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Abstract

This paper proposes a clustering procedure for samples of multivariate functions
in (L3(I))’, with J > 1. This method is based on a k-means algorithm in which
the distance between the curves is measured with a metrics that generalizes the
Mahalanobis distance in Hilbert spaces, considering the correlation and the variability
along all the components of the functional data. The proposed procedure has been
studied in simulation and compared with the k-means based on other distances
typically adopted for clustering multivariate functional data. In these simulations,
it is shown that the k-means algorithm with the generalized Mahalanobis distance
provides the best clustering performances, both in terms of mean and standard
deviation of the number of misclassified curves. Finally, the proposed method has
been applied to two real cases studies, concerning ECG signals and growth curves,
where the results obtained in simulation are confirmed and strengthened.
Keywords: Multivariate Functional Data, Distances in L?, Functional k-means
clustering.

1 Introduction

The aim of cluster analysis is to individuate homogenous groups of
observations that are realizations of some random process. Clustering is
often used as a preliminary step for data exploration, the goal being to
identify particular patterns in data that have some convenient interpretation
for the user. In particular, k-means algorithm is a clustering procedure based
on heuristic and geometric procedures.

Over the past few decades, in many scientific fields as economics, medicine,
engineering, ... there has been an increasing interest towards the study of
datasets whose number n of statistical units is much smaller than the number
p of features recorded for a single statistical unit. Large p - small n problems
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is the term generally used to refer to such situations. A particular case
is represented by the situation in which any observed data can be seen
as a random function generated by a continuous time stochastic process
X = {X(¢t), t € I}, lying in a suitable infinite dimensional Hilbert space,
typically L2(I), with I compact interval of R.

Functional Data Analysis () represents the natural framework to develop
statistical models and tools which are useful for the study of this kind of
data (see, e.g. [12], [13], [4], [7]). As highlighted in this literature, a central
role in this context is represented by the Functional Principal Component
Analysis (FPCA), which is based on the Karhunen-Loéve (KL) expansion,
that decomposes a random function X (¢) in a sum of the mean m(t) and
a series of orthonormal functions ¢ (t), each one multiplied by zero-mean
uncorrelated random variables ﬁka, where {\; k > 1} are the eigenvalues
of the covariance operator V of X while {pg; k > 1} are its eigenfunctions.

Despite of the great interest in the FPCA, many inferential procedures
adopted in the multivariate PCA have not been extended yet to the func-
tional case. For instance, in the multivariate finite dimensional setting the
inference on the mean is typically based on the Mahalanobis distance, since
it takes into account the correlation among the variables and it weights
the components according to their variability. However, when data belongs
to an infinite dimensional space, as (L?(I))”, the Mahalanobis distance is
not well defined and the inference is usually realized by considering only
the first K € N principal components. Although this approach is widely
employed in literature, it is based on a semi-distance that, differently from
the Mahalanobis case, does not weight more the components with lower
variability.

Clustering functional data can also be a difficult task because of the
dimensionality of space the data belong to. The lack of a definition for the
probability density of a functional random variable and the difficulty to
define distances or make estimates on noisy data are some examples of such
difficulties. Different approaches have been proposed along years to address
these issues; the most popular one consists again in reducing the infinite
dimensional problem to a finite one, approximating the data with elements
from some finite dimensional space. Then the usual clustering algorithms
for finite dimensional data can be performed. When the goal of the analysis
consists in describing the shape of X(t), the first K principal components
{er(t), k =1,..., K} usually contain all the information needed to represent
the data. Nevertheless, when the goal consists in making inference or classi-
fying curves in different groups, considering a fixed number of components
may lead to losing some important information on the distribution of X (t)
and hence to providing meaningless results.

For these reasons, in this paper we perform a clustering procedure based on
a distance that takes into account all the components in (L2(I))”, with J > 1.
This distance was proposed and used in an inferential setting in [5,6], where it



2 k-means algorithm with the generalized Mahalanobis distance 3

is considered as a generalization of the Mahalanobis distance since it weights
the different components according to the correlation and the variability of
the functional sample. The type of clustering procedure we propose to be used
with this distance consists in the functional k-means algorithm, which is very
popular in the literature of classification in functional data analysis (see, e.g.
the k-means alignment algorithm in [15], the core shape modeling approach in
[3], the non-parametric time-synchronized iterative mean updating technique
in [9] or the simultaneously aligning and cluster K-centres model in [10]). We
show, both in simulation and in two applications to real case studies, that the
k-means algorithm with the generalized Mahalanobis distance provides better
clustering performances than the k-means based on other distances, that are
typically used to deal with multivariate functional data. Moreover, these
good results have been obtained either when the difference between the curves
involves their macro-structure or when the difference concerns their micro-
structure. We also discuss how to set the parameter used in the generalized
Mahalanobis distance in order to get high clustering performances.

