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A Mixed Finite Element Method for Modeling
the Fluid Exchange between Microcirculation
and Tissue Interstitium

Domenico Notaro, Laura Cattaneo, Luca Formaggia, Anna Scotti and Paolo Zunino

Abstract Thanks to dimensional (or topological) model reduction techniques, small
inclusions in a three-dimensional (3D) continuum can be described as one-dimensional
(1D) concentrated sources, in order to reduce the computational cost of simulations.
However, concentrated sources lead to singular solutions that still require compu-
tationally expensive graded meshes to guarantee accurate approximation. The main
computational barrier consists in the ill-posedness of restriction operators (such as
the trace operator) applied on manifolds with co-dimension larger than one. We
overcome the computational challenges of approximating PDEs on manifolds with
high dimensionality gap by means of nonlocal restriction operators that combine
standard traces with mean values of the solution on low dimensional manifolds.
This new approach has the fundamental advantage of enabling the approximation
of the problem using Galerkin projections on Hilbert spaces, which could not be
otherwise applied because of regularity issues. This approach, previously applied
to second order PDEs, is extended here to the mixed formulation of flow problems
with applications to microcirculation. In this way we calculate, in the bulk and on
the 1D manifold simultaneously, the approximation of velocity and pressure fields
that guarantees good accuracy with respect to mass conservation.

1 Introduction

The ultimate objective of the project is to perform large scale simulations of mi-
crocirculation. In the context of blood flow, the application of geometrical model
reduction techniques plays an essential role, see for example [10, 18]. In particu-
lar, small vessels embedded into a continuum can be described as one-dimensional

Domenico Notaro, Laura Cattaneo, Luca Formaggia, Anna Scotti and Paolo Zunino
MOX, Department of Mathematics, Politecnico di Milano, piazza Leonardo da Vinci
32, 20133 Milano, e-mail: domenico.notaro@mail.polimi.it, laura1.cattaneo@polimi.it,
luca.formaggia@polimi.it, anna.scotti@polimi.it, paolo.zunino@polimi.it

1



2 D. Notaro, L. Cattaneo, L. Formaggia, A. Scotti, P. Zunino

(1D) concentrated sources, in order to reduce the computational cost of simulations.
Although the coupling of three-dimensional (3D) continua with embedded (1D) net-
works arises in applications of paramount importance such as microcirculation, flow
through perforated media and the study of reinforced materials, it has not been well
investigated yet.

Two remarkable examples of methods that were previously proposed to over-
come the challenges of simulating small objects into a continuum are the immersed
boundary methods [15, 17, 22] and the fictitious domain methods [11, 12, 21]. Al-
though they share some similarities with the approach that we pursue here, they have
never been applied for solving coupled partial differential equations on embedded
domains.

In the particular case of microcirculation, many ad-hoc approaches have been
proposed. Since capillaries can be modelled as long and narrow cylindrical vessels,
asymptotic expansions that exploit the large aspect ratio of the channel can be de-
rived to approximate the fluid exchange from one capillary to the surrounding tissue.
This idea has been successfully exploited to study the microvascular flow in simple
arrays of capillaries [1, 8, 9]. However, vascular networks are characterized by a
complex, possibly irregular geometry. The previous semi-analytic methods may be
hardly applied to realistic configurations. We believe that numerical methods may
override this obstacle. For example, the method of Green’s functions, has been ex-
tensively applied to the study complex vascular networks of tumors [13, 19, 20].

In this work we aim to move away from ad-hoc approaches and cast the microcir-
culation problem into a new unified framework to formulate and approximate cou-
pled partial differential equations (PDEs) on manifolds with heterogeneous dimen-
sionality. The main computational barrier consists in the ill-posedness of restriction
operators (such as the trace operator) applied on manifolds with co-dimension larger
than one. Following the approach introduced in [7, 14, 6], we will overcome the
computational challenges of approximating PDEs on manifolds with high dimen-
sionality gap. The main idea consists of introducing nonlocal restriction operators
that combine standard traces with mean values of the solution on low dimensional
manifolds, in order to couple the problem solution in 3D with the one in 1D. This
new approach has the fundamental advantage to enable the approximation of the
problem using Galerkin projections on Hilbert spaces, which could not be other-
wise applied, because of regularity issues.

Within this general framework, the specific objective of this work is to formulate
the microcirculation problem as a system of coupled 1D and 3D partial differen-
tial equations governing the flow through the capillary network and the interstitial
volume, respectively. In order to obtain a good approximation of pressure and ve-
locity fields, and in particular to satisfy mass conservation, we formulate the prob-
lem in mixed form. Then, we derive a discretization method based on mixed finite
elements. Before moving forward to address applications of the method to study
pathologies related to microcirculation, such as cancer [4, 3, 16], we address here a
thorough validation of the solver based on two benchmark problems.
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2 Model set up

