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Abstract

The modeling of the interaction between a poroelastic medium and a fluid in a hollow cavity is cru-
cial for understanding, e.g., the multiphysics flow of blood and Cerebrospinal Fluid (CSF) in the brain,
the supply of blood by the coronary arteries in heart perfusion, or the interaction between groundwater
and rivers or lakes. In particular, the cerebral tissue’s elasticity and its perfusion by blood and inter-
stitial CSF can be described by Multi-compartment Poroelasticity (MPE), while CSF flow in the brain
ventricles can be modeled by the (Navier-)Stokes equations, the overall system resulting in a coupled
MPE-(Navier-)Stokes system. The aim of this paper is three-fold. First, we aim to extend and verify
in a three-dimensional setting a discontinuous Galerkin method on polytopal grids recently presented for
the MPE-Stokes problem. Second, we carry out the analysis of the method based on an extension of the
proposed formulation so that physics-based Beavers-Joseph-Saffman conditions are taken into account
at the interface: these conditions are essential to model the friction between the fluid and the porous
medium. Finally, by a comparative numerical investigation, we assess the fluid-dynamics effects of these
boundary conditions and of employing either Stokes or Navier-Stokes equations to model the CSF flow.
The semidiscrete numerical scheme for the coupled problem is proved to be stable and optimally con-
vergent. Temporal discretization is obtained using Newmark’s β-method for the elastic wave equation
and the θ-method for the remaining equations of the model. The theoretical error estimates are verified
by numerical simulations on a test case with a manufactured solution, and a numerical investigation is
carried out on a three-dimensional geometry to assess the effects of interface conditions and fluid inertia
on the system.

Keywords – Navier-Stokes equations, Multiple-network Poroelasticity Theory, Beavers-Joseph-Saffman interface
conditions, Polyhedral mesh, Cerebrospinal fluid

1 Introduction

Many mathematical models of interest in the applications entail the coupling between a poroelastic medium and a
fluid flowing in a hollow region outside of the matrix pores: it is the case, e.g., of the interaction between groundwater
and surface waterbodies [1, 2], between the blood-perfused cardiac tissue and the coronary flow [3, 4], or between
the interstitial Cerebrospinal Fluid (CSF) in the brain tissue and its flow in the hollow cerebral ventricles [5, 6]. The
latter is particularly relevant in the modeling of the waste clearance function played by CSF in the development of
neurodegenerative diseases such as Alzheimer’s [7, 8]. Moreover, the CSF flow is strongly interconnected with the
pulsatility of blood in the cerebral vasculature and capillaries [5, 9], thus requiring for a Multiple-network Poroelasticity
(MPE) model to account for the interstitial CSF and the blood flowing at different spatial scales in the porous tissue
[10, 11].

1



From the standpoint of finite element literature, interest has been paid to fluid-dynamics and poromechanics
problems with the development and analysis of several methods, especially in the Discontinuous Galerkin (DG) class,
including interior-penalty DG [12, 13, 14, 15], staggered DG [16, 17, 18], and hybrid DG [19, 20, 21]. The coupling
of the fluid and poroelastic systems yields a complex multi-physics problem, investigated in the numerical literature
in the case of the Biot-Stokes model [22, 23, 24, 25], also in the regime of large deformations [26], or for multilayered
porous media coupled with Newtonian fluid flows [27, 28]. However, almost no numerical analysis of the discretization
of fluid-poromechanics equations with multiple porous compartments can be found in the literature, despite their
relatively wide use in the applications [4, 29, 30]: the MPE system - without a coupled fluid problem - has been
analyzed in [31, 32, 11], but the numerical analysis of the coupled MPE-Stokes problem can be found only in [33]. In
the case of applications to brain function, the main challenges are the high complexity of the domain (encompassing
intricate folds and tortuous channels) and the paramount role of stress and flow exchanges at the interface between
the two physical domains. Therefore, a particularly suitable choice is the use of the Polytopal Discontinuous Galerkin
(PolyDG) method, for three reasons:

• by supporting general mesh element shapes, it exhibits strong geometrical flexibility and it allows local refine-
ment and hanging nodes;

• high-order polynomials can be naturally employed in the discretization, thus guaranteeing low dispersion and
dissipation errors, which is particularly relevant at the physical interface;

• interface conditions can be naturally incorporated in the formulation, thanks to element-wise integration by
parts.

In this framework, the present work has three aims:

• expanding and verifying the PolyDG method proposed in [33] in three-dimensional geometries;

• extending the numerical method to include the physically-motivated Beavers-Joseph-Saffman (BJS) interface
conditions and analyzing the stability and convergence of the resulting scheme. The BJS conditions play an
essential role in practical applications, like in brain fluid mechanics or groundwater flows, because they take
into account the friction and relative tangential velocity between the porous medium and the fluid in contact
with it [34, 6];

• assessing the fluid-dynamics effects of modeling the CSF by either Stokes or Navier-Stokes equations, in the
aforementioned multi-physics scenario and in the typical regime of brain waste clearance. Both fluid models
have been used in the literature, but a direct quantitative comparison between the two is missing.

The paper is organized as follows. Section 2 describes the multiphysics mathematical model and its weak for-
mulation, particularly discussing the imposition of interface conditions. The PolyDG space discretization method is
introduced in Section 3 and its stability and convergence analysis is presented in Section 4. Time discretization is
introduced in Section 5, while Section 6 reports some verification tests. Numerical results in a physiological regime
are discussed in Section 7, while Section 8 reports an assessment of the impact of the BJS condition and the advection
term in Navier-Stokes equations on CSF flow and intracranial pressure.

2 Mathematical model

We consider the coupling of a Multiple-Network Poroelasticity system and Navier-Stokes equations in a domain such
as the one displayed in Fig. 1. The overall domain Ω ∈ Rd (d = 2, 3) is split into a poroelastic region Ωel and a fluid
region Ωf , separated by the interface Σ = Ωel ∩ Ωf , which is assumed to be a piecewise smooth (d − 1)−manifold.
The poroelastic region is filled by an elastic solid body and NJ fluid components, indicated by the elements of an
index set J . Within this set, let us assume that only one component directly exchanges mass through Σ: we denote
this component by E ∈ J . The displacement of the solid matrix is denoted by d : Ωel → Rd, its corresponding stress
tensor is σel(d) = 2µelε(d) + λ(∇ · d)I, with ε(d) = 1

2
(∇d+∇dT ), and each of the fluid components is characterized

by a pressure pj : Ωel → R, j ∈ J . In the fluid domain Ωf , velocity, pressure, and viscous stress are denoted by u, p,
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Figure 1: Computational domain: poroelastic region Ωel and fluid region Ωf , interface Σ between them (blue),
and external boundaries Γout (red), Γw (grey), ΓD (light grey) and ΓN (green).

and τf(u) = 2µfε(u), respectively. The physical parameters in the above definitions and in the following are assumed
to be constant.

