; t2,µ2, ξ2)| ≤ L̃‖(t1,µ1, ξ1)− (t2,µ2, ξ2)‖,

for L̃ > 0 and for any (t1,µ1, ξ1), (t2,µ2, ξ2) ∈ P × T × G. Then, we employ a push-forward argument to
recover the well-posedness of the original formulation entailed by problem (1). In particular,

• x 7→ u(x; t,µ, ξ) is continuous. Letting LZ = maxξ∈G Lip(Z(·; ξ)) and choosing an arbitrary x1 ∈ Ω(ξ),
it is straightforward to prove that

∀ε > 0 ∃δ > 0 : ‖x1 − x2‖ < δ/LZ such that |u(x1; t,µ, ξ)− u(x2; t,µ, ξ)| < ε

independently of t,µ, ξ. Indeed, since xi = Z−1(x̃i; ξ) for i = 1, 2, we have

|u(x1; t,µ, ξ)− u(x2; t,µ, ξ)| = |u(Z−1(x̃1; ξ); t,µ, ξ)− u(Z−1(x̃2; ξ); t,µ, ξ)|
= |ũ(x̃1; t,µ, ξ)− ũ(x̃2; t,µ, ξ)|.

Since ‖x̃1 − x̃2‖ = ‖Z(x1; ξ) − Z(x2; ξ)‖ ≤ LZ‖x1 − x2‖ < δ, we conclude by continuity of x 7→
ũ(x; t,µ, ξ).

• (t,µ, ξ) 7→ u(t,µ, ξ) is Lipschitz. Indeed, given an arbitrary choice of (t1,µ1, ξ1), (t2,µ2, ξ2) ∈ P×T ×G
and identifying x1 = Z−1(x̃; ξ1), x2 = Z−1(x̃; ξ2) for any x̃ ∈ Ω̃, we have

sup
x1∈Ω(ξ1)
x2∈Ω(ξ2)

|u(x1; t1,µ1, ξ1)− u(x2; t2,µ2, ξ2)| = sup
x̃∈Ω̃

|u(Z−1(x̃; ξ1); t1,µ1, ξ1)− u(Z−1(x̃; ξ2); t2,µ2, ξ2)|

= sup
x̃∈Ω̃

|ũ(x̃; t1,µ1, ξ1)− ũ(x̃; t2,µ2, ξ2)|

≤ L̃‖(t1,µ1, ξ1)− (t2,µ2, ξ2)‖,

which ensures continuous dependence from data.

B. Analysis of the morphing operators

Lemma B.1. It is possible to prove that

Zξ : L2(Ω̃) → L2
ζ(Ω(ξ)) as f̃ 7→ f̃ ◦ Z(ξ)

Z−1
ξ : L2

ζ(Ω(ξ)) → L2(Ω̃) as f 7→ f ◦ Z−1(ξ),

are linear bounded functionals.

Proof. Let ξ ∈ G. Linearity of both Zξ and Z−1
ξ is trivial to prove thanks to their definition. Then, owing

to the change of variable formula (4), we have that

• Zξ is bounded. Indeed,

‖Zξ‖? = sup
f̃∈L2(Ω̃):

‖f̃‖L2(Ω̃) 6=0

‖Zξ(f̃)‖L2(Ω(ξ))

‖f̃‖L2(Ω̃)

= sup
f∈L2(Ω(ξ)):
‖f‖L2(Ω(ξ)) 6=0

‖f̃‖L2(Ω̃)

‖f̃‖L2(Ω̃)

≤ 1.
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• Z−1
ξ is bounded. Indeed,

‖Z−1
ξ ‖? = sup

f∈L2
ζ(Ω(ξ)):

‖f‖
L2
ζ

(Ω(ξ))
6=0

‖Z−1
ξ (f)‖L2(Ω̃)

‖f‖L2
ζ(Ω(ξ))

= sup
f∈L2

ζ(Ω(ξ)):

‖f‖
L2
ζ

(Ω(ξ))
6=0

‖f‖L2
ζ(Ω(ξ))

‖f‖L2
ζ(Ω(ξ))

≤ 1.

C. Supplementary proofs

C.1. Proof of Lemma 4.2

Proof. The proof is organized into three parts:

(i) B is weakly compact since L2(Ω̃) is reflexive. Then, it is possible to endow B with a metric dB that
makes it compatible with the weak topology (see [6], Proposition (3.29)).

(ii) Moreover, we show that JCGA : G × [B]N → R is weakly lower semi-continuous with respect to the
product topology on G × [B]N .

(iii) Since a weakly lower semi-continuous functional attains its infimum on a weakly compact metric space
[47], we conclude.