We study a mathematical model for fluid transport in a permeable biological tissue
perfused by a capillary network. The domain where the model is defined is com-
posed by two parts, Ω and Λ , denoting the interstitial volume and the capillary bed
respectively. We assume that the capillaries can be described as cylindrical vessels
and Λ denotes the centerline of the capillary network. The capillary radius, R, is for
simplicity considered to be constant. We decompose the network Λ into individual
branches Λi. Branches are parametrized by the arc length si; a tangent unit vector
λλλ i is also defined over each branch, defining in this way an arbitrary branch orien-
tation. Differentiation over the branches is defined using the tangent unit vector as
∂si := ∇ ·λλλ i on Λi, i.e. ∂si represents the projection of ∇ along λi. The blood flow
along each branch is described by Poiseuille’s law for conservation of momentum
and mass:

ui
v =−

R2

8µ

∂ pv,i

∂ si
λλλ i, −πR2 ∂ui

v

∂ si
= gi on Λi, (1)

where gi is the transmural flux leaving the vessel. As a consequence of the geo-
metrical assumptions, the vessel velocity has fixed direction and unknown scalar
component along the branches, namely ui

v = ui
vλλλ i. We shall hence formulate the

vessel problem using the scalar unknown uv. The governing flow equations for the
whole network Λ are obtained by summing (1) over the index i.

We consider the interstitial volume Ω as an isotropic porous medium, described
by the Darcy’s law, namely

ut =−
1
µ

IK∇pt , (2)

where ut is the average velocity vector in the tissue, IK = kI is the isotropic perme-
ability tensor, µ is the viscosity of the fluid and pt is the fluid pressure.

The coupled problem for microcirculation and interstitial flow reads as follows

µ

k
ut +∇pt = 0 in Ω ,

∇ ·ut − f (pt , pv)δΛ = 0 in Ω ,

8µ

R2 uv +
∂ pv

∂ s
= 0 in Λ ,

∂uv

∂ s
+

1
πR2 f (pt , pv) = 0 in Λ .

(3)

For brevity, we avoid to number each equation of systems. In the remainder, we will
refer to single sub-equations within a system using letters, e.g (3) (a),(b),(c),(d).

The constitutive law for blood leakage from the capillaries to the tissue is pro-
vided by means of Starling’s law of filtration,

f (pt , pv) = 2πRLp(pv− p̄t), (4)
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with

p̄t(s) =
1

2πR

∫ 2π

0
pt(s,θ)Rdθ . (5)

Before proceeding, we write the equations in dimensionless form. We choose
length, velocity and pressure as primary variables for the analysis. The correspond-
ing characteristic values are: (i) the average spacing between capillary vessels d,
(ii) the average velocity in the capillary bed U , and (iii) the average pressure in the
interstitial space P. The dimensionless groups affecting our equations are:

- R′ =
R
d

, non-dimensional radius

- κt =
k
µ

P
Ud

, hydraulic conductivity of the tissue

- Q = 2πR′Lp
P
U

, hydraulic conductivity of the capillary walls

- κv =
πR′4

8µ

Pd
U

, hydraulic conductivity of the capillary bed

and the corresponding dimensionless equations read as follows

1
κt

ut +∇pt = 0 in Ω ,

∇ ·ut −Q(pv− p̄t)δΛ = 0 in Ω ,

πR′2

κv
uv +

∂ pv

∂ s
= 0 in Λ ,

∂uv

∂ s
+

1
πR′2

Q(pv− p̄t) = 0 in Λ .

(6)

For simplicity of notation, we used the same symbols for the dimensionless vari-
ables, i.e velocities and pressure scaled by U and P, respectively.

Remark 1. Equations (6.b),(6,d) can be combined up to obtain a more meaningful
formulation of the mass conservation law, namely

∇ ·ut +πR′2
∂uv

∂ s
δΛ = 0 in Ω , (7)

meaning that the total amount of fluid in the domain Ω ∪Λ must be preserved.

Boundary conditions will be specified further on for both the tissue and vessel
problems. The imposition of suitable compatibility conditions at the bifurcations or
branching points of the capillary tree is also necessary to guarantee well posedness
of (6). Specifically, we shall enforce conservation of mass and continuity of total
pressure at junctions. Let us introduce these conditions in a simple Y-shaped bifur-
cation network (Fig. 1). Since in the reduced 1D model of the capillary network the
cross-section is supposed to be constant over the whole network, the conservation
of flow rate is equivalent to require that in correspondence of the junction point
xM the inflow velocity u0

v is equal the sum of the outflow velocities u1
v , u2

v , namely
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u0
v (xM) = u1

v (xM)+u2
v (xM). Similarly, we require the pressure over each branch to

be the same at the junction, namely p0
v (xM) = p1

v (xM) = p2
v (xM). The general case

of an arbitrary number of critical points, possibly with different number of inflow
and outflow branches, will be described in Sec. 3.1. Indeed, it is important to em-
phasize that such compatibility conditions will be enforced in a natural way, at the
level of the variational formulation.

  

0

1
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(uv
0 , pv

0
)

(uv
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1
)

(uv
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2
)

Fig. 1 On the left, a simple network made by a single Y-shaped bifurcation. Arrows show the flow
orientation of one inflow branch on the left of the bifurcation point and two outflow branches on the
right. On the right, the discretization of vessels network is shown. The domain has been split into
branches, the flow problem is defined over each branch and compatibility conditions are enforced
at the junction point.