At the fluid-poroelastic interface Σ, the following conditions are imposed:

σel(d)nel −
∑
k∈J

αkpknel + τf(u)nf − pnf = 0, on Σ× (0, T ], (1a)

pE = p− τf(u)nf · nf , on Σ× (0, T ], (1b)

1

µj
kj∇pj · nel = 0, on Σ× (0, T ], ∀j ∈ J \ {E}, (1c)

u · nf +

(
∂td− 1

µE
kE∇pE

)
· nel = 0, on Σ× (0, T ], (1d)

(τf(u)nf − pnf)τ = − γµf√
kE

(u− ∂td)τ on Σ× (0, T ], (1e)

where (v)τ = v − (v · nf)nf denotes the tangential component of a vector v ∈ Rd along Σ. Total stress balance
is expressed by condition (1a), and the normal stress of the fluid at the pores is balanced only by the pressure of
compartment E (see (1b)). Along the tangential direction, the shear stress is assumed to be proportional to the
tangential velocity jump between the fluid and the poroelastic medium (see (1e)): this is the Beavers-Joseph-Saffman
(BJS) condition, already adopted in the literature to model CSF perfusion interfaces [35, 6]. Notice that, although
the condition is written in terms of the total stress in (1e), pressure does not actually play a role in the balance, since
(nf)τ = 0.

In terms of boundary conditions on ∂Ω = (∂Ωel ∪ ∂Ωf) \ Σ, we consider a portion Γout ⊂ (∂Ωf \ Σ) of the fluid
domain boundary as an outlet and the remaining part Γw = ∂Ωf \ (Σ ∪ Γout) as a solid wall, and also the poroelastic
domain boundary ∂Ωel\Σ is partitioned into a Dirichlet and a Neumann boundary, denoted by ΓD and ΓN, respectively
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(see Fig. 1). Denoting by T > 0 the final observation time, the coupled fluid-poroelastic system reads as follows:

ρel∂
2
ttd−∇ · σel(d) +

∑
k∈J

αk∇pk = fel, in Ωel × (0, T ], (2a)

cj∂tpj +∇ ·
(
αj∂td− 1

µj
kj∇pj

)
+
∑
k∈J

βjk(pj − pk) + βe
j pj = gj,

in Ωel × (0, T ], ∀j ∈ J, (2b)

ρf∂tu+ ρf(u · ∇)u−∇ · τf(u) +∇p = ff , in Ωf × (0, T ], (2c)

∇ · u = 0, in Ωf × (0, T ], , (2d)(
d(0), ∂td(0)

)
=
(
d0, ḋ0

)
, pj(0) = pj0, in Ωel, ∀j ∈ J, (2e)

u(0) = u0 in Ωf , (2f)

d = 0, pj = 0, on ΓD × (0, T ], ∀j ∈ J, (2g)

σel(d)n−
∑
j∈J

αjpjn = 0,
1

µj
kj∇pj · nel = 0, on ΓN × (0, T ], ∀j ∈ J, (2h)

u = 0, on Γw × (0, T ], (2i)

(τf(u)− pI)nf = −poutnf , on Γout × (0, T ], (2j)

and interface conditions (1), on Σ× (0, T ], (2k)

with suitable definition of the source terms fel : Ωel × (0, T ] → Rd, gj : Ωel × (0, T ] → R,ff : Ωf × (0, T ] → Rd, of
the boundary data pout : Γout × (0, T ] → R representing the external normal stress at the outlet, and of the initial
conditions d0 : Ωel → Rd, ḋ0 : Ωel → Rd,u0 : Ωf → Rd, pj0 : Ωel → R, j ∈ J . Throughout the paper, the data are
assumed to be sufficiently regular.

Remark 1 (Application to brain fluid-poromechanics) The mathematical system (1)-(2) considered here can
be used to model fluid-poromechanics interaction in the brain [11, 6, 33], with the fluid domain corresponding to
the brain ventricles filled with CSF and the cerebral tissue being the solid matrix perfused by blood and extracellular
CSF. In the fluid compartments J = {A,C,V,E}, A,C,V can represent the arterial, capillary, and venous blood
networks, while the extracellular CSF (E ∈ J) is the only compartment exchanging mass with the three-dimensional
CSF (cf. (1c)-(1d)), due to the blood-brain barrier. Their numerical experiments of that will be presented in Sections 7
and 8 address this application.

The solution variables belong to the following functional spaces:

D = H2(0, T ;W ), P = H1(0, T ; [QJ ]
NJ ), V = H1(0, T ;V ), Q = L2(0, T ;Q),

where the notation L2(0, T ;H), H1(0, T ;H) denotes the time-dependent Bochner spaces associated to a Sobolev space
H, and

W = {w ∈ [H1(Ωel)]
d : w = 0 on ΓD}, V = {v ∈ [H1(Ωf)]

d : v = 0 on Γw},

QJ = {q ∈ H1(Ωel) : q = 0 on ΓD}, Q = L2(Ωf),

where H1(Ω) denotes the classical Sobolev space of order 1 over L2(Ω).
The weak formulation of problem (2) reads as follows:
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Find (d, {pj}j∈J ,u, p) ∈ D × P × V × Q such that, for all t ∈ (0, T ],

(ρel∂
2
ttd,w)Ωel + ael(d,w) +

∑
j∈J

bj(pj,w)− Fel(w)

+
∑
j∈J

[
(cj∂tpj, qj)Ωel + aj(pj, qj) + Cj({pk}k∈J , qj)− bj(qj, ∂td)− Fj(qj)

]
+ (ρf∂tu,v)Ωf + af(u,v) +Nf(u,u,v) + bf(p,v) + bf(q,u)− Ff(v)