The paper is structured as follows. The clustering procedure is presented
in Section 2, with a short introduction on the generalized Mahalanobis
distance. In Section 3 we present some results in a simulation setting, both
in the univariate and multivariate functional framework, in Subsection 3.1
and Subsection 3.2, respectively. In Section 4 and Section 5 we present some
results obtained applying the proposed method to two different real case
studies, and finally some concluding remarks are discussed in Section 6. All
the analysis have been carried out using the software R [11] and the codes
are available upon request.

2 k-means algorithm with the generalized Mahalanobis distance

The aim of this paper is to develop a proper classification procedure in
the multivariate functional framework based on the generalized Mahalanobis
distance defined and used in [5,6]. We first recall the definition and the main
properties of such distance.

Let us consider two realizations a and b of a multivariate stochastic
process X = (X1,..,X)", with J > 1, X; € L?(I) for any i € {1,..,J}
and I compact interval of R. The mean m = E[X] is defined as a vector
of functions in L?(I) such that m; = E[X;] for any [ € {1,..,J}, and the
covariance kernel v(s,t) = Cov [X (s), X ()] is defined as a J x J matrix of
functions such that vy, (s, t) := Cov [ Xy, (s), Xi, (t)] forany 11,1 € {1,...,J}.
The scalar product between two elements a and b of (L?(1))” is defined as
follows:

J
(a, b) :;/Tal(t)bl(t)dt.

The eigenvalues {\, k > 1} and the eigenfunctions {¢x = (gok.l yee s PR
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k > 1} of v are the elements solving (vy,.(t,-), pr) = )\kgol(fl)(t) for any

L e{1,..,J} and t € I, where v;,. = (v;, 1,...,v;,7). Then we can define
the generalized Mahalanobis distance as follows:

dy(a,b) = J S &, (a, b (p). (2.1)
k=1

where dps(a,b) indicates the term representing the contribution of the
Mahalanobis distance along the k*" component, i.e.

a— 2 J ’
dstan ) = [P 25 [ )il )

and hy(p) is a sequence of regularizing functions of a suitable real parameter
p > 0. Without loss of generality, throughout all the paper we consider
hi(p) = Ae/(Ar + 1/p), although other choices are possible. For further
details on the properties of the d,, distance and the choice of the function
hi(p), see [5,6].

We consider a sample of n = n; + ... + ny realizations X (), ..., X, (t)
of k independent stochastic processes in (L2(I))”. Let X,,(t) = n™ (X () +
...+X,(t)) be the empirical mean and then the estimated covariance function
is defined as follows:

1 _

3 (Xi(s) — X)) (Xi(t) — Xn(®) ', (2.2)

=1

0(s,t) :=

n—1

from which we can compute the sequences of its eigenfunctions {¢ =

@", ...
gZ),(CJ))T, k > 1} and the associated eigenvalues {A; k > 1}. Since in this case
the covariance function is computed using n curves, we have e = 0 for all
k > n, and hence the functions {px; £ > n} can be arbitrary chosen such
that {¢g; k > 1} is an orthonormal basis of (L2(I))”’.

The empirical version of the d,, distance based on the covariance estimator

9 can be written as follows:

min{n—1,T}
QX0 X5(0) = Y dRa(Xalt), X5 (1) hi(p)
k=1
T 2
+ Y p((Xat) = Xy(0).¢8)

k=min{n—1,T}+1

(2.3)

where T represents the length of the independent variable grid, while a?zM7 w()
and h(p) represent the estimates of dﬁmk(-, -) and h(p) presented in (2.1),
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using {\; k > 1} and {#r; k > 1}, respectively. Comparing (2.1) with (2.3),
we can note that, since A, > 0 only for k < n — 1 and ( (p)/A\i) — p for
Ak = 0, the second term in (2.3) makes the expression of d, consistent with
the definition of d,, in (2.1).