3 Variational formulation

In order to obtain the weak formulation of the tissue interstitium problem, we mul-
tiply equations (6) (a,b) with sufficiently smooth functions and integrate over the
volume Ω , namely ∫

Ω

1
κt

ut ·vt dx +
∫

Ω

∇pt ·vt dx = 0, (8)∫
Ω

(∇ ·ut) qt dx −
∫

Ω

Q(pv− p̄t)δΛ qt dx = 0. (9)

We now apply the Green’s theorem to (8) to obtain an anti-symmetric formulation
of the Darcy’s problem in the tissue:∫

Ω

1
κt

ut ·vt dx −
∫

Ω

pt (∇ ·vt) dx +
∫

∂Ω

pt vt ·n dσ(x) = 0, (10)∫
Ω

(∇ ·ut) qt dx −
∫

Ω

Q(pv− p̄t)δΛ qt dx = 0. (11)
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As concerns the choice of boundary conditions, for simplicity, we enforce a given
pressure distribution over ∂Ω , namely

pt = gt on ∂Ω , (12)

where gt ∈ L2(∂Ω). The weak formulation of the problem in Ω reads∫
Ω

1
κt

ut ·vt dx −
∫

Ω

pt (∇ ·vt) dx = −
∫

∂Ω

gt vt ·n dσ(x)∫
Ω

(∇ ·ut) qt dx −
∫

Ω

Q(pv− p̄t)δΛ qt dx = 0 .

For the vessel problem we start giving a general functional framework. At this
point, we only require regularity for vessel velocity and pressure over each branch
separately:

Vv =
N⋃

i=1

H1(Λi) Qv =
N⋃

i=1

L2(Λi).

The definition of trial and test spaces will be revised in the sequel, in the light of
the particular junction conditions we will chose, while no boundary conditions are
enforced in the definition of the spaces. As for the tissue problem, we multiply
equations (6.c),(6.d) by sufficiently smooth test functions and integrate over Λ :∫

Λ

πR′2

κv
uv vv ds +

∫
Λ

∂ pv

∂ s
vv ds = 0, (13)∫

Λ

∂uv

∂ s
qv ds +

1
πR′2

∫
Λ

Q(pv− p̄t) qv ds = 0. (14)

The integration by parts is not trivial in this case because the vessel variables pv and
uv may be discontinuous at multiple junctions. Let us treat separately the second
integral of (13) and decompose it over the individual branches Λi:∫

Λ

∂ pv

∂ s
vv ds =

N

∑
i=1

∫
Λi

∂ pv

∂ s
vv ds =−

∫
Λ

pv
∂vv

∂ s
ds +

N

∑
i=1

[ pv vv ]
Λ
+
i

Λ
−
i
, (15)

where Λ
−
i and Λ

+
i represent the inflow and outflow boundaries of Λi, according to

the orientation λλλ i. Let us define the set of the indexes of junction points:

J :=
{

j ∈ N : s j ∈Λ , #(Ps j)≥ 2
}
,

where Ps j is the patch of the j-th junction node, i.e. the collection of all branches
joining at the node, and # indicates the counting measure. We also need the follow-
ing disjoint partition of the indexes in Ps j . According to the orientation unit vector
λλλ i, for any branching point s j we distinguish branches that are entering the node,
whose contribution to mass conservation is positive, from branches who are leaving
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the node, whose contribution is negative. The former are branches whose outflow
region coincides with the point s j, while for the latter it is the inflow region:

Pout
j :=

{
i ∈ {1, . . . ,N} : Λ

+
i ≡ {s j}

}
,

P in
j :=

{
i ∈ {1, . . . ,N} : Λ

−
i ≡ {s j}

}
,

for all j ∈J . At this point, the fluid mass conservation at each node can be ex-
pressed as follows

∑
i∈Pout

j

uv |Λ+
i
− ∑

i∈P in
j

uv |Λ−i = 0, ∀ j ∈J , (16)

where Λ in,Λ out indicate the collection of inflow and outflow boundaries of the ves-
sel network, i.e. non junction points where the tangent unit vector is inward-pointing
and outward-pointing, respectively. This collection contains the boundary points, i.e.
the extrema that also belong to ∂Ω , but the inclusion may be strict. However, in this
contribution we do not address the issue of network extrema belonging to Ω̊ , i.e. we
do not consider immersed tips.

In order to enforce such conditions, we proceed as follows. First, we reformulate
the last term in (15) by isolating the terms relative to inflow junction nodes from
those relative to outflow nodes, namely

N

∑
i=1

[ pv vv ]
Λ
+
i

Λ
−
i
= ∑

j∈J

 ∑
i∈Pout

j

pv vv |Λ+
i
− ∑

i∈P in
j

pv vv |Λ−i

 + [ pv vv ]
Λ out

Λ in .