+ J(pE,w,v)− J(qE, ∂td,u) +G(u− ∂td,v −w) = 0

(3)

for all (w, {qj}j∈J ,v, q) ∈ D × P × V × Q, with d(0) = d0, ∂td(0) = ḋ0,u(0) = u0, pj(0) = pj0 ∀j ∈ J . In (3), we
denoted by (·, ·)Ω the L2-product over Ω and we employed the following forms and functionals, where j ranges in J :

ael : W ×W → R, ael(d,w) = (σel(d), ε(w))Ωel ,

aj : QJ ×QJ → R, aj(pj, qj) =

(
1

µj
kj∇pj,∇qj

)
Ωel

,

Cj : [QJ ]
NJ ×QJ → R, Cj({pk}k ∈ J , qj) =

∑
k∈J

(βkj(pj − pk), qj)Ωel + (βe
j pj, qj)Ωel ,

af : V × V → R, af(u,v) = (τf(u), ε(v))Ωf ,

Nf : V × V × V → R, Nf(u
′,u,v) =

(
ρf(u

′ · ∇)u+
ρf
2
(∇ · u′)u,v

)
Ωf

,

bj : QJ ×W → R, bj(qj,w) = −(αjqj, divw)Ωel ,

bf : Q× V → R, bf(q,v) = −(q,divv)Ωf ,

Fel : W → R, Fel(w) = (fel,w)Ωel ,

Fj : QJ → R, Fj(qj) = (gj, qj)Ωel ,

Ff : V → R, Ff(v) = (ff ,v)Ωf ,

J : QJ ×W × V → R, J(pE,w,v) =

∫
Σ

pE (w · nel + v · nf) dΣ,

G : (V ⊕W )× (V ⊕W ) → R, G(z1,z2) =

∫
Σ

γµf√
kE

(z1)τ · (z2)τ dΣ.

(4)

We point out that, differently from the models studied in [11, 33], here we consider the following additional terms:
the trilinear form Nf and the interface form G, discussed in the following remarks.

Remark 2 (Skew-symmetry of the advection form Nf) In the trilinear form Nf , we have introduced the addi-
tional term

(
ρf
2
(∇ · u′),v

)
Ωf
, classically employed for Navier-Stokes problems [36]. This term vanishes if u′ is the

fluid velocity u of (2), but it ensures that that Nf is skew-symmetric w.r.t. exchanging the second and third argument
also if u′ is such that ∇ · u′ ̸= 0, as it may occur after the discretization of the equations.

Remark 3 (Derivation of the interface forms J and G) The interface forms J and G introduced above natu-
rally arise during the derivation of the weak form of problem (2). We test (2a)-(2b) against functions w ∈ W and
qj ∈ QJ , with j ∈ J , over Ωel, and (2c) against v ∈ V over Ωf . Then, integrating by parts and summing all the
contributions yield the following boundary terms on the interface:∫

Σ

[
(pI − τf(u)) : v ⊗ nf +

(∑
k∈J

αkpkI − σel(d)

)
: w ⊗ nel −

∑
j∈J

1

µj
kj∇pj · qjnel

]
dΣ. (5)
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Using the interface conditions (1a),(1c) and then (1b),(1d),(1e), we can rewrite (5) as follows:∫
Σ

[
(pI − τf(u)) : (v ⊗ nf +w ⊗ nel)−

1

µE
kE∇pE · qEnel

]
dΣ

=

∫
Σ

[
pE(v · nf +w · nel) +

γµf√
kE

(u− ∂td)τ · (v −w)τ − qE(u · nf + ∂td · nel)

]
dΣ

= J(pE,w,v) +G(u− ∂td,v −w)− J(qE, ∂td,u),

(6)

where we also used that a⊗ b : I = a · b for any a, b ∈ Rd, and that nf = −nel on Σ.

3 Polytopal discontinuous Galerkin semi-discrete formulation

In this section, we introduce the space discretization of problem (3) by a discontinuous Finite Element method on
polytopal grids.

Let Th,el,Th,f be polytopal meshes discretizing the domains Ωel,Ωf , respectively. We define the faces of an element
K ∈ Th,el ∪Th,f as the (d− 1)-dimensional entities constituting the intersection of ∂K with either the boundary of a
neighboring element or the domain boundary ∂Ω. For d = 2 all faces are straight line segments, while for d = 3 they
are generic polygons, in principle: we assume that each of these polygons can be further decomposed into triangles,
and we define as face each of these triangles. We collect all faces in each physical domain into Fel and Ff , and we
partition these sets into internal faces F I

el,F
I
el, Dirichlet/Neumann faces FD

el /F
N
el ⊂ ∂Ωel \Σ,FD

f /FN
f ⊂ ∂Ωf \Σ (as

portions of the poroelastic and the fluid domain boundaries, respectively), and interface faces FΣ ⊂ Σ. We assume
that the polytopal grids Th,el,Th,f are geometrically conforming with Σ, but possibly not mesh-conforming.

Over each mesh Th,⋆, ⋆ ∈ {el, f}, we introduce the broken Sobolev spaces of order s, namely Hs(Th,⋆) = {q ∈
L2(Ω⋆) : q|K ∈ Hs(K) ∀K ∈ Th,⋆}. Moreover, we define the following piecewise polynomial spaces for a given
integer m ≥ 1:

XDG
h (Th,⋆) = {ϕ ∈ L2(Ω⋆) : ϕ|K ∈ Pm(K) ∀K ∈ Th,⋆}, ⋆ ∈ {el, f}

QDG
J,h = XDG

h (Th,el), QDG
h = XDG

h (Th,f), WDG
h = [XDG

h (Th,el)]
d, V DG

h = [XDG
h (Th,f)]

d.

To introduce the PolyDG discretization of (3), we define the symmetric outer product v ⊙n = 1
2
(v ⊗n+n⊗ v)

and, for regular enough scalar-, vector- and tensor-valued functions q,v, τ , we define the following average and jump
operators.

• On each internal face F ∈ F I = F I
el ∪ F I

f we set:

{{q}} =
1

2
(q+ + q−), {{v}} =

1

2
(v+ + v−), {{τ}} =

1

2
(τ+ + τ−),

[[q]] = q+n+ + q−n−, [[v]] = v+ ⊙ n+ + v− ⊙ n−, [[τ ]] = τ+n+ + τ−n−.

where n+,n− are defined as in Fig. 2 - left.

• On a Dirichlet face F ∈ FD
el ∪ FD

f we set:

{{q}} = q, {{v}} = v, {{τ}} = τ,

[[q]] = qn, [[v]] = v ⊙ n, [[τ ]] = τn,

where n is the unit normal vector pointing outward to the element K to which the face F belongs.

