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Abstract

We describe AneuRisk65 data, obtained from image reconstruc-
tion of three-dimensional cerebral angiographies. This dataset was col-
lected for the study of the aneurysmal pathology, within the AneuRisk
Project. It includes the geometrical reconstructions of one of the main
cerebral vessels, the Inner Carotid Artery, described in terms of the
vessel centreline and of the vessel radius profile. We briefly illustrate
the data derivation and processing, explaining various aspects that are
of interest for this applied problem, while also discussing the peculiari-
ties and critical issues concerning the definition of phase and amplitude
variabilities for these three-dimensional functional data.

1 The AneuRisk project and AneuRisk65 data

The AneuRisk65 data have been collected within the AneuRisk project1,
a scientific endeavour that aimed at investigating the role of vessel mor-
phology, blood fluid dynamics and biomechanical properties of the vascular
wall, on the pathogenesis of cerebral aneurysms. The project has gathered
together researchers of different scientific fields, ranging from neurosurgery
and neuroradiology to statistics, numerical analysis and bio-engineering.

1The project involved MOX Laboratory for Modeling and Scientific Computing (Dip.
di Matematica, Politecnico di Milano), Laboratory of Biological Structure Mechanics (Dip.
di Ingegneria Strutturale, Politecnico di Milano), Istituto Mario Negri (Ranica), Ospedale
Niguarda Ca’ Granda (Milano) and Ospedale Maggiore Policlinico (Milano), and has been
supported by Fondazione Politecnico di Milano and Siemens Medical Solutions Italia.
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Detailed descriptions of the project’s aims can be found at AneuRisk
webpage http://mox.polimi.it/it/progetti/aneurisk/, where AneuRisk65 data
can be downloaded. These data include the image reconstructions of one
of the main cerebral vessels, the Inner Carotid Artery (ICA), described
in terms of the vessel centreline and of the vessel radius profile. In this
work we shall briefly describe the data processing, including the accurate
estimation of these three-dimensional curves and their derivatives by multi-
dimensional free-knot splines, discuss the issue of phase variation and how
this interplays with data classification (see Sangalli et al., 2009b,a, 2010,
for details on these matters), highlighting various aspects that are of in-
terest for this applied problem and critical issues that must be consid-
ered when analyzing the data. An increasing data warehouse concerning
aneurysm pathology can be accessed from the AneuRisk Web Repository
http://ecm2.mathcs.emory.edu/aneurisk managed by Emory University and
Orobix. These data also include the full three-dimensional reconstructions
of the ICA walls, and of the connecting arteries, as well as data concerning
hemodynamical quantities, such as wall shear stress and pressure, obtained
via computational fluid dynamics in the real subject-specific ICA geometries
(see Passerini et al., 2012).

2 Problem and data

Cerebral aneurysms are deformations of cerebral vessels characterized by a
bulge of the vessel wall. This is a common pathology in the adult population,
usually asymptomatic and not disrupting. Epidemiological statistics (see,
e.g., Rinkel et al. (1998)) suggest that between 1% and 6% of adults develop
a cerebral aneurysm during their lives. The rupture of a cerebral aneurysm,
even if quite uncommon (about one event every 10,000 adults per year), is
usually a tragic event, with very high mortality. Unfortunately, rupture-
preventing therapies, both endovascular and surgical treatments, are not
without risks; this adds to the fact that in clinical practice general indica-
tions about rupture risk are still missing. Even the origin of the aneurysmal
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Figure 1: Left: draw of an Internal Carotid Artery (http://www.adam.com);
the ICA sits for most of its length outside the skull, surrounded by the neck
muscle tissues; just before its terminal bifurcation it enters inside the skull,
passing through a dural ring (i.e., a hole in the skull bone). Right: the
Willis circle, located ad the base of the brain, inside the skull, is a net of
small arteries and capillaries connecting the main arteries bringing blood to
the brain; the terminal parts of the left and right ICAs, clearly visible in the
image, are indicated by arrows.

pathology is still unclear. Possible explanations that have been discussed in
the medical literature focus on interactions between the biomechanical prop-
erties of artery walls and hemodynamic factors, such as wall shear stress and
pressure; the hemodynamics is in turn strictly dependent on vascular geom-
etry. In particular, it has been conjectured that the pathogenesis of these
deformations is influenced by the morphological shape of cerebral arteries,
through the effect that the morphology has on the hemodynamics For this
reason, the main goal of the AneuRisk project has been the study of rela-
tionships between vessel morphology and aneurysm presence and location.
The association between vessel geometry and the aneurismal pathology is
also explored, e.g., in Cebral et al. (2005); Castro et al. (2006); Ma et al.
(2007); Meng et al. (2013)

