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1 Introduction
In this chapter we describe the modelling of spatially dependent functional data by
regression with differential regularization [23]. The chapter is based on [3].

Spatial regression with differential regularization defines the unknown spatial field
f as deterministic, and models the spatial (or spatio-temporal) variation of the phe-
nomenon under study via a regularizing term involving a Partial Differential Equation
(PDE). This contrasts with the main approach followed in the other chapters of the
book, where the unknown field is modeled as stochastic and the spatial variation of the
phenomenon is controlled via the definition of the covariance structure of the random
field.

The different modelling of the spatial variation considered by spatial regression
with differential regularization, combined with the use of advanced numerical analysis
techniques, such as finite element methods and isogeometric analysis based on splines
and extensions, leads to important advantages. One main advantage, that we here il-
lustrate, is the ability to efficiently deal with data distributed over a spatial domain
featuring peninsulas, islands, holes and other complex geometries that influence the
phenomenon under study. Moreover, the method can comply with specific conditions
at the boundaries of the problem domain, which is fundamental in many applications
to obtain meaningful estimates.

As an illustrative example, consider the estimation of the temporal evolution of the
amount of per capita municipal waste produced in the towns of Venice province. Figure
1 shows the Venice province, with dots indicating town centers, including municipali-
ties and other tourist localities of particular relevance. The province boundary is shown
by a line, highlighting the irregular shape of the province administrative borders and
its complex coastlines, with the Venice lagoon partly enclosed by elongated peninsulas
and small islands.
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Figure 1: Spatial domain of the Venice waste data, with a line highlighting the province
boundary and dots indicating the towns centers. Figure adapted from [3].

The data are measurements from 1997 to 2011 of the yearly amount of per capita
municipal waste (total kg divided by the number of municipality residents) and are pro-
vided by the Arpav, the Agenzia regionale per la prevenzione e protezione ambientale
del Veneto. Figure 2 shows the temporal evolution of the production of per capita waste
in the towns of Venice province; Figure 3 is a bubble plot of the data at a fixed year,
2006. The phenomenon portrayed by these data is expressed differently in different
parts of the domain. Consider for instance the two towns of Cavallino-Treporti (in the
peninsula at the north-east of Venice) and Quarto d’Altino (north of Venice), indicated
by black dots in Figure 3. The temporal evolution of the production of per capita munic-
ipal waste in the two towns, highlighted in Figure 2, is rather different, with strongly
increasing and high values in the seaside and tourist town of Cavallino-Treporti, op-
posed to the not increasing and lower values measured in the hinterland town of Quarto
d’Altino. These two towns are close in terms of their geodesic distance, but they are
much further apart in terms of land connections, as they are separated by the Venice
lagoon. Appropriately accounting for the shape of the domain, characterized by the
strong concavity formed by the lagoon, is crucial to accurately handle these data.

When analyzing the temporal evolutions of the amount of per capita municipal
waste, we shall make a strong simplification of the nature of these data, and consider
them in the framework of geostatistical functional data [8], where the datum is observ-
able in principle in any point of the domain, instead of in the framework of functional
areal data. As detailed in Paragraph 4, this is due to the fact that we miss the informa-
tion concerning the urbanized areas of the municipalities, where the type of waste here
considered (that does not include agricultural, industrial, construction/demolition and
hazardous waste) is produced.

This book reviews in detail many of recently proposed methods for the analysis of
spatially dependent functional data, mostly in the framework of kriging for functional
data [see, e.g, 11, 8, 18, 10, 5, 16, 17, 12]. On the other hand, these methods, as well
as the extensive literature in the more classical spatial-time data framework [see, e.g.,
6, and references therein], are not well suited to handle data distributed over irregular
domains, as they do not take into account the shape of the domain; they would for
instance smooth across concave boundary regions, thus closely linking data points that
are in fact far apart by land connections.
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Figure 2: Temporal evolution of the yearly per capita production (kg per resident) of
municipal waste in the towns of Venice province. Figure adapted from [3].
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Figure 3: Per capita production (kg per resident) of municipal waste in the towns of
Venice province in 2006. The data include all municipalities of Venice province and
additional four localities (Bibione, Murano, Lido di Venezia and Pellestrina), that do
not constitute a municipality on their own, but have been included due to their tourist
relevance and their location on the domain. For these additional four localities, the
considered datum is a replicate of the datum of their corresponding municipalities (see
Paragraph 4). Figure adapted from [3].
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Recent methods for the analysis of spatio-temporal data that instead specifically
account for the geometry of the domain of interest are described in [1] and [15]. These
models are based on the spatial smoother proposed by [26]. Here, we describe the
method proposed in [3], that extends the spatial regression models with differential
regularization described in [22], [23] and [2]. The model is implemented in R [20],
based on the package fdaPDE [14].