We are left to prove that JCGA : G× [B]N → R is lower semi-continuous. To this end, consider the sequences

ξ(k) → ξ and w
(k)
n ⇀ wn, for n = 1, . . . , N . Now, for the sake of readability we omit the dependencies of

u on µ, t. Thanks to ξ 7→ u(ξ) being Lipschitz-continuous and Z−1
ξ being bounded for any ξ ∈ G, then

ξ 7→ ũ(ξ) = Z−1
ξ (u(ξ)) is continuous. Thus, we obtain ũ(ξ(k)) → ũ(ξ) and ũ(ξ(k)) ⇀ ũ(ξ). Then, it is

straightforward to see that for any n = 1, . . . , N ,

• (ũ(ξ(k)), w
(k)
n )L2(Ω̃) → (ũ(ξ), wn)L2(Ω̃), since

(ũ(ξ(k)), w(k)
n )L2(Ω̃) − (ũ(ξ), wn)L2(Ω̃) =

= (ũ(ξ(k)), w(k)
n )L2(Ω̃) − (ũ(ξ), w(k)

n )L2(Ω̃) + (ũ(ξ), w(k)
n )− (ũ(ξ), wn)L2(Ω̃)

≤ ‖w(k)
n ‖L2(Ω̃)‖ũ(ξ(k))− ũ(ξ)‖L2(Ω̃) + (ũ(ξ), w(k)

n − wn)L2(Ω̃) → 0

thanks to {w(k)
n }k being weak convergent (thus bounded).

• (ũ(ξ(k)), w
(k)
n )L2(Ω̃)w

(k)
n ⇀ (ũ(ξ), wn)L2(Ω̃)wn, since for any z ∈ L2(Ω̃)

((ũ(ξ(k)), w(k)
n )L2(Ω̃)w

(k)
n , z)L2(Ω̃) =

= (ũ(ξ(k)), w(k)
n )L2(Ω̃)(w

(k)
n , z)L2(Ω̃) → (ũ(ξ), wn)L2(Ω̃)(w

,
nz)L2(Ω̃) = ((ũ(ξ), wn)L2(Ω̃)wn, z)L2(Ω̃)

Thus, we have that
N∑
n=1

(ũ(ξ(k)), w(k)
n )L2(Ω̃)w

(k)
n ⇀

N∑
n=1

(ũ(ξ), wn)L2(Ω̃)wn

and by lower semi-continuity of ‖ · ‖L2(Ω̃) with respect to the weak topology it is possible to prove that

lim inf
k→∞

‖ũ(ξ(k))−
N∑
n=1

(ũ(ξ(k)), w(k)
n )L2(Ω̃)w

(k)
n ‖L2(Ω̃) ≥ ‖ũ(ξ)−

N∑
n=1

(ũ(ξ), wn)L2(Ω̃)wn‖L2(Ω̃),

which concludes the proof.
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C.2. Proof of Proposition 4.2

Proof. Fix N <∞. Define ΩG := ∪ξ∈GΩ(ξ) and

ε∗ := min

ß
2N‖Z−1

ξ (u)‖L2(T ×P×G;L2(Ω̃)),
1

(2BAECGA(N)1/2)

™
.

Then, for any ξ ∈ G, we define the zero-extension operator εξ as

εξ(Zξ(vCGAn (x, ξ))) :=

ß
Zξ(vCGAn (x, ξ)), x ∈ Ω(ξ)
0, x ∈ ΩG \ Ω(ξ),

for any n = 1, . . . , N . We immediately notice that εξ(Zξ(vCGAn )) ∈ W 1,2(ΩG) × G. Indeed, setting m =
minξ∈G minx∈Ω(ξ) ζ(x; ξ) > 0, we have

m‖εξ(Zξ(w))‖2L2(ΩG×G) = m

∫
ΩG×G

εξ(Zξ(w(x; ξ)))2dxdξ

= m

∫
G

∫
Ω(ξ)

εξ(Zξ(w(x; ξ)))2dxdξ

≤
∫
G

∫
Ω(ξ)

ζ(x; ξ)Zξ(w(x; ξ))2dxdξ

=

∫
G

∫
Ω̃

w(x̃; ξ)2dx̃dξ

= ‖w‖2
L2(Ω̃×G)

<∞,

where w stands for either vCGAn or its weak derivative. Then, thanks to Gürhing’s Theorem [17], there exists
a set of neural networks (x, ξ) 7→ {v̂CGAn (x, ξ)}Nn=1 such that

‖v̂CGAn − εξ(Zξ(vCGAn )‖L2(ΩG×G) <
ε2

2MN‖Z−1
ξ (u)‖L2(T ×P×G;L2(Ω̃))

.

where M = supξ∈G supx∈Ω(ξ) ζ(x; ξ). We note that

M‖v̂CGAn − εξ(Zξ(vCGAn ))‖L2(ΩG×G) = M‖v̂CGAn − εξ(Zξ(vCGAn )‖L2(G;L2(ΩG))