• On a face F ∈ FΣ shared by two elements Kel ∈ Th,el and Kf ∈ Th,f we set:

{{q}} = q|Kel , {{τ}} = τ |Kel ,

[[w,v]] = w|Kel ⊙ nel + v|Kf ⊙ nf , [[w,v]]τ = (v|Kf )τ − (w|Kel)τ ,

where nel,nf are defined as in Fig. 2 - right. Notice that the definitions of the interface jump operators account
for the different physics defined on each side of the interface.
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Figure 2: Polygonal elements sharing an internal face (left) or a face on the interface Σ (right).

Based on the spaces and the trace operators defined above, the semidiscrete formulation of problem (3) reads as
follows:
For any t ∈ (0, T ], find (dh, {pj,h}j∈J ,uh, ph) ∈ WDG

h × [QDG
J,h ]

NJ × V DG
h ×QDG

h such that

(ρel∂
2
ttdh,wh)Ωel + Lel(dh, {pk,h}k∈J ;wh)−Fel(wh)

+
∑
j∈J

[(cj∂tpj,h, qj,h)Ωel + Lj({pk,h}k∈J , ∂tdh; qj,h)−Fj(qj,h)]

+ (ρf∂tuh,vh)Ωf + Lf(uh, ph;vh, qh)−Ff(vh)

+ J (pE,h,wh,vh)− J (qE,h, ∂tdh,uh) + G(uh − ∂tdh,vh −wh) = 0

∀wh ∈ WDG
h ,vh ∈ V DG

h , qh ∈ QDG
h , qj,h ∈ QDG

J,h ,

(7)

with initial conditions defined in terms of the projections dh(0), ḋh(0), {pj,h(0)}j∈J ,uh(0) of the initial data introduced
in (2) onto the corresponding DG spaces. The forms and functionals appearing in (7) are the PolyDG version of those
defined in (4) and their complete definitions can be found in A. Here we just report the definition of the interface
terms, to show the role of the interface jump operators:

J (pE,w,v) =
∑

F∈FΣ

∫
F

({{pEI}} : [[w,v]]) ,

G(v1 −w1,v2 −w2) =
∑

F∈FΣ

∫
F

γµf√
kE

[[w1,v1]]τ · [[w2,v2]]τ .

Moreover, we point out that the definitions of Lel,Lf ,Lj, j ∈ J, include stabilization terms with parameters that
depend on the mesh element size (see A), that will be useful in the theoretical analysis of Section 4. However, these
stabilization terms are defined only on internal faces and do not contribute to the interface terms.

4 Stability and error analysis of the semidiscrete Stokes-MPE
problem

In this section, we analyze the semidiscrete problem corresponding to a choice of the Stokes equations to model the
CSF flow in Ωf , namely we neglect the nonlinear advection term in the form Lf of (7) (see form Nf in (17c)). The
following analysis holds for a generic set J made of NJ ∈ N0 fluid compartments of the poroelastic model. For the
sake of simplicity, we make the following assumptions.
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Assumption 1

• all the physical parameters of the model (cf. Table 1) are piecewise constant according to the aforementioned
decomposition;

• the polytopal mesh Th = Th,el ∪ Th,f fulfills the regularity assumptions of the PolyDG framework, namely
that Th is h-uniformly polytopic-regular, a local bounded variation property holds, and there exists a suitable
shape-regular simplicial covering of Th [37, 38].

In all the inequalities appearing hereafter, the dependency on the model parameters and the finite element degree m
will be neglected: by x ≲ y we will indicate that ∃C > 0 : x ≤ Cy, with C independent of the space discretization
parameters.

Following [33, 11, 15], we define the following broken norms:

||d||2DG,D = ∥C1/2
el [εh(d)]∥2L2(Th,el)

+ ∥√η[[d]]∥2FI
el,h

∪FD
el,h

∀d ∈ H1(Th), (8a)

||p||2DG,Pj
= ∥µ−1/2

j k
1/2
j ∇hp∥2L2(Th,el)

+ ∥
√

ζj[[p]]∥2
FI

el,h
∪F

Dj
el,h

∀p ∈ H1(Th), (8b)

||u||2DG,U = ∥
√

2µ εh(u)∥2L2(Th,f )
+ ∥√γv[[u]]∥2FI

f,h
∀u ∈ H1(Th), (8c)

||q||2DG,Pf
= ∥q∥2L2(Ωf )

+ ∥√γp[[q]]∥2FI
f,h

∪FD
f,h

∀q ∈ H1(Th), (8d)

and we introduce the following energy norms at time t ∈ (0, T ], based on those broken norms but also depending on
the tangential velocity of the fluid and of the poroelastic structure along the interface Σ:

||(d, {pj}j∈J ,u, p)||EN,t =
[
||(d, {pj}j∈J)||2el,t + ||(u, p)||2f,t + |(u, ∂td)|2τ ,t

]1/2
, (9)

where

||(d, {pj}j∈J)||el,t =

[
∥√ρel∂td(t)∥2Ωel

+ ||d(t)||2DG,D

+
∑
j∈J

(
∥√cjpj(t)∥2Ωel

+

∫ t

0

(
||pj(s)||2DG,Pj

+ ∥
√

βe
j pj(s)∥

2
Ωel

)
ds

)]1/2
,

||(u, p)||f,t =
[
∥√ρfu(t)∥2Ωf

+

∫ t

0

(
||u(s)||2DG,U + ||p(s)||2DG,Pf

)
ds

]1/2
,

|(u, ∂td)|τ ,t =

[∫ t

0

G (u(s)− ∂td(s),u(s)− ∂td(s)) ds

]1/2
.

Based on these norms, we can prove the following stability result:

Theorem 1 (Stability estimate) Under Assumption 1 and assuming that sufficiently large values are chosen for
the penalty constants (cf. (20)), the solution (dh, {pj,h}j∈J ,uh, ph) of the semidiscrete problem (7) fulfills the following
inequality for each time t ∈ (0, T ]:

||(dh, {pj,h}j∈J ,uh, ph)||EN,t ≲||(dh, {pj,h}j∈J ,uh, 0)||EN,0

+

∫ t

0

(
1

√
ρel

∥fel∥Ωel +
∑
j∈J

1
√
cj
∥gj∥Ωel +

1
√
ρf

∥ff∥Ωf

)
ds,

(10)

where the first term depends on the initial conditions (2e)-(2f):

||(dh, {pj,h}j∈J ,uh, 0)||EN,0 =

[
∥√ρelḋ

0
h∥2Ωel

+ ||d0
h||2DG,D +

∑
j∈J

∥√cjp
0
j,h∥2Ωel

+ ∥√ρfu
0
h∥2Ωf

]1/2
.
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Proof. Choosing the test functions wh = ∂tdh(t),vh = uh(t), qh = ph(t), qj,h = pj,h(t) ∀j ∈ J in the semidiscrete
problem (7) and following the arguments of [33, Theorem 4.1], we obtain the following inequality:

||(d, {pj}j∈J)||2el,t + ||(u, p)||2f,t +
∫ t

0

G (uh(s)− ∂tdh(s),uh(s)− ∂tdh(s)) ds ≤ RHS,

where RHS denotes the right-hand side of (10). Observing that the term with the form G coincides with the definition
of |(uh, ∂tdh)|2τ ,t concludes the proof.