These lesions may originate along the left or right Internal Carotid
Artery, two large arteries bringing blood to the brain, or at or after the
terminal bifurcation of the ICA, in the so-called Willis Circle. Each of
the two ICAs sits for most of its length outside the skull, along the neck,
surrounded by muscle tissues; just before its terminal bifurcation it enters
inside the skull, passing through a dural ring (i.e., a hole in the skull bone).
See Figures 1 and 2. Arteries downstream of ICA terminal bifurcation float
in the brain humor, inside the skull. For this reason, aneurysms located
at or after ICA terminal bifurcation are more life-threatening; the possible
rupture of one such aneurysm is fatal in most cases.
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Figure 2: Left: X-rays image of an aneurysm along an ICA; the artery, with
its siphon, is clearly visible in the image. Right: image reconstruction of an
ICA with aneurysm (different subject with respect to left panel).

The AneuRisk65 data set is based on a set of three-dimensional an-
giographic images taken from 65 subjects, hospitalized at Niguarda Ca’
Granda Hospital (Milan), who were suspected of being affected by cerebral
aneurysms. Out of these 65 subjects, 33 subjects have an aneurysm at or af-
ter the terminal bifurcation of the ICA (“Upper” group), 25 subjects have an
aneurysm along the ICA (“Lower” group), and 7 subjects were found with-
out any visible aneurysm during the angiography (“No-aneurysm” group).
As commented above, Upper group subjects are those with the most dan-
gerous aneurysms; for this and other clinical reasons, for some statistical
analyses it might make sense to join the Lower and No-aneurysm groups in
a unique group, to be contrasted to the Upper group. Percentages of females
and males and of right and left ICAs do not differ significantly from 50% (the
p-values of the test for equal proportions are 0.14 and 0.78, respectively).
Age, apart from a superior outlier, appears normally distributed (the p-value
of the Shapiro-Wilk test is 0.29), with a sample mean equal to 55.85 years
and a sample standard deviation equal to 13.45 years. Gender and age are
not included in the dataset because they are supposed to be related to the
aneurysmal pathology only through their effect on the morphology of the
vessel. Notice that due to the high radiation quantity implied by the scan,
this exam is only performed in case of acute symptoms and if the doctor
strongly suspects the presence of an aneurysm. Also, no follow-up is ever
performed.

The analyses conducted within the AneuRisk project have focussed on
the ICA, which is clearly recognizable in each of the 65 angiographies. Start-
ing from the three-dimensional array of grey-scaled voxels that is generated
by the angiography (with lighter voxels showing the presence of flowing
blood), the artery lumen (i.e., the volume that is occupied by flowing blood)
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Figure 3: Three-dimensional image of an Internal Carotid Artery with an
aneurysm [subject 1]; the black line inside the vessel is its centreline.

is identified by a reconstruction algorithm that is coded in the “Vascular
Modeling ToolKit” (VMTK). See Piccinelli et al. (2011) and Piccinelli et al.
(2009). Figure 3 shows the reconstruction of the ICA of the first subject
in the dataset, and also displays the reconstructed centreline of the vessel.
The centreline is computed as the set of centers of maximal spheres in-
scribed in the artery lumen. In particular, for every subject i in the dataset
(i = 1, . . . , 65), VMTK reconstruction of ICA centreline is a set of points
in R

3, {(xij , yij , zij) : j = 1, 2, . . . , ni}, where x, y, and z denote respec-
tively the left/right, up/down and front/back coordinates of each point. It
should though be noticed that the x, y, and z coordinates are not abso-
lute, but are relative to the cubic volume analyzed during angiography, that
in turn depends on where the angiographic image has been centered; this
means that these coordinates are not directly comparable across subjects,
since they vary with the location of the scanned volume. Points along the
centreline are ordered moving downward along the ICA, from the point clos-
est to its terminal bifurcation (detected by VMTK) towards the proximal
districts, i.e., aorta and heart. The reason for this choice is that the ter-
minal bifurcation of the ICA is present in each angiography, even if the
portion of ICA captured by the angiography varies from subject to subject
(depending on where the angiographic image has been centered). For each
subject i, we can associate the set of space coordinates with an index set
{tij : j = 1, 2, . . . , ni}, which measures an approximate distance along the
ICA centreline, thus providing an approximate curvilinear abscissa. More
precisely, −ti1 is the distance of the point (xi1, yi1, zi1) from the terminal
bifurcation of the ICA (as determined by VMTK), and, for j = 2, . . . , ni,

tij − tij−1 = −
√

(xij − xij−1)2 + (yij − yij−1)2 + (zij − zij−1)2 .
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The conventional negative sign highlights that we are moving upstream,
i.e., in opposite direction with respect to blood flow. Figure 4, for instance,
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Figure 4: Reconstructed space coordinates of ICA centreline for subject
1, (x1j , y1j , z1j), versus the abscissa parameter t1j , for j = 1, . . . , n1 (n1 =
1350).