Here, we have implicitly assumed the trace of (pv vv) over Λi exists for vv smooth
enough, i.e. the evaluation of the product at the extrema of Λi makes sense. Further-
more, we write (pv vv)(s j) = pv(s j) vv(s j) for some point s j ∈ Λ . This is feasible
if the trace of the pressure exists. Obviously, a general L2 function is not sufficient,
the natural choice is pv ∈C 0(Λ̄), that in particular implies compatibility of pressure
values at the junctions. Indeed, if the pressure is continuous at the junction, we have

pv |Λ−i ≡ pv(s j)≡ pv |Λ+
k
∀i ∈P in

j , k ∈Pout
j ∀ j ∈J . (17)

Under that hypothesis, we finally factorize out the pressure and isolate a term that
corresponds to the junction conditions for the velocity test functions, that is

∑
j∈J

pv(s j)

 ∑
i∈Pout

j

vv |Λ+
i
− ∑

i∈P in
j

vv |Λ−i

 .
Then, we weakly enforce mass conservation into the variational formulation by mul-
tiplying (16) by the pressure test functions qv, which act as a Lagrange multiplier
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for this constraint, namely

∑
j∈J

qv(s j)

 ∑
i∈Pout

j

uv |Λ+
i
− ∑

i∈P in
j

uv |Λ−i

 .
Finally, after adding the previous term to equation (14), the weak formulation of the
vessel problem reads∫

Λ

πR′2

κv
uv vv ds −

∫
Λ

pv
∂vv

∂ s
ds + [ pv vv ]

Λ out

Λ in

+ ∑
j∈J

pv(s j)

 ∑
i∈Pout

j

vv |Λ+
i
− ∑

i∈P in
j

vv |Λ−i

 = 0,
(18)

∫
Λ

∂uv

∂ s
qv ds +

1
πR′2

∫
Λ

Q(pv− p̄t) qv ds

− ∑
j∈J

qv(s j)

 ∑
i∈Pout

j

uv |Λ+
i
− ∑

i∈P in
j

uv |Λ−i

 = 0.
(19)

Concerning the boundary conditions for the vessels network, the natural choice is
to enforce a given pressure distributions at the inflow and the outflow of the network,
pv = gv on Λ in∪Λ out . The generic regularity requirements for the Dirichlet’s datum
are measurability and square-summability, namely gv ∈ L2(Λ in∪Λ out). In practice,
we consider a constant pressure drop ∆Pv = Pout

v −Pin
v :

gv(s) =

{
Pin

v s ∈Λ in

Pout
v s ∈Λ out .

(20)

Since we are considering the mixed formulation of the problem, we enforce such
condition in a weak natural way.

At this point, we combine (10), (11), (18), (19) to obtain the whole weak formu-
lation of our 3D-1D coupled model of fluid exchange between microcirculation and
tissue interstitium. The variational formulation of problem (6) consists of finding
ut ∈ Vt , pt ∈ Qt , uv ∈Vv , pv ∈ Qv s.t.
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1
κt

(
ut , vt

)
Ω
−
(

pt , ∇ ·vt
)

Ω
= −

(
gt , vt ·n

)
∂Ω

∀vt ∈ Vt ,(
∇ ·ut , qt

)
Ω
− Q

(
(pv− p̄t)δΛ , qt

)
Ω

= 0 ∀qt ∈ Qt ,

πR′2

κv

(
uv , vv

)
Λ
−
(

pv , ∂svv
)

Λ

+ ∑ j pv(s j)
[
∑i vv |Λ+

i
−∑i vv |Λ−i

]
= − [gv vv ]

Λ out

Λ in ∀vv ∈Vv,(
∂suv , qv

)
Λ

+
1

πR′2
Q
(

pv− p̄t , qv
)

Λ

− ∑ j qv(s j)
[
∑i uv |Λ+

i
− ∑i uv |Λ−i

]
= 0 ∀qv ∈ Qv.

(21)

4 Numerical approximation

The discretization of problem (6) is achieved by means of the finite element method
that arises from the variational formulation (21) combined with a discretization of
the domain. In particular, one of the advantage of our formulation is that the parti-
tions of Ω and Λ are completely independent. Let us now analyze the two approxi-
mations separately.

We denote with T h
t an admissible family of partitions of Ω̄ into tetrahedrons K

Ω̄ =
⋃

K∈T h
t

K,

that satisfies the usual conditions of a conforming triangulation of Ω . Here, h de-
notes the mesh characteristic size, i.e. h = maxK∈T h

t
kK , being hK the diameter of

simplex K. Moreover, we are implicitly assuming that Ω is a polygonal domain. The
solutions of (21)(a,b) are approximated using discontinuous piecewise-polynomial
finite elements for pressure and Hdiv-conforming Raviart-Thomas finite elements
[2] for velocity, namely

Yk
h :=

{
wh ∈ L2 (Ω) : wh|K ∈Pk−1(K) ∀K ∈T h

t
}
,

RTk
h :=

{
wh ∈H((div,Ω) : wh|K ∈Pk−1(K; Rd)⊕xPk−1(K) ∀K ∈T h

t
}
,

for every integer k ≥ 0, where Pk indicates the standard space of polynomials of
degree ≤ k in the variables x = (x1, . . . ,xd). For the simulations presented later on,
the lowest order Raviart-Thomas approximation has been adopted, corresponding to
k = 1 above. In numerical experiments performed on the 3D problem alone (the test
case is not reported here), we have observed quadratic convergence of the pressure
field and linear convergence of the velocity field.