Remark 4 We point out that the semi-discrete problem (7) is stable in the Navier-Stokes case, too, since the advection
form Nf is skew-symmetric and thus cancels out in the proof of Theorem 1.

To derive an a-priori estimate for the space discretization error of the proposed PolyDG method, we rely on the
following additional norms for non-discrete functions:

|||w|||2D = ||w||2DG,D + ∥η−1/2{{σel(w)}}∥2FI
el,h

∪FD
el,h

∀w ∈ [H2(Th,el)]
d,

|||qj|||2Pj
= ||qj||2DG,Pj

+ ∥ζ−1/2{{ 1

µj
kj∇hqj}}∥2

FI
el,h

∪F
Dj
el,h

∀qj ∈ H2(Th,el), ∀j ∈ J,

|||v|||2U = ||v||2DG,U + ∥γ−1/2
v {{τf(v)}}∥2FI

f,h
∪FD

f,h
∀v ∈ [H2(Th,f)]

d,

|||q|||2Pf
= ||q||2DG,Pf

+ ∥γ1/2
p {{q}}∥2FI

f,h
∀q ∈ H1(Th,f),

|||(w, {qj}j∈J ,v, p)|||2 = |||w|||2D +
∑
j∈J

|||qj|||2Pj
+ |||v|||2U + |||q|||2Pf

.

Moreover, we denote by EK : Hs(Ω) → Hs(Rd) the Stein extension operator from a Lipschitz domain Ω defined in
[39], for which optimal interpolation results can be proven w.r.t. the norms defined above (cf. B). Combining the
results above, we can prove the following optimal convergence estimate:

Theorem 2 (A priori error estimate) Let us assume that Assumption 1 holds and that the penalty parameters
included in the discrete problem’s formulation are sufficiently large (see (20)). If the solution of problem (3) is
sufficiently regular, the following estimate holds for each t ∈ (0, T ]:

||(ed, {epj}j∈J , e
u, ep)||2EN,t

≲
∑

K∈Th,el

h2m
K

{
∥EKd(t)∥2

[Hm+1(K̂)]d
+
∑
k∈J

∥EKpk(t)∥2Hm+1(K̂)

+

∫ t

0

[
∥EK∂td(s)∥2[Hm+1(K̂)]d

+ ∥EK∂2
ttd(s)∥2[Hm+1(K̂)]d

]
ds

+

∫ t

0

∑
k∈J

(
∥EKpk(s)∥2Hm+1(K̂)

+ ∥EK∂tpk(s)∥2Hm+1(K̂)

)
ds

}

+
∑

K∈Th,f

h2m
K

∫ t

0

[
∥EKu(s)∥2

[Hm+1(K̂)]d
+ ∥EK∂tu(s)∥2[Hm+1(K̂)]d

+ ∥EKp(s)∥2
Hm+1(K̂)

]
ds,

(11)

where ed = d− dh, e
pj = pj − pj,h ∀j ∈ J, eu = u− uh, e

p = p− ph, and K̂ ⊇ K, for each K ∈ Th, are shape-regular
simplexes covering Th, as in Assumption 1.
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Proof. Considering the continuous displacement d and its semi-discrete counterpart dh, we introduce the error
splitting d − dh = ed

I − ed
h, with ed

I = d − dI ∈ [Hm+1(Th,el)]
d being the Stein interpolation error (cf. Theorem 3)

and ed
h = dh − dI ∈ WDG

h being the approximation error. Analogous definitions are introduced for epj ∀j ∈ J, eu, ep.
We subtract the continuous problem (3) from the semi-discrete problem (7), tested against (∂te

d
h, {e

pj
h }j∈J , e

u
h , e

p
h),

we apply the coercivity of the bilinear forms Lel,Lf ,Lj, j ∈ J, and the continuity of these forms as well as of J (cf. [33,
Lemmas 2 and 5]), and then we can follow the same steps of [33, Theorem 4.2] to arrive to the following inequality:

||(ed
h, {e

pj
h }j∈J)||2el,t + ||(eu

h , e
p
h)||

2
f,t +

∫ t

0

G(eu
h (s)− ∂te

d
h(s), e

u
h (s)− ∂te

d
h(s)) ds

≲ RHS +

∫ t

0

G(eu
I (s)− ∂te

d
I (s), e

u
h (s)− ∂te

d
h(s)) ds

≲ RHS + |(eu
I , ∂te

d
I )|τ ,t|(eu

h , ∂te
d
h)|τ ,t,

(12)

where RHS is the right-hand side of the thesis (11). We have used the linearity of G and the fact that the
squared energy norm defined in this work corresponds to that of [33] plus the tangential velocity squared semi-
norm |(eu

h , ∂te
d
h)|2τ ,t =

∫ t

0
G(eu

h (s) − ∂te
d
h(s), e

u
h (s) − ∂te

d
h(s)) ds. Now, since the seminorm |(eu

I , ∂te
d
I )|τ ,t can be

controlled by the corresponding broken L2 norm over the interface faces F ∈ FΣ, we can employ Stein interpolation
results and obtain the following (see B):

|(eu
I , ∂te

d
I )|τ ,t

≲
∫ t

0

(
∥eu

I (s)∥FΣ + ∥∂te
d
I (s)∥FΣ

)
ds

≲
∫ t

0

 ∑
K ∈ Th,f

∂K ∩ Σ ̸= ∅

h
m+1/2
K ∥Eu(s)∥Hm+1(K̂) +

∑
K ∈ Th,f

∂K ∩ Σ ̸= ∅

h
m+1/2
K ∥E∂td(s)∥Hm+1(K̂)

 ds,

where K̂ ⊇ K, for each K ∈ Th, are shape-regular simplexes covering Th, existing thanks to Assumption 1. Then,
the application of Cauchy-Schwarz and Young inequalities on (12) concludes the proof.