displays the reconstructed space coordinates of ICA centreline for subject 1,
(x1j , y1j , z1j), versus the approximate curvilinear abscissa parameter t1j , for
j = 1, . . . , n1 (n1 = 1350). The number ni of data points available for each
subject ranges from 350 to 1380, and is almost perfectly correlated to the
approximate length |ti ni

− ti 1| of the reconstructed centreline (correlation
coefficient=0.999), which in turn varies from 27.219mm to 110.136mm. In
other words, the grid density of the 65 reconstructions is the same, even if
the 65 grids are different. The grids are not evenly spaced; their average step
is 0.079mm. The location of the aneurysm along the approximate curvilinear
abscissa is provided. Finally, the reconstruction algorithm also provides, for
each of the grid points, the radius Rij of the vessel lumen section, computed
as the radius of the local maximal inscribed sphere (indicated as Maximal
Inscribed Sphere Radius, MISR).

Besides radius, another geometrical quantity that strongly influences the
hemodynamics, and hence may in turn play a role on the aneurysm patho-
genesis, is the artery curvature, that can be identified by the curvature of the
artery centreline. Centreline curvature is not provided by the reconstruction
algorithm, but is estimated via the data processing described in Section 3.
In general, the three-dimensional shape of the carotid, and in particular the
shape of the siphon characterizing the distal part of the ICA, is fundamental
in determining the hemodynamics. Of big interest is thus the classification
(unsupervised clustering) of ICAs depending on their morphological shape.
It is worth mentioning that a classification commonly used in the medical
literature, proposed by Krayenbuehl et al. (1982), discriminates among Γ-
shaped, Ω-shaped, and S-shaped ICAs, according to the form of siphon in
their distal part, which may resemble the letters Γ, Ω or S, in presence of
zero, one, or two large bends in the siphon, respectively.
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3 Data processing
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Figure 5: First and second differences (top and bottom, respectively) of reconstructed space

co-ordinates of ICA centreline for subject 1.

Reconstructed ICA centrelines are of course affected by measurement
and reconstruction errors. To compute their curvature it is hence necessary
to obtain accurate estimates of the centrelines themselves as well as of their
first two derivatives. Figure 5 shows the first and second central differences
of reconstructed centrelines, that are rough pointwise estimates of first and
second derivatives computed at each grid point as normalized differences
of data values at nearby grid points. These rough pointwise estimates ap-
pears very noisy. In Sangalli et al. (2009b) we hence proposed a regression
technique for the estimation of the true centreline f(t) =

(

x(t), y(t), z(t)
)

,
based on free knot regression splines, that is shown to provide very good
estimates of the curve and its derivatives. Free-knot splines are regression
splines where the number and position of the knots are not fixed in advance,
but chosen in a way to minimize a penalized sum of squared errors criterion.
Since centreline data are three-dimensional, the idea is to fit simultaneously
the three space co-ordinates of the centreline

(

x(t), y(t), z(t)
)

, looking for
the optimal spline knots along the abscissa parameter t. Estimates of f ′

and f ′′, and hence of curvf , are thus obtained by differentiation of the fitted
regression spline. Note that derivatives of splines are still splines (of appro-
priate order), with the same knot vector and coefficients directly computed
from the coefficients of the original spline.

In particular, for each subject i we carry out a separate estimation pro-
cess. Dropping the subject subscript i, denote by (tj , xj), (tj , yj), (tj , zj),

for j = 1, . . . , n, the reconstructed vessel centreline. Let {b
[k]
r,m(t) : r =
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1, . . . ,m+ nk} be the b-spline basis system for the space of splines of order
m, over the abscissa interval [a, b], with knot vector k = (k1, . . . , knk

) where
a < k1 < . . . < knk

< b. Then, the three space coordinates of the vessel
centreline for the considered subject are estimated by

x̂(t) =

m+n̂k
∑

r=1

λ̂[x]
r b[k̂]r,m(t), ŷ(t) =

m+n̂k
∑

r=1

λ̂[y]
r b[k̂]r,m(t), ẑ(t) =

m+n̂k
∑

r=1

λ̂[z]
r b[k̂]r,m(t)

where the optimal number n̂k of knots, the optimal positions k̂ = {k̂1, . . . , k̂n̂k
}

of the knots along the abscissa t, and the optimal vectors of basis expan-

sion coefficients for the three space directions, λ̂
[x]
r , λ̂

[x]
r and λ̂

[x]
r , are jointly

estimated by minimizing the penalized sum of quare errors

n
∑

j=1

(

xj −

m+nk
∑

r=1

λ[x]
r b[k]r,m(tj)