2 Spatial regression with differential regularization for
geostatistical functional data

Let Ω ⊂ R2 be a bounded spatial domain, possibly with an irregular geometry, and
let {pi = (xi,yi) ∈ Ω; i = 1, ...,n} be a set of n spatial locations within this domain.
Moreover, consider m time instants {t j ∈ T ; j = 1, ...,m} over the temporal interval
T = [tstart , tend ]⊂ R. Let zi j be the value of a real-valued variable observed at location
pi and time instant t j. Additionally, let wi j ∈ Rq be a vector of q space-time varying
covariates associated with the observation zi j at the spatio-temporal locatio (pi, t j). In
our illustrative application, the spatial domain Ω is the province of Venice, the spatial
locations pi are the centers of the towns, the time instants t j are the years between
1997 and 2011, the variable of interest zi j is the amount of per capita municipal waste
produced in the town i and year t j; furthermore, since intuition suggest that the tourism
may play an important role in the production of waste, we consider as covariate wi j the
number of beds in accommodation facilities in the town i and year t j.

Assume the following semi-parametric generalized additive model

zi j = wT
i j βββ + f (pi, t j) + εi j i = 1, ...,n, j = 1, ...,m, (1)

where βββ ∈Rq is a vector of q regression coefficients, f (p, t) : Ω×T→R is an unknown
smooth spatio-temporal function, and {εi j; i = 1, ...,n; j = 1, ...m} are independently
distributed residuals with mean zero and constant variance σ2. As detailed in Paragraph
2.4, one may as well consider a model without covariates. In this case the values zi j
can be directly seen as discrete and noisy observations of dependent functional data,
either spatially dependent curves or time dependent surfaces.

The vector of regression coefficients βββ and the spatio-temporal field f can be jointly
estimated minimizing a penalized sum of square error functional. In particular, in
[3] we propose to consider two roughness penalties that account separately for the
regularity of the field in space and in time. Let

J( f ,βββ ) =
n

∑
i=1

m

∑
j=1

(
zi j−wT

i j βββ − f (pi, t j)
)2

+ λΩ

∫
T

∫
Ω

(
∆ f (p, t)

)2
dpdt + λT

∫
Ω

∫
T

(
∂ 2 f (p, t)

∂ t2

)2
dtdp ,

(2)

where the two smoothing parameters λΩ > 0 and λT > 0 weight the penalizations re-
spectively in space and time; the choice of these parameters will be discussed in Para-
graph 2.3. The partial differential operator ∆ f (p, t) = ∂ 2 f

∂x2 (p, t)+
∂ 2 f
∂y2 (p, t) is the Lapla-

cian of the spatial component of the field; it provides the local curvature of the spatial
field, at a given time t. The Laplacian is invariant to rigid transformations of the spatial
coordinates, thus ensuring that the concept of smoothness does not depend on the ar-
bitrary choice of the coordinate system. The smoothness penalties in (2) are isotropic
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Figure 4: Simplified boundary of the Venice province. Figure adapted from [3].

and stationary. As detailed in the following paragraph, they induce the spatio-temporal
mean and covariance structures of the estimator. Different regularizations may be con-
sidered, as briefly discussed in Paragraph 5, implying different mean and covariance
structures and modelling anisotropic and non-stationary effects.

2.1 A separable spatio-temporal basis system
We represent the spatio-temporal field f (p, t) as an expansion on a separable spatio-
temporal basis system. Specifically, let {ϕk(t);k = 1, ...,M} be a set of M basis func-
tions defined on T and {ψl(p); l = 1, ...,N} a set of N basis functions defined on Ω.
Then, f is represented by the following basis expansion:

f (p, t) =
N

∑
l=1

M

∑
k=1

clk ψl(p) ϕk(t), (3)

where {clk; l = 1, ...,N;k = 1, ...,M} are the coefficients of the expansion on the sepa-
rable spatio-temporal basis.

Various possible bases can be used for the expansions in the spatial and temporal
domains. In this chapter, we describe the use, for the spatial domain, of a finite ele-
ment basis on a triangulation Ωτ of the domain Ω. This choice leads to an efficient
discretization of the functional J and allows to accurately take into account the shape
of the spatial domain.