Remark 5 It is worth to point out that, in the proof of Theorem 2, the contribution of the interpolation error in the
| · |τ ,t seminorm has a convergence order that is 1/2 greater than the other terms of the energy norm. This means
that the treatment of the BJS condition in the proposed numerical method does not affect convergence.

5 Fully discrete problem and implementation

Starting from the semi-discrete problem (7), we introduce a timestep ∆t and a corresponding time discretization over
a uniform partition {tn = n∆t}Nn=0 of the interval (0, T ]. We use Newmark’s β-method to discretize the terms tested
against wh in (7) (corresponding to the elastic momentum equation) and the Crank-Nicolson method for all the other
terms. The nonlinear advection term is linearized by a semi-implicit approach, using a second-order extrapolation of
the advecting velocity at time tn+1/2:

(u · ∇)u |t=tn+1/2 ≃
[(

3

2
un − 1

2
un−1

)
· ∇
]
un+1 + un

2
, (13)

where the superscript ·n denotes the discrete variable approximating u at time tn. A similar notation is used in the
following for all the other variables.

In accordance with the above discretization methods, the algebraic form of the fully discrete problem reads as
follows:

A1(U
n,Un−1)Xn+1 = A2(U

n,Un−1)Xn + F n+1, n = 1, . . . , N, (14)
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where

Xn =
[
Dn;Zn;An;P n

A ; . . . ;P n
E ;Un;P n

]
, F n+1 =

[
F n

el ;0;0;F
CN
A ; . . . ;FCN

E ;FCN
f ;0

]
. (15)

To employ Newmark’s scheme, we have introduced two auxiliary vector variables Zn,An representing the first and
second time derivatives of Dn. The definition of the matrices A1(U

n,Un−1), A2(U
n,Un−1) can be obtained with

slight changes from those reported in [33]. Specifically, the Navier-Stokes advection term encompasses a modification
of the diagonal block corresponding to the fluid velocity U , while the BJS condition yields the addition of the following
matrix in the diagonal blocks corresponding to the solid and fluid velocities Z and U , and their mutual coupling:

[G⋆,△]ij =
∑

F∈FΣ

∫
F

γµf√
kE

(φj
⋆)τ · (φi

△)τ , ⋆ ∈ {el, f}, △ ∈ {el, f},

where the integrand is expressed in terms of the basis functions of the discrete spaces: WDG
h = span{φi

el}
Nel
i=0,

V DG
h = span{φi

el}
Nf
i=0.

6 Verification of convergence estimates

To verify the theoretical error estimates of Theorem 2 and the implemented solver, we report convergence tests on a
simplified mesh made of two juxtaposed unit cubes Ωf = (0, 1)× (1, 0)× (−1, 0),Ωel = (0, 1)3, where the interface is
Σ = {x = (x, y, z) : z = 0, (x, y) ∈ (0, 1)2}. Considering only one fluid compartment in the poroelastic system, namely
J = {E}, and setting all physical coefficients of Table 1 to be equal to 1, except for αE = 0.5, the following is an
exact solution of problem (1)-(2) for suitable expressions of the source functions fel, gE,ff , the boundary data, and
the initial conditions d0, ḋ0, pE0,u0:

u(x, t) = (2t− t2)e−t

yMzM

xMzM

ξ

 , d(x, t) = t2e−t

yMzM

xMzM

−ξ

 ,

p(x, t) = pE(x, t) = (1− e−t)zM .

(16)

In particular, we choose M = 5 and ξ = 1 and impose Dirichlet conditions for all variables on the whole of ∂Ω.
We simulate 5 time steps with step length ∆t = 10−3, chosen small enough to avoid spoiling convergence

w.r.t. space discretization. In Fig. 3, we report the computed errors in the energy norm (9). The results agree
with the convergence order hm,m = 1, 2, 3 predicted by Theorem 2.

7 Application to brain fluid-poromechanics: physiological condi-
tions in idealized geometry

In this section, we consider the CSF modeling by the Stokes equations (namely we neglect the nonlinear advection term
in (2)) and we apply our multi-physics model to physiological settings, focusing on the CSF compartment. Specifically,
we consider J = {E} and the values of the physical parameters reported in Table 1, with typical physiological values
according to [6, 40, 41].

The only non-zero distributed source/sink term is gE, whereas fel,ff are set to zero. This non-zero function
is homogenous in space, and its dependence on time is gE(t) = 0.2π sin(2πt), corresponding to an overall inflow
Qin(t) = |Ωel|gE(t) which is in the range of the CSF generation rate in physiological conditions: cfr. [6, 5].

The idealized geometry displayed in Fig. 4, left, retains the same topology of the brain and CSF system: the porous
tissue is contained in Ωel, while the CSF can flow in the ventricle system Ωf , including a duct connecting it to the
spinal canal at Γout. The volumes of the poroelastic and fluid domains at rest are |Ωel| = 9.68mL and |Ωf | = 0.89mL,
respectively. The corresponding mesh is made of N = 16 834 elements with an average size h = 1.6mm. In terms
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Figure 3: Verification test: computed relative errors in the energy norm (9) against h in log-log scale, with
different polynomial degrees m.

parameter phys. values description
ρel, ρf 1000 kg ·m−3 density of the solid tissue and of the CSF
µel 216Pa first Lamé parameter of the solid
λ 11 567Pa second Lamé parameter of the solid

µE, µf 3.5 · 10−3 Pa · s viscosity of the fluid in compartment E and of CSF
αE 0.49 Biot-Willis coefficient of compartment E
cE 10−6 m2 ·N−1 storage coefficient of compartment E

k̃E 10−16 m2 kE = k̃EI permeability tensor for compartment E
βe
E 0m2 ·N−1 · s−1 external coupling coefficient for compartment E ∈ J
γ 1 non-dimensional slip rate coefficient at interface Σ

Table 1: Parameters of model (2) with corresponding physiological values [6, 40, 41].
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Figure 4: Test case of Section 7. Left: computational domain and boundaries. Right: longitudinal clip with
computed displacement dh and interstitial pressures pE,h, for different time snapshots.

of boundary conditions, on the outflow Γout we prescribe the CSF pressure pout = 0 and on the outer wall Γw we
impose no traction on the tissue and no flow of the extracellular CSF. To ensure that the periodic regime is attained,
we simulate 3 periods of the source term gE, of duration T = 1 s, using a time step ∆t = 10−3 s. In the following, all
results refer to the third period, with time t = 0 set at its beginning.