)2
+

n
∑

j=1

(

yj −

m+nk
∑

r=1

λ[y]
r b[k]r,m(tj)

)2

+

n
∑

j=1

(

zj −

m+nk
∑

r=1

λ[z]
r b[k]r,m(tj)

)2
+ C(m+ nk)

The optimal knots are searched by a generalization of Zhou and Shen (2001)
algorithm to the three-dimensional case.

The spline order is set to m = 5, to obtain smooth estimates of the first
two derivatives. A common value of the smoothing parameter C is chosen
for the overall data set of 65 subjects (see Sangalli et al., 2009b, for details
on the choice of C). This assumption is justified by the fact that both the
machine that was used to take the three-dimensional-angiographies and the
reconstruction algorithm are the same for each subject.

The top line of Figure 6 shows the estimates, x̂(t), ŷ(t), ẑ(t), of the three
co-ordinate functions of ICA centreline for subject 1. The vertical lines show
the position of the knots along the abscissa parameter t. The estimates are
superimposed on the original (tj , xj), (tj , yj), (tj , zj), for j = 1, . . . , n (grey
dots, almost completely hidden by the estimates). Center and bottom lines
of the same figure show first and second derivatives of x̂(t), ŷ(t) and ẑ(t),
superimposed on the rough estimates that are given respectively by first and
second central differences (grey). Thanks to their local adaptivity, free-knot
splines estimates efficiently detect the salient features of the curves and are
able to fully capture the clear-cut peaks and troughs in the derivatives, but
being otherwise smooth. Figure 7 is a three-dimensional image of the fitted
centreline, f̂(t), and Figure 8 shows the corresponding curvature function.

All these processed data (estimates of centrelines and corresponding es-
timates of centrelines first two derivatives and curvature, for each subject)
are included in AneuRisk65 dataset.
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Figure 6: Top: fitted co-ordinates curves x̂(t), ŷ(t), ẑ(t), with vertical lines showing the position

of the knots along the abscissa parameter t, superimposed on the original (tj , xj), (tj , yj), (tj , zj),

for j = 1, . . . , n, in grey [subject 1]. Center: first derivatives of x̂(t), ŷ(t) and ẑ(t), superimposed

on the first central differences in grey. Bottom: second derivatives of x̂(t), ŷ(t) and ẑ(t).
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Figure 7: Three dimensional image of esti-

mated centreline together with rough data, for

subject 1; the little bullets show the positions

of the spline knots, while the big squares are

points of approximately zero curvature.
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Figure 8: Centreline curvature for subject

1, computed from first and second derivatives

of estimated centreline, displayed in Figures 6

and 7. The horizontal dashed line is the ap-

proximately zero curvature threshold.

4 A first look at phase variability in AneuRisk65

data

The first derivatives of the estimated ICA centrelines of the 65 subjects
are displayed in Figure 9; in the picture, left carotids have been left-right
reflected so that the orientation in the three-dimensional space of all re-
constructed ICAs is the same (left-right reflected ICA coordinates are also
provided in AneuRisk65 dataset). As apparent from the figure, the three-
dimensional centrelines display a considerable misalignment. This misalign-
ment is the expression of a strong phase variability present among the data,
largely due to the different dimensions of the ICA of the various subjects;
if not taken properly into account, this misalignment acts as a confounding
factor in the data analysis. To enable meaningful comparisons across sub-
jects, it is thus necessary to efficiently decouple the phase and the amplitude
variability, the former being mainly due to the differences in the dimensions
of subjects carotids and the latter instead to the differences in their mor-
phological shapes. Sangalli et al. (2009a, 2010) describe the solutions to
this problem given within the AneuRisk project, considering also the issue
of classification of these three-dimensional curves.

It should be stressed again that the portion of ICA captured by the
angiography varies from subject to subject, depending on where the angio-
graphic image has been centered. Moreover, even if the terminal bifurcation
of the ICA is present in each angiography, the bifurcation point identified by
VMTK depends on bifurcation angle and other geometrical quantities. In
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Figure 9: First derivatives {x′(t), y′(t), z′(t)} of estimated ICA centrelines
for the 65 subjects.

other words, both the starting and the ending abscissas points of the vari-
ous curves cannot be matched. Hence, it is unappropriate to use directly on
these data a registration method that forces starting and ending abscissas
to be the same across curves.
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