We propose a k—means algorithm for an unsupervised classification prob-
lem. In [17] it is possible to find a proper definition of the functional k-means
procedure and an introduction to its consistency properties. The functional
k-means clustering algorithm is an iterative procedure, alternating a step
of cluster assignment, where all the curves are assigned to a cluster, and
a step of centroid calculation, where a relevant functional representative
(the centroid) for each cluster is identified. More precisely, the algorithm is
initialized by fixing the number k of clusters and by randomly selecting a set
of k initial centroids {Xgo)(t), e ’Xéo) (t)} among the curves of the dataset.
Given this initial choice, the algorithm iteratively repeats the two basic steps
mentioned above. Formally, at the m!" iteration of the algorithm, m > 1,
the two following steps are performed:

Step 1 (cluster assignment step): each curve is assigned to the cluster with
the nearest centroid at the (m — 1) iteration, according to the distance
d,. Formally, the m' cluster assignment Cl-(m) of the " statistical
unit, for ¢ = 1,...,n, can be written as follows:

G 1= amgmin dy (X,(4) x4 (1))

Step 2 (centroid calculation step): the computation of the centroids at the
h jteration is performed by solving the optimization problems: for
any [ =1,...,k,

X (t) = argmin Y dp(Xi(t), x(t)?,

2 J

where C’i(m) is the cluster assignment of the i** statistical unit at the
h iteration.

The algorithm stops when the same cluster assignments are obtained at two
subsequent iterations, i.e. the set of cluster assignements {Cfm), . 707(;71)}
and the set of centroids {Xgm)(t) cee X,(gm)( t)} are considered final solutions
of the algorithm if m is the minimum integer such that Ci(mﬂ) = CZ.(m) for
alli=1,...,n

Naturally, the k-means procedure does not depend only on the distance
adopted in the algorithm, but also on the number of clusters k. Since k
is typically unknown a priori, we compute the optimal number of clusters
k* via silhouette values and a plot of the final classification, see [16]. In
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particular, the silhouette plot of a classification consists of a bar plot of the

silhouette values s;, obtained for each statistical unit i =1,...,n as
bi — a;
S 1= )
max{a;, b; }

where a; is the average distance between the ith statistical unit and all other
ones assigned to the same cluster, whereas

. 50— dp(Xi(t), X;(t))
min -
I=1,..., k;l#£C; #{j:C; =1}

b; =

is the minimum average distance of the ith statistical unit from another
cluster. Clearly s; always lies between -1 and 1, the former value indicating
a misclassified statistical unit while the latter a well classified one.

3 Simulation Studies

In this section we show some empirical results obtained in simulation to
evaluate the performances of the clustering procedure presented in Section 2.

3.1 Simulations in the univariate functional framework

Let us consider two samples of ii.d. curves Xi(t),...,X,,(¢) and
Yi(t),...,Yn,(t), generated by independent stochastic processes in L2(I),
with [ is a compact interval of R. We generate the sample curves as follows:

K
Xz(t) :ml(t)+ZZki,1mek(t)a fori=1,...,n1,
k=1

K
Yi(t) :mg(t)—i-zzki,g\/pkek(t), fori=1,...,ng9,
k=1

where we set;:
(1) the independent variable grid at T' = 150 equispaced points in I = [0, 1];

(2) K =100 components;

(3) the same sample sizes n; = ny = 50;

(4)

4) the mean of the first sample m;(t) = t(1 — ¢), while we set different
values for the mean of the second sample;

(5) {Zki1; k=1,.. . K} and {Zpio; k=1,.. ., K} are two collections of
independent standard normal variables;
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(6) {pk; k > 1} is a sequence of positive real numbers defined as follows:

= ifke{1,2,3},

(7) {0x; k > 1} is an orthonormal basis of L?(I) defined as follows:

]].[0’1] (t) lf k - 17
0 = ﬁsin(kmt)l[o’u (t) it k> 2, k even,
V2cos((k — 1)) Ly (t) if k> 3, k odd.