The displacement dh and the interstitial CSF pressure pE,h are reported in Fig. 4, for selected time snapshots.
The magnitude of dh, reaching its peak at t = 0.5 s, never exceeds 6.6mm, thus it justifies the choice of a linear
elastic model for the cerebral tissue, in these settings. Regarding pE,h, at the same peak time t = 0.5 s we observe
a maximum difference of 4.4mmHg between the outer boundary Γout and the interface Σ, which is comparable with
analogous simulations in brain geometries [6, 33]. We also observe that a slight phase displacement occurs in the late
part of the period between pE,h and the data gE, with a minimum of −1.9mmHg attained at t = 0.94 s: this is due
to the inertial properties of the system, which are going to be discussed in Section 8.

Regarding the CSF velocity uh and pressure ph in the Stokes domain Ωf , the results are reported in Fig. 5.
The pressure gradient is significantly smaller than in the poroelastic medium and the velocity magnitude is in the
physiological range reported in clinical measurements and computational assessments in the cerebral aqueduct [6, 5].
The positive and increasing pressure gradient observed in the final portion of the period (see Fig. 5, t = 1 s) is due
to the aforementioned inertial effects, even more noticeable in the flowrate plots of Fig. 6, where the output flowrate
Qout =

∫
Γout

uh · n dΓ shows a significant phase displacement w.r.t. the inflow Qin =
∫
ΩE

gE dΩ = |ΩE|gE associated
to the source term.
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Figure 5: Test case of Section 7: longitudinal clip. Computed velocity uh and pressures ph in the fluid
domain Ωf , for different time snapshots.
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Figure 6: Test cases of Sections 7 and 8. Computed flowrates over a period, for different modeling choices
(N-S: Navier-Stokes). Left: outlet flowrate Qout =

∫
Γout

uh ·n; right: interface flowrate QΣ =
∫
Σ
uh ·nel. In

both: distributed CSF inflow flowrate Qin =
∫
Ωel

gE for reference.
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Figure 7: Test cases of Sections 7 and 8. Interface-average fluid pressure PΣ = 1
|Σ|

∫
Σ
ph over a period for

different modeling choices (N-S: Navier-Stokes).

8 Application to brain poro-mechanics: effects of BJS conditions
and advection term

This section aims to assess the effects of the modeling choices for the advection term in the fluid part of system (2)
– namely either Stokes or Navier-Stokes equations – and of the BJS condition (1e) at the interface – namely either
γ = 0 or γ = 1. Since a semi-implicit treatment of the advection term is employed, as reported in (13), the problem
to be solved at each time step is linear also in the Navier-Stokes case. Moreover, backflow stabilization is needed in
the Navier-Stokes case for the latest portion of the period: the term

∫
Γout

ρf
2
min {0,un

h · n}un+1
h · vh is added to the

left-hand side of the fully discrete problem (14) [42].
Observing the outlet flowrate Qout and the interface flowrate QΣ =

∫
Σ
uh · nel displayed in Fig. 6, we can notice

that the differences are negligible between the Stokes and Navier-Stokes case (for the same value of γ). Indeed, the
outlet Reynolds number Re = ρfQout

µfπD
, D being the diameter of the circular outlet section Γout, is in the range (40, 50)

for all cases.
A slight phase difference between the Stokes and Navier-Stokes model can, instead, be appreciated in the interface-

averaged pressure PΣ = 1
|Σ|

∫
Σ
ph reported in Fig. 7, particularly in the case γ = 1 corresponding to BJS conditions:

this difference can be ascribed to the additional inertia accounted for by the advection term in Navier-Stokes equations.
Overall, the results discussed here quantitatively show that the choice of the simpler Stokes model is definitely enough
to represent the flow in the regime of interest, which is the one of CSF flow in the cerebral ventricles.

To assess the effects of the BJS condition (1e), we can compare the cases γ = 0 (no tangential stress at the pores)
to the cases γ = 1 (BJS condition) in Figs. 6 and 7. The approximately sinusoidal evolution of flowrates and pressure
exhibits a smaller amplitude in the case γ = 0, particular significant in the interface quantities QΣ and PΣ. An
interpretation of this effect is that the friction in the tangential direction introduced by the BJS interface condition
makes CSF velocity orient in the direction orthogonal to the interface, thus increasing the amount of CSF flowing
through it at each given time. Due to the incompressibility of the fluid model, this increased flow corresponds to
an increased pressure difference PΣ − pout = PΣ. This is confirmed by the results reported in Fig. 8: when the BJS
condition is applied, uh is mostly normal to the interface in the upper region of Ωf (see the boxed panels in Fig. 8),
and an increased flowrate is observable in the vertical duct representing the cerebral aqueduct. Moreover, the friction
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Figure 8: Test cases of Sections 7 and 8: longitudinal clip. Main panels: computed velocity uh and pressures
ph in the fluid domain Ωf at t = 0.24 s, for different modeling choices. Right: zoom on uh distribution in the
boxed region.

introduced by the BJS condition yields an approximately parabolic profile in the duct, in contrast with the flat profile
of the case γ = 0. Such a parabolic profile better represents the actual CSF flow in the cerebral aqueduct [43]. To
conclude this discussion, it is interesting to notice that, despite the significant differences in the pressure and velocity
distribution, the outlet flowrate Qout shows little discrepancies between the different cases, since the outflow is mostly
driven by conservation of mass.

9 Conclusions

Motivated by the modeling of cerebrospinal fluid (CSF) flow in the brain, in this work we studied a coupled multi-
domain system encompassing multiple-network poroelasticity and (Navier-)Stokes equations, with a particular focus
on the interface conditions between the two physical domains. The polytopal discontinuous Galerkin method for space
discretization introduced in [33] was extended to consider the nonlinear advection term of Navier-Stokes equations
in the fluid domain and Beavers-Joseph-Saffman (BJS) interface conditions: an a priori analysis of the resulting
method in the Stokes case proved it to be stable and optimally convergent. The method was also numerically verified
by means of convergence tests in three dimensions. Considering an idealized geometry, representative of the main
topological characteristics of the brain tissue and ventricular system, the method was employed to represent porous
tissue dynamics and CSF flow in physiological settings, obtaining results in partial consistency with the literature.
Analyzing the effects of the advection term in the fluid model, it was quantitatively observed that neglecting the
advection term in the Navier-Stokes equations does not have a significant impact on the CSF velocity distribution
(at least in physiological conditions), though it may yield a slightly inaccurate prediction of the pressure distribution.
Finally, it was highlighted how the BJS condition strongly affects the CSF pressure and velocity distribution: the
results obtained with the enforcement of this condition better represent the CSF flow in the brain, especially in terms
of its profile in the cerebral aqueduct.