Concerning the capillary network, we adopt the same domain splitting technique
described at the continuous level, obtaining the following discrete domain:
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Λh =
N⋃

i=1

Λ
h
i ,

where Λ h
i is a finite element mesh on the one-dimensional manifold Λi, i.e. a parti-

tion of the i-th network branch made by a sufficiently large number of segments.
The solution of sub-equations (21c), (21d) over a given branch Λi is approximated
using continuous piecewise-polynomial finite element spaces for both pressure and
velocity. Since we want the vessel velocity to be discontinuous at multiple junctions,
we define the related finite element space over the whole network as the collection
of the local spaces of the single branches. Conversely, the pressure has been as-
sumed to be continuous over the network. We will use the following families of
finite element spaces for pressure and velocity, respectively:

Xk+1
h (Λ) :=

{
wh ∈ C 0(Λ̄) : wh|S ∈Pk (S) ∀S ∈Λ

h },
Wk+2

h (Λ) :=
N⋃

i=1

Xk+1
h (Λi) ,

for every integer k ≥ 0. As a result, we use generalized Taylor-Hood elements on
each network branch, satisfying in this way the local stability of the mixed finite
element pair for the network. At the same time, we guarantee that the pressure ap-
proximation is continuous over the entire network Λ . In particular, for the numerical
experiments shown later on we have used the lowest order, that is k = 1.

The discrete formulation arising from (21) is hence easily obtained by adding the
subscript h to the weak continuous formulation: find ut,h ∈ Vh

t , pt,h ∈ Qh
t , uv,h ∈

V h
v , pv,h ∈ Qh

v s.t.

1
κt

(
ut,h , vt,h

)
Ω
−
(

pt,h , ∇ ·vt,h
)

Ω
= −

(
gt,h , vt,h ·n

)
∂Ω

∀vt,h ∈ Vh
t ,(

∇ ·ut,h , qt,h
)

Ω
− Q

( (
pv,h− p̄t,h

)
δΛ , qt,h

)
Ω

= 0 ∀qt,h ∈ Qh
t ,

πR′2

κv

(
uv,h , vv,h

)
Λ
−
(

pv,h , ∂svv,h
)

Λ

+ ∑ j pv,h(s j)
[
∑i vv,h |Λ+

i
−∑i vv,h |Λ−i

]
= −

[
gv,h vv,h

]Λ out

Λ in ∀vv,h ∈V h
v(

∂suv,h , qv,h
)

Λ
+

1
πR′2

Q
(

pv,h− p̄t,h , qv,h
)

Λ

− ∑ j qv,h(s j)
[
∑i uv,h |Λ+

i
− ∑i uv,h |Λ−i

]
= 0 ∀qv,h ∈ Qh

v ,

(22)

where gt,h, gv,h indicate the discrete counterparts of continuous boundary data.
We observe that (22) is a generalized saddle-point problem arising from the com-

bination of local problems with mass conservation constraints (see also (23)), such
as the mixed formulation of Darcy equation and the incompressible flow on each
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network branch with junction conditions. Although, we guarantee local stability of
each block, the global well-posedness is an still an open problem, which is under
investigation.

4.1 Algebraic formulation

Let us now derive the algebraic form of our discrete problem. We define the number
of degrees of freedom of our discrete (finite) spaces as:

Nh
t := dim

(
Vh

t

)
, Mh

t := dim
(

Qh
t

)
,

Nh
v := dim

(
V h

v

)
, Mh

v := dim
(

Qh
v

)
.

We denote with {ϕϕϕ i
t}

Nh
t

i=1×{ψ i
t }

Mh
t

i=1 and {ϕϕϕ i
v}

Nh
v

i=1×{ψ i
v}

Mh
v

i=1 the finite element basis
for Vh

t ×Qh
t and V h

v ×Qh
v respectively. These two sets are completely independent,

since the 3D and 1D meshes do not conform. We set:

uh
t (x) =

Nh
t

∑
j=1

U j
t ϕϕϕ

j
t (x) , ph

t (x) =
Mh

t

∑
j=1

P j
t ψ

j
t (x) ∀x ∈Ωt ,

uh
v (s) =

Nh
v

∑
j=1

U j
v ϕ

j
v (s) , ph

v (s) =
Mh

v

∑
j=1

P j
v ψ

j
v (s) ∀s ∈Λ ,

being Ut ={U j
t }

Nh
t

j=1, Pt ={P j
t }

Mh
t

j=1, Uv ={U j
v }Nh

v
j=1 and Pv ={P j

v }Mh
v

j=1, the degrees
of freedom of the finite element approximation. Then, by replacing the linear com-
binations within the discrete weak form (22) and using the linearity of the inner
product, from (22) we deduce the following linear system:

Mtt −DT
tt O O

Dtt Btt O −Btv

O O Mvv −DT
vv−JT

vv

O −Bvt Dvv +Jvv Bvv




Ut

Pt

Uv

Pv

=


Ft

0
Fv

0

 . (23)