We illustrate the construction of such basis on Venice domain. Before building
the basis, we simplify the original spatial domain represented in Figure 1, excluding
the coastal uninhabited regions and the smaller islands, and keeping in the domain of
study only the four major islands: Venice, Murano (at the north-east of Venice), Lido
di Venezia (at the south-east of Venice) and Pellestrina (at the south of Lido). We
then smooth the boundary of the domain with regression splines. Finally, we obtain
a piecewise linear boundary, sub-sampling from this smooth curve so that the features
characterizing the domain are preserved. The left panel of Figure 4 shows the simplified
boundary of Venice province, while the right panel of the same figure shows the detail
around the city of Venice. This region is particularly interesting since it shows the four
islands retained in the domain. Here the domain includes four bridges: one linking
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Venice to the continent and the others linking some of the islands between themselves;
the first one is an actual bridge with a road and a railway, while the other bridges
represent regular and frequent ferries among the islands.

A triangulation of the resulting simplified domain is then obtained using the R pack-
age fdaPDE [14]. In particular, we start from a Delaunay triangulation, constrained
within the simplified boundary, where each of the town locations and each point defin-
ing the simplified boundary become a triangle vertex. A more regular mesh is then
obtained imposing a maximum value to the triangle areas. Figure 5 displays the re-
sulting triangulation of Venice province. For this application, here and in Paragraph 4,
instead of using as coordinates the latitude and longitude, we employ the UTM coordi-
nate system, which allows to compute the distance between two points on the Earth’s
surface by means of the Euclidean distance instead of the geodesic distance.
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Figure 5: Triangulation of the Venice province. Figure adapted from [3].

The finite element basis is composed by globally continuous functions that coin-
cides with a polynomial of a certain degree on each element of the domain triangu-
lation. In particular we use here linear finite element basis, that are piecewise linear
functions. The dimension of the spatial basis is strictly related to the triangulation of
the spatial domain: there is one basis function for each knot of the triangulation; for
linear finite elements, each basis is associated to a vertex of the triangulation and has
value 1 at that vertex and 0 at all other vertices. Figure 6 shows an example of linear
basis function.
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Figure 6: Example of linear finite element basis function.

For the temporal dimension, we use here a cubic B-spline basis with penalization
of the second derivative, with knots coinciding with the sampling time instants of the
dataset. Other basis systems may turn out to be more appropriate in other applicative
contexts. For instance, Fourier basis are well suited to the case of cyclic data, pos-
sibly with penalization of the harmonic acceleration operator, instead of the order 2
derivative considered in (2).

The chosen basis system should be rich enough to enable an accurate representation
of the spatio-temporal evolution of the phenomenon. In general, the number of bases,
and thus of coefficients to be estimated, M×N, can be larger than the sample size,
m× n. This is for instance the case of the application to Venice waste data, as well as
of the simulation studies reported in Section 3. In these examples, in space we start
from a contrained Delaunay triangulation of the spatial locations, that is further refined
in the application to Venice waste data, and then consider the associated linear finite
element basis, whose dimension N (equal to number of internal and boundary nodes)
is thus larger than n. In time we use a cubic B-spline basis having knots at the m time
instants of observation, resulting in a basis dimension M larger than m. This fact does
not create any problem from the estimation point of view, thanks to the presence of
the regularizing terms. We indeed never experienced any numerical instability of the
method. Of course, in presence of dense sampling schemes, in space or time, coarser
spatial or temporal grids may be preferred for computational saving.

2.2 Discretization of the penalized sum-of-square error functional
Let z∈Rnm be the vector of observed data values at the n×m spatio-temporal locations,
f ∈Rnm the vector of evaluations of the spatio-temporal function f at the n×m spatio-
temporal locations, and c ∈ RNM the vector of coefficients of the basis expansion (3)
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of the spatio-temporal field f , with entries ordered as follows

z =



z11
...

z1m
z21
...

z2m
...

znm


f =



f (p1, t1)
...

f (p1, tm)
f (p2, t1)

...
f (p2, tm)

...
f (pn, tm)


c =



c11
...

c1M
c21
...

c2M
...

cNM


.

Coherently, let W ∈ Rnm×q be the design matrix containing the covariates {wi j; i =
1, ...,n; j = 1, ...,m}:

W =



wT
11
...

wT
1m

wT
21
...

wT
2m
...

wT
nm


.

Set HW = W (W TW )−1W T , the matrix that projects orthogonally into the subspace of
Rnm generated by the columns of W , and set Q = Inm−HW , the matrix that projects
into the orthogonal complement. We denote by Id ∈ Rd×d the identity matrix. Let
Ψ ∈ Rn×N be the matrix of the evaluations of the N spatial basis functions in the n
spatial locations {pi; i = 1, ...,n},

Ψ =


ψ1(p1) ψ2(p1) . . . ψN(p1)
ψ1(p2) ψ2(p2) . . . ψN(p2)

...
... . . .