≥ ‖v̂CGAn − εξ(Zξ(vCGAn )‖L2(G;L2
ζ(Ω(ξ)))

= ‖v̂CGAn −Zξ(vCGAn )‖L2(G;L2
ζ(Ω(ξ)))

= ‖Z−1
ξ (v̂CGAn )− vCGAn ‖L2(G;L2(Ω̃))

= ‖Z−1
ξ (v̂CGAn )− vCGAn ‖L2(Ω̃×G),

so that

‖Z−1
ξ (v̂CGAn )− vCGAn ‖L2(Ω̃×G) <

ε2

2N‖Z−1
ξ (u)‖L2(T ×P×G;L2(Ω̃))

.

The whole architecture is obtained by stacking together the neural networks {v̂CGAn }Nn=1. Thus, by employing
in sequence the lower triangular inequality, the triangular inequality, and the Cauchy-Schwarz inequality, we
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obtainï ∫
G
JCGA(ξ, {Z−1

ξ (v̂CGAn (ξ))}Nn=1)

ò1/2
−
ï
BAECGA(N)

ò1/2
=

def
=

∥∥∥∥Z−1
ξ (u)−

N∑
n=1

(Z−1
ξ (u),Z−1

ξ (v̂CGAn ))L2(Ω̃)Z
−1
ξ (v̂CGAn )

∥∥∥∥
L2(T ×P×G;L2(Ω̃))

−

−
∥∥∥∥Z−1

ξ (u)−
N∑
n=1

(Z−1
ξ (u),Z−1

ξ (vCGAn ))L2(Ω̃)Z
−1
ξ (vCGAn )

∥∥∥∥
L2(T ×P×G;L2(Ω̃))

LTI
≤
∥∥∥∥ N∑
n=1

ï
(Z−1

ξ (u),Z−1
ξ (v̂CGAn ))L2(Ω̃)Z

−1
ξ (v̂CGAn )

− (Z−1
ξ (u),Z−1

ξ (vCGAn ))L2(Ω̃)Z
−1
ξ (vCGAn )

ò∥∥∥∥
L2(T ×P×G;L2(Ω̃))

=

∥∥∥∥ N∑
n=1

ï
(Z−1

ξ (u),Z−1
ξ (v̂CGAn − vCGAn ))L2(Ω̃)Z

−1
ξ (v̂CGAn )

− (Z−1
ξ (u),Z−1

ξ (vCGAn ))L2(Ω̃)Z
−1
ξ (vCGAn − v̂CGAn )

ò∥∥∥∥
L2(T ×P×G;L2(Ω̃))

TI
≤

N∑
n=1

∥∥∥∥(Z−1
ξ (u),Z−1

ξ (v̂CGAn − vCGAn ))L2(Ω̃)Z
−1
ξ (v̂CGAn )

∥∥∥∥
L2(T ×P×G;L2(Ω̃))

+∥∥∥∥(Z−1
ξ (u),Z−1

ξ (vCGAn ))L2(Ω̃)Z
−1
ξ (vCGAn − v̂CGAn )

∥∥∥∥
L2(T ×P×G;L2(Ω̃))

CS
≤

N∑
n=1

‖Z−1
ξ (u)‖L2(T ×P×G;L2(Ω̃))‖v

CGA
n − v̂CGAn ‖L2(Ω̃×G)

ï
‖vCGAn ‖L2(Ω̃×G) + ‖v̂CGAn ‖L2(Ω̃×G)

ò
Now, we observe that

‖v̂CGAn ‖L2(Ω̃×G) ≤ ‖v
CGA
n − v̂CGAn ‖L2(Ω̃×G) + ‖vCGAn ‖L2(Ω̃×G)

<
ε2

2N‖Z−1
ξ (u)‖L2(T ×P×G;L2(Ω̃))

+ 1

≤ (ε∗)2

2N‖Z−1
ξ (u)‖L2(T ×P×G;L2(Ω̃))

+ 1 ≤ 2,

which allows us to obtain the boundï∫
G
JCGA(ξ, {Z−1

ξ (v̂CGAn (ξ))}Nn=1)

ò1/2
−
ï
BAECGA(N)

ò1/2
< ε2.

By isolating the first addendum of the l.h.s. and by squaring both sides of the latter equation, we can
conclude∫

G
JCGA(ξ, {Z−1

ξ (v̂CGAn (ξ))}Nn=1) < ε4 + 2ε2

ï
BAECGA(N)

ò1/2
+ BAECGA(N) < ε+ BAECGA(N),

since ε < ε∗ ≤ 1/(2[BAECGA(N)]1/2).
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