We generate the curves in two different cases:
(i) ma(t) = mi(t) + -1 /orbu(t);
(i) ma(t) = ma(t) + Xhes /PrOk(t)-

We compute the estimated eigenvalues {S\k, k > 1} and the associated eigen-
functions {@y; k > 1} from the estimated covariance function ¢ as in (2.2),
in order to construct the cfp distance defined in (2.3). We compare the perfor-
mances of the k-means based on the Jp distance with two competitors: the
truncated Mahalanobis semi-distance dﬁ (summing up K = 3 components,
which describe most of the variability) and the L2-distance d2, as considered
in [7]:
K
dﬁ@-? b) = Z sz,k;(av b)

k=1

- il(i X <t>—b<t>>*”<t>dt)2 (31)
N k=1 M I=1 Tal R ’

J
d2(a,b) = ||la— b]| = le J (@) =t

Figure 1 (a) shows the two samples X and Y in case (i), where the two
means m1(t) and mso(t) differ only along the first three components. Table
1 shows the results over M = 50 iterations of the k-means algorithm using
all the distances mentioned above while Figure 1 (b) shows the proportion
of misclassified curves with the cfp distance as function of log(p). Since in
case (i) there is a great difference in the macro-structure of the data, the
L?-distance d 2> seems to work well, assigning approximately 76% of the data
to the right group. For what concerns the other two distances, both the
truncated Mahalanobis semi-distance dﬁ and the generalized Mahalanobis
distance czp with low values of the parameter p provide quite good results
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Fig. 1: Case (i): ma(t) = mi(t) + Sop_; /PROK(2).
(a) Functional samples X (light grey solid lines) and Y (dark grey dashed
lines) along with their sample mean (blue solid line and red dashed line,
respectively).
(b) Proportion of misclassified sample with the functional k-means using the

~

d, distance.

Cluster X Y Cluster X Y Cluster X Y Cluster X Y
38.46 11.54 1 39.04 10.96 1 37.12 12.88 1 37.42 12.58
(4.6739) (3.8701) (3.6345) (4.7125)
9 12.12 37.88 9 12.26 37.74 9 10.16 39.84 9 13.52 36.48

(4.7666) (4.4895) (3.7163) (5.1040)

Correct classification: .7634  Correct classification: .7678  Correct classification: .7696  Correct classification: .7410

(a) dp» (b) df (c) dy, logio(p) = —2 (d) dy, logio(p) = 8

Tab. 1: Confusion matrices related to the functional k-means for the samples X and
Y in case (i).

as well. Nevertheless, by looking at Figure 2 and Table 1, it is possible to
note that the czp distance with low values of p gives the best results, both in
terms of mean and standard deviation of the number of correctly classified
curves. When the value of p increases, more elements in {ﬁk(p) / s k> 1},
that represents the weights in (2.3), become close to 1/ Mi. As a consequence,
the d;, distance gives relevance to a greater number of components, and so
it becomes more similar to the Mahalanobis distance than the L?-distance.
Hence, since in case (i) the curves differ only along three components, the
performances of the clustering procedures get worse. Indeed, from Figure 1
(b) we can note that the number of misclassified curves increases when p is
large, making the choice of setting a small value of p more appropriate.
The second simulation in the univariate functional framework is given
by case (ii), where the two means m;(t) and ma(t) differ along all the
components except the first three. Figure 3 (a) shows the two samples X
and Y in case (ii) and Figure 3 (b) shows the proportion of misclassified
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Fig. 2: Boxplot of the number of misclassified curves for case (i) over 50 iterations of
the clustering algorithm using the L? distance, the truncated Mahalanobis

distance d%; and the d, distance with logio(p) = —2 and logio(p) = 8,
respectively.
Cluster X Y Cluster X Y Cluster X Y Cluster X Y
26.64  23.36 25.64 2436 . 28.18  21.82 4180 820
(4.4802) (4.4020) (4.1634) (3.7796)
) 2226 27.74 ) 2160  28.40 ) 2430 25.70 ) 930 40.70

(3.8376) (4.4263) (4.4043) (3.4062)
Correct classification: .5438  Correct classification: .5404  Correct classification: .5388  Correct classification: .8250

(a) dpe (b) df (©) dy, logao(p) = 2 (d) dp, logio(p) =8

Tab. 2: Confusion matrices related to the functional k-means for the samples X and
Y in case (ii).

curves with the Jp distance as function of logio(p). In Table 2 we can read
the results obtained for the k-means algorithm over M = 50 iterations with
the respective boxplots in Figure 4. In this case, the L?-distance and the
truncated Mahalanobis semi-distance d%; do not work well, since they do
not detect the differences between the means; the same occurs for what
concerns the dAp distance with low values of p, because flk(p) ~0for k>4
and hence the distance is unable to detect any difference between the curves.
As the value of the parameter p increases, more terms in {hg(p), k > 1}
become close to one. As a consequence, the distance takes into account more
components and the algorithm works better, assigning more than 80% of the
curves to the right group. In this case, the procedure is able to detect the
small differences in the micro-structure of the curves due to the components
with low variability.