Standard finite element matrices and right hand sides are defined as follows
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[Mtt ]i, j :=
1
κt

(
ϕϕϕ

j
t ,ϕϕϕ

i
t
)

Ω
Mtt ∈ RNh

t ×Nh
t ,

[Dtt ]i, j :=
(

∇ ·ϕϕϕ j
t , ψ

i
t
)

Ω
Dtt ∈ RNh

t ×Mh
t ,

[Dvv]i, j :=
(

∂sϕ
j

v , ψ
i
v
)

Λ
Dvv ∈ RNh

v×Mh
v ,

[Mvv]i, j := πR′2/κv
(

ϕ
j

v , ϕ
i
v
)

Λ
Mvv ∈ RNh

v×Nh
v ,

[Ft ]i :=−
(

gt,h ,ϕϕϕ
i
t ·nnn
)

∂Ω
Ft ∈ RNh

t ,

[Fv]i :=−[gv,h ϕ
i
v ]

Λ out

Λ in Fv ∈ RNh
v .

γ(sk)

Λ h
sk

Tγ (sk)

Fig. 2 Illustration of the vessel with its centerline Λ h, a cross section, its perimeter γ(sk) and
its discretization Tγ (sk) used for the definition of the interface operators π̄vt : Qh

t −→ Qh
v and

πtv : Qh
v −→ Qh

t .

For the implementation of exchange matrices, namely Btt ,Btv,Bvt ,Bvv , we de-
fine two discrete operators: the first one extracts the mean value of a generic basis
function of Qh

t , while the second interpolates between Qh
t and Qh

v . For every node
sk ∈ Λ h we define Tγ(sk) as the discretization of the perimeter of the vessel γ(sk),
see Figure 2 for an illustration. For simplicity, we assume that γ(sk) is a circle of ra-
dius R defined on the orthogonal plane to Λ h at point sk. The set of points of Tγ(sk)
is used to interpolate the basis functions ψ i

t . Let us introduce a local discrete interpo-
lation matrix Π γ(sk) which returns the values of each test function ψ i

t on the set of
points belonging to Tγ(sk). Then, we consider the average operator π̄vt : Qh

t −→Qh
v

such that q̄t = π̄vtqt . The matrix Π̄ vt that corresponds to this operator belongs to
RMh

v×Mh
t and it is constructed such that each row is defined as,

Π̄ vt |k = wT (sk)Π γ(sk) k = 1, . . . ,Mh
v (24)

where w are the weights of the quadrature formula used to approximate the integral
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q̄t(s) =
1

2πR

∫ 2π

0
qt(s,θ)R dθ

on the nodes belonging to Tγ(sk). The discrete interpolation operator πtv : Qh
v −→

Qh
t returns the value of each basis function belonging to Qh

t in correspondence of
nodes of Qh

v . In algebraic form it is expressed as an interpolation matrix Π tv ∈
RMh

v×Mh
t . Using these tools we obtain:

Btt = Q Π
T
vt MP

vv Π̄ vt , (25)

Btv = Q Π
T
vt MP

vv, (26)

Bvt = Q/πR′2 MP
vv Π̄ vt , (27)

Bvv = Q/πR′2 MP
vv, (28)

being MP
vv the pressure mass matrix for the vessel problem defined by[

MP
vv
]

i, j :=
(

ψ
j

v , ψ
i
v
)

Λ
.

Concerning the implementation of junction compatibility conditions, we intro-
duce a linear operator giving the restriction with sign of a basis function of V h

v over
a given junction node. For a given k ∈J , we define Rk : V h

v −→ R such that:

Rk(ϕ
j

v ) :=

{
+ϕ

j
v (sk) j in Λ h

l ∧ l ∈Pout
k

−ϕ
j

v (sk) j in Λ h
l ∧ l ∈P in

k
(29)

for all j = 1, . . . , Nh
v , where the expression ” j in Λ h

l ” means that the j-th dof is
linked to some vertex of the l-th branch. Note that we are implicitly using the usual
property of Lagrangian finite element basis functions, i.e. that they vanish on all
nodes except the related one. As a consequence, our definition is consistent for all
junction vertexes. Indeed, Rk may only assume values −1,0,+1 and in particular
Rk(ϕ

j
v ) = 0 for all couples of indexes (k, j) that are uncorrelated. Furthermore,

the definition of Rk can be trivially extended to all network vertexes. Using this
operator, the generic (i, j) element of Jvv may be computed as follows

[Jvv]i, j =− ∑
k∈J

Rk(ϕ
j

v ) ψ
i
v(sk) . (30)

5 Numerical experiments

We validate the mixed-finite element solver through the following test cases, illus-
trated in Figure 3, which have been designed to obtain sufficient generality with a
straightforward interpretation of the results:

I. Coupled 3D-1D problem on a single branch;
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II. Coupled 3D-1D problem on a Y-shaped bifurcation.

In this way, we address the two main modeling issues: (i) first, we test the ability
of the computational model to approximate the coupling between 3D and 1D equa-
tions; (ii) second, we verify that the assembly of junction conditions works properly.