...
ψ1(pn) ψ2(pn) . . . ψN(pn)

 .
Moreover, define the vectors ψψψ,ψψψx,ψψψy ∈ RN of the spatial basis functions and of their
first order partial derivatives:

ψψψ =


ψ1
ψ2
...

ψN

 ψψψx =


∂ψ1/∂x
∂ψ2/∂x

...
∂ψN/∂x

 ψψψy =


∂ψ1/∂y
∂ψ2/∂y

...
∂ψN/∂y

 .
Finally, let R0,R1 ∈ RN×N be two matrices respectively containing the integrals over
Ωτ of the cross products of the N spatial basis, and the integrals over Ωτ of the cross
products of the first derivatives of the N spatial basis, i.e.,

R0 =
∫

Ωτ

ψψψψψψ
T R1 =

∫
Ωτ

(ψψψxψψψ
T
x +ψψψyψψψ

T
y ) .

8



Analogously, let Φ ∈ Rm×M be the matrix of the evaluations of the M temporal basis
functions in the m time instants {t j; j = 1, ...,m}:

Φ =


ϕ1(t1) ϕ2(t1) . . . ϕM(t1)
ϕ1(t2) ϕ2(t2) . . . ϕM(t2)

...
... . . .

...
ϕ1(tm) ϕ2(tm) . . . ϕM(tm)

 .
Moreover, define the vectors ϕϕϕ,ϕϕϕ tt ∈ RM of the temporal basis functions and of their
second order derivatives:

ϕϕϕ =


ϕ1
ϕ2
...

ϕM

 ϕϕϕ tt =


d2ϕ1/dt2

d2ϕ2/dt2

...
d2ϕM/dt2

 .
Finally, let K0 ∈ RM×M be the matrix of the integrals over T of the cross products of
the M temporal basis, i.e.,

K0 =
∫

T
ϕϕϕϕϕϕ

T . (4)

Consider now the matrix B = Ψ⊗Φ ∈Rnm×NM , where⊗ denotes the Kronecker prod-
uct. Then f = Bc.

We may then rewrite the sum of square error functional J in (2) as

J = (z−Wβββ −Bc)T (z−Wβββ −Bc)+λΩcT (PS⊗K0)c+λT cT (R0⊗PT )c

= (z−Wβββ −Bc)T (z−Wβββ −Bc)+ cT Pc ,
(5)

where PS and PT are the matrix discretizations of the spatial and temporal penalization
terms, and P is the overall penalty P = λΩ (PS⊗K0) + λT (R0⊗PT ). Specifically, the
matrix PT is obtained by direct discretization of the temporal penalty term in (2):

PT =
∫

T
ϕϕϕ ttϕϕϕ

T
tt ;

see [21] for details. For the matrix PS, following [22] and [23], we consider a computa-
tionally efficient discretization of the spatial penalty term in (2), that does not involve
the computation of second order derivatives of the basis functions, but only of first
order derivatives. This discretization is given by PS = R1R−1

0 R1, and it is based on a
variational characterization of the estimation problem; see [22] for details. As shown
in [2], in the finite element space used to discretize the problem, the matrix PS is in fact
equivalent to the penalty matrix that would be obtained as direct discretization of the
penalty term in (2) and involving the computation of second order derivatives.

This formulation uses the homogeneous Neumann condition at the boundary of the
domain of interest implying zero flow across the boundary ∂Ω. Boundary conditions
are a way to control the behavior of the estimated function at the boundaries of the do-
main. Various boundary conditions are possible: Dirichlet conditions control the value
of the function, that is f |∂Ω = γD, Neumann conditions control the value of the normal
derivative of the function, that is ∂n f |∂Ω = γN , and Robin conditions are linear com-
binations of the previous two. Homogeneous conditions correspond to the case when
γD or γN are null functions. Moreover, different types of boundary conditions can be
imposed on different parts of the boundary, forming a partition of it. In the simulations
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reported in Section 3 and in the application to Venice waste data, we impose homoge-
neous Neumann boundary conditions, i.e., null flow across the boundary; we are thus
considering closed systems with respect to the phenomenon considered. In the con-
text of Venice data, this means that we assume no exchange of waste between Venice
province and the sea, or between Venice province and other neighboring provinces.

To compute the estimates of the vector of regression coefficients βββ and of the vector
c of coefficients of the basis expansion of the spatio-temporal field f , we compute the
first partial derivatives of J with respect to βββ and c, and set them equal to zero, getting
the following explicit solution to the estimation problem:

β̂ββ = (W TW )−1W T (z−Bĉ),
ĉ = (BT QB+P)−1BT Qz.