To further develop the computational model proposed in this work, its application to patient-specific geometries
could be considered, to allow a detailed investigation of the waste clearance mechanisms of the brain function. In
this direction, image segmentation pipelines developed in the literature (see, e.g., [44, 45]) should be combined with
mesh generation and agglomeration algorithms for the construction of a polyhedral mesh [46, 47, 48]. Moreover, the
multiple-network modeling of tissue perfusion could be exploited to assimilate clinical measurements of the blood
flow in the cerebral vasculature directly into the model, without the need for a pre-processing phase to estimate CSF
generation from such data, or to combine the system with more detailed computational models of the heart pulsation
[49, 50, 51]. Finally, an extension to more complex hyperelastic rheologies of the brain tissue should be envisaged, to
more accurately represent its mechanical response [52].
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A Bilinear forms and functionals of the semi-discrete problem

The forms building up the semidiscrete problem (7) are defined as follows:

Lel(d, {pk}k∈J ;w) = Ael(d,w) +
∑
k∈J

Bk(pk,w), (17a)

Lj({pk}k∈J , ∂td; qj) = Aj(pj, qj) + Cj({pk}k∈J , qj)− Bj(qj, ∂td), ∀j ∈ J, (17b)

Lf(u, p;v, q) = Nf(u,u,v) +Af(u,v) + Bf(p,v)− Bf(q,u) + S(p, q), (17c)

where

Ael(d,w) =

∫
Ωel

σel(d) : εh(w)

−
∑

F∈FI
el
∪FD

el

∫
F

({{σel(d)}} : [[w]] + [[d]] : {{σel(w)}} − η[[d]] : [[w]]) ,
(18a)

Fel(w) =

∫
Ωel

fel ·w, (18b)

Bj(pj,w) = −
∫
Ωel

αjpj divh w +
∑

F∈FI
el
∪F

Dj
el

∫
F

αj{{pjI}} : [[w]], , (18c)

Aj(pj, qj) =

∫
Ωel

µ−1
j kj∇hpj · ∇hqj

−
∑

F∈FI
el
∪F

Dj
el

∫
F

(
{{µ−1

j kj∇hpj}} · [[qj]] + [[pj]] · {{µ−1
j kj∇hqj}} − ζj[[pj]] · [[qj]]

)
,

(18d)

Cj({pk}k∈J , qj) =

∫
Ωel

∑
k∈J

βkj(pj − pk)qj +

∫
Ωel

βe
j pjqj, (18e)

Fj(qj) =

∫
Ωel

gjqj, (18f)
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Af(u,v) =

∫
Ωf

τf(u) : εh(v)

−
∑

F∈FI
f
∪FD

f

∫
F

({{τf(u)}} : [[v]] + [[u]] : {{τf(v)}} − γv[[u]] : [[v]]) ,
(19a)

Nf(u
′,u,v) =

∫
Ωf

(
ρf(u

′ · ∇h)u · v +
ρf
2
(∇h · u′)u · v

)
−
∑

F∈FI
f

∫
F

(
ρf [[u]] : {{u′}} ⊗ {{v}}+ ρf

2
[[u′]] : I{{u · v}}

)
,

(19b)

Bf(p,v) = −
∫
Ωf

p divh v +
∑

F∈FI
f
∪FD

f

∫
F

{{pI}} : [[v]], (19c)

Ff(v) =

∫
Ωf

ff · v, (19d)

S(p, q) =
∑

F∈FI
f

∫
F

γp[[p]] · [[q]], (19e)

J (pE,w,v) =
∑

F∈FΣ

∫
F

({{pEI}} : [[w,v]]) , (19f)

G(v1 −w1,v2 −w2) =
∑

F∈FΣ

∫
F

γµf√
kE

[[w1,v1]]τ · [[w2,v2]]τ , (19g)

where ∇h, εh, divh denote the element-wise gradient, symmetric gradient, and divergence operators, respectively, and
the stress tensors σel, τf are implicitly defined in terms of these piecewise operators. The parameters η, ζj, γv, γp
appearing in these forms are defined as follows [11, 15]:

η = η
CK

el

{h}H
, ζj = ζj

k
K
j√

µj{h}H
, γv = γv

µ

{h}H
, γp = γp{h}H, (20)

where {h}H denotes the harmonic average on K± (with {h}H = hK on Dirichlet faces), CK
el = ∥C1/2

el |K∥22 and

k
K
j = ∥k1/2

j |K∥22 are the L2-norms of the symmetric second-order tensors appearing in the elasticity and Darcy

equations, for each K ∈ Th,el, and η, ζj ∀j ∈ J, γv, γp are penalty constants to be chosen large enough. In all the
numerical tests of the present work, all these penalty constants are set to 10.

B Stein interpolation results

If Ω is a Lipschitz-regular domain, the following interpolation results hold for the Stein extension operator EK :
Hs(Ω) → Hs(Rd) (cf. [33, 53]):
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Lemma 3 Under Assumption 1, the following estimates hold:

∀(w, {qj}j∈J ,v, q) ∈ [Hm+1(Th,el)]
d+NJ × [Hm+1(Th,f)]

d+1

∃(wI , {qjI}j∈J ,vI , qI) ∈ WDG
h × [QDG

J,h ]
NJ × V DG

h ×QDG
h such that

i) |||(w −wI , {qj − qjI}j∈J ,v − vI , q − qI)|||2

≲
∑

K∈Th,el

h2m
K

(
∥EKw∥2

[Hm+1(K̂)]d
+
∑
j∈J

∥Ejqj∥2Hm+1(K̂)
+ ∥EKd∥2

[Hm+1(K̂)]d
+ ∥EKp∥2

Hm+1(K̂)

)
,

ii) ∥w∥2FΣ +
∑
j∈J

∥qj∥2FΣ + ∥v∥2FΣ + ∥q∥2FΣ

≲
∑

K∈Th,el

h2m+1
K

(
∥EKw∥2

[Hm+1(K̂)]d
+
∑
j∈J

∥Ejqj∥2Hm+1(K̂)
+ ∥EKd∥2

[Hm+1(K̂)]d
+ ∥EKp∥2

Hm+1(K̂)

)
,

where K̂ ⊇ K, for each K ∈ Th, are shape-regular simplexes covering Th, thanks to Assumption 1.
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