To conclude, the choice of p should be data-driven. Indeed, if the curves
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Fig. 3: Case (ii): ma(t) = mi(t) + S py /Prbk(1).
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Fig. 4:

(a) Functional samples X (light grey solid lines) and Y (dark grey dashed
lines) along with their sample mean (blue solid line and red dashed line,
respectively).

(b) Proportion of misclassified sample with the functional k-means using the

A

d, distance.

L2 dk log(p)=—2 log(p)=8
Distance

Boxplot of the number of misclassified curves for case (ii) over 50 iterations
of the clustering algorithm using the L? distance, the truncated Mahalanobis
distance d¥; and the d, distance with logio(p) = —2 and logio(p) = 8,
respectively.
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in the sample have a different macro-structure, it is better to set a low value of
the parameter p, which makes the Jp distance similar to the L?-distance. On
the contrary, when the curves seem very similar among each other but they
differ in the micro-structure, the L?-distance does not work well anymore
and the choice of a high value of p is more appropriate.

3.2 Simulations in the multivariate functional framework

We now extend the results presented in the previous section to the
multivariate functional framework. Let us consider two samples of i.i.d.
curves, Xi(t),..., Xy, (t) and Y1(t),..., Yn,(t), generated by independent
stochastic processes in (L?(I))” with J = 2, where I is a compact interval of
R. We generate the sample curves as follows:

K
Xz(t) :ml(t)+zzki,1\/ﬁTk0k(t)a fori=1,...,nq,
k=1

K
Yz(t) :mg(t)+ZZki72\/pk9k(t), fori=1,...,n9,
k=1

where the quantities in the above expressions are the same as those in Section
3.1, except for the following:

(4new) the mean of the first sample

H1— 1)
my (1) = (4752(1 B t)) )

while we will set different values for the mean of the second sample;

(bnew) {Zg;i1, k=1,..., K} and {Zyi2, k=1,..., K} are two collections of
bivariate normal random variables with mean g = 0 and covariance

matrix
1 0.5
X = <0.5 1 ) ’

We generate the curves in two different cases:
(iti) mo(t) = my(t) + 1371 /orbk(1);

(iv) ma(t) = my(t) + 15K, /orbi(t).

We compute the estimated eigenvalues {5\;@, k > 1} and the associated

eigenfunctions {@p(t) = (gﬁ,(:),gﬁ,(f)); k > 1} in order to construct the d,

distance as defined in (2.3). The truncated Mahalanobis distance d¥, and
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Fig. 5: Case (iii): mo(t) = my(t) + 135 _, /;rbx(t).

(a) First component of the functional samples X (light grey solid lines) and
Y (dark grey dashed lines) along with their sample mean (blue solid line and
red dashed line, respectively).

(b) Second component of the functional samples X (light grey solid lines)
and Y (dark grey dashed lines) along with their sample mean (green solid
line and orange dashed line, respectively).

(c) Proportion of misclassified sample with the functional k-means using the

d, distance.

Cluster X Y Cluster X Y Cluster X Y Cluster X Y
44.26 5.74 43.50 6.50 43.56 6.46 1 41.80 8.20
(3.4155) (3.8611) (3.3755) (4.0254)
9 6.52 43.48 9 5.96 44.04 9 5.50 44.50 9 8.26 41.74
(3.8611) (3.1685) (3.0921) (3.8269)
Correct classification: .8774  Correct classification: .8754  Correct classification: .8806  Correct classification: .8354
(a) dp2 (b) di (c) dp. logio(p) = —2 (d) dyp, logro(p) = 8

Tab. 3: Confusion matrices related to the functional k-means for the samples X and
Y in case (iii).