The estimators are linear in the observed data values z; the estimator ĉ has a penalized
least-square form and, given ĉ, the estimator β̂ββ has a least-square form.

2.3 Properties of the estimators

Let Sf = B(BT QB+P)−1BT Q, so that β̂ββ = (W TW )−1W T (Inm−Sf)z.
Since E[z] =Wβββ + f and Var[z] = σ2Inm, and exploiting the fact that the matrix Q

is idempotent and QW = 0 (where 0 is the nm×q zero matrix), we obtain

E[ĉ] = (BT QB+P)−1BT Qf,
Var[ĉ] = σ

2(BT QB+P)−1BT QB(BT QB+P)−1

and

E[β̂ββ ] = βββ +(W TW )−1W T (Inm−Sf)f,

Var[β̂ββ ] = σ
2(W TW )−1 +σ

2(W TW )−1W T SfST
f W (W TW )−1.

(6)

Consider the vector B(p, t) = ψψψ(p)T ⊗ϕϕϕ(t)T of evaluations of the separable basis
system at the spatio-temporal location (p, t) ∈Ω×T. The estimate of the field f at this
generic location is thus given by

f̂ (p, t) = B(p, t)ĉ = B(p, t)(BT QB+P)−1BT Qz

and its mean and variance are given by

E[ f̂ (p, t)] = B(p, t)(BT QB+P)−1BT Qf
Var[ f̂ (p, t)] = σ

2B(p, t)(BT QB+P)−1BT QB(BT QB+P)−1B(p, t)T ,

(7)

with covariance at any two spatio-temporal locations (p1, t1),(p2, t2) ∈Ω×T given by

Cov[ f̂ (p1, t1), f̂ (p2, t2)] =

σ
2B(p1, t1)(BT QB+P)−1BT QB(BT QB+P)−1B(p2, t2)T . (8)

It should be noticed that the regularizing terms in (2), and their corresponding dis-
cretization P, induce both the first order structure (i.e., the mean) and the second order
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structure (i.e., the spatio-temporal covariance) of the estimator f̂ . Different regular-
izations would imply different mean and covariance structures. For instance, [2] con-
sider a regularized spatial regression model and show that by changing the regularizing
term and considering more complex differential operators it is possible to include in
the model a priori information about the spatial variation of the phenomenon, and to
model also anisotropies and non-stationarities.

The smoothing matrix S, which maps the vector of observed values z to the vector
of fitted values ẑ = Sz, is given by

S = HW +QSf.

The trace of the smoothing matrix constitutes a commonly used measure of the equiv-
alent degrees of freedom for linear estimators (this notion was first introduced by [4]).
For the model considered, this is given by tr(S) = q+ tr(Sf), thus coinciding with the
sum of the q degrees of freedom corresponding to the parametric part of the model and
the tr(Sf) degrees of freedom corresponding to the non-parametric part of the model.
A robust estimator of σ2 is given by

σ̂
2 =

1
nm− tr(S)

(z− ẑ)T (z− ẑ). (9)

This estimate of the error variance, plugged into (7), can be used to compute ap-
proximate Gaussian pointwise confidence intervals for f ; similarly, plugged into (6),
it can be used to compute approximate Gaussian confidence intervals for βββ . More-
over, the value of a new observation at the spatial location pn+1 ∈ Ω and time instant
tm+1 ∈ T, and with associated covariates wn+1 m+1, can be predicted by ẑn+1 m+1 =

wT
n+1 m+1 β̂ββ + f̂ (pn+1, tm+1), and approximate prediction intervals may as well be

constructed.
Finally, the values of the smoothing parameters λΩ and λT may be chosen via Gen-

eralized Cross-Validation (GCV), searching for the values of λΩ and λT that minimize

GCV (λΩ,λT ) =
nm

(nm− tr(S))2 (z− ẑ)T (z− ẑ).

2.4 Model without covariates
If covariates are not included in the model, than (1) is replaced by

zi j = f (pi, t j) + εi j i = 1, ...,n, j = 1, ...,m,

a classical functional data analysis model. The spatio-temporal field f can thus be
estimated minimizing the functional

J( f ) =
n

∑
i=1

m

∑
j=1

(
zi j− f (pi, t j)

)2
+

+λΩ

∫
T

∫
Ω

(
∆ f (p, t)

)2
dpdt +λT

∫
Ω

∫
T

(
∂ 2 f (p, t)

∂ t2

)2
dtdp. (10)

The numerical discretization of the functional follows as in Section 2.1, leading to

J = (z−Bc)T (z−Bc)+ cT Pc ,

11



and hence to the following estimator of the vector of coefficients for the spatio-temporal
field:

ĉ = (BT B+P)−1BT z.