Fig. 3 (left) Computational domain for test-case I. The discrete network Λh is made by a single
capillary vessel immersed in a unitary slab of tissue interstitium, Ωh. We have used a discretization
step h = 0.05 for both the 1D and 3D problems. (right) Computational domain for test-case II. The
discrete vessels network Λh is made by three capillaries joined junction point xM = (0.5,0.5,0.5):
Λ 0

h entering branch, Λ 1
h and Λ 2

h exiting branches. The tissue interstitium domain Ωh is a unit cube.
Again, we have used a discretization step h = 0.05 for both the 1D and 3D problems.

5.1 Coupled 3D-1D problem on a single branch

For such a simple setting, we can easily isolate the exchange terms. The 3D-1D
coupled problem is given by (6). In this case, the integration by parts in (6)(iii)
is standard since there are not any junction points. As a consequence, we replace
condition (15) with the following:∫

Λ

∂ pv

∂ s
vv ds =−

∫
Λ

pv
∂vv

∂ s
ds + [ pv vv ]

Λ out

Λ in

=−
∫ 1

0
pv

∂vv

∂ s
ds + pv(1)vv(1)− pv(0)vv(0) .

Therefore, we obtain the following linear system:
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Mtt −DT

tt O O
Dtt Btt O −Btv

O O Mvv −DT
vv

O −Bvt Dvv Bvv




Ut

Pt

Uv

Pv

=


Ft

0
Fv

0

 . (31)

We recall that submatrices in (31) have been defined in Sec.4.1. Nevertheless, ac-
cording to the above expression of vessel boundary term it is possible to specify the
right hand side, namely

Fv = −[gv,h ϕ
i
v ]

1
0 ≡



gv,h(0)
0
...
0

−gv,h(1)

 (32)

being gv,h the discrete counterpart of the vessel boundary datum. In the last equality
we used the fundamental property of finite element basis functions. Note that (31)
equals the generic linear system (23) in the special case Jvv =O.

5.1.1 Numerical results

For the tissue sample Ωh we use a tetrahedral structured mesh, Th, with charac-
teristic size h = 1/20; the same step has been used for the network discretization
Λh, resulting in 48000 elements for the approximation of interstitial volume and 60
elements for the discrete network. We prescribe the following boundary conditions:

pt |∂Ω
= 0 , pv(0) = 1.0 , pv(1) = 0.5 . (33)

For the solution of the linear system (31) we developed a C++ code based on
GetFEM++ (see https://home.gna.org/getfem), an open-source general purpose fi-
nite element library. Specifically, we applied the direct solver SuperLU 3.0 (see
http://crd.lbl.gov/verb xiaoye/SuperLU). Numerical solutions are shown in Figure 4.
These plots show qualitatively that the definition and implementation of the method
works properly. In order to find a quantitative way to validate our numerical method
we exploit the exact solution proposed by J. Chapman and R. Shipley [5] for the sin-
gle branch problem. In that work the authors model a fluid flow through the leaky
neovasculature and porous interstitium of a solid tumor, in particular they consider
the simplest case of an isolated capillary immersed in a tumor tissue, giving rise to
the the same problem addressed here.

Finally, in order to reproduce numerical results of [5] we choose the non-
dimensional parameters of the problem as follows
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Fig. 4 Coupling between the vessel and tissue interstitium. Numerical solutions obtained with
mesh size h = 0.05 and parameters κt = κv = 1, R′ = 1, Q = 1. On the left a double-check for
pressure exchange: (top-left) visualization of tissue and vessel pressures at the transversal medium
plane, (bottom-left) a 3D qualitative representation. On the right the velocity exchange: (top-right)
visualization of tissue and vessel velocities at the axial medium plane, (bottom-right) a 2D view of
the vector field.

R′ = 10−2 , κt = 4 , κv = π R′3/8L̂p , Q = 2π , (34)

where L̂p ∈
{

10−4,2×10−6,10−6,5×10−7,10−7,10−8
}

is an array of non-dimensional
vascular permeabilities used in the numerical tests of [5]. In Figure 5 we represent
the capillary pressure as a function of arc-length for different vascular permeabili-
ties. We can observe perfect agreement with the the plots shown in [5] (not reported
here). Moreover, we notice that for the lowest value of the vascular permeability L̂p,
corresponding to an almost impermeable vessel, the computational model predicts a
linearly decreasing pressure, in agreement with the Poiseuille equation that governs
the flow. Conversely, for high permeability values there is a substantial deviation
from the linear trend because the leakage dominates over the axial flow component.
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Fig. 5 Capillary pressure as function of arclength s for different vascular permeabilities L̂p =
10−4,2×10−6,10−6,5×10−7,10−7,10−8. To be compared with Fig.7 in [5].