Cluster X Y Cluster X Y Cluster X Y Cluster X Y
27.90 22.10 27.24 22.76 1 27.46 22.54 46.24 3.76
(3.7972) (4.3685) (4.6957) (2.1339)
9 22.86 27.14 9 22.14 27.86 9 22.78 27.22 9 4.12 45.88
(4.4401) (4.1058) (4.5638) (2.2373)
Correct classification: .5504  Correct classification: .5510  Correct classification: .5468  Correct classification: .9212
(a) dp2 (b) df (c) dy, logio(p) = —2 (d) dp, logio(p) = 8

Tab. 4: Confusion matrices related to the functional k-means for the samples X and
Y in case (iv).
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Fig. 6: Boxplot of the number of misclassified curves for case (iii) over 50 iterations

of the clustering algorithm using the L? distance, the truncated Mahalanobis
distance d¥, and the d, distance with logio(p) = —2 and logio(p) = 8,
respectively.

0.5

proportion of misclassified samples
0.2
I

0.1

0.0
1

t 1 log(p)

(a) (b) (c)

Fig. 7: Case (iv): ma(t) = my (6) + 155, /7rbu(t).

(a) First component of the functional samples X (light grey solid lines) and
Y (dark grey dashed lines) along with their sample mean (blue solid line and
red dashed line, respectively).

(b) Second component of the functional samples X (light grey solid lines)
and Y (dark grey dashed lines) along with their sample mean (green solid
line and orange dashed line, respectively).

(c) Proportion of misclassified sample with the functional k-means using the

~

d, distance.
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Fig. 8: Boxplot of the number of misclassified curves for case (iv) over 50 iterations
of the clustering algorithm using the L? distance, the truncated Mahalanobis
distance d¥; and the czp distance with logio(p) = —2 and logio(p) = 8,
respectively.

the L2-distance d;2 defined in (3.1) are again considered as competitors for
the dp distance.

Figures 5 (a-b) show the samples X and Y in case (iii), where the means
of the two samples differ only along the first three components, while Figure
5 (c) shows the proportion of misclassified curves using the czp distance
as function of logip(p). In Figure 6 and Table 3 we can see the results
obtained with the three distances over M = 50 iterations. The results
obtained in this multivariate functional framework confirm and strengthen
those obtained in the univariate framework. Indeed in case (iii), where the
difference between the means involves only the components associated with
most of the variability, the L?-distance works quite well, assigning more
than 85% of the curves to the right group. For the other two distances,
both the d%; distance and the afp distance with low values of p have similar
performance, even though the latter works better both in terms of mean and
standard deviation of the number of correctly classified curves. Setting a
high value of p is not a good choice, since so doing the Jp distance considers
relevant many components while the curves differs only along three of them.

Finally we consider case (iv), where the two means differ along all the
components except the first three. Figures 7 (a-b) show the new samples
X and Y and Figure 7 (c) shows the proportion of misclassified curves
with the cfp distance as function of logig(p). For reasons analogous to those
explained in the univariate functional framework, when the value of p is low
the k-means does not work well and the results are as bad as for the d2
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and df, distances. However, when the value of p increases, the procedure
with the d, distance provides very good results (see Figure 7 (c)), since it
takes into account more components of the functional data. Moreover, as
it is shown in Figure 8 and Table 4, when we set a high value of p, the
performances improve considerably also in terms of standard deviation of
the number of the correctly classified curves.

Therefore, we have shown that all the results obtained in the univariate
functional framework also hold in the multivariate functional framework.

4 Case study I: Growth dataset

In this section we apply the clustering procedure proposed in this paper
to the Berkeley Growth Study dataset, available in the fda package [14],
which contains the heights (in cm) of 93 children, measured quarterly from 1
to 2 years, annually from 2 to 8 years and biannually from 8 to 18 years. In
the dataset, each function is a univariate curve (J = 1) defined on a grid of
length T'= 31. Out of the 93 children, 39 are boys while 54 are girls, so the
aim of the analysis is to point out some differences among them.