The mean and variance of this estimator are given by

E[ĉ] = (BT B+P)−1BT f,
Var[ĉ] = σ

2(BT B+P)−1BT B(BT B+P)−1.

The estimator of the field f at a generic location (p, t) is thus given by

f̂ (p, t) = B(p, t)ĉ = B(p, t)(BT B+P)−1BT z

and has the following mean, variance and covariance structures

E[ f̂ (p, t)] = B(p, t)(BT B+P)−1BT f
Var[ f̂ (p, t)] = σ

2B(p, t)(BT B+P)−1BT B(BT B+P)−1B(p, t)T

Cov[ f̂ (p1, t1), f̂ (p2, t2)] = σ
2B(p1, t1)(BT B+P)−1BT B(BT B+P)−1B(p2, t2)T .

These above expressions coincide with those derived in Paragraph 2.3, setting Q = I.
As noted earlier, the mean and covariance structure of the estimator are characterized
by the chosen regularizing terms, through their discretization P. Finally, the smoothing
matrix is in this case given by S = B(BT B+P)−1BT . The computation of the degrees
of freedom of the estimator, the estimate of the error variance, the optimal selection
of the smoothing parameters λΩ and λT , and the computation of confidence/prediction
intervals follows along the same lines outlined in the case of the model with covariates.

2.5 An alternative formulation of the model
Instead of considering the functionals (2) or (10), respectively in the case with or with-
out covariates, it is possible to consider alternative functionals, that regularize directly
the coefficients of the basis expansion of the spatio-temporal field, in analogy with the
models proposed by [1] and [15]. This alternative formulation is detailed in [3], Section
5.

3 Simulation studies
In [3] the performances of the proposed spatio-temporal regression with PDE regu-
larization (ST-PDE) are tested via extensive simulation studies under various settings,
with different sampling designs in space and time, with and without covariates, with
correlated and uncorrelated noise. Spatial regression with differential regularization
is compared to separable spatio-temporal kriging, to the space-time models proposed
by [1] and [15] and based on soap film smoothing [26], and to an analogous space-
time model based on thin-plate splines. We here report the results from two simulation
studies, referring the interested reader to [3] for details.

We consider a test function defined on a C-shaped spatial domain, shown at three
different time instants in the first row of Figure 7. The test function displays similar
features as Venice waste data: its domain is characterized by a strong concavity, and
different values of the field are observed in the two arms of the domain, across the
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concavity, with different behaviors over time. The second row in Figure 7 shows the
data sampled at the three time instants, for the first simulation replicate.

The implementation of ST-PDE is based on the R package fdaPDE [14]. In space
we use a linear finite element basis defined on the mesh shown in the second row of
Figure 7, a contrained Delaunay triangulation of the sampling spatial locations. In time
we use a cubic B-spline basis, with knots coinciding with the sampling time instants.
The values of the smoothing parameters λΩ and λT are chosen via GCV. The field es-
timate obtained in the first simulation replicate, at the three considered time instants,
is shown in the last row of Figure 7. The third and fourth rows of the same figure
illustrate instead the field estimates obtained by spatio-temporal kriging (KRIG), im-
plemented using the R package gstat [19], and by spatio-temporal smoothing with a
thin-plate spline basis in space and a B-spline basis in time (TPS), implemented using
the R package mgcv [25]. For the kriging we use a separable variogram marginally
Gaussian in space and exponential in time, with parameters estimated from the empir-
ical variogram. For the spatio-temporal model based on thin-plate splines we select
the smoothing parameters via GCV. Figure 7 shows that KRIG and TPS return poor
estimates of the true spatio-temporal field, especially in those time instants where the
true field is characterized by different values in the two arms of the C-shaped domain
(see the first and second columns in the figure): the different values have in fact been
smoothed across the concavity in the domain. ST-PDE instead accurately estimates
the spatio-temporal field, being able to comply with the shape of the domain. The left
panel of Figure 9 shows the boxplots of the Root Mean Square Errors (RMSE), over 50
replicates of the noise generation, of the space-time field estimates yielded by the three
methods. These boxplots confirm the comparative advantage of ST-PDE over KRIG
and TPS.