In addition, a sensitivity analysis has been performed to investigate the influ-
ence of the relative position of the 3D and 1D grids. To this purpose, we simulated
three different configurations in which the network vertexes coincide with particular
points of the 3D mesh, as shown in Figure 6. Numerical results of similar test cases,
where the 1D mesh is slightly shifted to coincide with the location of Figure 6 (top),
are given in Figure 6 (bottom). These results suggest that when the 1D mesh is not
aligned with edges or faces of the 3D one, the velocity field in the neighborhood of
the vessel looks smooth and symmetric. A similar conclusion holds true also when
the 1D branch lays on the 3D mesh faces. However, a problematic case is observed
when the 1D mesh entirely coincides with edges of the 3D one. In this case, the
velocity field looses cylindrical symmetry around the 1D capillary. A preliminary
and heuristic interpretation of this behavior can be found observing that the Raviart-
Thomas degrees of freedom are located on the element faces. For this reason, the
3D velocity field is not uniquely defined on tetrahedral element edges. When the 1D
source term is exactly located on the element edges, there is an inconsistency in the
approximation of the velocity field.
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A

B

C

Fig. 6 (top panel) Proposed configurations for 1D/3D mesh correlation analysis. The red dots
A,B,C indicate three meaningful configurations w.r.t. the distribution of Raviart-Thomas dof (ar-
rows). We show below the sensitivity analysis for the 1D/3D mesh coupling. Numerical solutions
have been obtained with mesh size h = 0.1 and parameters κt = κv = 1, R′ = 1, Q = 10−4. For
each of the three configurations A,B,C, we extract the smallest patch of elements intersected by the
1D mesh (truncated along the axial direction for visualization purposes). The local velocity field
is also displayed together with its magnitude (color scale).
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Fig. 7 (top) Numerical solution of the 1D vessel problem, (pv,h,uv,h) obtained with h = 0.05 and
unitary parameters κv = 1, R′ = 1, Q = 1. As expected the pressure (left) is almost linearly de-
creasing between the imposed boundary values 1 and 0; velocity (right) is almost constant over
each branch and it halves after the junction. (bottom) Visualization of the 3D/1D coupled pressure
and velocity fields.

5.2 Coupled 3D-1D problem on a Y-shaped bifurcation

We aim to validate the imposition of the mass conservation constraint at the junction.
We observe that the conservation of total pressure at the junction xM ,

p0
v(xM) = p1

v(xM) = p2
v(xM)≡ pv(xM) , (35)

is automatically ensured thanks to the use of continuous finite elements for the ves-
sels pressure approximation. Conversely, in order to impose the mass conservation
constraint



20 D. Notaro, L. Cattaneo, L. Formaggia, A. Scotti, P. Zunino

u0
v(xM) = u1

v(xM)+u2
v(xM) , (36)

we proceed as in (30). In practice, in the simple Y-shaped configuration, we first
identify the FEM degrees of freedom (dofs) related to the same junction node. For
those dofs we add in some specific entries of the problem matrix +1 for each inflow
branch and −1 for each outflow branch.

5.2.1 Numerical results

We apply again the SuperLU direct method to solve the linear system (31) and
boundary conditions as in the second test-case, (33).

We notice that both vessels pressure and velocity confirm the expected behavior
along the network: the former is continuous everywhere while the latter is split into
two after the junction. We then conclude that conditions (35) and (36) are fulfilled
also at the numerical level. Furthermore, Fig.7 (bottom panel) confirms that, also in
this case, the 3D/1D coupling behaves correctly.

Finally, we present in Figure 8 a comparison against the pressure formulation
of the 3D/1D coupled problem (6), previously proposed in [3, 4]. In that work,
only the pt and pv variables were approximated, in particular using piecewise linear
finite elements. The velocity field was reconstructed a-posteriori, after calculating
the pressure gradients as constant vector functions over each element. By comparing
the results of the new mixed-form model (left column) against those of the pressure-
form model (right column) it appears, as expected, that we lose accuracy in 3D
pressure approximation, because we use piecewise constant approximation instead
of piecewise linears, but we visibly gain a better approximation of the 3D velocity
field. This is ultimately a very important advantage. Indeed, following the work of
[3, 16] we are planning to combine these simulations with mass transport problems
for drug delivery through the microcirculation, where the velocity field is adopted
to model advection.

6 Conclusions

We have proposed a mixed finite element formulation for coupled incompressible
flow problems defined on a 1D domain embedded into a 3D porous medium. Be-
cause of the non standard coupling operators based on nonlocal restriction of the
3D solution to the 1D manifold, the definition and implementation of the method is
challenging. We have implemented a non-standard finite element method into a C++
solver and the purpose of this work was to carefully validate it on two benchmark
problems. The numerical solutions feature the expected behavior and confirm the
correct functioning of the code. The mixed finite element approximation for 3D/1D
coupled incompressible flow problems is a significant improvement with respect to
the previously available solver based on the primal pressure formulation, because
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Fig. 8 Comparison between numerical predictions of pressure-form (right column) and mixed-
form (left column) models within identical settings. In both cases we adopted h = 0.05 and dimen-
sionless parameters R′ = 0.1, κt = 1, κv = 1, Q = 1.
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the velocity field is a variable of the problem and mass conservation constraints
are directly enforced. Indeed, we are planning to exploit the better approximation
properties of the velocity field, to combine the present solver with mass transport
equations.
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