The d, distance is computed with the eigenvalues {\;; 1 < k < T} and
the associated eigenfunctions {¢y; 1 < k < T} derived from the estimated
covariance function. The growth curves are shown in Figure 9 (a), where
they appear very similar and quite indistinguishable from each other; this
would suggest from a preliminary analysis that we should study their micro-
structure. In Figure 9 (b) we show the performance of the k-means algorithm
with the L2-distance (green solid line), the truncated Mahalanobis semi-
distance d%; with K = 3 (blue solid line) and the dp distance (black line),
along with some numerical results in Table 5. The situation is quite similar
to case (ii) of Section 3, where the k-means algorithm gives better results
only with the (fp distance and for high values of p. Indeed, in this case, the k-
means with the cfp distance setting a low value of p is able to correctly classify
less than 65% of the curves, only a bit more than d;2 and dﬁ, while if we
set a high value of p, the proportion of correctly classified curves is between
87% and 89%. In Figure 10 we show at the silhouette plots computed with
the (fp distance with p = 10® and k € {2,3,4,5} number of cluster, which
confirms that the best grouping structure is obtained by setting k* = 2.

As we could expect by looking at the growth curves in Figure 9 (a), in this
case it is better to set a low value of the parameter p, since the curves seem
very similar and the difference involves the micro-structure of the functional
data.
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Fig. 9: Growth dataset.
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(b) Proportion of misclassified samples with the functional k-means using
the L? distance (blue dashed line), the truncated version of the Mahalanobis
distance (green line) and the d,, distance (black line).
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Fig. 10: Silhouette plots of the clustering result obtained via the multivariate func-
tional k-means procedure for the Growth dataset, setting (a) k=2, (b) k=3,
(c) k=4 and (d) k=5 with distance d,, and logio(p) = 8: the data are ordered
according to an increasing value of silhouette within each cluster and the
colour indicates the cluster assignment.
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Cluster Girls Boys Cluster Girls Boys Cluster Girls Boys Cluster  Girls Boys
1 37 17 1 38 18 1 37 17 1 47 5
2 16 23 2 16 21 2 16 23 2 7 34

Correct classification: .6452  Correct classification: .6344  Correct classification: .6452  Correct classification: .8710

(a) dpe (b) df (©) dy, logao(p) = 2 (d) dp, logio(p) =8

Tab. 5: Confusion matrices related to the functional k-means for the growth curves.

5 Case study Il: ECG dataset

In this section we apply the functional k-means algorithm to a real case
study on electrocardiographics signals (ECGs). The dataset provided by
Mortara-Rangoni S.r.l. contains ECG signals, which represent a recording of
the electrical activity of the heart over a period of time. Each signal consists
of 8 curves, such that we have a multivariate functional dataset with J = 8.

Among the signals in the dataset, some are healthy while others are
affected by Bundle Branch Blocks. Depending on the anatomical location
of the defect which leads to a bundle branch block, the blocks are further
classified into right bundle branch block (RBBB) and left bundle branch block
(LBBB). The aim of the analysis is to establish if there is statistical evidence
of shape modifications induced on the ECG curves by the pathologies. The
investigation will be conducted only from a statistical perspective, without
considering any clinical criteria.

The ECG signals consist of noisy and discrete observations of the functions
describing the ECG traces of the patients. Moreover, each patient has his
own ’biological’ time, i.e. the same event of the heart dynamics may occur at
different times for different patients; that is why the morphological change
due to this difference in timings is misleading from a statistical perspective.
To address these two problems, which are quite popular in functional data
analysis, the data have been previously smoothed and registered; see [8] for
further details.

We consider n = 700 subjects, where among them 400 are healthy,
150 are affected by LBBBs and 150 are affected by RBBBs. From the
sample covariance function we estimate the eigenvalues {\z; k > 1} and
the associated eigenfunctions {¢p = (gbl(:), . .,@1(68))1—,1{: > 1}, which are
used to compute the generalized Mahalanobis distance ci,, as defined in
(2.3). To perform comparisons and to test the robustness of the k-means
algorithm based on the cip distance, we have considered as competitors the
same distances used in Section 3, i.e. d]\K/[ and dj2.

Figure 11 shows the final silhouette plots obtained by clustering the
multivariate samples of ECG traces according to the functional k-means
procedure with the ch distance, with p = 1072 and k = {2,3,4,5}. As we
can see from the figure, the grouping structure obtained by setting k = 3
seems the best, both in terms of silhouette profile and wrong assignments. A
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Fig. 11: Silhouette plots of the clustering result obtained via the multivariate func-
tional k-means procedure for the ECG dataset, setting (a) k=2, (b) k=3, (¢)
k=4 and (d) k=5 with distance d,, and logio(p) = —4: the data are ordered
according to an increasing value of silhouette within each cluster and the
colour indicates the cluster assignment.

similar result is obtained by measuring the distance between curves with the
dﬁ or the d;» distances; we thus set k* = 3. Moreover, the k-means seems
to detect the best grouping structure when we use the cZ,, distance with small
values of the parameter p.