Figure 8 and the right panel of Figure 9 show the results from a second simulation
study detailed in [3], where we as well include a space-time varying covariate. The
second row in Figure 8 shows the added contributions of covariates and true function.
In this simulation setting we do not compare to spatio-temporal kriging, as the function
krigeST of the R package gstat does not allow for the inclusion of covariates. The
results are otherwise similar to those obtained in the simulation without covariates,
with a superiority of ST-PDE over TPS. This superiority also reflects in the estimation
of the β coefficient: the corresponding RMSE over the 50 replicates is 0.14 for TPS and
0.09 for ST-PDE. Also in this simulation setting, the main reason of the comparative
advantage shown by ST-PDE consists in its ability to comply with the shape of the
domain.
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Figure 7: Simulation without covariates: test function (first row), sampled data (sec-
ond row), field estimates provided by spatio-temporal kriging (third row), by spatio-
temporal smoothing using thin-plate splines (fourth row) and by ST-PDE (fifth row).
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Figure 8: Simulation with covariates: test function (first row), added contributions of
the spatio-temporal covariate field and of the test function (second row), sampled data
(third row), field estimates provided by spatio-temporal smoothing using thin-plate
splines (fourth row) and by ST-PDE (fifth row).
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Figure 9: Left. Simulation without covariates: boxplots of the RMSE, over 50 sim-
ulation replicates, of the field estimates provided by spatio-temporal kriging (KRIG),
by spatio-temporal smoothing using thin-plate splines (TPS) and by spatio-temporal
regression with PDE regularization (ST-PDE). Right. Simulation with covariates: box-
plots of the RMSE, over 50 simulation replicates, of the field estimates provided by
spatio-temporal smoothing using thin-plate splines (TPS) and by spatio-temporal re-
gression with PDE regularization (ST-PDE).

4 An illustrative example: study of the waste produc-
tion in Venice province

We now illustrate the described method via an application to the study of the annual
amount of per capita municipal waste produced in the Venice province.

4.1 The Venice waste dataset
Open Data Veneto1 provides the gross and per capita annual amount of municipal waste
produced in each municipality of the Venice province in the period from 1997 to 2011.
We here consider for the analysis the annual per capita municipal waste, in kg per
municipality resident.

Municipal waste includes that produced in houses and public areas, but does not
include special waste, i.e. industrial, agricultural, construction and demolition waste,
or hazardous waste, for which there are special disposal programs. Therefore, the data
refer only to the urbanized areas of the municipality, whilst they do not refer to the
agricultural or industrial areas in the municipality territories. Since no data identify-
ing the urbanized areas of the municipalities is available, we face here two possible
simplifications of the problem. We can either partition the Venice province in the mu-
nicipality territories and attribute each datum to the whole territory of its municipality,
or assign each datum to a point representing the center of the municipality. We here
adopt the second simplification. The spatial coordinates of the town centers are avail-
able online2. As mentioned in Paragraph 2.1, latitude and longitude are converted into
UTM coordinate system.

1http://dati.veneto.it/dataset/produzione-annua-di-rifiuti-urbani-totale-e-pro-capite-1997-2011
2http://www.dossier.net/utilities/coordinate-geografiche/
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In some cases there are localities which do not constitute a municipality on their
own, but are under the jurisdiction of another town. In this case, there are two or
more main urbanized areas in the municipality territory. Some of these localities are
not negligible for the problem under analysis due to their tourist relevance and their
location on the domain; for this reason we add them to the data. Specifically, we
include the seaside town of Bibione, the easternmost village indicated in Figure 1.
This popular vacation destination falls under the jurisdiction of the municipality of San
Michele al Tagliamento, north west of Bibione; the waste data considered for Bibione
are a replicate of the data of San Michele al Tagliamento. Moreover, we replicate the
data of Venice in the islands of Murano, Lido di Venezia and Pellestrina, because of
their tourist relevance and the particular shape of the domain.

We include as a covariate the number of beds in accommodation facilities (such
as hotels, bed and breakfast, guest houses, campings, etc.) divided by the number of
residents. This ratio may be as large as 7 in some tourist towns by the sea. The number
of beds in accommodation facilities is provided by Istat3, the Italian national institute
for statistics.

4.2 Analysis of Venice waste data by spatial regression with differ-
ential regularization

Figure 10 shows the estimated spatio-temporal field at fixed time instants. The estimate
for the coefficient β is 39.7 meaning that one more unit in the ratio between the number
of beds in accommodation facilities and the number of residents is estimated to increase
the yearly per capita production of waste by residents by about 40kg. The estimated
spatial field f shows the highest values, across the years, in correspondence of the
coastline, around the towns of Bibione, Lido di Jesolo and Cavallino-Treporti. These
higher values may be due to a type of tourism that is not captured by the available
covariate, such as daily tourists who do not stay overnight, and vacationers who either
own or rent vacation houses. The higher values of the field are also probably due to
the presence of many seasonal workers, who are not residents of these towns, and are
employed in the numerous accommodation facilities, restaurants, cafés, shops, beach
resorts and other services.

Although Venice is one of the most visited cities in Italy, and this tourism is active
all year round, the production of per capita waste in Venice appears to be lower than
in other nearby tourist localities by the seaside. This might be partly explained by the
fact that the tourist activities in Venice are not so highly characterized by seasonality
as in the smaller seaside villages, and people working in tourist activities in Venice are
more likely to be themselves residents of this large city.

It is significant to notice how the estimated function does not smooth across con-
cave boundaries. For example, the area of the city of Quarto d’Altino and the one
around the city of Cavallino-Treporti show different ranges of values. Indeed, even
though the two towns are geographically close, they are separated by the Venetian
lagoon. This difference is evident also from the first two panels of Figure 11, which
shows the estimated spatio-temporal field at fixed localities: Quarto d’Altino, Cavallino-
Treporti, Venice and Bibione. In these plots the dots are obtained subtracting from the
data the estimated contribution by the covariate, i.e. β̂wi j.

The temporal evolution plots in Figure 11 show the ability of the method to capture
the temporal trend of the phenomenon. The method provides good estimates also for
the municipality of Cavallino-Treporti, which presents a strong variation of per capita

3http://www.istat.it/it/archivio/113712
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(a) 1997 (b) 2000

(c) 2003 (d) 2006

(e) 2009 (f) 2011

Figure 10: Estimated spatio-temporal field for the Venice waste data (yearly per capita
production) at fixed time instants.
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Figure 11: Temporal evolution of the estimated spatio-temporal field for the Venice
waste data (yearly per capita production) at fixed spatial locations. Figure adapted
from [3].

waste over the year. The large increase of the per capita waste of Cavallino-Treporti is
partly explained by the fact that, during the first years of this study, this town was under
the jurisdiction of Venice, while the data for this new municipality are available only
from 2002. In particular, the data for Cavallino-Treporti for years 1997 to 2001 are a
replicate of the data of the municipality of Venice. Nevertheless, the strong variation
in the data is well captured by the estimated function.

5 Model extensions
Various extensions of the model described in this chapter are possible. A first general-
ization consists in modelling data that are areal in space and integral in time, and esti-
mating an underlying spatio-temporal intensity function. In the application to Venice
waste data, if information about the urbanized areas of each municipality would be-
come available, such a model extension would for instance allow to appropriately refer
the waste datum to the area and year where it is produced, estimating a spatio-temporal
intensity of waste production.

Extending the work of [2] it is also possible to include a priori information avail-
able on the phenomenon under study, using more complex differential regularizations
modelling the spatial and/or temporal behavior of the phenomenon. This also allows
to account for non-stationarities and anisotropies in space and/or time. Along the same
lines, if a priori information about the interaction between space and time was available,
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then it would make sense to consider a unique space/time regularizing term based on a
time-dependent PDE that governs the phenomenon behavior. [2] for instance analyze
the blood flow velocity in a section of the carotid artery at a fixed time instant corre-
sponding to the systolic peak, starting from Echo-Color Doppler data, and including a
priori information on the problem under study. By introducing the time dimension, we
could study how the blood flow velocity field varies during the time of the heart-beat.
PDEs are commonly used to describe complex phenomena behavior in many fields of
engineering and sciences, including bio-sciences, geo-sciences, and physical sciences.
Potential applications of particular interest of this space-time technique in the environ-
mental sciences would for example concern the study of the dispersion of pollutant
released in water or in air and transported by streams or winds, and the study of the
propagation of earthquakes, tsunamis, and other wave phenomena. If one wishes in-
stead to consider simpler isotropic and stationary regularizations, then a possibility to
allow for stronger interactions in space/time, with respect to the model here presented,
would consists in defining a unique regularizing term based on a heat equation.

Finally, data distributed over curved domains, instead of over planar domains, could
be handled by extending the model proposed in [9]. Considering the same application
presented by [9], this would for instance enable the study of time-dependent hemody-
namic forces exerted by blood-flow over the wall of inner carotid arteries affected by
aneurysms, taking into account the complex morphology of these vessels. Another fas-
cinating field of application of this modelling extension would be in the neurosciences
[7][13], studying signals associated to neuronal activity over the cortical surface, a
highly convoluted thin sheet of neural tissue that constitutes the outermost part of the
brain. In the geo-sciences, this would permit the study of data distributed over regions
with complex orographies. Moreover, generalizations to time-dependent data of the
spatial regression model introduced by [24] would be particularly well suited for im-
portant engineering applications, especially in the automotive, naval, aircraft and space
sectors, where space-time varying quantities of interest are observed over the surface
of a designed 3D object, such as the pressure over the surface of a shuttle winglet.
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