Because of the high computational cost due to the construction of the d,,
distance, that takes into account a large number of components, the code has
been parallelized using the R-packages doParallel and foreach (for further
details about both packages, see [1] and [2]). This has greatly reduced the
computational time of the algorithm. The results obtained by the k-means
multivariate clustering procedure with all the three distances are shown in
the confusion matrices of Table 6. We a posteriori identify the cluster with
the greater number of physiological ECG traces as the one containing the
healthy subjects. Subsequently, to distinguish the clusters corresponding to
the pathological traces, we first select the cluster containing the maximum
number of pathological traces of the same kind and at last the remaining
cluster.

Looking at the four confusion matrices, we can note that the obtained
results are quite good and they differ a little depending on the tested distance.
As obtained in case (iii) of Section 3, from Figure 12 we can see that, the
higher is the value of the parameter p in the ch distance, the higher is also
the number of misclassified curves by the k-means. In particular, in this case
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Cluster Healthy LBBB RBBB  Cluster Healthy LBBB RBBB
1 355 18 29 1 362 24 36
2 40 96 1 2 2 92 1
3 5 36 120 3 36 34 113

Correct classification: .8228

Correct classification: .8142

(a) L? distance

(b) d¥; distance

Cluster Healthy LBBB RBBB  Cluster Healthy LBBB RBBB
1 396 28 24 1 321 44 40
2 3 96 0 2 64 95 14
3 1 3 126 3 15 11 96

Correct classification: .8830

Correct classification: .7314

(c) d, distance, low p

(d) d, distance, high p

Tab. 6: Confusion matrices related to the functional k-means for the ECG traces.

0.5
1

0.4

Proportion of misclassified samples

log(p)

Fig. 12: Proportion of misclassified samples with the functional k-means for the
ECG dataset using the d,, distance (black line), with the L?-distance (blue
dashed line) and with the d%; semi-distance (green solid line).
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Fig. 13: ECG leads assigned to each cluster (green for the healthy subjects, orange

for the LBBBS, red for the RBBBs).
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we go from more than 88% of well-classified subjects to about 52%. Then,
we can state that, in this case, the generalized Mahalanobis distance with
small values of p is the best choice; this performance are even better than
those with the L? distance and the truncated Mahalanobis semi-distance dAK/[.
As discussed in Section 3, this scenario can be explained by the fact that
the differences among the ECG signals concern the macro-structure of the
curves, i.e. differences in the amplitude and inversion of some parts of the
curves, which are better identified by the cip distance with low values of p.
Figure 13 shows the ECG curves of the subjects considered in this study,
for each one of the 8 leads and with a different color for each cluster (green
for the healthy subjects, orange for the LBBBs, red for the RBBBs). Looking
at the black centroids in Figure 13, it is possible to note the main differences
between the healthy subjects and those affected by Bundle Branch Blocks.

6 Discussion and future developments

In this work we have considered the problem of clustering multivariate
curves, proposing a functional k-means algorithm based on a suitable gener-
alization of the Mahalanobis distance for Hilbert spaces. It has been shown,
both in simulations and in two real case studies, that the performances of
this method are definitely higher than those obtained with other distances
typically used in functional data analysis.

Morever, we have discussed that, when the curves in the sample differ
mainly in their macro-structure, as for example the ECG signals where there
are differences in the amplitude and the inversion of some parts of the curves,
the k-means algorithm with the czp distance works very well with low values
of the parameter p, even better than the L2-distance and the truncated
Mahalanobis semi-distance. If instead the curves look indistinguishable, as
for example the growth curves where each function grows in a slightly different
way than the other ones and this difference involves the micro-structure of
the curve, the k-means algorithm based on the cip distance with high values
of p provides the best results, performing remarkably better than the other
considered distances.

As future development, it will be interesting to investigate the perfor-
mances of this distance with other clustering algorithms different from the
k-means; moreover, since this distance can be extended to more complex
spaces, such as the Sobolev space H', we could improve the clustering pro-
cedure by incorporating the information on the derivative of the functional
data.
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